纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测
合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。...
Saved in:
Published in | 测绘学报 Vol. 45; no. 3; pp. 339 - 346 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1595 |
Cover
Abstract | 合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。 |
---|---|
AbstractList | P236; 合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息.本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像.通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11.试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度. 合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。 |
Abstract_FL | Generally,spatial-contextual information would be used in change detection because there is significant speckle noise in synthetic aperture radar (SAR)images.In this paper,using the rich texture information of SAR images,an unsupervised change detection approach to high-resolution SAR images based on texture feature vector and maximum entropy principle is proposed.The difference image is generated by using the 32-dimensional texture feature vector of gray-level co-occurrence matrix (GLCM). And the automatic threshold is obtained by maximum entropy principle.In this method,the appropriate window size to change detection is 11 × 11 according to the regression analysis of window size and precision index.The experimental results show that the proposed approach is better could both reduce the influence of speckle noise and improve the detection accuracy of high-resolution SAR image effectively;and it is better than Markov random field. |
Author | 庄会富 邓喀中 范洪冬 |
AuthorAffiliation | 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏徐州221116 |
AuthorAffiliation_xml | – name: 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116 |
Author_FL | DENG Kazhong ZHUANG Huifu FAN Hongdong |
Author_FL_xml | – sequence: 1 fullname: ZHUANG Huifu – sequence: 2 fullname: DENG Kazhong – sequence: 3 fullname: FAN Hongdong |
Author_xml | – sequence: 1 fullname: 庄会富 邓喀中 范洪冬 |
BookMark | eNotzU9LAlEUBfC3MMjMLxG0HLhv3tynsxTpH0hBuZf7JkeNGmskqp1RWFGkEkVktjFoHSFoUZ-mNw-_RQO2OnD4cc4cSwT1oJxgSQ7ALY4uzrJ0o1FTAOiIDAo3ydbN59h0WuZqrH9Odac7uWj_jm6j56Z-fdM3D6Y1jD7uTW9kvu5059I8nW_lNvX3uz5rT_ovptc1_YFuP8YyGjSj4fU8m_Fpt1FO_2eKFZeXivlVq7CxspbPFSwPM2jJjCCF4NpAAgjQFooQQXqulK7tS4wrLm2SAn1SxDkQqW2FZTtGKitEii1OZ48o8CmolHbqh2EQH5a86rGygUsQwDF2C1PnVetB5aAWy_2wtkfhSUnKrMMdLlD8Af7WbyY |
ClassificationCodes | P236 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA 2B. 4A8 92I 93N PSX TCJ |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitleAlternate | SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle |
DocumentTitle_FL | SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle |
EndPage | 346 |
ExternalDocumentID | chxb201603015 668414135 |
GrantInformation_xml | – fundername: Research and Special Funding of Mapping Geographic Information Public Service Sectors; The National Natural Science Foundation of China; Project Supported by the Basic Research Project of Jiangsu Province (Natural Science Foundation)(No.BK20130174) 测绘地理信息公益性行业科研专项经费项目; 国家自然科学基金; 江苏省基础研究计划(自然科学基金)青年基金 funderid: (201412016); (41272389); (201412016); (41272389); (BK20130174) |
GroupedDBID | -01 2B. 2C. 2RA 5VS 5XA 5XB 7X2 92E 92I 92L ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CQIGP CW9 GROUPED_DOAJ HCIFZ IPNFZ M0K M7P OK1 P2P PATMY PCBAR PIMPY PYCSY RIG TCJ TGP U1G U5K W94 ~WA 4A8 93N ABJNI AEUYN PHGZM PHGZT PMFND PSX |
ID | FETCH-LOGICAL-c575-673ab50920a30a0523ba5506c96692f65052162a635faba110aabdb5e2506b833 |
ISSN | 1001-1595 |
IngestDate | Thu May 29 04:11:07 EDT 2025 Wed Feb 14 10:19:45 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | maximum entropy principle 灰度共生矩阵 SAR 纹理特征向量 变化检测 change detection texture feature vector 最大化熵法 GLCM |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c575-673ab50920a30a0523ba5506c96692f65052162a635faba110aabdb5e2506b833 |
Notes | 11-2089/P Generally,spatial-contextual information would be used in change detection because there is significant speckle noise in synthetic aperture radar(SAR)images.In this paper,using the rich texture information of SAR images,an unsupervised change detection approach to high-resolution SAR images based on texture feature vector and maximum entropy principle is proposed.The difference image is generated by using the 32-dimensional texture feature vector of gray-level co-occurrence matrix(GLCM).And the automatic threshold is obtained by maximum entropy principle.In this method,the appropriate window size to change detection is 11×11 according to the regression analysis of window size and precision index.The experimental results show that the proposed approach is better could both reduce the influence of speckle noise and improve the detection accuracy of high-resolution SAR image effectively;and it is better than Markov random field. GLCM; texture feature vector; maximum entropy principle; SAR; change detecti |
PageCount | 8 |
ParticipantIDs | wanfang_journals_chxb201603015 chongqing_primary_668414135 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 测绘学报 |
PublicationTitleAlternate | Acta Geodaetica et Cartographica Sinica |
PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
PublicationYear | 2016 |
Publisher | 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116 |
Publisher_xml | – name: 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116 |
SSID | ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 ssj0058465 |
Score | 2.0704668 |
Snippet | ... P236;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 339 |
SubjectTerms | SAR 变化检测 最大化熵法 灰度共生矩阵 纹理特征向量 |
Title | 纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测 |
URI | http://lib.cqvip.com/qk/90069X/201603/668414135.html https://d.wanfangdata.com.cn/periodical/chxb201603015 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJSevIifVKtlD44XWdlNMpOZY2abpSgW1Aq9LTO72fbiVm0L2lNFqYpiW0QRa71U8CxSaBX9NWZD_4XvvWSzUQQ_LmF4efM-J5n3kpk3jnNOch5baeKqaywkKIFVVRl3TLUOYKPabqzo1JIr02Lqhn9pls-OjI6UVi0tL9mL7ZXf7iv5H68CDPyKu2T_wbMFUQBAG_wLV_AwXP_KxywKmA6ZVthQNSYFNqQiCGc6gjgRG3BLQUMxyPxlk0U-05LJiEWCqQaudQCc0GdhgA3ZYCqjI5jmiKM9pjix0NgRmWqmvJyyJIgKmfSvh9eI7yTTxFd6xE4xNclUlFNASQKEhEQBEJQs8RUIR5GIu9Tl6LkADmSgjiGQoo4yZCEfjCASBIUidRsoIOI2gc8QBSziDjQRxJVMM6xRySKJgoEiyBpMRFTAMnnJyvx7SbaRk8Z2QYKIajQGqttkemD4XJKBvXPxC2SOPgF89ECEAiOOSyIUfgvQseBevBWhf4amLSxUIog44vfGA166Vho-PsoZEh1gkXEHZ6JpsuFD6oDVsiEGlNGxCg0DdsogoJrbIHZ1UkQiU9m8kI9JReNNB9gTz5OGeVCU5kZcfQfRLy9Pnlkt0Pwl4ZVmQi-rUZUHVZ7_S71ziqDa83etSwed16hOBATLuCrz8tVyhgDxuSxHoDBhlCrscd-DhLuIyPH4BF8MK2Dyuhd4QhUZMYbbnBZA5LpgSZX5hd7cbQgUad9er2t6c6UQc-aIczjPDSth9qAfdUZW5o85Y-Ei_q1auHmvcr5C7exj5OJxZzr9vJ9urKVP9pNv95ONzYNH69_3nvffribvPyTPXqVru_1PL9OtvfTLi2TjcfrmITyfydePyYP1g-136dZmur2TrL8GzP7Oan_36QlnphnNNKaq-fko1TYkWbhpx1iI992a8WoGf-9Yw3lNtJUQyu0KPKKyLlwDKUXXWANxvjG2Y3kMWY-w0vNOOqO9hV485lRMx9Zlx9Q7wu36wsLsYoWUsRfIjmp7gp9yxgsrtW5lZXBaQki_DjEw3J3I7dbKX46LrZ9ce_pPCOPOIWxnnzbPOKNLd5bjsxDsL9kJGg4_AKt8vyk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%BA%B9%E7%90%86%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F%E4%B8%8E%E6%9C%80%E5%A4%A7%E5%8C%96%E7%86%B5%E6%B3%95%E7%9B%B8%E7%BB%93%E5%90%88%E7%9A%84SAR%E5%BD%B1%E5%83%8F%E9%9D%9E%E7%9B%91%E7%9D%A3%E5%8F%98%E5%8C%96%E6%A3%80%E6%B5%8B&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%BA%84%E4%BC%9A%E5%AF%8C&rft.au=%E9%82%93%E5%96%80%E4%B8%AD&rft.au=%E8%8C%83%E6%B4%AA%E5%86%AC&rft.date=2016&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%9B%BD%E5%9C%9F%E7%8E%AF%E5%A2%83%E4%B8%8E%E7%81%BE%E5%AE%B3%E7%9B%91%E6%B5%8B%E5%9B%BD%E5%AE%B6%E6%B5%8B%E7%BB%98%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E5%B1%80%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F+%E5%BE%90%E5%B7%9E%2C221116&rft.issn=1001-1595&rft.volume=45&rft.issue=3&rft.spage=339&rft.epage=346&rft.externalDocID=chxb201603015 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |