The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials

•The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined pretreatments were applied to optimize the utilization of lignocellulose.•Three combined pretreatments showed great potential for large-scale app...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 199; pp. 49 - 58
Main Authors Sun, Shaoni, Sun, Shaolong, Cao, Xuefei, Sun, Runcang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined pretreatments were applied to optimize the utilization of lignocellulose.•Three combined pretreatments showed great potential for large-scale application. Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials.
AbstractList Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials.
Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials.Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials.
•The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined pretreatments were applied to optimize the utilization of lignocellulose.•Three combined pretreatments showed great potential for large-scale application. Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical and chemical structure of lignocellulosic materials forms strong native recalcitrance and results in relatively low yield of ethanol from raw lignocellulosic materials. An appropriate pretreatment method is required to overcome this recalcitrance. For decades various pretreatment processes have been developed to improve the digestibility of lignocellulosic biomass. Each pretreatment process has a different specificity on altering the physical and chemical structure of lignocellulosic materials. In this paper, the chemical structure of lignocellulosic biomass and factors likely affect the digestibility of lignocellulosic materials are discussed, and then an overview about the most important pretreatment processes available are provided. In particular, the combined pretreatment strategies are reviewed for improving the enzymatic hydrolysis of lignocellulose and realizing the comprehensive utilization of lignocellulosic materials.
Author Sun, Runcang
Sun, Shaolong
Sun, Shaoni
Cao, Xuefei
Author_xml – sequence: 1
  givenname: Shaoni
  surname: Sun
  fullname: Sun, Shaoni
  organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
– sequence: 2
  givenname: Shaolong
  surname: Sun
  fullname: Sun, Shaolong
  organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
– sequence: 3
  givenname: Xuefei
  surname: Cao
  fullname: Cao, Xuefei
  organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
– sequence: 4
  givenname: Runcang
  surname: Sun
  fullname: Sun, Runcang
  email: rcsun3@bjfu.edu.cn
  organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26321216$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhq0KVALtX0B75LLL2N71rqUeihAflZB6gVMPlmNPiKNdO7UdpPDrcRRy4ZLTSOPnGY_mPScnPngk5JJCQ4GK61UzdyFmNMuGAe0aGBoQ9BuZ0aHnNZO9OCEzkALqoWPtGTlPaQUAnPbsOzljgjPKqJiRf89LrGIYsQqLah0xR9R5Qp8r5ys3rWN4c_61yoVC_76ddHamWm5tUbbJpZ01ulcfDI7jZgypvBYGo9Nj-kFOF6Xgz896QV7u755vH-unvw9_bm-eatP1ba5RMmssQGfmYDl2wrbalF7LjOk0SjnXdqBcMtlRCS0b0MiW8UWvhaVacn5BrvZzy7b_N5iymlzaLaQ9hk1SdOBCMN633XG054yD7Hlb0MtPdDOf0Kp1dJOOW3W4XQF-7QETQ0oRF8q4XO4TfI7ajYqC2kWlVuoQldpFpWBQJaqiiy_64Yej4u-9iOWmbw6jSsahN2hdRJOVDe7YiA8CG7Ma
CitedBy_id crossref_primary_10_1016_j_jenvman_2019_109351
crossref_primary_10_1007_s11356_023_31510_8
crossref_primary_10_1016_j_enconman_2024_119225
crossref_primary_10_3390_polym13172886
crossref_primary_10_1007_s12649_017_0073_0
crossref_primary_10_1016_j_biortech_2018_04_074
crossref_primary_10_1002_adsu_202400864
crossref_primary_10_1016_j_biortech_2020_122974
crossref_primary_10_1016_j_rser_2024_114688
crossref_primary_10_1016_j_indcrop_2023_117778
crossref_primary_10_1002_cssc_202102084
crossref_primary_10_1039_C6RA27072G
crossref_primary_10_1007_s13399_021_01368_2
crossref_primary_10_3390_catal11111362
crossref_primary_10_3390_catal13030582
crossref_primary_10_1186_s43141_023_00619_1
crossref_primary_10_1016_j_indcrop_2021_113733
crossref_primary_10_1007_s11356_021_15758_6
crossref_primary_10_1007_s42398_021_00172_y
crossref_primary_10_1016_j_renene_2020_04_055
crossref_primary_10_5604_01_3001_0015_3633
crossref_primary_10_1007_s00253_019_10158_w
crossref_primary_10_1016_j_indcrop_2021_113971
crossref_primary_10_1016_j_jssc_2018_11_003
crossref_primary_10_1007_s12649_021_01406_0
crossref_primary_10_1016_j_chemosphere_2021_130878
crossref_primary_10_32434_0321_4095_2022_143_4_102_108
crossref_primary_10_1016_j_biortech_2021_125068
crossref_primary_10_3390_fermentation3020017
crossref_primary_10_1186_s13068_017_0718_z
crossref_primary_10_1016_j_biortech_2022_127502
crossref_primary_10_1016_j_mser_2023_100761
crossref_primary_10_3390_app10165545
crossref_primary_10_3390_en15103544
crossref_primary_10_1007_s11947_021_02647_6
crossref_primary_10_1080_07388551_2022_2157241
crossref_primary_10_1007_s13399_021_01468_z
crossref_primary_10_1515_psr_2022_0164
crossref_primary_10_1007_s13399_020_00602_7
crossref_primary_10_1016_j_indcrop_2023_117884
crossref_primary_10_1007_s10570_019_02578_8
crossref_primary_10_1016_j_biortech_2019_122189
crossref_primary_10_3390_microorganisms9081581
crossref_primary_10_1016_j_biombioe_2020_105819
crossref_primary_10_1016_j_ijbiomac_2020_02_242
crossref_primary_10_1016_j_procbio_2019_10_013
crossref_primary_10_1016_j_ijbiomac_2022_08_193
crossref_primary_10_1016_j_biortech_2018_04_099
crossref_primary_10_1111_gcbb_12807
crossref_primary_10_1016_j_crgsc_2020_100035
crossref_primary_10_1016_j_seta_2019_100549
crossref_primary_10_3390_life11080807
crossref_primary_10_1007_s13399_018_0364_0
crossref_primary_10_1186_s13068_022_02130_0
crossref_primary_10_1007_s10570_018_1960_7
crossref_primary_10_5772_geet_20240082
crossref_primary_10_1016_j_fuel_2023_127648
crossref_primary_10_1016_j_rser_2018_06_036
crossref_primary_10_1016_j_biortech_2017_11_082
crossref_primary_10_1016_j_biortech_2018_02_125
crossref_primary_10_1016_j_indcrop_2020_112265
crossref_primary_10_1016_j_enconman_2016_06_029
crossref_primary_10_1002_bbb_2619
crossref_primary_10_1186_s13068_020_1659_5
crossref_primary_10_1016_j_biortech_2021_126251
crossref_primary_10_1016_j_biortech_2022_127882
crossref_primary_10_1016_j_jwpe_2023_103557
crossref_primary_10_1016_j_enconman_2018_09_002
crossref_primary_10_1016_j_bej_2018_12_003
crossref_primary_10_1111_gcbb_12800
crossref_primary_10_1088_1742_6596_2117_1_012034
crossref_primary_10_1016_j_biortech_2017_02_078
crossref_primary_10_1007_s13399_020_01217_8
crossref_primary_10_1007_s13399_018_0353_3
crossref_primary_10_1007_s13399_021_01469_y
crossref_primary_10_1016_j_biortech_2017_09_081
crossref_primary_10_1016_j_rser_2018_06_042
crossref_primary_10_1016_j_biortech_2018_11_035
crossref_primary_10_1016_j_biortech_2019_122244
crossref_primary_10_3390_catal12101177
crossref_primary_10_1016_j_biortech_2016_07_007
crossref_primary_10_1016_j_biortech_2023_129174
crossref_primary_10_1016_j_ijbiomac_2024_129839
crossref_primary_10_3390_pr8050567
crossref_primary_10_1016_j_biortech_2019_122121
crossref_primary_10_1016_j_indcrop_2021_113924
crossref_primary_10_3390_molecules24040808
crossref_primary_10_1016_j_jwpe_2022_103269
crossref_primary_10_1080_10934529_2023_2176092
crossref_primary_10_3390_en12061053
crossref_primary_10_1016_j_conbuildmat_2021_123281
crossref_primary_10_1016_j_rser_2021_111258
crossref_primary_10_3390_molecules23061381
crossref_primary_10_1007_s10668_020_01110_4
crossref_primary_10_1016_j_jenvman_2022_115969
crossref_primary_10_1007_s13399_024_06342_2
crossref_primary_10_1016_j_energy_2022_124402
crossref_primary_10_1016_j_carres_2023_108961
crossref_primary_10_1016_j_carbpol_2020_117164
crossref_primary_10_1016_j_fuel_2020_118262
crossref_primary_10_26896_1028_6861_2018_84_10_5_11
crossref_primary_10_1016_j_jclepro_2019_119914
crossref_primary_10_1039_D1SE00747E
crossref_primary_10_1016_j_biortech_2019_121392
crossref_primary_10_1016_j_carbpol_2024_122351
crossref_primary_10_3389_fenrg_2022_741570
crossref_primary_10_1016_j_biortech_2018_09_126
crossref_primary_10_1016_j_biortech_2021_126114
crossref_primary_10_3390_agriculture14071143
crossref_primary_10_2139_ssrn_3909858
crossref_primary_10_1016_j_jcat_2023_03_016
crossref_primary_10_3390_en15114105
crossref_primary_10_1016_j_scitotenv_2022_157599
crossref_primary_10_1016_j_indcrop_2020_112176
crossref_primary_10_1016_j_jclepro_2017_06_215
crossref_primary_10_1007_s13399_024_05934_2
crossref_primary_10_1002_jctb_6197
crossref_primary_10_1007_s13399_024_06487_0
crossref_primary_10_1016_j_enconman_2019_112111
crossref_primary_10_1016_j_fuel_2020_118247
crossref_primary_10_1007_s13399_022_02329_z
crossref_primary_10_1007_s12355_021_00988_2
crossref_primary_10_1016_j_biortech_2017_10_009
crossref_primary_10_1016_j_chemosphere_2021_132604
crossref_primary_10_3390_molecules28145617
crossref_primary_10_1016_j_biortech_2021_125594
crossref_primary_10_1016_j_biortech_2016_10_085
crossref_primary_10_1016_j_biortech_2021_125596
crossref_primary_10_1016_j_bej_2020_107793
crossref_primary_10_1186_s13068_021_01927_9
crossref_primary_10_1016_j_jechem_2017_11_007
crossref_primary_10_1021_acs_iecr_0c03047
crossref_primary_10_1016_j_biortech_2022_127609
crossref_primary_10_1002_aocs_12516
crossref_primary_10_1016_j_envres_2019_109094
crossref_primary_10_5219_1913
crossref_primary_10_1016_j_biortech_2019_122261
crossref_primary_10_1007_s13399_022_02548_4
crossref_primary_10_1016_j_energy_2019_116395
crossref_primary_10_1039_D3RA02693K
crossref_primary_10_1016_j_scitotenv_2021_152872
crossref_primary_10_1016_j_bcab_2022_102374
crossref_primary_10_1002_chem_202402171
crossref_primary_10_1016_j_chemosphere_2021_131623
crossref_primary_10_1007_s13399_023_03935_1
crossref_primary_10_1016_j_biombioe_2020_105901
crossref_primary_10_1016_j_egyr_2021_12_015
crossref_primary_10_1016_j_biortech_2016_12_105
crossref_primary_10_1016_j_enconman_2021_114219
crossref_primary_10_1021_acssuschemeng_8b05637
crossref_primary_10_1016_j_biortech_2021_126458
crossref_primary_10_1016_j_indcrop_2018_08_060
crossref_primary_10_1080_02773813_2024_2304600
crossref_primary_10_1007_s12155_018_9920_5
crossref_primary_10_1080_15435075_2024_2432572
crossref_primary_10_1007_s10570_022_04882_2
crossref_primary_10_1016_j_scitotenv_2020_137067
crossref_primary_10_1007_s10570_022_04697_1
crossref_primary_10_1016_j_envres_2024_120484
crossref_primary_10_1007_s13205_020_02426_8
crossref_primary_10_1007_s13399_022_02721_9
crossref_primary_10_1007_s13399_021_01564_0
crossref_primary_10_1016_j_indcrop_2023_116896
crossref_primary_10_1007_s11814_016_0320_2
crossref_primary_10_1016_j_jclepro_2020_125447
crossref_primary_10_1016_j_copbio_2017_11_016
crossref_primary_10_1021_acs_energyfuels_7b03663
crossref_primary_10_1016_j_biortech_2017_04_078
crossref_primary_10_1039_C8SE00287H
crossref_primary_10_1088_1757_899X_318_1_012001
crossref_primary_10_1016_j_renene_2021_01_082
crossref_primary_10_3389_fenrg_2024_1347373
crossref_primary_10_1002_star_202200122
crossref_primary_10_1007_s00253_020_10722_9
crossref_primary_10_1016_j_indcrop_2021_114420
crossref_primary_10_1016_j_biortech_2019_121905
crossref_primary_10_1080_09168451_2015_1116933
crossref_primary_10_3389_fpls_2018_01537
crossref_primary_10_1016_j_indcrop_2024_119839
crossref_primary_10_1021_acs_chemrev_2c00602
crossref_primary_10_1002_er_8329
crossref_primary_10_3390_app12167972
crossref_primary_10_3390_fermentation8100531
crossref_primary_10_1016_j_jece_2024_114461
crossref_primary_10_52711_2231_5691_2024_00028
crossref_primary_10_1007_s11274_024_03992_2
crossref_primary_10_3390_jof10080545
crossref_primary_10_1007_s00253_017_8714_6
crossref_primary_10_1007_s12649_017_0186_5
crossref_primary_10_1016_j_indcrop_2016_10_055
crossref_primary_10_2208_jscejer_78_7_III_177
crossref_primary_10_1007_s13399_021_01544_4
crossref_primary_10_3390_polym14050930
crossref_primary_10_1016_j_energy_2017_01_005
crossref_primary_10_1016_j_biteb_2020_100404
crossref_primary_10_1016_j_jclepro_2019_119421
crossref_primary_10_1088_1755_1315_1108_1_012022
crossref_primary_10_1016_j_biortech_2017_03_013
crossref_primary_10_1016_j_biortech_2019_121915
crossref_primary_10_1007_s13399_020_00704_2
crossref_primary_10_1016_j_biombioe_2020_105653
crossref_primary_10_1016_j_renene_2018_04_044
crossref_primary_10_1016_j_indcrop_2024_119845
crossref_primary_10_1016_j_biortech_2016_02_079
crossref_primary_10_1016_j_indcrop_2022_114712
crossref_primary_10_1186_s12896_019_0593_8
crossref_primary_10_1002_cssc_202401683
crossref_primary_10_1016_j_indcrop_2021_113442
crossref_primary_10_3390_polym17030266
crossref_primary_10_1016_j_supflu_2018_01_013
crossref_primary_10_1002_tcr_202200266
crossref_primary_10_1007_s12155_022_10436_y
crossref_primary_10_1021_acsomega_0c03419
crossref_primary_10_1080_15440478_2019_1568346
crossref_primary_10_3390_catal10050536
crossref_primary_10_1002_bit_27639
crossref_primary_10_1021_acssuschemeng_4c05508
crossref_primary_10_3390_su14052596
crossref_primary_10_1002_bit_26788
crossref_primary_10_1016_j_carbpol_2020_117386
crossref_primary_10_1007_s12010_019_03183_y
crossref_primary_10_1186_s13068_021_02012_x
crossref_primary_10_1016_j_biortech_2017_05_090
crossref_primary_10_1016_j_scitotenv_2023_166992
crossref_primary_10_3390_polym12091876
crossref_primary_10_1016_j_biortech_2024_131528
crossref_primary_10_1007_s10570_023_05493_1
crossref_primary_10_1016_j_fuel_2019_05_038
crossref_primary_10_3390_polym13213762
crossref_primary_10_1186_s13068_018_1071_6
crossref_primary_10_1016_j_biortech_2021_126536
crossref_primary_10_1007_s12649_021_01425_x
crossref_primary_10_3390_catal14110821
crossref_primary_10_1007_s13399_021_01294_3
crossref_primary_10_3390_fermentation8110591
crossref_primary_10_1007_s10529_023_03417_4
crossref_primary_10_1016_j_biortech_2016_08_025
crossref_primary_10_1002_cssc_201601381
crossref_primary_10_1016_j_enconman_2018_01_046
crossref_primary_10_1021_acs_iecr_0c00645
crossref_primary_10_1016_j_indcrop_2018_11_075
crossref_primary_10_1007_s12649_023_02174_9
crossref_primary_10_1038_s41598_017_08740_1
crossref_primary_10_1016_j_renene_2020_09_070
crossref_primary_10_1016_j_renene_2022_04_095
crossref_primary_10_1016_j_jece_2024_112135
crossref_primary_10_3390_molecules23112937
crossref_primary_10_1021_acssuschemeng_1c00248
crossref_primary_10_1007_s13399_023_04152_6
crossref_primary_10_1088_1755_1315_1187_1_012048
crossref_primary_10_1088_1755_1315_1368_1_012007
crossref_primary_10_1021_acssuschemeng_9b04451
crossref_primary_10_1039_C8RA00764K
crossref_primary_10_1007_s13399_019_00574_3
crossref_primary_10_1016_j_renene_2018_11_029
crossref_primary_10_3390_polym15234521
crossref_primary_10_1134_S1070427222120059
crossref_primary_10_1016_j_cej_2024_152204
crossref_primary_10_1016_j_procbio_2022_01_001
crossref_primary_10_1007_s42452_021_04870_4
crossref_primary_10_1016_j_bej_2021_108186
crossref_primary_10_1186_s12896_017_0403_0
crossref_primary_10_1016_j_matpr_2022_12_241
crossref_primary_10_1016_j_rser_2019_02_020
crossref_primary_10_1016_j_biortech_2016_01_074
crossref_primary_10_1016_j_micromeso_2020_110809
crossref_primary_10_3389_fbioe_2021_790539
crossref_primary_10_1016_j_bcab_2021_102010
crossref_primary_10_1016_j_ultsonch_2020_104985
crossref_primary_10_1007_s12649_022_01829_3
crossref_primary_10_1111_gcbb_12748
crossref_primary_10_3390_su12135453
crossref_primary_10_35812_CelluloseChemTechnol_2023_57_86
crossref_primary_10_1016_j_apenergy_2024_125202
crossref_primary_10_1016_j_biortech_2020_124154
crossref_primary_10_3390_membranes10120370
crossref_primary_10_1016_j_fuel_2022_126748
crossref_primary_10_1016_j_indcrop_2018_12_091
crossref_primary_10_1016_j_renene_2018_11_038
crossref_primary_10_1007_s40201_021_00751_5
crossref_primary_10_1016_j_ejbt_2018_04_001
crossref_primary_10_3390_en15072600
crossref_primary_10_1021_acssuschemeng_0c01361
crossref_primary_10_3390_en17122938
crossref_primary_10_1016_j_indcrop_2021_113761
crossref_primary_10_1002_slct_202001008
crossref_primary_10_1016_j_biortech_2023_129598
crossref_primary_10_1016_j_fuel_2020_118524
crossref_primary_10_47836_pjst_31_2_19
crossref_primary_10_3390_microorganisms11061387
crossref_primary_10_1515_revce_2018_0014
crossref_primary_10_31857_S0555109924030068
crossref_primary_10_1007_s13399_022_02373_9
crossref_primary_10_1080_17597269_2019_1706273
crossref_primary_10_1016_j_ijbiomac_2019_09_100
crossref_primary_10_1080_10826068_2021_2021233
crossref_primary_10_1007_s11274_019_2774_y
crossref_primary_10_1186_s13068_017_0730_3
crossref_primary_10_15446_ing_investig_v42n1_86698
crossref_primary_10_1007_s10570_024_06081_7
crossref_primary_10_1007_s10570_023_05154_3
crossref_primary_10_3390_polysaccharides3030029
crossref_primary_10_1007_s42114_021_00395_x
crossref_primary_10_1016_j_supflu_2020_105043
crossref_primary_10_3390_resources10120121
crossref_primary_10_1007_s40684_023_00529_0
crossref_primary_10_1016_j_rser_2023_113303
crossref_primary_10_1016_j_jece_2022_108764
crossref_primary_10_1016_j_scitotenv_2020_140630
crossref_primary_10_1016_j_ijbiomac_2021_11_188
crossref_primary_10_1089_ind_2020_0020
crossref_primary_10_1007_s13399_016_0236_4
crossref_primary_10_1039_D1GC02131A
crossref_primary_10_1016_j_ijbiomac_2024_131290
crossref_primary_10_1021_acssuschemeng_8b04262
crossref_primary_10_1016_j_scitotenv_2023_163156
crossref_primary_10_1016_j_algal_2022_102803
crossref_primary_10_1016_j_indcrop_2023_116376
crossref_primary_10_1007_s43939_025_00211_z
crossref_primary_10_1016_j_biortech_2018_11_074
crossref_primary_10_1007_s12155_024_10738_3
crossref_primary_10_1016_j_biortech_2018_11_076
crossref_primary_10_1186_s40643_018_0193_9
crossref_primary_10_1016_j_ijbiomac_2023_127853
crossref_primary_10_1007_s10570_017_1199_8
crossref_primary_10_1016_j_jwpe_2022_102654
crossref_primary_10_1007_s13399_023_04369_5
crossref_primary_10_1016_j_biombioe_2024_107428
crossref_primary_10_1007_s11270_024_07136_y
crossref_primary_10_1016_j_biombioe_2020_105486
crossref_primary_10_1039_C7SE00569E
crossref_primary_10_1016_j_biortech_2021_124878
crossref_primary_10_1186_s13068_017_0777_1
crossref_primary_10_1007_s13399_023_03788_8
crossref_primary_10_3390_fermentation9020112
crossref_primary_10_1021_acssuschemeng_6b01540
crossref_primary_10_1039_C6RA26122A
crossref_primary_10_3389_fmicb_2018_02222
crossref_primary_10_1038_s41467_018_07575_2
crossref_primary_10_1016_j_jbiosc_2019_05_007
crossref_primary_10_1007_s13399_020_00652_x
crossref_primary_10_1016_j_energy_2017_07_146
crossref_primary_10_1016_j_biortech_2017_06_077
crossref_primary_10_1016_j_indcrop_2024_118110
crossref_primary_10_3390_ijms231911829
crossref_primary_10_1016_j_ibiod_2019_104813
crossref_primary_10_1039_C7RA12732D
crossref_primary_10_1016_j_rser_2023_113520
crossref_primary_10_3390_en15155654
crossref_primary_10_1016_j_biortech_2019_122613
crossref_primary_10_3390_polym11111734
crossref_primary_10_3390_polym12020378
crossref_primary_10_1016_j_biortech_2020_123025
crossref_primary_10_1111_1751_7915_13886
crossref_primary_10_1134_S0003683824603639
crossref_primary_10_1016_j_indcrop_2022_115769
crossref_primary_10_1016_j_biortech_2020_123383
crossref_primary_10_1088_1757_899X_854_1_012030
crossref_primary_10_1186_s13068_017_0995_6
crossref_primary_10_1016_j_ibiod_2017_09_004
crossref_primary_10_1016_j_biortech_2016_11_015
crossref_primary_10_1021_acssuschemeng_7b01186
crossref_primary_10_1208_s12249_023_02645_1
crossref_primary_10_1021_acsomega_0c03135
crossref_primary_10_1016_j_biortech_2022_127095
crossref_primary_10_1016_j_biortech_2022_128068
crossref_primary_10_1016_j_biortech_2018_07_149
crossref_primary_10_1038_srep39354
crossref_primary_10_1016_j_biortech_2019_02_041
crossref_primary_10_1016_j_talanta_2024_127143
crossref_primary_10_1016_j_biortech_2016_03_124
crossref_primary_10_1016_j_carbpol_2020_116212
crossref_primary_10_1016_j_ijbiomac_2021_01_167
crossref_primary_10_1016_j_soilbio_2021_108313
crossref_primary_10_3390_toxics11020117
crossref_primary_10_1007_s10668_023_03360_4
crossref_primary_10_3390_molecules23040811
crossref_primary_10_1016_j_biortech_2016_11_002
crossref_primary_10_1021_acs_energyfuels_9b00513
crossref_primary_10_1088_1755_1315_1303_1_012004
crossref_primary_10_1016_j_ultsonch_2021_105711
crossref_primary_10_3389_fenrg_2022_868181
crossref_primary_10_1016_j_renene_2019_12_024
crossref_primary_10_1088_1755_1315_268_1_012106
crossref_primary_10_1016_j_ijhydene_2017_07_214
crossref_primary_10_1016_j_biortech_2021_125961
crossref_primary_10_1016_j_ijhydene_2016_07_035
crossref_primary_10_1016_j_biortech_2021_124873
crossref_primary_10_1016_j_rser_2023_113743
crossref_primary_10_1007_s13399_020_01123_z
crossref_primary_10_1021_acs_iecr_0c01456
crossref_primary_10_1016_j_biortech_2020_123001
crossref_primary_10_1016_j_biortech_2020_124211
crossref_primary_10_1016_j_biortech_2021_125837
crossref_primary_10_3390_app13021055
crossref_primary_10_3390_w15193389
crossref_primary_10_1007_s12155_017_9825_8
crossref_primary_10_3390_app11104693
crossref_primary_10_3389_fmicb_2018_02556
crossref_primary_10_1007_s13399_022_02322_6
crossref_primary_10_1016_j_biortech_2018_06_043
crossref_primary_10_1016_j_indcrop_2024_119990
crossref_primary_10_1155_2018_4916497
crossref_primary_10_1016_j_jobab_2024_12_002
crossref_primary_10_1007_s40995_024_01651_7
crossref_primary_10_1007_s42398_020_00102_4
crossref_primary_10_1016_j_ejbt_2017_10_011
crossref_primary_10_1016_j_procbio_2021_03_016
crossref_primary_10_1016_j_carpta_2024_100630
crossref_primary_10_1007_s10295_020_02301_8
crossref_primary_10_1016_j_carbpol_2022_120182
crossref_primary_10_1007_s12649_024_02781_0
crossref_primary_10_1016_j_ijbiomac_2024_131354
crossref_primary_10_1139_cjm_2018_0535
crossref_primary_10_1007_s12649_021_01499_7
crossref_primary_10_1016_j_seta_2024_103852
crossref_primary_10_1002_bbb_2074
crossref_primary_10_1080_15440478_2023_2245565
crossref_primary_10_1080_01614940_2020_1819936
crossref_primary_10_1016_j_biortech_2020_123589
crossref_primary_10_14710_ijred_2022_41774
crossref_primary_10_1080_15435075_2020_1809425
crossref_primary_10_1186_s13068_019_1417_8
crossref_primary_10_1016_j_ijhydene_2021_10_020
crossref_primary_10_1021_acssuschemeng_9b01229
crossref_primary_10_1039_C9GC00323A
crossref_primary_10_3390_su15043590
crossref_primary_10_3390_polym16182633
crossref_primary_10_1016_j_indcrop_2018_02_007
crossref_primary_10_3390_su11216175
crossref_primary_10_1007_s12010_018_2900_6
crossref_primary_10_1016_j_biortech_2022_127020
crossref_primary_10_1186_s13068_021_02054_1
crossref_primary_10_3775_jie_101_56
crossref_primary_10_1007_s12155_023_10617_3
crossref_primary_10_47385_cadunifoa_v18_n53_4722
crossref_primary_10_1016_j_biortech_2023_129989
crossref_primary_10_1186_s13068_022_02244_5
crossref_primary_10_1016_j_biortech_2020_124306
crossref_primary_10_1016_j_biortech_2019_121726
crossref_primary_10_1016_j_renene_2024_120296
crossref_primary_10_1016_j_biteb_2019_100281
crossref_primary_10_1016_j_jece_2021_106664
crossref_primary_10_1016_j_ijbiomac_2024_129273
crossref_primary_10_1007_s12649_022_01681_5
crossref_primary_10_1039_D0NA00408A
crossref_primary_10_3389_fbioe_2018_00023
crossref_primary_10_1021_acssuschemeng_7b03686
crossref_primary_10_3390_catal12090979
crossref_primary_10_3390_fermentation10090442
crossref_primary_10_1016_j_biortech_2022_128382
crossref_primary_10_1016_j_pecs_2024_101161
crossref_primary_10_25269_jsel_v7i02_215
crossref_primary_10_1016_j_biortech_2022_128381
crossref_primary_10_1016_j_indcrop_2024_119772
crossref_primary_10_3390_nano13010126
crossref_primary_10_1016_j_indcrop_2020_112615
crossref_primary_10_3390_polym15040801
crossref_primary_10_3775_jie_102_33
crossref_primary_10_1016_j_jtice_2017_04_021
crossref_primary_10_1016_j_carbpol_2017_12_030
crossref_primary_10_3390_fermentation5010004
crossref_primary_10_1016_j_biortech_2020_123449
crossref_primary_10_3390_fermentation5010005
crossref_primary_10_1007_s10570_019_02519_5
crossref_primary_10_1016_j_rser_2020_110338
crossref_primary_10_1002_bbb_2096
crossref_primary_10_1016_j_biortech_2020_123324
crossref_primary_10_1039_D4MH00172A
crossref_primary_10_1093_database_baz114
crossref_primary_10_3390_ijms242417576
crossref_primary_10_3390_su14106029
crossref_primary_10_1016_j_biortech_2017_03_001
crossref_primary_10_1039_D1EN00754H
crossref_primary_10_1016_j_jenvman_2019_03_133
crossref_primary_10_1016_j_fuel_2022_123726
crossref_primary_10_1016_j_indcrop_2021_114326
crossref_primary_10_1007_s13399_022_02718_4
crossref_primary_10_1007_s11356_022_21889_1
crossref_primary_10_1016_j_cej_2023_147610
crossref_primary_10_1016_j_jclepro_2020_120865
crossref_primary_10_3390_pr9050887
crossref_primary_10_1016_j_bcab_2024_103142
crossref_primary_10_3390_polym14183737
crossref_primary_10_1088_1755_1315_475_1_012066
crossref_primary_10_3390_molecules26030753
crossref_primary_10_1016_j_indcrop_2018_02_011
crossref_primary_10_14710_jil_19_3_485_496
crossref_primary_10_1080_09205063_2023_2177474
crossref_primary_10_1007_s13399_020_00970_0
crossref_primary_10_1016_j_cej_2019_123128
crossref_primary_10_1007_s00449_018_1942_z
crossref_primary_10_1016_j_biortech_2018_07_070
crossref_primary_10_1016_j_biortech_2019_122685
crossref_primary_10_1016_j_biortech_2016_10_064
crossref_primary_10_1016_j_biortech_2022_128208
crossref_primary_10_1016_j_renene_2019_10_020
crossref_primary_10_1080_10242422_2021_1882430
crossref_primary_10_1021_acs_energyfuels_0c03876
crossref_primary_10_1021_acssuschemeng_2c06076
crossref_primary_10_1088_1755_1315_680_1_012056
crossref_primary_10_1016_j_biortech_2017_08_094
crossref_primary_10_3390_nano9121726
crossref_primary_10_1007_s12649_024_02493_5
crossref_primary_10_1016_j_indcrop_2020_113170
crossref_primary_10_1016_j_jclepro_2020_121407
crossref_primary_10_3389_fmicb_2022_933882
crossref_primary_10_1016_j_indcrop_2023_116961
crossref_primary_10_1063_1_5025876
crossref_primary_10_3390_biom8040141
crossref_primary_10_1016_j_biombioe_2024_107155
crossref_primary_10_1016_j_rser_2024_114395
crossref_primary_10_1039_D0RA10877D
crossref_primary_10_35812_CelluloseChemTechnol_2021_55_52
crossref_primary_10_1080_00986445_2017_1365061
crossref_primary_10_1039_D0GC00901F
crossref_primary_10_1016_j_eti_2021_102080
crossref_primary_10_1007_s13399_022_02861_y
crossref_primary_10_1021_acs_iecr_6b01907
crossref_primary_10_1021_acssuschemeng_8b02541
crossref_primary_10_1007_s11270_018_4067_8
crossref_primary_10_1039_C9GC02466B
crossref_primary_10_1186_s40643_024_00784_2
crossref_primary_10_1016_j_ijhydene_2018_11_098
crossref_primary_10_1186_s13068_025_02616_7
crossref_primary_10_1002_fsn3_4358
crossref_primary_10_1007_s13399_017_0255_9
crossref_primary_10_3390_catal12101121
crossref_primary_10_3390_su16031275
crossref_primary_10_1016_j_heliyon_2023_e16311
crossref_primary_10_1016_j_biortech_2018_09_037
crossref_primary_10_1080_07388551_2020_1805720
crossref_primary_10_1016_j_bcab_2020_101793
crossref_primary_10_1166_jbmb_2021_2064
crossref_primary_10_1007_s12649_021_01606_8
crossref_primary_10_1002_asia_202200566
crossref_primary_10_1007_s10123_019_00114_z
crossref_primary_10_1016_j_biortech_2018_01_048
crossref_primary_10_1080_17597269_2024_2440207
crossref_primary_10_1016_j_indcrop_2023_116987
crossref_primary_10_1016_j_indcrop_2020_113077
crossref_primary_10_1039_C7GC00936D
crossref_primary_10_1016_j_chemosphere_2019_01_090
crossref_primary_10_1007_s12649_022_02013_3
crossref_primary_10_1007_s13205_017_0964_6
crossref_primary_10_3923_jas_2022_241_247
crossref_primary_10_1007_s12155_021_10299_9
crossref_primary_10_1016_j_jhazmat_2019_120892
crossref_primary_10_1016_j_carbpol_2019_115622
crossref_primary_10_1038_s41598_021_89916_8
crossref_primary_10_3390_polym11101645
crossref_primary_10_1093_plphys_kiab359
crossref_primary_10_1186_s13068_021_01921_1
crossref_primary_10_1016_j_biortech_2019_122476
crossref_primary_10_1039_D0GC00903B
crossref_primary_10_1016_j_cogsc_2016_09_003
crossref_primary_10_1111_1751_7915_12494
crossref_primary_10_1016_j_biortech_2020_123634
crossref_primary_10_1186_s13068_024_02553_x
crossref_primary_10_1016_j_biortech_2018_12_101
crossref_primary_10_1016_j_jenvman_2016_06_012
crossref_primary_10_1016_j_renene_2021_05_066
crossref_primary_10_3390_catal12111384
crossref_primary_10_1016_j_biortech_2020_122795
crossref_primary_10_1186_s13068_019_1354_6
crossref_primary_10_47836_pjst_31_6_22
crossref_primary_10_1007_s13399_020_01149_3
crossref_primary_10_1016_j_fuproc_2020_106407
crossref_primary_10_1016_j_jece_2021_105832
crossref_primary_10_3390_su13169295
crossref_primary_10_1007_s10163_022_01495_6
crossref_primary_10_1016_j_cbpa_2016_08_028
crossref_primary_10_3390_pr11030688
crossref_primary_10_1016_j_renene_2019_03_032
crossref_primary_10_1080_15435075_2025_2469139
crossref_primary_10_1016_j_biortech_2021_126061
crossref_primary_10_1016_j_biortech_2016_10_029
crossref_primary_10_1016_j_biortech_2019_121675
crossref_primary_10_1007_s13399_024_05418_3
crossref_primary_10_1088_1757_899X_245_1_012011
crossref_primary_10_1016_j_renene_2021_05_052
crossref_primary_10_1016_j_biortech_2020_123866
crossref_primary_10_1016_j_biortech_2017_12_034
crossref_primary_10_1016_j_indcrop_2019_03_059
crossref_primary_10_1016_j_molcatb_2017_05_002
crossref_primary_10_3390_en16073236
crossref_primary_10_1007_s10570_021_04200_2
crossref_primary_10_1016_j_carbpol_2018_07_079
crossref_primary_10_1002_est2_634
crossref_primary_10_1007_s13399_024_06301_x
crossref_primary_10_1016_j_biortech_2016_07_087
crossref_primary_10_1007_s10570_018_2159_7
crossref_primary_10_1007_s40726_024_00295_w
crossref_primary_10_1016_j_jobab_2021_02_001
crossref_primary_10_1016_j_indcrop_2019_02_004
crossref_primary_10_1007_s10924_020_02001_5
crossref_primary_10_1039_D1RA01328A
crossref_primary_10_9767_bcrec_15_3_8870_786_797
crossref_primary_10_1016_j_biortech_2021_126195
crossref_primary_10_1016_j_carbpol_2019_115400
crossref_primary_10_1016_j_envres_2024_118665
crossref_primary_10_1007_s00226_024_01532_7
crossref_primary_10_1016_j_procbio_2025_03_005
crossref_primary_10_1146_annurev_chembioeng_060718_030354
crossref_primary_10_1038_s44296_024_00045_5
crossref_primary_10_4014_mbl_2003_03003
crossref_primary_10_1038_s41598_017_09885_9
crossref_primary_10_1016_j_heliyon_2024_e26440
crossref_primary_10_1007_s13399_022_03508_8
crossref_primary_10_1177_11786388211058559
crossref_primary_10_1016_j_carbpol_2018_04_010
crossref_primary_10_1021_acs_energyfuels_0c00275
crossref_primary_10_3389_fenrg_2018_00141
crossref_primary_10_1007_s13399_021_01849_4
crossref_primary_10_1007_s11157_018_09488_4
crossref_primary_10_1016_j_indcrop_2019_111961
crossref_primary_10_1016_j_matpr_2019_11_122
crossref_primary_10_1007_s12155_021_10265_5
crossref_primary_10_1016_j_indcrop_2021_114058
crossref_primary_10_3390_horticulturae8100911
crossref_primary_10_1007_s13399_019_00491_5
crossref_primary_10_1016_j_procbio_2016_07_028
crossref_primary_10_3390_su11133604
crossref_primary_10_1007_s43393_023_00228_6
crossref_primary_10_3390_biomass3010007
crossref_primary_10_5604_01_3001_0053_8975
crossref_primary_10_1016_j_biortech_2021_125195
crossref_primary_10_3390_catal9030223
crossref_primary_10_1016_j_spc_2021_12_014
crossref_primary_10_1007_s40518_019_00131_6
crossref_primary_10_1007_s13399_022_02642_7
crossref_primary_10_1016_j_biortech_2022_127219
crossref_primary_10_1016_j_ibiod_2021_105246
crossref_primary_10_1016_j_ultsonch_2017_07_025
crossref_primary_10_3390_polym16223171
crossref_primary_10_1016_j_bcab_2020_101503
crossref_primary_10_1080_09593330_2022_2046645
crossref_primary_10_1007_s12649_020_00960_3
crossref_primary_10_1016_j_renene_2021_06_042
crossref_primary_10_3389_fenrg_2022_834966
crossref_primary_10_1016_j_ijbiomac_2018_03_111
crossref_primary_10_1016_j_biortech_2016_12_063
crossref_primary_10_1016_j_indcrop_2019_03_068
crossref_primary_10_1007_s13399_023_04335_1
crossref_primary_10_1016_j_biortech_2019_121343
crossref_primary_10_1016_j_cherd_2017_10_026
crossref_primary_10_1016_j_indcrop_2023_116929
crossref_primary_10_1021_acssuschemeng_2c06248
crossref_primary_10_1016_j_jhazmat_2019_04_022
crossref_primary_10_1016_j_renene_2019_04_082
crossref_primary_10_3390_app11136069
crossref_primary_10_1016_j_fuproc_2019_106244
crossref_primary_10_1016_j_energy_2020_119332
crossref_primary_10_1016_j_rser_2023_114081
crossref_primary_10_1016_j_supflu_2018_10_004
crossref_primary_10_1002_bbb_1724
crossref_primary_10_3390_catal12030302
Cites_doi 10.1016/j.biotechadv.2008.11.001
10.1016/j.biortech.2011.11.118
10.1007/s10123-002-0062-3
10.1023/B:PHYT.0000047809.65444.a4
10.1385/ABAB:124:1-3:1069
10.1021/ie0701120
10.1016/j.biortech.2010.04.020
10.1016/j.jbiotec.2008.08.009
10.1016/j.biortech.2008.11.052
10.1016/j.biortech.2008.09.012
10.1016/j.biortech.2005.01.014
10.1038/nbt0285-155
10.1016/j.biortech.2010.02.055
10.1016/j.biortech.2014.04.082
10.1385/ABAB:114:1-3:509
10.1016/j.procbio.2008.07.003
10.1016/j.biortech.2009.01.008
10.1007/BF02935884
10.1016/j.biortech.2015.05.044
10.1016/S0960-8524(00)00147-4
10.1016/j.biortech.2010.06.137
10.1002/mabi.200400222
10.1002/jctb.2654
10.1002/cssc.201200546
10.1360/02yc0163
10.1016/j.indcrop.2014.02.031
10.1263/jbb.100.637
10.1002/bit.20905
10.1016/j.indcrop.2011.07.014
10.1016/j.apenergy.2014.02.020
10.1016/j.phytochem.2010.03.001
10.1016/j.enconman.2010.01.015
10.1002/ceat.201300183
10.1016/S0960-8524(01)00212-7
10.1007/BF00058834
10.1016/S0960-8524(01)00118-3
10.1021/jf040456q
10.1021/jf505074d
10.1016/j.biortech.2015.01.116
10.1016/j.enzmictec.2007.11.006
10.1016/j.renene.2009.04.008
10.1016/j.radphyschem.2011.11.008
10.1016/j.carbpol.2013.08.089
10.1016/j.biortech.2010.07.084
10.1021/ie8016863
10.1186/1754-6834-6-16
10.1016/j.biortech.2009.11.093
10.1385/ABAB:98-100:1-9:699
10.1016/j.biortech.2005.01.016
10.1016/j.indcrop.2013.12.029
10.1002/btpr.102
10.1016/j.biombioe.2011.10.013
10.1385/ABAB:124:1-3:1133
10.1016/j.biortech.2014.02.096
10.1007/s12010-008-8512-9
10.1016/j.biortech.2008.07.025
10.1016/j.enzmictec.2013.02.001
10.1016/j.indcrop.2012.11.001
10.1007/s00253-010-2484-8
10.1016/j.ces.2013.10.022
10.1385/ABAB:84-86:1-9:693
10.1016/j.biortech.2012.08.054
10.1016/j.carbpol.2014.05.004
10.1007/s00253-009-1883-1
10.1146/annurev.arplant.54.031902.134938
10.1002/chem.201003045
10.1007/BF00504744
10.3390/ijms9091621
10.1021/mz300484b
10.4014/jmb.1206.06058
10.1016/j.carbpol.2009.07.049
10.1002/bit.21712
10.1002/bip.20533
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2015.08.061
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 58
ExternalDocumentID 26321216
10_1016_j_biortech_2015_08_061
S0960852415011670
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c574t-e92dcd005cb0d3e56d4ac92d42cc5ae99bad8139295190428ec9423f7a6d1a933
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Aug 22 20:21:59 EDT 2025
Sun Aug 24 03:01:47 EDT 2025
Mon Jul 21 06:05:09 EDT 2025
Tue Jul 01 02:06:33 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Sat Aug 10 15:32:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Pretreatment
Lignocellulose
Cellulosic ethanol
Enzymatic hydrolysis
Digestibility
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-e92dcd005cb0d3e56d4ac92d42cc5ae99bad8139295190428ec9423f7a6d1a933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 26321216
PQID 1732309734
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1836623745
proquest_miscellaneous_1732309734
pubmed_primary_26321216
crossref_citationtrail_10_1016_j_biortech_2015_08_061
crossref_primary_10_1016_j_biortech_2015_08_061
elsevier_sciencedirect_doi_10_1016_j_biortech_2015_08_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lee, Kim, Jang, Lee, Park (b0160) 2015; 182
Vanderghem, Brostaux, Jacquet, Blecker, Paquot (b0315) 2012; 35
Taniguchi, Suzuki, Watanabe, Sakai, Hoshino, Tanaka (b0305) 2005; 100
Park, Kim, Koo, Yeo, Choi (b0240) 2010; 101
Moretti, Bocchini-Martins, Nunes, Villena, Perrone, da Silva, Boscolo, Gomes (b0205) 2014; 122
De Bari, Nanna, Braccio (b0065) 2007; 46
Muratov, Kim (b0210) 2002; 7
Zhao, Chen (b0350) 2013; 104
Li, Jiang, He, Li, Xian, Yang (b0165) 2010; 87
Jeffries (b0120) 1990; 1
Horn, Nguyen, Westereng, Nilsen, Eijsink (b0110) 2011; 35
Yu, Zhang, He, Liu, Yu (b0335) 2009; 100
Chen, Han, Xu (b0050) 2008; 43
Duarte, Ribeiro, Oikawa, Mori, Napolitano, Galvao (b0070) 2012; 81
Nitsos, Matis, Triantafyllidis (b0220) 2013; 6
Sun, Cao, Sun, Xu, Song, Sun, Jones (b0275) 2014; 7
Kim, Hong (b0140) 2001; 77
Andrić, Meyer, Jensen, Dam-Johansen (b0015) 2010; 160
Zhao, Jones, Baker, Xia, Olubajo, Person (b0345) 2009; 139
Teymouri, Laureano-Perez, Alizadeh, Dale (b0310) 2005; 96
Yeh, Huang, Chen (b0330) 2010; 79
Xiao, Bian, Li, Xu, Xiao, Sun (b0325) 2014; 159
Hernandez, Garcia, Lopez, Puls, Parajo, Martin (b0105) 2013; 44
García-Cubero, González-Benito, Indacoechea, Coca, Bolado (b0075) 2009; 100
Jin, Katsumata, Lam, Iiyama (b0125) 2006; 83
Gu, Yang, Jin, Han, Chang, Jameel, Phillips (b0090) 2012; 124
Zhou, Stuart-Williams, Farquhar, Hocart (b0370) 2010; 71
Cao, Peng, Sun, Zhong, Wang, Lu, Sun (b0045) 2014; 111
Pérez, Muñoz-Dorado, de la Rubia, Martínez (b0225) 2002; 5
Grethlein (b0085) 1985; 3
Sánchez (b0260) 2009; 27
Qi, Chen, Shen, Su, Wan (b0245) 2009; 48
Huijgen, Smit, Reith, Uil (b0115) 2011; 86
McKendry (b0195) 2002; 83
Silveira, Vanelli, Corazza, Ramos (b0270) 2015; 192
Sun, Wen, Ma, Sun, Jones (b0280) 2014; 56
Cherubini (b0055) 2010; 51
Lee, Jameel, Venditti (b0155) 2010; 101
Taherzadeh, Karimi (b0300) 2008; 9
Zhao, Wang, Zhu, Ragauskas, Deng (b0365) 2008; 99
Boerjan, Ralph, Baucher (b0025) 2003; 54
Mussatto, Fernandes, Milagres, Roberto (b0215) 2008; 43
Pan, Gilkes, Kadla, Pye, Saka, Gregg, Ehara, Xie, Lam, Saddler (b0230) 2006; 94
Hatakka (b0100) 1983; 18
Qing, Yang, Wyman (b0250) 2010; 101
Sun, Sun, Fowler, Baird (b0290) 2005; 53
Sun, Cheng (b0295) 2002; 83
Haque, Barman, Kang, Kim, Kim, Kim, Yun (b0095) 2012; 22
Sette, Wechselberger, Crestini (b0265) 2011; 17
Cuevas, Garcia, Sanchez (b0060) 2014; 99
Ralph, Lundquist, Brunow, Lu, Kim, Schatz, Marita, Hatfield, Ralph, Christensen, Boerjan (b0255) 2004; 3
Lu, Zhang, Angelidaki (b0170) 2009; 100
Ma, Yang, Xu, Yu, Wu, Zhang (b0180) 2010; 101
Martin-Sampedro, Filpponen, Hoeger, Zhu, Laine, Rojas (b0185) 2012; 1
Martin, Galbe, Nilvebrant, Jonsson (b0190) 2002; 98–100
Zhao, Cheng, Liu (b0355) 2009; 82
Varga, Reczey, Zacchi (b0320) 2004; 113–116
Kumar, Wyman (b0150) 2009; 25
Boussaid, Esteghlalian, Gregg, Lee, Saddler (b0030) 2000; 84–86
Zavrel, Bross, Funke, Büchs, Spiess (b0340) 2009; 100
Zhao, Wu, Yan, Gao (b0360) 2004; 47
Alizadeh, Teymouri, Gilbert, Dale (b0005) 2005; 121–124
Kim, Holtzapple (b0145) 2005; 96
Lv, Yan, Zhang, Geng, Ren, Sun (b0175) 2013; 36
Cai, Zhang (b0035) 2005; 5
Miura, Lee, Inoue, Endo (b0200) 2012; 105
Kim, Choi (b0135) 2010; 35
Pan, Xie, Gilkes, Gregg, Saddler (b0235) 2005; 121
Jonsson, Alriksson, Nilvebrant (b0130) 2013; 6
Benazzi, Calgaroto, Astolfi, Dalla Rosa, Oliveira, Mazutti (b0020) 2013; 52
Sun, Cao, Zhang, Xu, Sun, Jones (b0285) 2014; 163
Cao, Peng, Sun, Zhong, Sun (b0040) 2014; 62
Alvira, Tomás-Pejó, Ballesteros, Negro (b0010) 2010; 101
Garcia, Cara, Moya, Rapado, Puls, Castro, Martin (b0080) 2014; 53
Zhou (10.1016/j.biortech.2015.08.061_b0370) 2010; 71
Li (10.1016/j.biortech.2015.08.061_b0165) 2010; 87
Nitsos (10.1016/j.biortech.2015.08.061_b0220) 2013; 6
Kim (10.1016/j.biortech.2015.08.061_b0145) 2005; 96
Lv (10.1016/j.biortech.2015.08.061_b0175) 2013; 36
Park (10.1016/j.biortech.2015.08.061_b0240) 2010; 101
Silveira (10.1016/j.biortech.2015.08.061_b0270) 2015; 192
Sun (10.1016/j.biortech.2015.08.061_b0280) 2014; 56
Alizadeh (10.1016/j.biortech.2015.08.061_b0005) 2005; 121–124
Chen (10.1016/j.biortech.2015.08.061_b0050) 2008; 43
Varga (10.1016/j.biortech.2015.08.061_b0320) 2004; 113–116
Alvira (10.1016/j.biortech.2015.08.061_b0010) 2010; 101
Moretti (10.1016/j.biortech.2015.08.061_b0205) 2014; 122
Lee (10.1016/j.biortech.2015.08.061_b0155) 2010; 101
Zhao (10.1016/j.biortech.2015.08.061_b0355) 2009; 82
Taherzadeh (10.1016/j.biortech.2015.08.061_b0300) 2008; 9
Gu (10.1016/j.biortech.2015.08.061_b0090) 2012; 124
Ma (10.1016/j.biortech.2015.08.061_b0180) 2010; 101
Pan (10.1016/j.biortech.2015.08.061_b0230) 2006; 94
Martin (10.1016/j.biortech.2015.08.061_b0190) 2002; 98–100
Sun (10.1016/j.biortech.2015.08.061_b0285) 2014; 163
Pérez (10.1016/j.biortech.2015.08.061_b0225) 2002; 5
Ralph (10.1016/j.biortech.2015.08.061_b0255) 2004; 3
Martin-Sampedro (10.1016/j.biortech.2015.08.061_b0185) 2012; 1
Zavrel (10.1016/j.biortech.2015.08.061_b0340) 2009; 100
Xiao (10.1016/j.biortech.2015.08.061_b0325) 2014; 159
Garcia (10.1016/j.biortech.2015.08.061_b0080) 2014; 53
Mussatto (10.1016/j.biortech.2015.08.061_b0215) 2008; 43
Muratov (10.1016/j.biortech.2015.08.061_b0210) 2002; 7
Hatakka (10.1016/j.biortech.2015.08.061_b0100) 1983; 18
Cao (10.1016/j.biortech.2015.08.061_b0040) 2014; 62
García-Cubero (10.1016/j.biortech.2015.08.061_b0075) 2009; 100
Sette (10.1016/j.biortech.2015.08.061_b0265) 2011; 17
Jonsson (10.1016/j.biortech.2015.08.061_b0130) 2013; 6
Zhao (10.1016/j.biortech.2015.08.061_b0345) 2009; 139
Teymouri (10.1016/j.biortech.2015.08.061_b0310) 2005; 96
Zhao (10.1016/j.biortech.2015.08.061_b0350) 2013; 104
Benazzi (10.1016/j.biortech.2015.08.061_b0020) 2013; 52
Jin (10.1016/j.biortech.2015.08.061_b0125) 2006; 83
Lee (10.1016/j.biortech.2015.08.061_b0160) 2015; 182
Yeh (10.1016/j.biortech.2015.08.061_b0330) 2010; 79
Qing (10.1016/j.biortech.2015.08.061_b0250) 2010; 101
Boerjan (10.1016/j.biortech.2015.08.061_b0025) 2003; 54
De Bari (10.1016/j.biortech.2015.08.061_b0065) 2007; 46
Kim (10.1016/j.biortech.2015.08.061_b0135) 2010; 35
Pan (10.1016/j.biortech.2015.08.061_b0235) 2005; 121
McKendry (10.1016/j.biortech.2015.08.061_b0195) 2002; 83
Cherubini (10.1016/j.biortech.2015.08.061_b0055) 2010; 51
Hernandez (10.1016/j.biortech.2015.08.061_b0105) 2013; 44
Duarte (10.1016/j.biortech.2015.08.061_b0070) 2012; 81
Andrić (10.1016/j.biortech.2015.08.061_b0015) 2010; 160
Kumar (10.1016/j.biortech.2015.08.061_b0150) 2009; 25
Boussaid (10.1016/j.biortech.2015.08.061_b0030) 2000; 84–86
Miura (10.1016/j.biortech.2015.08.061_b0200) 2012; 105
Cuevas (10.1016/j.biortech.2015.08.061_b0060) 2014; 99
Sun (10.1016/j.biortech.2015.08.061_b0275) 2014; 7
Sun (10.1016/j.biortech.2015.08.061_b0290) 2005; 53
Yu (10.1016/j.biortech.2015.08.061_b0335) 2009; 100
Taniguchi (10.1016/j.biortech.2015.08.061_b0305) 2005; 100
Grethlein (10.1016/j.biortech.2015.08.061_b0085) 1985; 3
Huijgen (10.1016/j.biortech.2015.08.061_b0115) 2011; 86
Zhao (10.1016/j.biortech.2015.08.061_b0360) 2004; 47
Qi (10.1016/j.biortech.2015.08.061_b0245) 2009; 48
Cai (10.1016/j.biortech.2015.08.061_b0035) 2005; 5
Horn (10.1016/j.biortech.2015.08.061_b0110) 2011; 35
Sun (10.1016/j.biortech.2015.08.061_b0295) 2002; 83
Kim (10.1016/j.biortech.2015.08.061_b0140) 2001; 77
Haque (10.1016/j.biortech.2015.08.061_b0095) 2012; 22
Zhao (10.1016/j.biortech.2015.08.061_b0365) 2008; 99
Vanderghem (10.1016/j.biortech.2015.08.061_b0315) 2012; 35
Cao (10.1016/j.biortech.2015.08.061_b0045) 2014; 111
Lu (10.1016/j.biortech.2015.08.061_b0170) 2009; 100
Sánchez (10.1016/j.biortech.2015.08.061_b0260) 2009; 27
Jeffries (10.1016/j.biortech.2015.08.061_b0120) 1990; 1
References_xml – volume: 46
  start-page: 7711
  year: 2007
  end-page: 7720
  ident: b0065
  article-title: SO
  publication-title: Ind. Eng. Chem. Res.
– volume: 51
  start-page: 1412
  year: 2010
  end-page: 1421
  ident: b0055
  article-title: The biorefinery concept: using biomass instead of oil for producing energy and chemicals
  publication-title: Energy Convers. Manage.
– volume: 43
  start-page: 124
  year: 2008
  end-page: 129
  ident: b0215
  article-title: Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from Brewer’s spent grain
  publication-title: Enzyme Microb. Technol.
– volume: 100
  start-page: 903
  year: 2009
  end-page: 908
  ident: b0335
  article-title: Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull
  publication-title: Bioresour. Technol.
– volume: 100
  start-page: 637
  year: 2005
  end-page: 643
  ident: b0305
  article-title: Evaluation of pretreatment with
  publication-title: J. Biosci. Bioeng.
– volume: 100
  start-page: 3048
  year: 2009
  end-page: 3053
  ident: b0170
  article-title: Optimization of H
  publication-title: Bioresour. Technol.
– volume: 48
  start-page: 7346
  year: 2009
  end-page: 7353
  ident: b0245
  article-title: Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology
  publication-title: Ind. Eng. Chem. Res.
– volume: 52
  start-page: 247
  year: 2013
  end-page: 250
  ident: b0020
  article-title: Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis
  publication-title: Enzyme Microb. Technol.
– volume: 35
  start-page: 157
  year: 2010
  end-page: 163
  ident: b0135
  article-title: The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine
  publication-title: Renew. Energy
– volume: 9
  start-page: 1621
  year: 2008
  end-page: 1651
  ident: b0300
  article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review
  publication-title: Int. J. Mol. Sci.
– volume: 113–116
  start-page: 509
  year: 2004
  end-page: 523
  ident: b0320
  article-title: Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility
  publication-title: Appl. Biochem. Biotechnol.
– volume: 53
  start-page: 860
  year: 2005
  end-page: 870
  ident: b0290
  article-title: Extraction and characterization of original lignin and hemicelluloses from wheat straw
  publication-title: J. Agric. Food Chem.
– volume: 96
  start-page: 2014
  year: 2005
  end-page: 2018
  ident: b0310
  article-title: Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 9600
  year: 2010
  end-page: 9604
  ident: b0180
  article-title: Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 1321
  year: 2012
  end-page: 1325
  ident: b0185
  article-title: Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils
  publication-title: ACS Macro Lett.
– volume: 99
  start-page: 791
  year: 2014
  end-page: 799
  ident: b0060
  article-title: Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production
  publication-title: Carbohydr. Polym.
– volume: 56
  start-page: 128
  year: 2014
  end-page: 136
  ident: b0280
  article-title: Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem
  publication-title: Ind. Crops Prod.
– volume: 86
  start-page: 1428
  year: 2011
  end-page: 1438
  ident: b0115
  article-title: Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 6
  start-page: 16
  year: 2013
  end-page: 25
  ident: b0130
  article-title: Bioconversion of lignocellulose: inhibitors and detoxification
  publication-title: Biotechnol. Biofuels
– volume: 5
  start-page: 53
  year: 2002
  end-page: 63
  ident: b0225
  article-title: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview
  publication-title: Int. Microbiol.
– volume: 84–86
  start-page: 693
  year: 2000
  end-page: 705
  ident: b0030
  article-title: Steam pretreatment of Douglas-fir wood chips Can conditions for optimum hemicellulose recovery still provide adequate access for efficient enzymatic hydrolysis?
  publication-title: Appl. Biochem. Biotechnol.
– volume: 101
  start-page: 9624
  year: 2010
  end-page: 9630
  ident: b0250
  article-title: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes
  publication-title: Bioresour. Technol.
– volume: 79
  start-page: 192
  year: 2010
  end-page: 199
  ident: b0330
  article-title: Effect of particle size on the rate of enzymatic hydrolysis of cellulose
  publication-title: Carbohydr. Polym.
– volume: 121–124
  start-page: 1133
  year: 2005
  end-page: 1141
  ident: b0005
  article-title: Pretreatment of switchgrass by ammonia fiber explosion (AFEX)
  publication-title: Appl. Biochem. Biotechnol.
– volume: 35
  start-page: 4879
  year: 2011
  end-page: 4886
  ident: b0110
  article-title: Screening of steam explosion conditions for glucose production from non-impregnated wheat straw
  publication-title: Biomass Bioenergy
– volume: 3
  start-page: 29
  year: 2004
  end-page: 60
  ident: b0255
  article-title: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids
  publication-title: Phytochem. Rev.
– volume: 47
  start-page: 18
  year: 2004
  end-page: 24
  ident: b0360
  article-title: Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase
  publication-title: Sci. China Ser. C
– volume: 111
  start-page: 400
  year: 2014
  end-page: 403
  ident: b0045
  article-title: Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid
  publication-title: Carbohydr. Polym.
– volume: 83
  start-page: 37
  year: 2002
  end-page: 46
  ident: b0195
  article-title: Energy production from biomass (part 1): overview of biomass
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 185
  year: 2009
  end-page: 194
  ident: b0260
  article-title: Lignocellulosic residues: biodegradation and bioconversion by fungi
  publication-title: Biotechnol. Adv.
– volume: 101
  start-page: 4851
  year: 2010
  end-page: 4861
  ident: b0010
  article-title: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 110
  year: 2013
  end-page: 122
  ident: b0220
  article-title: Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process
  publication-title: ChemSusChem
– volume: 71
  start-page: 982
  year: 2010
  end-page: 993
  ident: b0370
  article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls
  publication-title: Phytochemistry
– volume: 160
  start-page: 280
  year: 2010
  end-page: 297
  ident: b0015
  article-title: Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw
  publication-title: Appl. Biochem. Biotechnol.
– volume: 139
  start-page: 47
  year: 2009
  end-page: 54
  ident: b0345
  article-title: Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis
  publication-title: J. Biotechnol.
– volume: 104
  start-page: 1036
  year: 2013
  end-page: 1044
  ident: b0350
  article-title: Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover
  publication-title: Chem. Eng. Sci.
– volume: 54
  start-page: 519
  year: 2003
  end-page: 546
  ident: b0025
  article-title: Lignin biosynthesis
  publication-title: Annu. Rev. Plant Biol.
– volume: 87
  start-page: 117
  year: 2010
  end-page: 126
  ident: b0165
  article-title: Evaluation of the biocompatible ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 100
  start-page: 2580
  year: 2009
  end-page: 2587
  ident: b0340
  article-title: High-throughput screening for ionic liquids dissolving (ligno-)cellulose
  publication-title: Bioresour. Technol.
– volume: 17
  start-page: 9529
  year: 2011
  end-page: 9535
  ident: b0265
  article-title: Elucidation of lignin structure by quantitative 2D NMR
  publication-title: Chem.-Eur. J.
– volume: 122
  start-page: 189
  year: 2014
  end-page: 195
  ident: b0205
  article-title: Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis
  publication-title: Appl. Energy
– volume: 105
  start-page: 95
  year: 2012
  end-page: 99
  ident: b0200
  article-title: Improvement of enzymatic saccharification of sugarcane bagasse by dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling
  publication-title: Bioresour. Technol.
– volume: 7
  start-page: 85
  year: 2002
  end-page: 88
  ident: b0210
  article-title: Enzymatic hydrolysis of cotton fibers in supercritical CO2
  publication-title: Biotechnol. Bioprocess Eng.
– volume: 83
  start-page: 1
  year: 2002
  end-page: 11
  ident: b0295
  article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 227
  year: 2013
  end-page: 231
  ident: b0105
  article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of
  publication-title: Ind. Crops Prod.
– volume: 83
  start-page: 103
  year: 2006
  end-page: 110
  ident: b0125
  article-title: Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods
  publication-title: Biopolymers
– volume: 25
  start-page: 302
  year: 2009
  end-page: 314
  ident: b0150
  article-title: Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies
  publication-title: Biotechnol. Progr.
– volume: 35
  start-page: 280
  year: 2012
  end-page: 286
  ident: b0315
  article-title: Optimization of formic/acetic acid delignification of Miscanthus
  publication-title: Ind. Crops Prod.
– volume: 53
  start-page: 148
  year: 2014
  end-page: 153
  ident: b0080
  article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of
  publication-title: Ind. Crops Prod.
– volume: 101
  start-page: 7046
  year: 2010
  end-page: 7053
  ident: b0240
  article-title: Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 5449
  year: 2010
  end-page: 5458
  ident: b0155
  article-title: A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 155
  year: 1985
  end-page: 160
  ident: b0085
  article-title: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates
  publication-title: Nat. Biotechnol.
– volume: 98–100
  start-page: 699
  year: 2002
  end-page: 716
  ident: b0190
  article-title: Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents
  publication-title: Appl. Biochem. Biotechnol.
– volume: 182
  start-page: 296
  year: 2015
  end-page: 301
  ident: b0160
  article-title: Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization
  publication-title: Bioresour. Technol.
– volume: 121
  start-page: 1069
  year: 2005
  end-page: 1079
  ident: b0235
  article-title: Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content
  publication-title: Appl. Biochem. Biotechnol.
– volume: 5
  start-page: 539
  year: 2005
  end-page: 548
  ident: b0035
  article-title: Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions
  publication-title: Macromol. Biosci.
– volume: 96
  start-page: 1994
  year: 2005
  end-page: 2006
  ident: b0145
  article-title: Lime pretreatment and enzymatic hydrolysis of corn stover
  publication-title: Bioresour. Technol.
– volume: 99
  start-page: 1320
  year: 2008
  end-page: 1328
  ident: b0365
  article-title: Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature
  publication-title: Biotechnol. Bioeng.
– volume: 43
  start-page: 1462
  year: 2008
  end-page: 1466
  ident: b0050
  article-title: Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide
  publication-title: Process Biochem.
– volume: 18
  start-page: 350
  year: 1983
  end-page: 357
  ident: b0100
  article-title: Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose
  publication-title: Eur. J. Appl. Microbiol. Biotechnol.
– volume: 94
  start-page: 851
  year: 2006
  end-page: 861
  ident: b0230
  article-title: Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields
  publication-title: Biotechnol. Bioeng.
– volume: 124
  start-page: 299
  year: 2012
  end-page: 305
  ident: b0090
  article-title: Green liquor pretreatment for improving enzymatic hydrolysis of corn stover
  publication-title: Bioresour. Technol.
– volume: 81
  start-page: 1008
  year: 2012
  end-page: 1011
  ident: b0070
  article-title: Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse
  publication-title: Radiat. Phys. Chem.
– volume: 36
  start-page: 1899
  year: 2013
  end-page: 1906
  ident: b0175
  article-title: Influence of supercritical CO
  publication-title: Chem. Eng. Technol.
– volume: 100
  start-page: 1608
  year: 2009
  end-page: 1613
  ident: b0075
  article-title: Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw
  publication-title: Bioresour. Technol.
– volume: 159
  start-page: 41
  year: 2014
  end-page: 47
  ident: b0325
  article-title: Enhanced enzymatic hydrolysis of bamboo (
  publication-title: Bioresour. Technol.
– volume: 82
  start-page: 815
  year: 2009
  end-page: 827
  ident: b0355
  article-title: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 62
  start-page: 12360
  year: 2014
  end-page: 12365
  ident: b0040
  article-title: Hydrothermal conversion of bamboo: identification and distribution of the components in solid residue, water-soluble and acetone-soluble fractions
  publication-title: J. Agric. Food Chem.
– volume: 7
  start-page: 116
  year: 2014
  end-page: 127
  ident: b0275
  article-title: Improving the enzymatic hydrolysis of thermo-mechanical fiber from
  publication-title: Biotechnol. Biofuels
– volume: 22
  start-page: 1681
  year: 2012
  end-page: 1691
  ident: b0095
  article-title: Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (
  publication-title: J. Microbiol. Biotechnol.
– volume: 163
  start-page: 377
  year: 2014
  end-page: 380
  ident: b0285
  article-title: Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 163
  year: 1990
  end-page: 176
  ident: b0120
  article-title: Biodegradation of lignin-carbohydrate complexes
  publication-title: Biodegradation
– volume: 77
  start-page: 139
  year: 2001
  end-page: 144
  ident: b0140
  article-title: Supercritical CO
  publication-title: Bioresour. Technol.
– volume: 192
  start-page: 389
  year: 2015
  end-page: 396
  ident: b0270
  article-title: Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse
  publication-title: Bioresour. Technol.
– volume: 27
  start-page: 185
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0260
  article-title: Lignocellulosic residues: biodegradation and bioconversion by fungi
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2008.11.001
– volume: 105
  start-page: 95
  year: 2012
  ident: 10.1016/j.biortech.2015.08.061_b0200
  article-title: Improvement of enzymatic saccharification of sugarcane bagasse by dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.118
– volume: 5
  start-page: 53
  year: 2002
  ident: 10.1016/j.biortech.2015.08.061_b0225
  article-title: Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview
  publication-title: Int. Microbiol.
  doi: 10.1007/s10123-002-0062-3
– volume: 3
  start-page: 29
  year: 2004
  ident: 10.1016/j.biortech.2015.08.061_b0255
  article-title: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids
  publication-title: Phytochem. Rev.
  doi: 10.1023/B:PHYT.0000047809.65444.a4
– volume: 121
  start-page: 1069
  year: 2005
  ident: 10.1016/j.biortech.2015.08.061_b0235
  article-title: Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:124:1-3:1069
– volume: 46
  start-page: 7711
  year: 2007
  ident: 10.1016/j.biortech.2015.08.061_b0065
  article-title: SO2-catalyzed steam fractionation of aspen chips for bioethanol production: optimization of the catalyst impregnation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0701120
– volume: 101
  start-page: 7046
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0240
  article-title: Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.04.020
– volume: 139
  start-page: 47
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0345
  article-title: Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2008.08.009
– volume: 100
  start-page: 2580
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0340
  article-title: High-throughput screening for ionic liquids dissolving (ligno-)cellulose
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.11.052
– volume: 100
  start-page: 1608
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0075
  article-title: Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.09.012
– volume: 96
  start-page: 1994
  year: 2005
  ident: 10.1016/j.biortech.2015.08.061_b0145
  article-title: Lime pretreatment and enzymatic hydrolysis of corn stover
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2005.01.014
– volume: 3
  start-page: 155
  year: 1985
  ident: 10.1016/j.biortech.2015.08.061_b0085
  article-title: The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0285-155
– volume: 101
  start-page: 5449
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0155
  article-title: A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.055
– volume: 163
  start-page: 377
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0285
  article-title: Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.04.082
– volume: 113–116
  start-page: 509
  year: 2004
  ident: 10.1016/j.biortech.2015.08.061_b0320
  article-title: Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:114:1-3:509
– volume: 43
  start-page: 1462
  year: 2008
  ident: 10.1016/j.biortech.2015.08.061_b0050
  article-title: Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2008.07.003
– volume: 100
  start-page: 3048
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0170
  article-title: Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.01.008
– volume: 7
  start-page: 85
  year: 2002
  ident: 10.1016/j.biortech.2015.08.061_b0210
  article-title: Enzymatic hydrolysis of cotton fibers in supercritical CO2
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/BF02935884
– volume: 192
  start-page: 389
  year: 2015
  ident: 10.1016/j.biortech.2015.08.061_b0270
  article-title: Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.044
– volume: 77
  start-page: 139
  year: 2001
  ident: 10.1016/j.biortech.2015.08.061_b0140
  article-title: Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(00)00147-4
– volume: 101
  start-page: 9624
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0250
  article-title: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.137
– volume: 5
  start-page: 539
  year: 2005
  ident: 10.1016/j.biortech.2015.08.061_b0035
  article-title: Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200400222
– volume: 86
  start-page: 1428
  year: 2011
  ident: 10.1016/j.biortech.2015.08.061_b0115
  article-title: Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.2654
– volume: 6
  start-page: 110
  year: 2013
  ident: 10.1016/j.biortech.2015.08.061_b0220
  article-title: Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200546
– volume: 47
  start-page: 18
  year: 2004
  ident: 10.1016/j.biortech.2015.08.061_b0360
  article-title: Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase
  publication-title: Sci. China Ser. C
  doi: 10.1360/02yc0163
– volume: 56
  start-page: 128
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0280
  article-title: Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2014.02.031
– volume: 100
  start-page: 637
  year: 2005
  ident: 10.1016/j.biortech.2015.08.061_b0305
  article-title: Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw
  publication-title: J. Biosci. Bioeng.
  doi: 10.1263/jbb.100.637
– volume: 94
  start-page: 851
  year: 2006
  ident: 10.1016/j.biortech.2015.08.061_b0230
  article-title: Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20905
– volume: 35
  start-page: 280
  year: 2012
  ident: 10.1016/j.biortech.2015.08.061_b0315
  article-title: Optimization of formic/acetic acid delignification of Miscanthus×giganteus for enzymatic hydrolysis using response surface methodology
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2011.07.014
– volume: 122
  start-page: 189
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0205
  article-title: Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.02.020
– volume: 71
  start-page: 982
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0370
  article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.03.001
– volume: 51
  start-page: 1412
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0055
  article-title: The biorefinery concept: using biomass instead of oil for producing energy and chemicals
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2010.01.015
– volume: 36
  start-page: 1899
  year: 2013
  ident: 10.1016/j.biortech.2015.08.061_b0175
  article-title: Influence of supercritical CO2 pretreatment of corn stover with ethanol-water as co-solvent on lignin degradation
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201300183
– volume: 83
  start-page: 1
  year: 2002
  ident: 10.1016/j.biortech.2015.08.061_b0295
  article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00212-7
– volume: 1
  start-page: 163
  year: 1990
  ident: 10.1016/j.biortech.2015.08.061_b0120
  article-title: Biodegradation of lignin-carbohydrate complexes
  publication-title: Biodegradation
  doi: 10.1007/BF00058834
– volume: 83
  start-page: 37
  year: 2002
  ident: 10.1016/j.biortech.2015.08.061_b0195
  article-title: Energy production from biomass (part 1): overview of biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00118-3
– volume: 53
  start-page: 860
  year: 2005
  ident: 10.1016/j.biortech.2015.08.061_b0290
  article-title: Extraction and characterization of original lignin and hemicelluloses from wheat straw
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf040456q
– volume: 62
  start-page: 12360
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0040
  article-title: Hydrothermal conversion of bamboo: identification and distribution of the components in solid residue, water-soluble and acetone-soluble fractions
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf505074d
– volume: 182
  start-page: 296
  year: 2015
  ident: 10.1016/j.biortech.2015.08.061_b0160
  article-title: Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.01.116
– volume: 43
  start-page: 124
  year: 2008
  ident: 10.1016/j.biortech.2015.08.061_b0215
  article-title: Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from Brewer’s spent grain
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2007.11.006
– volume: 35
  start-page: 157
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0135
  article-title: The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.04.008
– volume: 81
  start-page: 1008
  year: 2012
  ident: 10.1016/j.biortech.2015.08.061_b0070
  article-title: Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2011.11.008
– volume: 99
  start-page: 791
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0060
  article-title: Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.08.089
– volume: 101
  start-page: 9600
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0180
  article-title: Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.07.084
– volume: 48
  start-page: 7346
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0245
  article-title: Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie8016863
– volume: 6
  start-page: 16
  year: 2013
  ident: 10.1016/j.biortech.2015.08.061_b0130
  article-title: Bioconversion of lignocellulose: inhibitors and detoxification
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-16
– volume: 101
  start-page: 4851
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0010
  article-title: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.11.093
– volume: 98–100
  start-page: 699
  year: 2002
  ident: 10.1016/j.biortech.2015.08.061_b0190
  article-title: Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:98-100:1-9:699
– volume: 96
  start-page: 2014
  year: 2005
  ident: 10.1016/j.biortech.2015.08.061_b0310
  article-title: Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2005.01.016
– volume: 53
  start-page: 148
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0080
  article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Jatropha curcas fruit shells for ethanol production
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2013.12.029
– volume: 25
  start-page: 302
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0150
  article-title: Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies
  publication-title: Biotechnol. Progr.
  doi: 10.1002/btpr.102
– volume: 35
  start-page: 4879
  year: 2011
  ident: 10.1016/j.biortech.2015.08.061_b0110
  article-title: Screening of steam explosion conditions for glucose production from non-impregnated wheat straw
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.10.013
– volume: 121–124
  start-page: 1133
  year: 2005
  ident: 10.1016/j.biortech.2015.08.061_b0005
  article-title: Pretreatment of switchgrass by ammonia fiber explosion (AFEX)
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:124:1-3:1133
– volume: 7
  start-page: 116
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0275
  article-title: Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation
  publication-title: Biotechnol. Biofuels
– volume: 159
  start-page: 41
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0325
  article-title: Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.096
– volume: 160
  start-page: 280
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0015
  article-title: Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-008-8512-9
– volume: 100
  start-page: 903
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0335
  article-title: Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.07.025
– volume: 52
  start-page: 247
  year: 2013
  ident: 10.1016/j.biortech.2015.08.061_b0020
  article-title: Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2013.02.001
– volume: 44
  start-page: 227
  year: 2013
  ident: 10.1016/j.biortech.2015.08.061_b0105
  article-title: Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2012.11.001
– volume: 87
  start-page: 117
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0165
  article-title: Evaluation of the biocompatible ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2484-8
– volume: 104
  start-page: 1036
  year: 2013
  ident: 10.1016/j.biortech.2015.08.061_b0350
  article-title: Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.10.022
– volume: 84–86
  start-page: 693
  year: 2000
  ident: 10.1016/j.biortech.2015.08.061_b0030
  article-title: Steam pretreatment of Douglas-fir wood chips Can conditions for optimum hemicellulose recovery still provide adequate access for efficient enzymatic hydrolysis?
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1385/ABAB:84-86:1-9:693
– volume: 124
  start-page: 299
  year: 2012
  ident: 10.1016/j.biortech.2015.08.061_b0090
  article-title: Green liquor pretreatment for improving enzymatic hydrolysis of corn stover
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.08.054
– volume: 111
  start-page: 400
  year: 2014
  ident: 10.1016/j.biortech.2015.08.061_b0045
  article-title: Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.05.004
– volume: 82
  start-page: 815
  year: 2009
  ident: 10.1016/j.biortech.2015.08.061_b0355
  article-title: Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-1883-1
– volume: 54
  start-page: 519
  year: 2003
  ident: 10.1016/j.biortech.2015.08.061_b0025
  article-title: Lignin biosynthesis
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.54.031902.134938
– volume: 17
  start-page: 9529
  year: 2011
  ident: 10.1016/j.biortech.2015.08.061_b0265
  article-title: Elucidation of lignin structure by quantitative 2D NMR
  publication-title: Chem.-Eur. J.
  doi: 10.1002/chem.201003045
– volume: 18
  start-page: 350
  year: 1983
  ident: 10.1016/j.biortech.2015.08.061_b0100
  article-title: Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose
  publication-title: Eur. J. Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00504744
– volume: 9
  start-page: 1621
  year: 2008
  ident: 10.1016/j.biortech.2015.08.061_b0300
  article-title: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms9091621
– volume: 1
  start-page: 1321
  year: 2012
  ident: 10.1016/j.biortech.2015.08.061_b0185
  article-title: Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz300484b
– volume: 22
  start-page: 1681
  year: 2012
  ident: 10.1016/j.biortech.2015.08.061_b0095
  article-title: Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1206.06058
– volume: 79
  start-page: 192
  year: 2010
  ident: 10.1016/j.biortech.2015.08.061_b0330
  article-title: Effect of particle size on the rate of enzymatic hydrolysis of cellulose
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.07.049
– volume: 99
  start-page: 1320
  year: 2008
  ident: 10.1016/j.biortech.2015.08.061_b0365
  article-title: Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21712
– volume: 83
  start-page: 103
  year: 2006
  ident: 10.1016/j.biortech.2015.08.061_b0125
  article-title: Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods
  publication-title: Biopolymers
  doi: 10.1002/bip.20533
SSID ssj0003172
Score 2.653551
SecondaryResourceType review_article
Snippet •The structure and factors constrain the digestibility of biomass were reviewed.•The features of the most important pretreatments were discussed.•Combined...
Lignocellulosic materials are among the most promising alternative energy resources that can be utilized to produce cellulosic ethanol. However, the physical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms bioethanol
Biofuels
Biomass
Cellulosic ethanol
chemical structure
Digestibility
Enzymatic hydrolysis
ethanol
Hydrolysis
Lignin - chemistry
Lignocellulose
Pretreatment
technology
Title The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials
URI https://dx.doi.org/10.1016/j.biortech.2015.08.061
https://www.ncbi.nlm.nih.gov/pubmed/26321216
https://www.proquest.com/docview/1732309734
https://www.proquest.com/docview/1836623745
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwEB0hOLAc0NLloywgI-01tEmcuD5WFaiA4AJISBwsx7EhVZUgaA_sYX87M0lc4MBy4JhkRrI8L5439ngG4M9AZq7vRBYYxEvAEVOBdNYFGIgZEWmX9uv2bReX6fiGn90mt0sw8ndhKK2yXfubNb1erds3vXY2e49F0bsi8j1IyAPVhwkUt3MuCOVH_97SPNA_1icJKByQ9LtbwpOjrKCM1vpQIkyaUp7hZw7qMwJaO6KTn7DeMkg2bAa5AUu27MDa8P6praJhO7A68m3c8Mu7ioO_4A5hwSijkFWOUa6hzzNnRckKv8HAkBUyW_59qeu5soeXHFWodAlpTYv7sqL9_vm0QhMzlGlQvAk3J8fXo3HQ9lcITCL4LLAyyk2Ov6HJ-nlskzTn2uA7HhmTaCtlpvNBSAQKaR7FVtZIZF9O6DQPtYzjLVguq9LuAItz4xyCMnOaOGKm00jzWAgdWbrpyruQ-ElVpi0-Tj0wpspnmU2UN4YiYyhqjpmGXegt9B6b8htfakhvM_UBSAp9xJe6h97ICq1EU6lLW82fVShijNWkiPl_ZAZximRS8KQL2w1CFmOmqvhhFKa73xjdb_iBT-3-zx4sz57mdh8Z0Sw7qCF_ACvD0_Px5SsDPA0U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4heqA9VBTasqUFI9Fj2E3ixOtDD4iClvJzASSkHlzHsWnQKkGwq2p76Ev1BTuT2JQegEPF1fZIo5nxzGd7PAOwOZSFGzhRRAbtJeJoU5F01kV4EDMi0S4ftO3bjo7z0Rn_cp6dz8Hv8BeG0iq97-98euut_UjfS7N_VVX9EwLfw4wiUPuYMPCZlQd29gPPbTef9j-jkj8myd7u6c4o8q0FIpMJPomsTEpTogWaYlCmNstLrg2O8cSYTFspC10OY8IOiHDoWGGNRODhhM7LWEu6BUW__4yju6C2CVu__uaVYEBuny6Qu4jYu_Mt-XKrqCiFtn0FibOudmh8X0S8D_G2kW9vEV56yMq2O6m8gjlbL8GL7YtrX7bDLsHCTugbhzN3Shwuw1e0Q0YpjKxxjJIbQ2I7q2pWhRsNhjCU2frnrC0gy77PSiShWilENa4u6oYeGKbjBm2K4Zpu27yGsyeR-huYr5vargBLS-Mc7oLCaQKlhc4TzVMhdGLpay3vQRaEqoyvdk5NN8YqpLVdqqAMRcpQ1I0zj3vQv6W76up9PEohg87UP5arMCg9SrsRlKxQSyRKXdtmeqNikeLhUIqUP7BmmOaIXgXPevC2s5BbnqkMf5zE-bv_4G4dFkanR4fqcP_4YBWe44y_fHoP85Prqf2AcGxSrLXmz-DbU--3P6VVSOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+pretreatment+in+improving+the+enzymatic+hydrolysis+of+lignocellulosic+materials&rft.jtitle=Bioresource+technology&rft.au=Sun%2C+Shaoni&rft.au=Sun%2C+Shaolong&rft.au=Cao%2C+Xuefei&rft.au=Sun%2C+Runcang&rft.date=2016-01-01&rft.issn=0960-8524&rft.volume=199+p.49-58&rft.spage=49&rft.epage=58&rft_id=info:doi/10.1016%2Fj.biortech.2015.08.061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon