纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测

合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 45; no. 3; pp. 339 - 346
Main Author 庄会富 邓喀中 范洪冬
Format Journal Article
LanguageChinese
Published 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116 2016
Subjects
Online AccessGet full text
ISSN1001-1595

Cover

Abstract 合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。
AbstractList P236; 合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息.本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像.通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11.试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度.
合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。
Abstract_FL Generally,spatial-contextual information would be used in change detection because there is significant speckle noise in synthetic aperture radar (SAR)images.In this paper,using the rich texture information of SAR images,an unsupervised change detection approach to high-resolution SAR images based on texture feature vector and maximum entropy principle is proposed.The difference image is generated by using the 32-dimensional texture feature vector of gray-level co-occurrence matrix (GLCM). And the automatic threshold is obtained by maximum entropy principle.In this method,the appropriate window size to change detection is 11 × 11 according to the regression analysis of window size and precision index.The experimental results show that the proposed approach is better could both reduce the influence of speckle noise and improve the detection accuracy of high-resolution SAR image effectively;and it is better than Markov random field.
Author 庄会富 邓喀中 范洪冬
AuthorAffiliation 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏徐州221116
AuthorAffiliation_xml – name: 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116
Author_FL DENG Kazhong
ZHUANG Huifu
FAN Hongdong
Author_FL_xml – sequence: 1
  fullname: ZHUANG Huifu
– sequence: 2
  fullname: DENG Kazhong
– sequence: 3
  fullname: FAN Hongdong
Author_xml – sequence: 1
  fullname: 庄会富 邓喀中 范洪冬
BookMark eNotzU9LAlEUBfC3MMjMLxG0HLhv3tynsxTpH0hBuZf7JkeNGmskqp1RWFGkEkVktjFoHSFoUZ-mNw-_RQO2OnD4cc4cSwT1oJxgSQ7ALY4uzrJ0o1FTAOiIDAo3ydbN59h0WuZqrH9Odac7uWj_jm6j56Z-fdM3D6Y1jD7uTW9kvu5059I8nW_lNvX3uz5rT_ovptc1_YFuP8YyGjSj4fU8m_Fpt1FO_2eKFZeXivlVq7CxspbPFSwPM2jJjCCF4NpAAgjQFooQQXqulK7tS4wrLm2SAn1SxDkQqW2FZTtGKitEii1OZ48o8CmolHbqh2EQH5a86rGygUsQwDF2C1PnVetB5aAWy_2wtkfhSUnKrMMdLlD8Af7WbyY
ClassificationCodes P236
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle
DocumentTitle_FL SAR Images Unsupervised Change Detection Based on Combination of Texture Feature Vector with Maximum Entropy Principle
EndPage 346
ExternalDocumentID chxb201603015
668414135
GrantInformation_xml – fundername: Research and Special Funding of Mapping Geographic Information Public Service Sectors; The National Natural Science Foundation of China; Project Supported by the Basic Research Project of Jiangsu Province (Natural Science Foundation)(No.BK20130174) 测绘地理信息公益性行业科研专项经费项目; 国家自然科学基金; 江苏省基础研究计划(自然科学基金)青年基金
  funderid: (201412016); (41272389); (201412016); (41272389); (BK20130174)
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c575-673ab50920a30a0523ba5506c96692f65052162a635faba110aabdb5e2506b833
ISSN 1001-1595
IngestDate Thu May 29 04:11:07 EDT 2025
Wed Feb 14 10:19:45 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords maximum entropy principle
灰度共生矩阵
SAR
纹理特征向量
变化检测
change detection
texture feature vector
最大化熵法
GLCM
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c575-673ab50920a30a0523ba5506c96692f65052162a635faba110aabdb5e2506b833
Notes 11-2089/P
Generally,spatial-contextual information would be used in change detection because there is significant speckle noise in synthetic aperture radar(SAR)images.In this paper,using the rich texture information of SAR images,an unsupervised change detection approach to high-resolution SAR images based on texture feature vector and maximum entropy principle is proposed.The difference image is generated by using the 32-dimensional texture feature vector of gray-level co-occurrence matrix(GLCM).And the automatic threshold is obtained by maximum entropy principle.In this method,the appropriate window size to change detection is 11×11 according to the regression analysis of window size and precision index.The experimental results show that the proposed approach is better could both reduce the influence of speckle noise and improve the detection accuracy of high-resolution SAR image effectively;and it is better than Markov random field.
GLCM; texture feature vector; maximum entropy principle; SAR; change detecti
PageCount 8
ParticipantIDs wanfang_journals_chxb201603015
chongqing_primary_668414135
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2016
Publisher 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116
Publisher_xml – name: 中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,江苏 徐州,221116
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.0704668
Snippet ...
P236;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 339
SubjectTerms SAR
变化检测
最大化熵法
灰度共生矩阵
纹理特征向量
Title 纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测
URI http://lib.cqvip.com/qk/90069X/201603/668414135.html
https://d.wanfangdata.com.cn/periodical/chxb201603015
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJSevIifVKtlD44XWdlNMpOZY2abpSgW1Aq9LTO72fbiVm0L2lNFqYpiW0QRa71U8CxSaBX9NWZD_4XvvWSzUQQ_LmF4efM-J5n3kpk3jnNOch5baeKqaywkKIFVVRl3TLUOYKPabqzo1JIr02Lqhn9pls-OjI6UVi0tL9mL7ZXf7iv5H68CDPyKu2T_wbMFUQBAG_wLV_AwXP_KxywKmA6ZVthQNSYFNqQiCGc6gjgRG3BLQUMxyPxlk0U-05LJiEWCqQaudQCc0GdhgA3ZYCqjI5jmiKM9pjix0NgRmWqmvJyyJIgKmfSvh9eI7yTTxFd6xE4xNclUlFNASQKEhEQBEJQs8RUIR5GIu9Tl6LkADmSgjiGQoo4yZCEfjCASBIUidRsoIOI2gc8QBSziDjQRxJVMM6xRySKJgoEiyBpMRFTAMnnJyvx7SbaRk8Z2QYKIajQGqttkemD4XJKBvXPxC2SOPgF89ECEAiOOSyIUfgvQseBevBWhf4amLSxUIog44vfGA166Vho-PsoZEh1gkXEHZ6JpsuFD6oDVsiEGlNGxCg0DdsogoJrbIHZ1UkQiU9m8kI9JReNNB9gTz5OGeVCU5kZcfQfRLy9Pnlkt0Pwl4ZVmQi-rUZUHVZ7_S71ziqDa83etSwed16hOBATLuCrz8tVyhgDxuSxHoDBhlCrscd-DhLuIyPH4BF8MK2Dyuhd4QhUZMYbbnBZA5LpgSZX5hd7cbQgUad9er2t6c6UQc-aIczjPDSth9qAfdUZW5o85Y-Ei_q1auHmvcr5C7exj5OJxZzr9vJ9urKVP9pNv95ONzYNH69_3nvffribvPyTPXqVru_1PL9OtvfTLi2TjcfrmITyfydePyYP1g-136dZmur2TrL8GzP7Oan_36QlnphnNNKaq-fko1TYkWbhpx1iI992a8WoGf-9Yw3lNtJUQyu0KPKKyLlwDKUXXWANxvjG2Y3kMWY-w0vNOOqO9hV485lRMx9Zlx9Q7wu36wsLsYoWUsRfIjmp7gp9yxgsrtW5lZXBaQki_DjEw3J3I7dbKX46LrZ9ce_pPCOPOIWxnnzbPOKNLd5bjsxDsL9kJGg4_AKt8vyk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%BA%B9%E7%90%86%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F%E4%B8%8E%E6%9C%80%E5%A4%A7%E5%8C%96%E7%86%B5%E6%B3%95%E7%9B%B8%E7%BB%93%E5%90%88%E7%9A%84SAR%E5%BD%B1%E5%83%8F%E9%9D%9E%E7%9B%91%E7%9D%A3%E5%8F%98%E5%8C%96%E6%A3%80%E6%B5%8B&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E5%BA%84%E4%BC%9A%E5%AF%8C&rft.au=%E9%82%93%E5%96%80%E4%B8%AD&rft.au=%E8%8C%83%E6%B4%AA%E5%86%AC&rft.date=2016&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%9B%BD%E5%9C%9F%E7%8E%AF%E5%A2%83%E4%B8%8E%E7%81%BE%E5%AE%B3%E7%9B%91%E6%B5%8B%E5%9B%BD%E5%AE%B6%E6%B5%8B%E7%BB%98%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E5%B1%80%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F+%E5%BE%90%E5%B7%9E%2C221116&rft.issn=1001-1595&rft.volume=45&rft.issue=3&rft.spage=339&rft.epage=346&rft.externalDocID=chxb201603015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg