The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials
•The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined pretreatments were applied to optimize the utilization of lignocellulose.•Three combined pretreatments showed great potential for large-scale app...
Saved in:
Published in | Bioresource technology Vol. 199; pp. 49 - 58 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined pretreatments were applied to optimize the utilization of lignocellulose.•Three combined pretreatments showed great potential for large-scale application.
Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials. |
---|---|
AbstractList | Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials. Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials.Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials. •The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined pretreatments were applied to optimize the utilization of lignocellulose.•Three combined pretreatments showed great potential for large-scale application. Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials. |
Author | Sun, Runcang Sun, Shaolong Sun, Shaoni Cao, Xuefei |
Author_xml | – sequence: 1 givenname: Shaoni surname: Sun fullname: Sun, Shaoni organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China – sequence: 2 givenname: Shaolong surname: Sun fullname: Sun, Shaolong organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China – sequence: 3 givenname: Xuefei surname: Cao fullname: Cao, Xuefei organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China – sequence: 4 givenname: Runcang surname: Sun fullname: Sun, Runcang email: rcsun3@bjfu.edu.cn organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26321216$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PGzEQhq0KVALtX0B75LLL2N71rqUeihAflZB6gVMPlmNPiKNdO7UdpPDrcRRy4ZLTSOPnGY_mPScnPngk5JJCQ4GK61UzdyFmNMuGAe0aGBoQ9BuZ0aHnNZO9OCEzkALqoWPtGTlPaQUAnPbsOzljgjPKqJiRf89LrGIYsQqLah0xR9R5Qp8r5ys3rWN4c_61yoVC_76ddHamWm5tUbbJpZ01ulcfDI7jZgypvBYGo9Nj-kFOF6Xgz896QV7u755vH-unvw9_bm-eatP1ba5RMmssQGfmYDl2wrbalF7LjOk0SjnXdqBcMtlRCS0b0MiW8UWvhaVacn5BrvZzy7b_N5iymlzaLaQ9hk1SdOBCMN633XG054yD7Hlb0MtPdDOf0Kp1dJOOW3W4XQF-7QETQ0oRF8q4XO4TfI7ajYqC2kWlVuoQldpFpWBQJaqiiy_64Yej4u-9iOWmbw6jSsahN2hdRJOVDe7YiA8CG7Ma |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2019_109351 crossref_primary_10_1007_s11356_023_31510_8 crossref_primary_10_1016_j_enconman_2024_119225 crossref_primary_10_3390_polym13172886 crossref_primary_10_1007_s12649_017_0073_0 crossref_primary_10_1016_j_biortech_2018_04_074 crossref_primary_10_1002_adsu_202400864 crossref_primary_10_1016_j_biortech_2020_122974 crossref_primary_10_1016_j_rser_2024_114688 crossref_primary_10_1016_j_indcrop_2023_117778 crossref_primary_10_1002_cssc_202102084 crossref_primary_10_1039_C6RA27072G crossref_primary_10_1007_s13399_021_01368_2 crossref_primary_10_3390_catal11111362 crossref_primary_10_3390_catal13030582 crossref_primary_10_1186_s43141_023_00619_1 crossref_primary_10_1016_j_indcrop_2021_113733 crossref_primary_10_1007_s11356_021_15758_6 crossref_primary_10_1007_s42398_021_00172_y crossref_primary_10_1016_j_renene_2020_04_055 crossref_primary_10_5604_01_3001_0015_3633 crossref_primary_10_1007_s00253_019_10158_w crossref_primary_10_1016_j_indcrop_2021_113971 crossref_primary_10_1016_j_jssc_2018_11_003 crossref_primary_10_1007_s12649_021_01406_0 crossref_primary_10_1016_j_chemosphere_2021_130878 crossref_primary_10_32434_0321_4095_2022_143_4_102_108 crossref_primary_10_1016_j_biortech_2021_125068 crossref_primary_10_3390_fermentation3020017 crossref_primary_10_1186_s13068_017_0718_z crossref_primary_10_1016_j_biortech_2022_127502 crossref_primary_10_1016_j_mser_2023_100761 crossref_primary_10_3390_app10165545 crossref_primary_10_3390_en15103544 crossref_primary_10_1007_s11947_021_02647_6 crossref_primary_10_1080_07388551_2022_2157241 crossref_primary_10_1007_s13399_021_01468_z crossref_primary_10_1515_psr_2022_0164 crossref_primary_10_1007_s13399_020_00602_7 crossref_primary_10_1016_j_indcrop_2023_117884 crossref_primary_10_1007_s10570_019_02578_8 crossref_primary_10_1016_j_biortech_2019_122189 crossref_primary_10_3390_microorganisms9081581 crossref_primary_10_1016_j_biombioe_2020_105819 crossref_primary_10_1016_j_ijbiomac_2020_02_242 crossref_primary_10_1016_j_procbio_2019_10_013 crossref_primary_10_1016_j_ijbiomac_2022_08_193 crossref_primary_10_1016_j_biortech_2018_04_099 crossref_primary_10_1111_gcbb_12807 crossref_primary_10_1016_j_crgsc_2020_100035 crossref_primary_10_1016_j_seta_2019_100549 crossref_primary_10_3390_life11080807 crossref_primary_10_1007_s13399_018_0364_0 crossref_primary_10_1186_s13068_022_02130_0 crossref_primary_10_1007_s10570_018_1960_7 crossref_primary_10_5772_geet_20240082 crossref_primary_10_1016_j_fuel_2023_127648 crossref_primary_10_1016_j_rser_2018_06_036 crossref_primary_10_1016_j_biortech_2017_11_082 crossref_primary_10_1016_j_biortech_2018_02_125 crossref_primary_10_1016_j_indcrop_2020_112265 crossref_primary_10_1016_j_enconman_2016_06_029 crossref_primary_10_1002_bbb_2619 crossref_primary_10_1186_s13068_020_1659_5 crossref_primary_10_1016_j_biortech_2021_126251 crossref_primary_10_1016_j_biortech_2022_127882 crossref_primary_10_1016_j_jwpe_2023_103557 crossref_primary_10_1016_j_enconman_2018_09_002 crossref_primary_10_1016_j_bej_2018_12_003 crossref_primary_10_1111_gcbb_12800 crossref_primary_10_1088_1742_6596_2117_1_012034 crossref_primary_10_1016_j_biortech_2017_02_078 crossref_primary_10_1007_s13399_020_01217_8 crossref_primary_10_1007_s13399_018_0353_3 crossref_primary_10_1007_s13399_021_01469_y crossref_primary_10_1016_j_biortech_2017_09_081 crossref_primary_10_1016_j_rser_2018_06_042 crossref_primary_10_1016_j_biortech_2018_11_035 crossref_primary_10_1016_j_biortech_2019_122244 crossref_primary_10_3390_catal12101177 crossref_primary_10_1016_j_biortech_2016_07_007 crossref_primary_10_1016_j_biortech_2023_129174 crossref_primary_10_1016_j_ijbiomac_2024_129839 crossref_primary_10_3390_pr8050567 crossref_primary_10_1016_j_biortech_2019_122121 crossref_primary_10_1016_j_indcrop_2021_113924 crossref_primary_10_3390_molecules24040808 crossref_primary_10_1016_j_jwpe_2022_103269 crossref_primary_10_1080_10934529_2023_2176092 crossref_primary_10_3390_en12061053 crossref_primary_10_1016_j_conbuildmat_2021_123281 crossref_primary_10_1016_j_rser_2021_111258 crossref_primary_10_3390_molecules23061381 crossref_primary_10_1007_s10668_020_01110_4 crossref_primary_10_1016_j_jenvman_2022_115969 crossref_primary_10_1007_s13399_024_06342_2 crossref_primary_10_1016_j_energy_2022_124402 crossref_primary_10_1016_j_carres_2023_108961 crossref_primary_10_1016_j_carbpol_2020_117164 crossref_primary_10_1016_j_fuel_2020_118262 crossref_primary_10_26896_1028_6861_2018_84_10_5_11 crossref_primary_10_1016_j_jclepro_2019_119914 crossref_primary_10_1039_D1SE00747E crossref_primary_10_1016_j_biortech_2019_121392 crossref_primary_10_1016_j_carbpol_2024_122351 crossref_primary_10_3389_fenrg_2022_741570 crossref_primary_10_1016_j_biortech_2018_09_126 crossref_primary_10_1016_j_biortech_2021_126114 crossref_primary_10_3390_agriculture14071143 crossref_primary_10_2139_ssrn_3909858 crossref_primary_10_1016_j_jcat_2023_03_016 crossref_primary_10_3390_en15114105 crossref_primary_10_1016_j_scitotenv_2022_157599 crossref_primary_10_1016_j_indcrop_2020_112176 crossref_primary_10_1016_j_jclepro_2017_06_215 crossref_primary_10_1007_s13399_024_05934_2 crossref_primary_10_1002_jctb_6197 crossref_primary_10_1007_s13399_024_06487_0 crossref_primary_10_1016_j_enconman_2019_112111 crossref_primary_10_1016_j_fuel_2020_118247 crossref_primary_10_1007_s13399_022_02329_z crossref_primary_10_1007_s12355_021_00988_2 crossref_primary_10_1016_j_biortech_2017_10_009 crossref_primary_10_1016_j_chemosphere_2021_132604 crossref_primary_10_3390_molecules28145617 crossref_primary_10_1016_j_biortech_2021_125594 crossref_primary_10_1016_j_biortech_2016_10_085 crossref_primary_10_1016_j_biortech_2021_125596 crossref_primary_10_1016_j_bej_2020_107793 crossref_primary_10_1186_s13068_021_01927_9 crossref_primary_10_1016_j_jechem_2017_11_007 crossref_primary_10_1021_acs_iecr_0c03047 crossref_primary_10_1016_j_biortech_2022_127609 crossref_primary_10_1002_aocs_12516 crossref_primary_10_1016_j_envres_2019_109094 crossref_primary_10_5219_1913 crossref_primary_10_1016_j_biortech_2019_122261 crossref_primary_10_1007_s13399_022_02548_4 crossref_primary_10_1016_j_energy_2019_116395 crossref_primary_10_1039_D3RA02693K crossref_primary_10_1016_j_scitotenv_2021_152872 crossref_primary_10_1016_j_bcab_2022_102374 crossref_primary_10_1002_chem_202402171 crossref_primary_10_1016_j_chemosphere_2021_131623 crossref_primary_10_1007_s13399_023_03935_1 crossref_primary_10_1016_j_biombioe_2020_105901 crossref_primary_10_1016_j_egyr_2021_12_015 crossref_primary_10_1016_j_biortech_2016_12_105 crossref_primary_10_1016_j_enconman_2021_114219 crossref_primary_10_1021_acssuschemeng_8b05637 crossref_primary_10_1016_j_biortech_2021_126458 crossref_primary_10_1016_j_indcrop_2018_08_060 crossref_primary_10_1080_02773813_2024_2304600 crossref_primary_10_1007_s12155_018_9920_5 crossref_primary_10_1080_15435075_2024_2432572 crossref_primary_10_1007_s10570_022_04882_2 crossref_primary_10_1016_j_scitotenv_2020_137067 crossref_primary_10_1007_s10570_022_04697_1 crossref_primary_10_1016_j_envres_2024_120484 crossref_primary_10_1007_s13205_020_02426_8 crossref_primary_10_1007_s13399_022_02721_9 crossref_primary_10_1007_s13399_021_01564_0 crossref_primary_10_1016_j_indcrop_2023_116896 crossref_primary_10_1007_s11814_016_0320_2 crossref_primary_10_1016_j_jclepro_2020_125447 crossref_primary_10_1016_j_copbio_2017_11_016 crossref_primary_10_1021_acs_energyfuels_7b03663 crossref_primary_10_1016_j_biortech_2017_04_078 crossref_primary_10_1039_C8SE00287H crossref_primary_10_1088_1757_899X_318_1_012001 crossref_primary_10_1016_j_renene_2021_01_082 crossref_primary_10_3389_fenrg_2024_1347373 crossref_primary_10_1002_star_202200122 crossref_primary_10_1007_s00253_020_10722_9 crossref_primary_10_1016_j_indcrop_2021_114420 crossref_primary_10_1016_j_biortech_2019_121905 crossref_primary_10_1080_09168451_2015_1116933 crossref_primary_10_3389_fpls_2018_01537 crossref_primary_10_1016_j_indcrop_2024_119839 crossref_primary_10_1021_acs_chemrev_2c00602 crossref_primary_10_1002_er_8329 crossref_primary_10_3390_app12167972 crossref_primary_10_3390_fermentation8100531 crossref_primary_10_1016_j_jece_2024_114461 crossref_primary_10_52711_2231_5691_2024_00028 crossref_primary_10_1007_s11274_024_03992_2 crossref_primary_10_3390_jof10080545 crossref_primary_10_1007_s00253_017_8714_6 crossref_primary_10_1007_s12649_017_0186_5 crossref_primary_10_1016_j_indcrop_2016_10_055 crossref_primary_10_2208_jscejer_78_7_III_177 crossref_primary_10_1007_s13399_021_01544_4 crossref_primary_10_3390_polym14050930 crossref_primary_10_1016_j_energy_2017_01_005 crossref_primary_10_1016_j_biteb_2020_100404 crossref_primary_10_1016_j_jclepro_2019_119421 crossref_primary_10_1088_1755_1315_1108_1_012022 crossref_primary_10_1016_j_biortech_2017_03_013 crossref_primary_10_1016_j_biortech_2019_121915 crossref_primary_10_1007_s13399_020_00704_2 crossref_primary_10_1016_j_biombioe_2020_105653 crossref_primary_10_1016_j_renene_2018_04_044 crossref_primary_10_1016_j_indcrop_2024_119845 crossref_primary_10_1016_j_biortech_2016_02_079 crossref_primary_10_1016_j_indcrop_2022_114712 crossref_primary_10_1186_s12896_019_0593_8 crossref_primary_10_1002_cssc_202401683 crossref_primary_10_1016_j_indcrop_2021_113442 crossref_primary_10_3390_polym17030266 crossref_primary_10_1016_j_supflu_2018_01_013 crossref_primary_10_1002_tcr_202200266 crossref_primary_10_1007_s12155_022_10436_y crossref_primary_10_1021_acsomega_0c03419 crossref_primary_10_1080_15440478_2019_1568346 crossref_primary_10_3390_catal10050536 crossref_primary_10_1002_bit_27639 crossref_primary_10_1021_acssuschemeng_4c05508 crossref_primary_10_3390_su14052596 crossref_primary_10_1002_bit_26788 crossref_primary_10_1016_j_carbpol_2020_117386 crossref_primary_10_1007_s12010_019_03183_y crossref_primary_10_1186_s13068_021_02012_x crossref_primary_10_1016_j_biortech_2017_05_090 crossref_primary_10_1016_j_scitotenv_2023_166992 crossref_primary_10_3390_polym12091876 crossref_primary_10_1016_j_biortech_2024_131528 crossref_primary_10_1007_s10570_023_05493_1 crossref_primary_10_1016_j_fuel_2019_05_038 crossref_primary_10_3390_polym13213762 crossref_primary_10_1186_s13068_018_1071_6 crossref_primary_10_1016_j_biortech_2021_126536 crossref_primary_10_1007_s12649_021_01425_x crossref_primary_10_3390_catal14110821 crossref_primary_10_1007_s13399_021_01294_3 crossref_primary_10_3390_fermentation8110591 crossref_primary_10_1007_s10529_023_03417_4 crossref_primary_10_1016_j_biortech_2016_08_025 crossref_primary_10_1002_cssc_201601381 crossref_primary_10_1016_j_enconman_2018_01_046 crossref_primary_10_1021_acs_iecr_0c00645 crossref_primary_10_1016_j_indcrop_2018_11_075 crossref_primary_10_1007_s12649_023_02174_9 crossref_primary_10_1038_s41598_017_08740_1 crossref_primary_10_1016_j_renene_2020_09_070 crossref_primary_10_1016_j_renene_2022_04_095 crossref_primary_10_1016_j_jece_2024_112135 crossref_primary_10_3390_molecules23112937 crossref_primary_10_1021_acssuschemeng_1c00248 crossref_primary_10_1007_s13399_023_04152_6 crossref_primary_10_1088_1755_1315_1187_1_012048 crossref_primary_10_1088_1755_1315_1368_1_012007 crossref_primary_10_1021_acssuschemeng_9b04451 crossref_primary_10_1039_C8RA00764K crossref_primary_10_1007_s13399_019_00574_3 crossref_primary_10_1016_j_renene_2018_11_029 crossref_primary_10_3390_polym15234521 crossref_primary_10_1134_S1070427222120059 crossref_primary_10_1016_j_cej_2024_152204 crossref_primary_10_1016_j_procbio_2022_01_001 crossref_primary_10_1007_s42452_021_04870_4 crossref_primary_10_1016_j_bej_2021_108186 crossref_primary_10_1186_s12896_017_0403_0 crossref_primary_10_1016_j_matpr_2022_12_241 crossref_primary_10_1016_j_rser_2019_02_020 crossref_primary_10_1016_j_biortech_2016_01_074 crossref_primary_10_1016_j_micromeso_2020_110809 crossref_primary_10_3389_fbioe_2021_790539 crossref_primary_10_1016_j_bcab_2021_102010 crossref_primary_10_1016_j_ultsonch_2020_104985 crossref_primary_10_1007_s12649_022_01829_3 crossref_primary_10_1111_gcbb_12748 crossref_primary_10_3390_su12135453 crossref_primary_10_35812_CelluloseChemTechnol_2023_57_86 crossref_primary_10_1016_j_apenergy_2024_125202 crossref_primary_10_1016_j_biortech_2020_124154 crossref_primary_10_3390_membranes10120370 crossref_primary_10_1016_j_fuel_2022_126748 crossref_primary_10_1016_j_indcrop_2018_12_091 crossref_primary_10_1016_j_renene_2018_11_038 crossref_primary_10_1007_s40201_021_00751_5 crossref_primary_10_1016_j_ejbt_2018_04_001 crossref_primary_10_3390_en15072600 crossref_primary_10_1021_acssuschemeng_0c01361 crossref_primary_10_3390_en17122938 crossref_primary_10_1016_j_indcrop_2021_113761 crossref_primary_10_1002_slct_202001008 crossref_primary_10_1016_j_biortech_2023_129598 crossref_primary_10_1016_j_fuel_2020_118524 crossref_primary_10_47836_pjst_31_2_19 crossref_primary_10_3390_microorganisms11061387 crossref_primary_10_1515_revce_2018_0014 crossref_primary_10_31857_S0555109924030068 crossref_primary_10_1007_s13399_022_02373_9 crossref_primary_10_1080_17597269_2019_1706273 crossref_primary_10_1016_j_ijbiomac_2019_09_100 crossref_primary_10_1080_10826068_2021_2021233 crossref_primary_10_1007_s11274_019_2774_y crossref_primary_10_1186_s13068_017_0730_3 crossref_primary_10_15446_ing_investig_v42n1_86698 crossref_primary_10_1007_s10570_024_06081_7 crossref_primary_10_1007_s10570_023_05154_3 crossref_primary_10_3390_polysaccharides3030029 crossref_primary_10_1007_s42114_021_00395_x crossref_primary_10_1016_j_supflu_2020_105043 crossref_primary_10_3390_resources10120121 crossref_primary_10_1007_s40684_023_00529_0 crossref_primary_10_1016_j_rser_2023_113303 crossref_primary_10_1016_j_jece_2022_108764 crossref_primary_10_1016_j_scitotenv_2020_140630 crossref_primary_10_1016_j_ijbiomac_2021_11_188 crossref_primary_10_1089_ind_2020_0020 crossref_primary_10_1007_s13399_016_0236_4 crossref_primary_10_1039_D1GC02131A crossref_primary_10_1016_j_ijbiomac_2024_131290 crossref_primary_10_1021_acssuschemeng_8b04262 crossref_primary_10_1016_j_scitotenv_2023_163156 crossref_primary_10_1016_j_algal_2022_102803 crossref_primary_10_1016_j_indcrop_2023_116376 crossref_primary_10_1007_s43939_025_00211_z crossref_primary_10_1016_j_biortech_2018_11_074 crossref_primary_10_1007_s12155_024_10738_3 crossref_primary_10_1016_j_biortech_2018_11_076 crossref_primary_10_1186_s40643_018_0193_9 crossref_primary_10_1016_j_ijbiomac_2023_127853 crossref_primary_10_1007_s10570_017_1199_8 crossref_primary_10_1016_j_jwpe_2022_102654 crossref_primary_10_1007_s13399_023_04369_5 crossref_primary_10_1016_j_biombioe_2024_107428 crossref_primary_10_1007_s11270_024_07136_y crossref_primary_10_1016_j_biombioe_2020_105486 crossref_primary_10_1039_C7SE00569E crossref_primary_10_1016_j_biortech_2021_124878 crossref_primary_10_1186_s13068_017_0777_1 crossref_primary_10_1007_s13399_023_03788_8 crossref_primary_10_3390_fermentation9020112 crossref_primary_10_1021_acssuschemeng_6b01540 crossref_primary_10_1039_C6RA26122A crossref_primary_10_3389_fmicb_2018_02222 crossref_primary_10_1038_s41467_018_07575_2 crossref_primary_10_1016_j_jbiosc_2019_05_007 crossref_primary_10_1007_s13399_020_00652_x crossref_primary_10_1016_j_energy_2017_07_146 crossref_primary_10_1016_j_biortech_2017_06_077 crossref_primary_10_1016_j_indcrop_2024_118110 crossref_primary_10_3390_ijms231911829 crossref_primary_10_1016_j_ibiod_2019_104813 crossref_primary_10_1039_C7RA12732D crossref_primary_10_1016_j_rser_2023_113520 crossref_primary_10_3390_en15155654 crossref_primary_10_1016_j_biortech_2019_122613 crossref_primary_10_3390_polym11111734 crossref_primary_10_3390_polym12020378 crossref_primary_10_1016_j_biortech_2020_123025 crossref_primary_10_1111_1751_7915_13886 crossref_primary_10_1134_S0003683824603639 crossref_primary_10_1016_j_indcrop_2022_115769 crossref_primary_10_1016_j_biortech_2020_123383 crossref_primary_10_1088_1757_899X_854_1_012030 crossref_primary_10_1186_s13068_017_0995_6 crossref_primary_10_1016_j_ibiod_2017_09_004 crossref_primary_10_1016_j_biortech_2016_11_015 crossref_primary_10_1021_acssuschemeng_7b01186 crossref_primary_10_1208_s12249_023_02645_1 crossref_primary_10_1021_acsomega_0c03135 crossref_primary_10_1016_j_biortech_2022_127095 crossref_primary_10_1016_j_biortech_2022_128068 crossref_primary_10_1016_j_biortech_2018_07_149 crossref_primary_10_1038_srep39354 crossref_primary_10_1016_j_biortech_2019_02_041 crossref_primary_10_1016_j_talanta_2024_127143 crossref_primary_10_1016_j_biortech_2016_03_124 crossref_primary_10_1016_j_carbpol_2020_116212 crossref_primary_10_1016_j_ijbiomac_2021_01_167 crossref_primary_10_1016_j_soilbio_2021_108313 crossref_primary_10_3390_toxics11020117 crossref_primary_10_1007_s10668_023_03360_4 crossref_primary_10_3390_molecules23040811 crossref_primary_10_1016_j_biortech_2016_11_002 crossref_primary_10_1021_acs_energyfuels_9b00513 crossref_primary_10_1088_1755_1315_1303_1_012004 crossref_primary_10_1016_j_ultsonch_2021_105711 crossref_primary_10_3389_fenrg_2022_868181 crossref_primary_10_1016_j_renene_2019_12_024 crossref_primary_10_1088_1755_1315_268_1_012106 crossref_primary_10_1016_j_ijhydene_2017_07_214 crossref_primary_10_1016_j_biortech_2021_125961 crossref_primary_10_1016_j_ijhydene_2016_07_035 crossref_primary_10_1016_j_biortech_2021_124873 crossref_primary_10_1016_j_rser_2023_113743 crossref_primary_10_1007_s13399_020_01123_z crossref_primary_10_1021_acs_iecr_0c01456 crossref_primary_10_1016_j_biortech_2020_123001 crossref_primary_10_1016_j_biortech_2020_124211 crossref_primary_10_1016_j_biortech_2021_125837 crossref_primary_10_3390_app13021055 crossref_primary_10_3390_w15193389 crossref_primary_10_1007_s12155_017_9825_8 crossref_primary_10_3390_app11104693 crossref_primary_10_3389_fmicb_2018_02556 crossref_primary_10_1007_s13399_022_02322_6 crossref_primary_10_1016_j_biortech_2018_06_043 crossref_primary_10_1016_j_indcrop_2024_119990 crossref_primary_10_1155_2018_4916497 crossref_primary_10_1016_j_jobab_2024_12_002 crossref_primary_10_1007_s40995_024_01651_7 crossref_primary_10_1007_s42398_020_00102_4 crossref_primary_10_1016_j_ejbt_2017_10_011 crossref_primary_10_1016_j_procbio_2021_03_016 crossref_primary_10_1016_j_carpta_2024_100630 crossref_primary_10_1007_s10295_020_02301_8 crossref_primary_10_1016_j_carbpol_2022_120182 crossref_primary_10_1007_s12649_024_02781_0 crossref_primary_10_1016_j_ijbiomac_2024_131354 crossref_primary_10_1139_cjm_2018_0535 crossref_primary_10_1007_s12649_021_01499_7 crossref_primary_10_1016_j_seta_2024_103852 crossref_primary_10_1002_bbb_2074 crossref_primary_10_1080_15440478_2023_2245565 crossref_primary_10_1080_01614940_2020_1819936 crossref_primary_10_1016_j_biortech_2020_123589 crossref_primary_10_14710_ijred_2022_41774 crossref_primary_10_1080_15435075_2020_1809425 crossref_primary_10_1186_s13068_019_1417_8 crossref_primary_10_1016_j_ijhydene_2021_10_020 crossref_primary_10_1021_acssuschemeng_9b01229 crossref_primary_10_1039_C9GC00323A crossref_primary_10_3390_su15043590 crossref_primary_10_3390_polym16182633 crossref_primary_10_1016_j_indcrop_2018_02_007 crossref_primary_10_3390_su11216175 crossref_primary_10_1007_s12010_018_2900_6 crossref_primary_10_1016_j_biortech_2022_127020 crossref_primary_10_1186_s13068_021_02054_1 crossref_primary_10_3775_jie_101_56 crossref_primary_10_1007_s12155_023_10617_3 crossref_primary_10_47385_cadunifoa_v18_n53_4722 crossref_primary_10_1016_j_biortech_2023_129989 crossref_primary_10_1186_s13068_022_02244_5 crossref_primary_10_1016_j_biortech_2020_124306 crossref_primary_10_1016_j_biortech_2019_121726 crossref_primary_10_1016_j_renene_2024_120296 crossref_primary_10_1016_j_biteb_2019_100281 crossref_primary_10_1016_j_jece_2021_106664 crossref_primary_10_1016_j_ijbiomac_2024_129273 crossref_primary_10_1007_s12649_022_01681_5 crossref_primary_10_1039_D0NA00408A crossref_primary_10_3389_fbioe_2018_00023 crossref_primary_10_1021_acssuschemeng_7b03686 crossref_primary_10_3390_catal12090979 crossref_primary_10_3390_fermentation10090442 crossref_primary_10_1016_j_biortech_2022_128382 crossref_primary_10_1016_j_pecs_2024_101161 crossref_primary_10_25269_jsel_v7i02_215 crossref_primary_10_1016_j_biortech_2022_128381 crossref_primary_10_1016_j_indcrop_2024_119772 crossref_primary_10_3390_nano13010126 crossref_primary_10_1016_j_indcrop_2020_112615 crossref_primary_10_3390_polym15040801 crossref_primary_10_3775_jie_102_33 crossref_primary_10_1016_j_jtice_2017_04_021 crossref_primary_10_1016_j_carbpol_2017_12_030 crossref_primary_10_3390_fermentation5010004 crossref_primary_10_1016_j_biortech_2020_123449 crossref_primary_10_3390_fermentation5010005 crossref_primary_10_1007_s10570_019_02519_5 crossref_primary_10_1016_j_rser_2020_110338 crossref_primary_10_1002_bbb_2096 crossref_primary_10_1016_j_biortech_2020_123324 crossref_primary_10_1039_D4MH00172A crossref_primary_10_1093_database_baz114 crossref_primary_10_3390_ijms242417576 crossref_primary_10_3390_su14106029 crossref_primary_10_1016_j_biortech_2017_03_001 crossref_primary_10_1039_D1EN00754H crossref_primary_10_1016_j_jenvman_2019_03_133 crossref_primary_10_1016_j_fuel_2022_123726 crossref_primary_10_1016_j_indcrop_2021_114326 crossref_primary_10_1007_s13399_022_02718_4 crossref_primary_10_1007_s11356_022_21889_1 crossref_primary_10_1016_j_cej_2023_147610 crossref_primary_10_1016_j_jclepro_2020_120865 crossref_primary_10_3390_pr9050887 crossref_primary_10_1016_j_bcab_2024_103142 crossref_primary_10_3390_polym14183737 crossref_primary_10_1088_1755_1315_475_1_012066 crossref_primary_10_3390_molecules26030753 crossref_primary_10_1016_j_indcrop_2018_02_011 crossref_primary_10_14710_jil_19_3_485_496 crossref_primary_10_1080_09205063_2023_2177474 crossref_primary_10_1007_s13399_020_00970_0 crossref_primary_10_1016_j_cej_2019_123128 crossref_primary_10_1007_s00449_018_1942_z crossref_primary_10_1016_j_biortech_2018_07_070 crossref_primary_10_1016_j_biortech_2019_122685 crossref_primary_10_1016_j_biortech_2016_10_064 crossref_primary_10_1016_j_biortech_2022_128208 crossref_primary_10_1016_j_renene_2019_10_020 crossref_primary_10_1080_10242422_2021_1882430 crossref_primary_10_1021_acs_energyfuels_0c03876 crossref_primary_10_1021_acssuschemeng_2c06076 crossref_primary_10_1088_1755_1315_680_1_012056 crossref_primary_10_1016_j_biortech_2017_08_094 crossref_primary_10_3390_nano9121726 crossref_primary_10_1007_s12649_024_02493_5 crossref_primary_10_1016_j_indcrop_2020_113170 crossref_primary_10_1016_j_jclepro_2020_121407 crossref_primary_10_3389_fmicb_2022_933882 crossref_primary_10_1016_j_indcrop_2023_116961 crossref_primary_10_1063_1_5025876 crossref_primary_10_3390_biom8040141 crossref_primary_10_1016_j_biombioe_2024_107155 crossref_primary_10_1016_j_rser_2024_114395 crossref_primary_10_1039_D0RA10877D crossref_primary_10_35812_CelluloseChemTechnol_2021_55_52 crossref_primary_10_1080_00986445_2017_1365061 crossref_primary_10_1039_D0GC00901F crossref_primary_10_1016_j_eti_2021_102080 crossref_primary_10_1007_s13399_022_02861_y crossref_primary_10_1021_acs_iecr_6b01907 crossref_primary_10_1021_acssuschemeng_8b02541 crossref_primary_10_1007_s11270_018_4067_8 crossref_primary_10_1039_C9GC02466B crossref_primary_10_1186_s40643_024_00784_2 crossref_primary_10_1016_j_ijhydene_2018_11_098 crossref_primary_10_1186_s13068_025_02616_7 crossref_primary_10_1002_fsn3_4358 crossref_primary_10_1007_s13399_017_0255_9 crossref_primary_10_3390_catal12101121 crossref_primary_10_3390_su16031275 crossref_primary_10_1016_j_heliyon_2023_e16311 crossref_primary_10_1016_j_biortech_2018_09_037 crossref_primary_10_1080_07388551_2020_1805720 crossref_primary_10_1016_j_bcab_2020_101793 crossref_primary_10_1166_jbmb_2021_2064 crossref_primary_10_1007_s12649_021_01606_8 crossref_primary_10_1002_asia_202200566 crossref_primary_10_1007_s10123_019_00114_z crossref_primary_10_1016_j_biortech_2018_01_048 crossref_primary_10_1080_17597269_2024_2440207 crossref_primary_10_1016_j_indcrop_2023_116987 crossref_primary_10_1016_j_indcrop_2020_113077 crossref_primary_10_1039_C7GC00936D crossref_primary_10_1016_j_chemosphere_2019_01_090 crossref_primary_10_1007_s12649_022_02013_3 crossref_primary_10_1007_s13205_017_0964_6 crossref_primary_10_3923_jas_2022_241_247 crossref_primary_10_1007_s12155_021_10299_9 crossref_primary_10_1016_j_jhazmat_2019_120892 crossref_primary_10_1016_j_carbpol_2019_115622 crossref_primary_10_1038_s41598_021_89916_8 crossref_primary_10_3390_polym11101645 crossref_primary_10_1093_plphys_kiab359 crossref_primary_10_1186_s13068_021_01921_1 crossref_primary_10_1016_j_biortech_2019_122476 crossref_primary_10_1039_D0GC00903B crossref_primary_10_1016_j_cogsc_2016_09_003 crossref_primary_10_1111_1751_7915_12494 crossref_primary_10_1016_j_biortech_2020_123634 crossref_primary_10_1186_s13068_024_02553_x crossref_primary_10_1016_j_biortech_2018_12_101 crossref_primary_10_1016_j_jenvman_2016_06_012 crossref_primary_10_1016_j_renene_2021_05_066 crossref_primary_10_3390_catal12111384 crossref_primary_10_1016_j_biortech_2020_122795 crossref_primary_10_1186_s13068_019_1354_6 crossref_primary_10_47836_pjst_31_6_22 crossref_primary_10_1007_s13399_020_01149_3 crossref_primary_10_1016_j_fuproc_2020_106407 crossref_primary_10_1016_j_jece_2021_105832 crossref_primary_10_3390_su13169295 crossref_primary_10_1007_s10163_022_01495_6 crossref_primary_10_1016_j_cbpa_2016_08_028 crossref_primary_10_3390_pr11030688 crossref_primary_10_1016_j_renene_2019_03_032 crossref_primary_10_1080_15435075_2025_2469139 crossref_primary_10_1016_j_biortech_2021_126061 crossref_primary_10_1016_j_biortech_2016_10_029 crossref_primary_10_1016_j_biortech_2019_121675 crossref_primary_10_1007_s13399_024_05418_3 crossref_primary_10_1088_1757_899X_245_1_012011 crossref_primary_10_1016_j_renene_2021_05_052 crossref_primary_10_1016_j_biortech_2020_123866 crossref_primary_10_1016_j_biortech_2017_12_034 crossref_primary_10_1016_j_indcrop_2019_03_059 crossref_primary_10_1016_j_molcatb_2017_05_002 crossref_primary_10_3390_en16073236 crossref_primary_10_1007_s10570_021_04200_2 crossref_primary_10_1016_j_carbpol_2018_07_079 crossref_primary_10_1002_est2_634 crossref_primary_10_1007_s13399_024_06301_x crossref_primary_10_1016_j_biortech_2016_07_087 crossref_primary_10_1007_s10570_018_2159_7 crossref_primary_10_1007_s40726_024_00295_w crossref_primary_10_1016_j_jobab_2021_02_001 crossref_primary_10_1016_j_indcrop_2019_02_004 crossref_primary_10_1007_s10924_020_02001_5 crossref_primary_10_1039_D1RA01328A crossref_primary_10_9767_bcrec_15_3_8870_786_797 crossref_primary_10_1016_j_biortech_2021_126195 crossref_primary_10_1016_j_carbpol_2019_115400 crossref_primary_10_1016_j_envres_2024_118665 crossref_primary_10_1007_s00226_024_01532_7 crossref_primary_10_1016_j_procbio_2025_03_005 crossref_primary_10_1146_annurev_chembioeng_060718_030354 crossref_primary_10_1038_s44296_024_00045_5 crossref_primary_10_4014_mbl_2003_03003 crossref_primary_10_1038_s41598_017_09885_9 crossref_primary_10_1016_j_heliyon_2024_e26440 crossref_primary_10_1007_s13399_022_03508_8 crossref_primary_10_1177_11786388211058559 crossref_primary_10_1016_j_carbpol_2018_04_010 crossref_primary_10_1021_acs_energyfuels_0c00275 crossref_primary_10_3389_fenrg_2018_00141 crossref_primary_10_1007_s13399_021_01849_4 crossref_primary_10_1007_s11157_018_09488_4 crossref_primary_10_1016_j_indcrop_2019_111961 crossref_primary_10_1016_j_matpr_2019_11_122 crossref_primary_10_1007_s12155_021_10265_5 crossref_primary_10_1016_j_indcrop_2021_114058 crossref_primary_10_3390_horticulturae8100911 crossref_primary_10_1007_s13399_019_00491_5 crossref_primary_10_1016_j_procbio_2016_07_028 crossref_primary_10_3390_su11133604 crossref_primary_10_1007_s43393_023_00228_6 crossref_primary_10_3390_biomass3010007 crossref_primary_10_5604_01_3001_0053_8975 crossref_primary_10_1016_j_biortech_2021_125195 crossref_primary_10_3390_catal9030223 crossref_primary_10_1016_j_spc_2021_12_014 crossref_primary_10_1007_s40518_019_00131_6 crossref_primary_10_1007_s13399_022_02642_7 crossref_primary_10_1016_j_biortech_2022_127219 crossref_primary_10_1016_j_ibiod_2021_105246 crossref_primary_10_1016_j_ultsonch_2017_07_025 crossref_primary_10_3390_polym16223171 crossref_primary_10_1016_j_bcab_2020_101503 crossref_primary_10_1080_09593330_2022_2046645 crossref_primary_10_1007_s12649_020_00960_3 crossref_primary_10_1016_j_renene_2021_06_042 crossref_primary_10_3389_fenrg_2022_834966 crossref_primary_10_1016_j_ijbiomac_2018_03_111 crossref_primary_10_1016_j_biortech_2016_12_063 crossref_primary_10_1016_j_indcrop_2019_03_068 crossref_primary_10_1007_s13399_023_04335_1 crossref_primary_10_1016_j_biortech_2019_121343 crossref_primary_10_1016_j_cherd_2017_10_026 crossref_primary_10_1016_j_indcrop_2023_116929 crossref_primary_10_1021_acssuschemeng_2c06248 crossref_primary_10_1016_j_jhazmat_2019_04_022 crossref_primary_10_1016_j_renene_2019_04_082 crossref_primary_10_3390_app11136069 crossref_primary_10_1016_j_fuproc_2019_106244 crossref_primary_10_1016_j_energy_2020_119332 crossref_primary_10_1016_j_rser_2023_114081 crossref_primary_10_1016_j_supflu_2018_10_004 crossref_primary_10_1002_bbb_1724 crossref_primary_10_3390_catal12030302 |
Cites_doi | 10.1016/j.biotechadv.2008.11.001 10.1016/j.biortech.2011.11.118 10.1007/s10123-002-0062-3 10.1023/B:PHYT.0000047809.65444.a4 10.1385/ABAB:124:1-3:1069 10.1021/ie0701120 10.1016/j.biortech.2010.04.020 10.1016/j.jbiotec.2008.08.009 10.1016/j.biortech.2008.11.052 10.1016/j.biortech.2008.09.012 10.1016/j.biortech.2005.01.014 10.1038/nbt0285-155 10.1016/j.biortech.2010.02.055 10.1016/j.biortech.2014.04.082 10.1385/ABAB:114:1-3:509 10.1016/j.procbio.2008.07.003 10.1016/j.biortech.2009.01.008 10.1007/BF02935884 10.1016/j.biortech.2015.05.044 10.1016/S0960-8524(00)00147-4 10.1016/j.biortech.2010.06.137 10.1002/mabi.200400222 10.1002/jctb.2654 10.1002/cssc.201200546 10.1360/02yc0163 10.1016/j.indcrop.2014.02.031 10.1263/jbb.100.637 10.1002/bit.20905 10.1016/j.indcrop.2011.07.014 10.1016/j.apenergy.2014.02.020 10.1016/j.phytochem.2010.03.001 10.1016/j.enconman.2010.01.015 10.1002/ceat.201300183 10.1016/S0960-8524(01)00212-7 10.1007/BF00058834 10.1016/S0960-8524(01)00118-3 10.1021/jf040456q 10.1021/jf505074d 10.1016/j.biortech.2015.01.116 10.1016/j.enzmictec.2007.11.006 10.1016/j.renene.2009.04.008 10.1016/j.radphyschem.2011.11.008 10.1016/j.carbpol.2013.08.089 10.1016/j.biortech.2010.07.084 10.1021/ie8016863 10.1186/1754-6834-6-16 10.1016/j.biortech.2009.11.093 10.1385/ABAB:98-100:1-9:699 10.1016/j.biortech.2005.01.016 10.1016/j.indcrop.2013.12.029 10.1002/btpr.102 10.1016/j.biombioe.2011.10.013 10.1385/ABAB:124:1-3:1133 10.1016/j.biortech.2014.02.096 10.1007/s12010-008-8512-9 10.1016/j.biortech.2008.07.025 10.1016/j.enzmictec.2013.02.001 10.1016/j.indcrop.2012.11.001 10.1007/s00253-010-2484-8 10.1016/j.ces.2013.10.022 10.1385/ABAB:84-86:1-9:693 10.1016/j.biortech.2012.08.054 10.1016/j.carbpol.2014.05.004 10.1007/s00253-009-1883-1 10.1146/annurev.arplant.54.031902.134938 10.1002/chem.201003045 10.1007/BF00504744 10.3390/ijms9091621 10.1021/mz300484b 10.4014/jmb.1206.06058 10.1016/j.carbpol.2009.07.049 10.1002/bit.21712 10.1002/bip.20533 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2015.08.061 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 58 |
ExternalDocumentID | 26321216 10_1016_j_biortech_2015_08_061 S0960852415011670 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c574t-e92dcd005cb0d3e56d4ac92d42cc5ae99bad8139295190428ec9423f7a6d1a933 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Aug 22 20:21:59 EDT 2025 Sun Aug 24 03:01:47 EDT 2025 Mon Jul 21 06:05:09 EDT 2025 Tue Jul 01 02:06:33 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Sat Aug 10 15:32:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pretreatment Lignocellulose Cellulosic ethanol Enzymatic hydrolysis Digestibility |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-e92dcd005cb0d3e56d4ac92d42cc5ae99bad8139295190428ec9423f7a6d1a933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 26321216 |
PQID | 1732309734 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1836623745 proquest_miscellaneous_1732309734 pubmed_primary_26321216 crossref_citationtrail_10_1016_j_biortech_2015_08_061 crossref_primary_10_1016_j_biortech_2015_08_061 elsevier_sciencedirect_doi_10_1016_j_biortech_2015_08_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lee, Kim, Jang, Lee, Park (b0160) 2015; 182 Vanderghem, Brostaux, Jacquet, Blecker, Paquot (b0315) 2012; 35 Taniguchi, Suzuki, Watanabe, Sakai, Hoshino, Tanaka (b0305) 2005; 100 Park, Kim, Koo, Yeo, Choi (b0240) 2010; 101 Moretti, Bocchini-Martins, Nunes, Villena, Perrone, da Silva, Boscolo, Gomes (b0205) 2014; 122 De Bari, Nanna, Braccio (b0065) 2007; 46 Muratov, Kim (b0210) 2002; 7 Zhao, Chen (b0350) 2013; 104 Li, Jiang, He, Li, Xian, Yang (b0165) 2010; 87 Jeffries (b0120) 1990; 1 Horn, Nguyen, Westereng, Nilsen, Eijsink (b0110) 2011; 35 Yu, Zhang, He, Liu, Yu (b0335) 2009; 100 Chen, Han, Xu (b0050) 2008; 43 Duarte, Ribeiro, Oikawa, Mori, Napolitano, Galvao (b0070) 2012; 81 Nitsos, Matis, Triantafyllidis (b0220) 2013; 6 Sun, Cao, Sun, Xu, Song, Sun, Jones (b0275) 2014; 7 Kim, Hong (b0140) 2001; 77 Andrić, Meyer, Jensen, Dam-Johansen (b0015) 2010; 160 Zhao, Jones, Baker, Xia, Olubajo, Person (b0345) 2009; 139 Teymouri, Laureano-Perez, Alizadeh, Dale (b0310) 2005; 96 Yeh, Huang, Chen (b0330) 2010; 79 Xiao, Bian, Li, Xu, Xiao, Sun (b0325) 2014; 159 Hernandez, Garcia, Lopez, Puls, Parajo, Martin (b0105) 2013; 44 García-Cubero, González-Benito, Indacoechea, Coca, Bolado (b0075) 2009; 100 Jin, Katsumata, Lam, Iiyama (b0125) 2006; 83 Gu, Yang, Jin, Han, Chang, Jameel, Phillips (b0090) 2012; 124 Zhou, Stuart-Williams, Farquhar, Hocart (b0370) 2010; 71 Cao, Peng, Sun, Zhong, Wang, Lu, Sun (b0045) 2014; 111 Pérez, Muñoz-Dorado, de la Rubia, Martínez (b0225) 2002; 5 Grethlein (b0085) 1985; 3 Sánchez (b0260) 2009; 27 Qi, Chen, Shen, Su, Wan (b0245) 2009; 48 Huijgen, Smit, Reith, Uil (b0115) 2011; 86 McKendry (b0195) 2002; 83 Silveira, Vanelli, Corazza, Ramos (b0270) 2015; 192 Sun, Wen, Ma, Sun, Jones (b0280) 2014; 56 Cherubini (b0055) 2010; 51 Lee, Jameel, Venditti (b0155) 2010; 101 Taherzadeh, Karimi (b0300) 2008; 9 Zhao, Wang, Zhu, Ragauskas, Deng (b0365) 2008; 99 Boerjan, Ralph, Baucher (b0025) 2003; 54 Mussatto, Fernandes, Milagres, Roberto (b0215) 2008; 43 Pan, Gilkes, Kadla, Pye, Saka, Gregg, Ehara, Xie, Lam, Saddler (b0230) 2006; 94 Hatakka (b0100) 1983; 18 Qing, Yang, Wyman (b0250) 2010; 101 Sun, Sun, Fowler, Baird (b0290) 2005; 53 Sun, Cheng (b0295) 2002; 83 Haque, Barman, Kang, Kim, Kim, Kim, Yun (b0095) 2012; 22 Sette, Wechselberger, Crestini (b0265) 2011; 17 Cuevas, Garcia, Sanchez (b0060) 2014; 99 Ralph, Lundquist, Brunow, Lu, Kim, Schatz, Marita, Hatfield, Ralph, Christensen, Boerjan (b0255) 2004; 3 Lu, Zhang, Angelidaki (b0170) 2009; 100 Ma, Yang, Xu, Yu, Wu, Zhang (b0180) 2010; 101 Martin-Sampedro, Filpponen, Hoeger, Zhu, Laine, Rojas (b0185) 2012; 1 Martin, Galbe, Nilvebrant, Jonsson (b0190) 2002; 98–100 Zhao, Cheng, Liu (b0355) 2009; 82 Varga, Reczey, Zacchi (b0320) 2004; 113–116 Kumar, Wyman (b0150) 2009; 25 Boussaid, Esteghlalian, Gregg, Lee, Saddler (b0030) 2000; 84–86 Zavrel, Bross, Funke, Büchs, Spiess (b0340) 2009; 100 Zhao, Wu, Yan, Gao (b0360) 2004; 47 Alizadeh, Teymouri, Gilbert, Dale (b0005) 2005; 121–124 Kim, Holtzapple (b0145) 2005; 96 Lv, Yan, Zhang, Geng, Ren, Sun (b0175) 2013; 36 Cai, Zhang (b0035) 2005; 5 Miura, Lee, Inoue, Endo (b0200) 2012; 105 Kim, Choi (b0135) 2010; 35 Pan, Xie, Gilkes, Gregg, Saddler (b0235) 2005; 121 Jonsson, Alriksson, Nilvebrant (b0130) 2013; 6 Benazzi, Calgaroto, Astolfi, Dalla Rosa, Oliveira, Mazutti (b0020) 2013; 52 Sun, Cao, Zhang, Xu, Sun, Jones (b0285) 2014; 163 Cao, Peng, Sun, Zhong, Sun (b0040) 2014; 62 Alvira, Tomás-Pejó, Ballesteros, Negro (b0010) 2010; 101 Garcia, Cara, Moya, Rapado, Puls, Castro, Martin (b0080) 2014; 53 Zhou (10.1016/j.biortech.2015.08.061_b0370) 2010; 71 Li (10.1016/j.biortech.2015.08.061_b0165) 2010; 87 Nitsos (10.1016/j.biortech.2015.08.061_b0220) 2013; 6 Kim (10.1016/j.biortech.2015.08.061_b0145) 2005; 96 Lv (10.1016/j.biortech.2015.08.061_b0175) 2013; 36 Park (10.1016/j.biortech.2015.08.061_b0240) 2010; 101 Silveira (10.1016/j.biortech.2015.08.061_b0270) 2015; 192 Sun (10.1016/j.biortech.2015.08.061_b0280) 2014; 56 Alizadeh (10.1016/j.biortech.2015.08.061_b0005) 2005; 121–124 Chen (10.1016/j.biortech.2015.08.061_b0050) 2008; 43 Varga (10.1016/j.biortech.2015.08.061_b0320) 2004; 113–116 Alvira (10.1016/j.biortech.2015.08.061_b0010) 2010; 101 Moretti (10.1016/j.biortech.2015.08.061_b0205) 2014; 122 Lee (10.1016/j.biortech.2015.08.061_b0155) 2010; 101 Zhao (10.1016/j.biortech.2015.08.061_b0355) 2009; 82 Taherzadeh (10.1016/j.biortech.2015.08.061_b0300) 2008; 9 Gu (10.1016/j.biortech.2015.08.061_b0090) 2012; 124 Ma (10.1016/j.biortech.2015.08.061_b0180) 2010; 101 Pan (10.1016/j.biortech.2015.08.061_b0230) 2006; 94 Martin (10.1016/j.biortech.2015.08.061_b0190) 2002; 98–100 Sun (10.1016/j.biortech.2015.08.061_b0285) 2014; 163 Pérez (10.1016/j.biortech.2015.08.061_b0225) 2002; 5 Ralph (10.1016/j.biortech.2015.08.061_b0255) 2004; 3 Martin-Sampedro (10.1016/j.biortech.2015.08.061_b0185) 2012; 1 Zavrel (10.1016/j.biortech.2015.08.061_b0340) 2009; 100 Xiao (10.1016/j.biortech.2015.08.061_b0325) 2014; 159 Garcia (10.1016/j.biortech.2015.08.061_b0080) 2014; 53 Mussatto (10.1016/j.biortech.2015.08.061_b0215) 2008; 43 Muratov (10.1016/j.biortech.2015.08.061_b0210) 2002; 7 Hatakka (10.1016/j.biortech.2015.08.061_b0100) 1983; 18 Cao (10.1016/j.biortech.2015.08.061_b0040) 2014; 62 García-Cubero (10.1016/j.biortech.2015.08.061_b0075) 2009; 100 Sette (10.1016/j.biortech.2015.08.061_b0265) 2011; 17 Jonsson (10.1016/j.biortech.2015.08.061_b0130) 2013; 6 Zhao (10.1016/j.biortech.2015.08.061_b0345) 2009; 139 Teymouri (10.1016/j.biortech.2015.08.061_b0310) 2005; 96 Zhao (10.1016/j.biortech.2015.08.061_b0350) 2013; 104 Benazzi (10.1016/j.biortech.2015.08.061_b0020) 2013; 52 Jin (10.1016/j.biortech.2015.08.061_b0125) 2006; 83 Lee (10.1016/j.biortech.2015.08.061_b0160) 2015; 182 Yeh (10.1016/j.biortech.2015.08.061_b0330) 2010; 79 Qing (10.1016/j.biortech.2015.08.061_b0250) 2010; 101 Boerjan (10.1016/j.biortech.2015.08.061_b0025) 2003; 54 De Bari (10.1016/j.biortech.2015.08.061_b0065) 2007; 46 Kim (10.1016/j.biortech.2015.08.061_b0135) 2010; 35 Pan (10.1016/j.biortech.2015.08.061_b0235) 2005; 121 McKendry (10.1016/j.biortech.2015.08.061_b0195) 2002; 83 Cherubini (10.1016/j.biortech.2015.08.061_b0055) 2010; 51 Hernandez (10.1016/j.biortech.2015.08.061_b0105) 2013; 44 Duarte (10.1016/j.biortech.2015.08.061_b0070) 2012; 81 Andrić (10.1016/j.biortech.2015.08.061_b0015) 2010; 160 Kumar (10.1016/j.biortech.2015.08.061_b0150) 2009; 25 Boussaid (10.1016/j.biortech.2015.08.061_b0030) 2000; 84–86 Miura (10.1016/j.biortech.2015.08.061_b0200) 2012; 105 Cuevas (10.1016/j.biortech.2015.08.061_b0060) 2014; 99 Sun (10.1016/j.biortech.2015.08.061_b0275) 2014; 7 Sun (10.1016/j.biortech.2015.08.061_b0290) 2005; 53 Yu (10.1016/j.biortech.2015.08.061_b0335) 2009; 100 Taniguchi (10.1016/j.biortech.2015.08.061_b0305) 2005; 100 Grethlein (10.1016/j.biortech.2015.08.061_b0085) 1985; 3 Huijgen (10.1016/j.biortech.2015.08.061_b0115) 2011; 86 Zhao (10.1016/j.biortech.2015.08.061_b0360) 2004; 47 Qi (10.1016/j.biortech.2015.08.061_b0245) 2009; 48 Cai (10.1016/j.biortech.2015.08.061_b0035) 2005; 5 Horn (10.1016/j.biortech.2015.08.061_b0110) 2011; 35 Sun (10.1016/j.biortech.2015.08.061_b0295) 2002; 83 Kim (10.1016/j.biortech.2015.08.061_b0140) 2001; 77 Haque (10.1016/j.biortech.2015.08.061_b0095) 2012; 22 Zhao (10.1016/j.biortech.2015.08.061_b0365) 2008; 99 Vanderghem (10.1016/j.biortech.2015.08.061_b0315) 2012; 35 Cao (10.1016/j.biortech.2015.08.061_b0045) 2014; 111 Lu (10.1016/j.biortech.2015.08.061_b0170) 2009; 100 Sánchez (10.1016/j.biortech.2015.08.061_b0260) 2009; 27 Jeffries (10.1016/j.biortech.2015.08.061_b0120) 1990; 1 |
References_xml | – volume: 46 start-page: 7711 year: 2007 end-page: 7720 ident: b0065 article-title: SO publication-title: Ind. Eng. Chem. Res. – volume: 51 start-page: 1412 year: 2010 end-page: 1421 ident: b0055 article-title: The biorefinery concept: using biomass instead of oil for producing energy and chemicals publication-title: Energy Convers. Manage. – volume: 43 start-page: 124 year: 2008 end-page: 129 ident: b0215 article-title: Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from Brewer’s spent grain publication-title: Enzyme Microb. Technol. – volume: 100 start-page: 903 year: 2009 end-page: 908 ident: b0335 article-title: Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull publication-title: Bioresour. Technol. – volume: 100 start-page: 637 year: 2005 end-page: 643 ident: b0305 article-title: Evaluation of pretreatment with publication-title: J. Biosci. Bioeng. – volume: 100 start-page: 3048 year: 2009 end-page: 3053 ident: b0170 article-title: Optimization of H publication-title: Bioresour. Technol. – volume: 48 start-page: 7346 year: 2009 end-page: 7353 ident: b0245 article-title: Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology publication-title: Ind. Eng. Chem. Res. – volume: 52 start-page: 247 year: 2013 end-page: 250 ident: b0020 article-title: Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis publication-title: Enzyme Microb. Technol. – volume: 35 start-page: 157 year: 2010 end-page: 163 ident: b0135 article-title: The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine publication-title: Renew. Energy – volume: 9 start-page: 1621 year: 2008 end-page: 1651 ident: b0300 article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review publication-title: Int. J. Mol. Sci. – volume: 113–116 start-page: 509 year: 2004 end-page: 523 ident: b0320 article-title: Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility publication-title: Appl. Biochem. Biotechnol. – volume: 53 start-page: 860 year: 2005 end-page: 870 ident: b0290 article-title: Extraction and characterization of original lignin and hemicelluloses from wheat straw publication-title: J. Agric. Food Chem. – volume: 96 start-page: 2014 year: 2005 end-page: 2018 ident: b0310 article-title: Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover publication-title: Bioresour. Technol. – volume: 101 start-page: 9600 year: 2010 end-page: 9604 ident: b0180 article-title: Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth publication-title: Bioresour. Technol. – volume: 1 start-page: 1321 year: 2012 end-page: 1325 ident: b0185 article-title: Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils publication-title: ACS Macro Lett. – volume: 99 start-page: 791 year: 2014 end-page: 799 ident: b0060 article-title: Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production publication-title: Carbohydr. Polym. – volume: 56 start-page: 128 year: 2014 end-page: 136 ident: b0280 article-title: Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem publication-title: Ind. Crops Prod. – volume: 86 start-page: 1428 year: 2011 end-page: 1438 ident: b0115 article-title: Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis publication-title: J. Chem. Technol. Biotechnol. – volume: 6 start-page: 16 year: 2013 end-page: 25 ident: b0130 article-title: Bioconversion of lignocellulose: inhibitors and detoxification publication-title: Biotechnol. Biofuels – volume: 5 start-page: 53 year: 2002 end-page: 63 ident: b0225 article-title: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview publication-title: Int. Microbiol. – volume: 84–86 start-page: 693 year: 2000 end-page: 705 ident: b0030 article-title: Steam pretreatment of Douglas-fir wood chips Can conditions for optimum hemicellulose recovery still provide adequate access for efficient enzymatic hydrolysis? publication-title: Appl. Biochem. Biotechnol. – volume: 101 start-page: 9624 year: 2010 end-page: 9630 ident: b0250 article-title: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes publication-title: Bioresour. Technol. – volume: 79 start-page: 192 year: 2010 end-page: 199 ident: b0330 article-title: Effect of particle size on the rate of enzymatic hydrolysis of cellulose publication-title: Carbohydr. Polym. – volume: 121–124 start-page: 1133 year: 2005 end-page: 1141 ident: b0005 article-title: Pretreatment of switchgrass by ammonia fiber explosion (AFEX) publication-title: Appl. Biochem. Biotechnol. – volume: 35 start-page: 4879 year: 2011 end-page: 4886 ident: b0110 article-title: Screening of steam explosion conditions for glucose production from non-impregnated wheat straw publication-title: Biomass Bioenergy – volume: 3 start-page: 29 year: 2004 end-page: 60 ident: b0255 article-title: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids publication-title: Phytochem. Rev. – volume: 47 start-page: 18 year: 2004 end-page: 24 ident: b0360 article-title: Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase publication-title: Sci. China Ser. C – volume: 111 start-page: 400 year: 2014 end-page: 403 ident: b0045 article-title: Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid publication-title: Carbohydr. Polym. – volume: 83 start-page: 37 year: 2002 end-page: 46 ident: b0195 article-title: Energy production from biomass (part 1): overview of biomass publication-title: Bioresour. Technol. – volume: 27 start-page: 185 year: 2009 end-page: 194 ident: b0260 article-title: Lignocellulosic residues: biodegradation and bioconversion by fungi publication-title: Biotechnol. Adv. – volume: 101 start-page: 4851 year: 2010 end-page: 4861 ident: b0010 article-title: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review publication-title: Bioresour. Technol. – volume: 6 start-page: 110 year: 2013 end-page: 122 ident: b0220 article-title: Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process publication-title: ChemSusChem – volume: 71 start-page: 982 year: 2010 end-page: 993 ident: b0370 article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls publication-title: Phytochemistry – volume: 160 start-page: 280 year: 2010 end-page: 297 ident: b0015 article-title: Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw publication-title: Appl. Biochem. Biotechnol. – volume: 139 start-page: 47 year: 2009 end-page: 54 ident: b0345 article-title: Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis publication-title: J. Biotechnol. – volume: 104 start-page: 1036 year: 2013 end-page: 1044 ident: b0350 article-title: Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover publication-title: Chem. Eng. Sci. – volume: 54 start-page: 519 year: 2003 end-page: 546 ident: b0025 article-title: Lignin biosynthesis publication-title: Annu. Rev. Plant Biol. – volume: 87 start-page: 117 year: 2010 end-page: 126 ident: b0165 article-title: Evaluation of the biocompatible ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification publication-title: Appl. Microbiol. Biotechnol. – volume: 100 start-page: 2580 year: 2009 end-page: 2587 ident: b0340 article-title: High-throughput screening for ionic liquids dissolving (ligno-)cellulose publication-title: Bioresour. Technol. – volume: 17 start-page: 9529 year: 2011 end-page: 9535 ident: b0265 article-title: Elucidation of lignin structure by quantitative 2D NMR publication-title: Chem.-Eur. J. – volume: 122 start-page: 189 year: 2014 end-page: 195 ident: b0205 article-title: Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis publication-title: Appl. Energy – volume: 105 start-page: 95 year: 2012 end-page: 99 ident: b0200 article-title: Improvement of enzymatic saccharification of sugarcane bagasse by dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling publication-title: Bioresour. Technol. – volume: 7 start-page: 85 year: 2002 end-page: 88 ident: b0210 article-title: Enzymatic hydrolysis of cotton fibers in supercritical CO2 publication-title: Biotechnol. Bioprocess Eng. – volume: 83 start-page: 1 year: 2002 end-page: 11 ident: b0295 article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review publication-title: Bioresour. Technol. – volume: 44 start-page: 227 year: 2013 end-page: 231 ident: b0105 article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of publication-title: Ind. Crops Prod. – volume: 83 start-page: 103 year: 2006 end-page: 110 ident: b0125 article-title: Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods publication-title: Biopolymers – volume: 25 start-page: 302 year: 2009 end-page: 314 ident: b0150 article-title: Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies publication-title: Biotechnol. Progr. – volume: 35 start-page: 280 year: 2012 end-page: 286 ident: b0315 article-title: Optimization of formic/acetic acid delignification of Miscanthus publication-title: Ind. Crops Prod. – volume: 53 start-page: 148 year: 2014 end-page: 153 ident: b0080 article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of publication-title: Ind. Crops Prod. – volume: 101 start-page: 7046 year: 2010 end-page: 7053 ident: b0240 article-title: Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine ( publication-title: Bioresour. Technol. – volume: 101 start-page: 5449 year: 2010 end-page: 5458 ident: b0155 article-title: A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass publication-title: Bioresour. Technol. – volume: 3 start-page: 155 year: 1985 end-page: 160 ident: b0085 article-title: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates publication-title: Nat. Biotechnol. – volume: 98–100 start-page: 699 year: 2002 end-page: 716 ident: b0190 article-title: Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents publication-title: Appl. Biochem. Biotechnol. – volume: 182 start-page: 296 year: 2015 end-page: 301 ident: b0160 article-title: Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization publication-title: Bioresour. Technol. – volume: 121 start-page: 1069 year: 2005 end-page: 1079 ident: b0235 article-title: Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content publication-title: Appl. Biochem. Biotechnol. – volume: 5 start-page: 539 year: 2005 end-page: 548 ident: b0035 article-title: Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions publication-title: Macromol. Biosci. – volume: 96 start-page: 1994 year: 2005 end-page: 2006 ident: b0145 article-title: Lime pretreatment and enzymatic hydrolysis of corn stover publication-title: Bioresour. Technol. – volume: 99 start-page: 1320 year: 2008 end-page: 1328 ident: b0365 article-title: Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature publication-title: Biotechnol. Bioeng. – volume: 43 start-page: 1462 year: 2008 end-page: 1466 ident: b0050 article-title: Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide publication-title: Process Biochem. – volume: 18 start-page: 350 year: 1983 end-page: 357 ident: b0100 article-title: Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose publication-title: Eur. J. Appl. Microbiol. Biotechnol. – volume: 94 start-page: 851 year: 2006 end-page: 861 ident: b0230 article-title: Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields publication-title: Biotechnol. Bioeng. – volume: 124 start-page: 299 year: 2012 end-page: 305 ident: b0090 article-title: Green liquor pretreatment for improving enzymatic hydrolysis of corn stover publication-title: Bioresour. Technol. – volume: 81 start-page: 1008 year: 2012 end-page: 1011 ident: b0070 article-title: Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse publication-title: Radiat. Phys. Chem. – volume: 36 start-page: 1899 year: 2013 end-page: 1906 ident: b0175 article-title: Influence of supercritical CO publication-title: Chem. Eng. Technol. – volume: 100 start-page: 1608 year: 2009 end-page: 1613 ident: b0075 article-title: Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw publication-title: Bioresour. Technol. – volume: 159 start-page: 41 year: 2014 end-page: 47 ident: b0325 article-title: Enhanced enzymatic hydrolysis of bamboo ( publication-title: Bioresour. Technol. – volume: 82 start-page: 815 year: 2009 end-page: 827 ident: b0355 article-title: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis publication-title: Appl. Microbiol. Biotechnol. – volume: 62 start-page: 12360 year: 2014 end-page: 12365 ident: b0040 article-title: Hydrothermal conversion of bamboo: identification and distribution of the components in solid residue, water-soluble and acetone-soluble fractions publication-title: J. Agric. Food Chem. – volume: 7 start-page: 116 year: 2014 end-page: 127 ident: b0275 article-title: Improving the enzymatic hydrolysis of thermo-mechanical fiber from publication-title: Biotechnol. Biofuels – volume: 22 start-page: 1681 year: 2012 end-page: 1691 ident: b0095 article-title: Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw ( publication-title: J. Microbiol. Biotechnol. – volume: 163 start-page: 377 year: 2014 end-page: 380 ident: b0285 article-title: Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo ( publication-title: Bioresour. Technol. – volume: 1 start-page: 163 year: 1990 end-page: 176 ident: b0120 article-title: Biodegradation of lignin-carbohydrate complexes publication-title: Biodegradation – volume: 77 start-page: 139 year: 2001 end-page: 144 ident: b0140 article-title: Supercritical CO publication-title: Bioresour. Technol. – volume: 192 start-page: 389 year: 2015 end-page: 396 ident: b0270 article-title: Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse publication-title: Bioresour. Technol. – volume: 27 start-page: 185 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0260 article-title: Lignocellulosic residues: biodegradation and bioconversion by fungi publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2008.11.001 – volume: 105 start-page: 95 year: 2012 ident: 10.1016/j.biortech.2015.08.061_b0200 article-title: Improvement of enzymatic saccharification of sugarcane bagasse by dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.118 – volume: 5 start-page: 53 year: 2002 ident: 10.1016/j.biortech.2015.08.061_b0225 article-title: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview publication-title: Int. Microbiol. doi: 10.1007/s10123-002-0062-3 – volume: 3 start-page: 29 year: 2004 ident: 10.1016/j.biortech.2015.08.061_b0255 article-title: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids publication-title: Phytochem. Rev. doi: 10.1023/B:PHYT.0000047809.65444.a4 – volume: 121 start-page: 1069 year: 2005 ident: 10.1016/j.biortech.2015.08.061_b0235 article-title: Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:124:1-3:1069 – volume: 46 start-page: 7711 year: 2007 ident: 10.1016/j.biortech.2015.08.061_b0065 article-title: SO2-catalyzed steam fractionation of aspen chips for bioethanol production: optimization of the catalyst impregnation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0701120 – volume: 101 start-page: 7046 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0240 article-title: Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.04.020 – volume: 139 start-page: 47 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0345 article-title: Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2008.08.009 – volume: 100 start-page: 2580 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0340 article-title: High-throughput screening for ionic liquids dissolving (ligno-)cellulose publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.11.052 – volume: 100 start-page: 1608 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0075 article-title: Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.09.012 – volume: 96 start-page: 1994 year: 2005 ident: 10.1016/j.biortech.2015.08.061_b0145 article-title: Lime pretreatment and enzymatic hydrolysis of corn stover publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.01.014 – volume: 3 start-page: 155 year: 1985 ident: 10.1016/j.biortech.2015.08.061_b0085 article-title: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates publication-title: Nat. Biotechnol. doi: 10.1038/nbt0285-155 – volume: 101 start-page: 5449 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0155 article-title: A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.055 – volume: 163 start-page: 377 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0285 article-title: Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.04.082 – volume: 113–116 start-page: 509 year: 2004 ident: 10.1016/j.biortech.2015.08.061_b0320 article-title: Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:114:1-3:509 – volume: 43 start-page: 1462 year: 2008 ident: 10.1016/j.biortech.2015.08.061_b0050 article-title: Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide publication-title: Process Biochem. doi: 10.1016/j.procbio.2008.07.003 – volume: 100 start-page: 3048 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0170 article-title: Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.01.008 – volume: 7 start-page: 85 year: 2002 ident: 10.1016/j.biortech.2015.08.061_b0210 article-title: Enzymatic hydrolysis of cotton fibers in supercritical CO2 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/BF02935884 – volume: 192 start-page: 389 year: 2015 ident: 10.1016/j.biortech.2015.08.061_b0270 article-title: Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.044 – volume: 77 start-page: 139 year: 2001 ident: 10.1016/j.biortech.2015.08.061_b0140 article-title: Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(00)00147-4 – volume: 101 start-page: 9624 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0250 article-title: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.137 – volume: 5 start-page: 539 year: 2005 ident: 10.1016/j.biortech.2015.08.061_b0035 article-title: Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions publication-title: Macromol. Biosci. doi: 10.1002/mabi.200400222 – volume: 86 start-page: 1428 year: 2011 ident: 10.1016/j.biortech.2015.08.061_b0115 article-title: Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2654 – volume: 6 start-page: 110 year: 2013 ident: 10.1016/j.biortech.2015.08.061_b0220 article-title: Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process publication-title: ChemSusChem doi: 10.1002/cssc.201200546 – volume: 47 start-page: 18 year: 2004 ident: 10.1016/j.biortech.2015.08.061_b0360 article-title: Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase publication-title: Sci. China Ser. C doi: 10.1360/02yc0163 – volume: 56 start-page: 128 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0280 article-title: Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2014.02.031 – volume: 100 start-page: 637 year: 2005 ident: 10.1016/j.biortech.2015.08.061_b0305 article-title: Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw publication-title: J. Biosci. Bioeng. doi: 10.1263/jbb.100.637 – volume: 94 start-page: 851 year: 2006 ident: 10.1016/j.biortech.2015.08.061_b0230 article-title: Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20905 – volume: 35 start-page: 280 year: 2012 ident: 10.1016/j.biortech.2015.08.061_b0315 article-title: Optimization of formic/acetic acid delignification of Miscanthus×giganteus for enzymatic hydrolysis using response surface methodology publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2011.07.014 – volume: 122 start-page: 189 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0205 article-title: Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.02.020 – volume: 71 start-page: 982 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0370 article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.03.001 – volume: 51 start-page: 1412 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0055 article-title: The biorefinery concept: using biomass instead of oil for producing energy and chemicals publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.01.015 – volume: 36 start-page: 1899 year: 2013 ident: 10.1016/j.biortech.2015.08.061_b0175 article-title: Influence of supercritical CO2 pretreatment of corn stover with ethanol-water as co-solvent on lignin degradation publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201300183 – volume: 83 start-page: 1 year: 2002 ident: 10.1016/j.biortech.2015.08.061_b0295 article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00212-7 – volume: 1 start-page: 163 year: 1990 ident: 10.1016/j.biortech.2015.08.061_b0120 article-title: Biodegradation of lignin-carbohydrate complexes publication-title: Biodegradation doi: 10.1007/BF00058834 – volume: 83 start-page: 37 year: 2002 ident: 10.1016/j.biortech.2015.08.061_b0195 article-title: Energy production from biomass (part 1): overview of biomass publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00118-3 – volume: 53 start-page: 860 year: 2005 ident: 10.1016/j.biortech.2015.08.061_b0290 article-title: Extraction and characterization of original lignin and hemicelluloses from wheat straw publication-title: J. Agric. Food Chem. doi: 10.1021/jf040456q – volume: 62 start-page: 12360 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0040 article-title: Hydrothermal conversion of bamboo: identification and distribution of the components in solid residue, water-soluble and acetone-soluble fractions publication-title: J. Agric. Food Chem. doi: 10.1021/jf505074d – volume: 182 start-page: 296 year: 2015 ident: 10.1016/j.biortech.2015.08.061_b0160 article-title: Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.116 – volume: 43 start-page: 124 year: 2008 ident: 10.1016/j.biortech.2015.08.061_b0215 article-title: Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from Brewer’s spent grain publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2007.11.006 – volume: 35 start-page: 157 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0135 article-title: The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine publication-title: Renew. Energy doi: 10.1016/j.renene.2009.04.008 – volume: 81 start-page: 1008 year: 2012 ident: 10.1016/j.biortech.2015.08.061_b0070 article-title: Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2011.11.008 – volume: 99 start-page: 791 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0060 article-title: Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.08.089 – volume: 101 start-page: 9600 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0180 article-title: Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.07.084 – volume: 48 start-page: 7346 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0245 article-title: Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie8016863 – volume: 6 start-page: 16 year: 2013 ident: 10.1016/j.biortech.2015.08.061_b0130 article-title: Bioconversion of lignocellulose: inhibitors and detoxification publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-16 – volume: 101 start-page: 4851 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0010 article-title: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.11.093 – volume: 98–100 start-page: 699 year: 2002 ident: 10.1016/j.biortech.2015.08.061_b0190 article-title: Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:98-100:1-9:699 – volume: 96 start-page: 2014 year: 2005 ident: 10.1016/j.biortech.2015.08.061_b0310 article-title: Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.01.016 – volume: 53 start-page: 148 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0080 article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Jatropha curcas fruit shells for ethanol production publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.12.029 – volume: 25 start-page: 302 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0150 article-title: Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies publication-title: Biotechnol. Progr. doi: 10.1002/btpr.102 – volume: 35 start-page: 4879 year: 2011 ident: 10.1016/j.biortech.2015.08.061_b0110 article-title: Screening of steam explosion conditions for glucose production from non-impregnated wheat straw publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.10.013 – volume: 121–124 start-page: 1133 year: 2005 ident: 10.1016/j.biortech.2015.08.061_b0005 article-title: Pretreatment of switchgrass by ammonia fiber explosion (AFEX) publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:124:1-3:1133 – volume: 7 start-page: 116 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0275 article-title: Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation publication-title: Biotechnol. Biofuels – volume: 159 start-page: 41 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0325 article-title: Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.096 – volume: 160 start-page: 280 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0015 article-title: Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-008-8512-9 – volume: 100 start-page: 903 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0335 article-title: Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.07.025 – volume: 52 start-page: 247 year: 2013 ident: 10.1016/j.biortech.2015.08.061_b0020 article-title: Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2013.02.001 – volume: 44 start-page: 227 year: 2013 ident: 10.1016/j.biortech.2015.08.061_b0105 article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2012.11.001 – volume: 87 start-page: 117 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0165 article-title: Evaluation of the biocompatible ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2484-8 – volume: 104 start-page: 1036 year: 2013 ident: 10.1016/j.biortech.2015.08.061_b0350 article-title: Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.10.022 – volume: 84–86 start-page: 693 year: 2000 ident: 10.1016/j.biortech.2015.08.061_b0030 article-title: Steam pretreatment of Douglas-fir wood chips Can conditions for optimum hemicellulose recovery still provide adequate access for efficient enzymatic hydrolysis? publication-title: Appl. Biochem. Biotechnol. doi: 10.1385/ABAB:84-86:1-9:693 – volume: 124 start-page: 299 year: 2012 ident: 10.1016/j.biortech.2015.08.061_b0090 article-title: Green liquor pretreatment for improving enzymatic hydrolysis of corn stover publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.08.054 – volume: 111 start-page: 400 year: 2014 ident: 10.1016/j.biortech.2015.08.061_b0045 article-title: Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.05.004 – volume: 82 start-page: 815 year: 2009 ident: 10.1016/j.biortech.2015.08.061_b0355 article-title: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-1883-1 – volume: 54 start-page: 519 year: 2003 ident: 10.1016/j.biortech.2015.08.061_b0025 article-title: Lignin biosynthesis publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.54.031902.134938 – volume: 17 start-page: 9529 year: 2011 ident: 10.1016/j.biortech.2015.08.061_b0265 article-title: Elucidation of lignin structure by quantitative 2D NMR publication-title: Chem.-Eur. J. doi: 10.1002/chem.201003045 – volume: 18 start-page: 350 year: 1983 ident: 10.1016/j.biortech.2015.08.061_b0100 article-title: Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose publication-title: Eur. J. Appl. Microbiol. Biotechnol. doi: 10.1007/BF00504744 – volume: 9 start-page: 1621 year: 2008 ident: 10.1016/j.biortech.2015.08.061_b0300 article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms9091621 – volume: 1 start-page: 1321 year: 2012 ident: 10.1016/j.biortech.2015.08.061_b0185 article-title: Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils publication-title: ACS Macro Lett. doi: 10.1021/mz300484b – volume: 22 start-page: 1681 year: 2012 ident: 10.1016/j.biortech.2015.08.061_b0095 article-title: Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1206.06058 – volume: 79 start-page: 192 year: 2010 ident: 10.1016/j.biortech.2015.08.061_b0330 article-title: Effect of particle size on the rate of enzymatic hydrolysis of cellulose publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.07.049 – volume: 99 start-page: 1320 year: 2008 ident: 10.1016/j.biortech.2015.08.061_b0365 article-title: Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21712 – volume: 83 start-page: 103 year: 2006 ident: 10.1016/j.biortech.2015.08.061_b0125 article-title: Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods publication-title: Biopolymers doi: 10.1002/bip.20533 |
SSID | ssj0003172 |
Score | 2.653551 |
SecondaryResourceType | review_article |
Snippet | •The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined... Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 49 |
SubjectTerms | bioethanol Biofuels Biomass Cellulosic ethanol chemical structure Digestibility Enzymatic hydrolysis ethanol Hydrolysis Lignin - chemistry Lignocellulose Pretreatment technology |
Title | The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials |
URI | https://dx.doi.org/10.1016/j.biortech.2015.08.061 https://www.ncbi.nlm.nih.gov/pubmed/26321216 https://www.proquest.com/docview/1732309734 https://www.proquest.com/docview/1836623745 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwEB0hOLAc0NLloywgI-01tEmcuD5WFaiA4AJISBwsx7EhVZUgaA_sYX87M0lc4MBy4JhkRrI8L5439ngG4M9AZq7vRBYYxEvAEVOBdNYFGIgZEWmX9uv2bReX6fiGn90mt0sw8ndhKK2yXfubNb1erds3vXY2e49F0bsi8j1IyAPVhwkUt3MuCOVH_97SPNA_1icJKByQ9LtbwpOjrKCM1vpQIkyaUp7hZw7qMwJaO6KTn7DeMkg2bAa5AUu27MDa8P6praJhO7A68m3c8Mu7ioO_4A5hwSijkFWOUa6hzzNnRckKv8HAkBUyW_59qeu5soeXHFWodAlpTYv7sqL9_vm0QhMzlGlQvAk3J8fXo3HQ9lcITCL4LLAyyk2Ov6HJ-nlskzTn2uA7HhmTaCtlpvNBSAQKaR7FVtZIZF9O6DQPtYzjLVguq9LuAItz4xyCMnOaOGKm00jzWAgdWbrpyruQ-ElVpi0-Tj0wpspnmU2UN4YiYyhqjpmGXegt9B6b8htfakhvM_UBSAp9xJe6h97ICq1EU6lLW82fVShijNWkiPl_ZAZximRS8KQL2w1CFmOmqvhhFKa73xjdb_iBT-3-zx4sz57mdh8Z0Sw7qCF_ACvD0_Px5SsDPA0U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4heqA9VBTasqUFI9Fj2E3ixOtDD4iClvJzASSkHlzHsWnQKkGwq2p76Ev1BTuT2JQegEPF1fZIo5nxzGd7PAOwOZSFGzhRRAbtJeJoU5F01kV4EDMi0S4ftO3bjo7z0Rn_cp6dz8Hv8BeG0iq97-98euut_UjfS7N_VVX9EwLfw4wiUPuYMPCZlQd29gPPbTef9j-jkj8myd7u6c4o8q0FIpMJPomsTEpTogWaYlCmNstLrg2O8cSYTFspC10OY8IOiHDoWGGNRODhhM7LWEu6BUW__4yju6C2CVu__uaVYEBuny6Qu4jYu_Mt-XKrqCiFtn0FibOudmh8X0S8D_G2kW9vEV56yMq2O6m8gjlbL8GL7YtrX7bDLsHCTugbhzN3Shwuw1e0Q0YpjKxxjJIbQ2I7q2pWhRsNhjCU2frnrC0gy77PSiShWilENa4u6oYeGKbjBm2K4Zpu27yGsyeR-huYr5vargBLS-Mc7oLCaQKlhc4TzVMhdGLpay3vQRaEqoyvdk5NN8YqpLVdqqAMRcpQ1I0zj3vQv6W76up9PEohg87UP5arMCg9SrsRlKxQSyRKXdtmeqNikeLhUIqUP7BmmOaIXgXPevC2s5BbnqkMf5zE-bv_4G4dFkanR4fqcP_4YBWe44y_fHoP85Prqf2AcGxSrLXmz-DbU--3P6VVSOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+pretreatment+in+improving+the+enzymatic+hydrolysis+of+lignocellulosic+materials&rft.jtitle=Bioresource+technology&rft.au=Sun%2C+Shaoni&rft.au=Sun%2C+Shaolong&rft.au=Cao%2C+Xuefei&rft.au=Sun%2C+Runcang&rft.date=2016-01-01&rft.issn=0960-8524&rft.volume=199+p.49-58&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1016%2Fj.biortech.2015.08.061&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |