Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil
The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperatu...
Saved in:
Published in | The Science of the total environment Vol. 729; p. 138862 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil.
Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil.
The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053.
In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.
[Display omitted]
•The dose-response relationships suggest that the relationship between the annual average of temperature compensation and COVID-19 confirmed cases was approximately linear in the range of less than 25.8°C, which became flat above 25.8°C.•When the average temperature was below 25.8°C, each 1°C rise was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19.•There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer, in temperatures is above 25.8°C.•The polynomial (cubic) regression model can give insights to other researchers for testing new factors and revealing new determinants capable of fitting the trend regression to a maximum of R-squared in COVID-19 cases. |
---|---|
AbstractList | The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil.Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil.The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053.In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. Unlabelled Image • The dose-response relationships suggest that the relationship between the annual average of temperature compensation and COVID-19 confirmed cases was approximately linear in the range of less than 25.8°C, which became flat above 25.8°C. • When the average temperature was below 25.8°C, each 1°C rise was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. • There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer, in temperatures is above 25.8°C. • The polynomial (cubic) regression model can give insights to other researchers for testing new factors and revealing new determinants capable of fitting the trend regression to a maximum of R-squared in COVID-19 cases. The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. [Display omitted] •The dose-response relationships suggest that the relationship between the annual average of temperature compensation and COVID-19 confirmed cases was approximately linear in the range of less than 25.8°C, which became flat above 25.8°C.•When the average temperature was below 25.8°C, each 1°C rise was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19.•There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer, in temperatures is above 25.8°C.•The polynomial (cubic) regression model can give insights to other researchers for testing new factors and revealing new determinants capable of fitting the trend regression to a maximum of R-squared in COVID-19 cases. The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. |
ArticleNumber | 138862 |
Author | Prata, David N. Rodrigues, Waldecy Bermejo, Paulo H. |
Author_xml | – sequence: 1 givenname: David N. surname: Prata fullname: Prata, David N. email: ddnprata@uft.edu.br organization: Institute of Regional Development, Graduate Program of Computational Modelling, Federal Univeristy of Tocantins. Quadra 109 Norte, 77001-090 Palmas, TO, Brazil – sequence: 2 givenname: Waldecy surname: Rodrigues fullname: Rodrigues, Waldecy organization: Institute of Regional Development, Graduate Program of Computational Modelling, Federal Univeristy of Tocantins. Quadra 109 Norte, 77001-090 Palmas, TO, Brazil – sequence: 3 givenname: Paulo H. surname: Bermejo fullname: Bermejo, Paulo H. organization: Administration Department, University of Brasilia, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32361443$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPGzEUha2KqgToX2hnSReT-jHjx6KVaPpCQmJDK3VleTx3gqOJndqeSPDrcRRALZt4Y8k-5_jzPSfoyAcPCL0neE4w4R9X82RdDhn8dk4xLadMSk5foRmRQtUEU36EZhg3slZciWN0ktIKlyUkeYOOGWWcNA2boT83sN5ANHmKUCW39G5w1vg83lX21vglpGpx_fvya01UlaPxae1ScsFXzlfnaeo-5Bg2xTFWhccVdRiqL9Hcu_EMvR7MmODt436Kfn3_drP4WV9d_7hcXFzVthVNrvsBsOxsMwzAu7YXhhdghQ2D3alUqiGKEE5oxymVbd8LKejQmKEluOe0Z6fo8z53M3Vr6C34wjnqTXRrE-90ME7_f-PdrV6GrRZE0pbwEnD-GBDD3wlS1uWPFsbReAhT0rRwMiZaIQ9LmZKkkZKJIn33L9Yzz9Poi-DTXmBjSCnCoMsETS6zLZRu1ATrXdV6pZ-r1ruq9b7q4hcv_E9PHHZe7J1Qatk6iDsdeAu9i2Cz7oM7mPEALpTJrw |
CitedBy_id | crossref_primary_10_1007_s00024_022_03205_7 crossref_primary_10_1111_tbed_14102 crossref_primary_10_1016_j_envres_2021_110874 crossref_primary_10_4236_acs_2021_112018 crossref_primary_10_2196_27806 crossref_primary_10_1016_j_envres_2020_110596 crossref_primary_10_1016_j_idm_2023_02_005 crossref_primary_10_1080_07352166_2022_2057320 crossref_primary_10_3390_computation9010004 crossref_primary_10_1007_s11356_021_14038_7 crossref_primary_10_1016_j_crmicr_2025_100355 crossref_primary_10_1177_11769343231169377 crossref_primary_10_3390_su132111905 crossref_primary_10_3390_ijerph17217847 crossref_primary_10_1017_S095026882100039X crossref_primary_10_1080_23311886_2023_2223398 crossref_primary_10_3390_app112311227 crossref_primary_10_1088_1742_6596_1943_1_012154 crossref_primary_10_3389_fpubh_2024_1430902 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103904 crossref_primary_10_31686_ijier_vol8_iss10_2710 crossref_primary_10_1371_journal_pone_0248075 crossref_primary_10_3390_pathogens10030256 crossref_primary_10_1016_j_chemosphere_2022_135708 crossref_primary_10_1007_s40808_020_00838_2 crossref_primary_10_1007_s11356_021_12668_5 crossref_primary_10_1177_01600176221145879 crossref_primary_10_1016_j_csbj_2022_08_009 crossref_primary_10_1016_j_pxur_2020_06_001 crossref_primary_10_1016_j_scowo_2025_100053 crossref_primary_10_3390_tropicalmed8040198 crossref_primary_10_1016_j_envres_2022_112887 crossref_primary_10_1016_j_scitotenv_2022_158003 crossref_primary_10_3390_ijerph17196955 crossref_primary_10_3390_ijerph17165634 crossref_primary_10_1007_s10257_023_00636_0 crossref_primary_10_1186_s12302_023_00754_z crossref_primary_10_1080_15275922_2020_1836082 crossref_primary_10_1007_s11356_021_13834_5 crossref_primary_10_1007_s10640_020_00478_1 crossref_primary_10_3390_ijerph182010778 crossref_primary_10_1186_s12302_021_00550_7 crossref_primary_10_1088_1755_1315_884_1_012058 crossref_primary_10_1016_j_envres_2021_112272 crossref_primary_10_1029_2021GH000423 crossref_primary_10_1177_1471082X221124628 crossref_primary_10_1016_j_rser_2021_111239 crossref_primary_10_6339_21_JDS1010 crossref_primary_10_1038_s41598_021_01180_y crossref_primary_10_1016_j_measen_2023_100819 crossref_primary_10_1016_j_scs_2021_102859 crossref_primary_10_2147_RMHP_S290153 crossref_primary_10_1080_09603123_2022_2160433 crossref_primary_10_1002_rmv_2153 crossref_primary_10_1177_11786302221147455 crossref_primary_10_7717_peerj_12732 crossref_primary_10_1016_j_scitotenv_2020_140709 crossref_primary_10_1016_j_scitotenv_2021_145586 crossref_primary_10_3390_math12050648 crossref_primary_10_1080_15287394_2021_1969304 crossref_primary_10_1007_s11356_021_13098_z crossref_primary_10_1111_rsp3_12472 crossref_primary_10_3390_stats7030062 crossref_primary_10_1029_2024GH001025 crossref_primary_10_3389_fpubh_2020_604870 crossref_primary_10_1007_s41324_023_00536_y crossref_primary_10_1016_j_buildenv_2024_112049 crossref_primary_10_1016_j_scitotenv_2020_143783 crossref_primary_10_1016_j_uclim_2021_100780 crossref_primary_10_3389_fpubh_2022_1039925 crossref_primary_10_1007_s10668_020_01166_2 crossref_primary_10_1016_j_scitotenv_2020_141484 crossref_primary_10_3389_fpubh_2020_00367 crossref_primary_10_1029_2020EF001936 crossref_primary_10_1016_j_puhe_2022_04_011 crossref_primary_10_1016_j_actatropica_2020_105731 crossref_primary_10_1016_j_heliyon_2023_e19365 crossref_primary_10_1038_s41598_021_87113_1 crossref_primary_10_1016_j_scitotenv_2021_145992 crossref_primary_10_1186_s43093_022_00126_8 crossref_primary_10_1371_journal_pone_0264893 crossref_primary_10_3390_su13084553 crossref_primary_10_1063_5_0061469 crossref_primary_10_1007_s42398_021_00207_4 crossref_primary_10_1016_j_gsd_2023_100932 crossref_primary_10_1016_j_cities_2020_102928 crossref_primary_10_54751_revistafoco_v17n2_012 crossref_primary_10_1063_5_0187736 crossref_primary_10_1016_j_cscee_2023_100410 crossref_primary_10_1515_jbcpp_2021_0007 crossref_primary_10_1186_s12982_024_00306_7 crossref_primary_10_1017_dmp_2022_195 crossref_primary_10_3389_fchem_2020_622632 crossref_primary_10_1016_j_rineng_2024_103106 crossref_primary_10_1007_s11356_020_11203_2 crossref_primary_10_1038_s41467_021_23866_7 crossref_primary_10_1016_j_amjms_2022_01_005 crossref_primary_10_1007_s40808_024_02236_4 crossref_primary_10_1186_s12889_020_10149_x crossref_primary_10_1080_20477724_2021_2007336 crossref_primary_10_1016_j_onehlt_2022_100375 crossref_primary_10_3389_fpubh_2022_945448 crossref_primary_10_1007_s10237_020_01387_4 crossref_primary_10_1016_j_envres_2021_112071 crossref_primary_10_1016_j_scitotenv_2024_177449 crossref_primary_10_3390_ijerph17217958 crossref_primary_10_1029_2020GH000367 crossref_primary_10_1038_s41598_025_87363_3 crossref_primary_10_1016_j_scitotenv_2020_141447 crossref_primary_10_3390_stats7040064 crossref_primary_10_1007_s11869_021_01075_x crossref_primary_10_1038_s41598_021_01189_3 crossref_primary_10_1016_j_scitotenv_2020_140244 crossref_primary_10_1016_j_jes_2022_02_016 crossref_primary_10_3390_ijerph19095099 crossref_primary_10_3389_fpubh_2021_586299 crossref_primary_10_31686_ijier_vol8_iss11_2725 crossref_primary_10_7322_abcshs_2021069_2004 crossref_primary_10_1007_s11356_021_15279_2 crossref_primary_10_1016_j_scs_2022_103772 crossref_primary_10_1016_j_scs_2021_103231 crossref_primary_10_3390_ijerph17239059 crossref_primary_10_1007_s11356_021_14875_6 crossref_primary_10_1038_s41598_024_84182_w crossref_primary_10_1016_j_scs_2022_104187 crossref_primary_10_1002_ijfe_2586 crossref_primary_10_1016_j_envres_2020_110042 crossref_primary_10_3390_ijerph19159323 crossref_primary_10_1016_j_scitotenv_2020_141314 crossref_primary_10_1016_j_jenvman_2021_112392 crossref_primary_10_1016_j_scitotenv_2020_140348 crossref_primary_10_3390_rs13234946 crossref_primary_10_1016_j_scitotenv_2020_140112 crossref_primary_10_1016_j_scitotenv_2020_141323 crossref_primary_10_1080_11926422_2021_2006252 crossref_primary_10_4236_jep_2021_1212063 crossref_primary_10_3390_data5030068 crossref_primary_10_1016_j_scitotenv_2020_141320 crossref_primary_10_1016_j_envres_2020_110608 crossref_primary_10_1007_s00168_022_01193_z crossref_primary_10_3389_fpubh_2020_605128 crossref_primary_10_1016_j_scitotenv_2020_144390 crossref_primary_10_1145_3494531 crossref_primary_10_1371_journal_pone_0242268 crossref_primary_10_1038_s41598_024_62300_y crossref_primary_10_1016_j_diabres_2020_108267 crossref_primary_10_3390_ijerph18147592 crossref_primary_10_1016_j_isatra_2022_05_027 crossref_primary_10_1186_s42269_021_00484_3 crossref_primary_10_1007_s11356_020_10930_w crossref_primary_10_1016_j_rineng_2025_104006 crossref_primary_10_1590_1678_4685_gmb_2020_0228 crossref_primary_10_61186_johe_12_1_18 crossref_primary_10_1016_j_renene_2024_122266 crossref_primary_10_3389_fpubh_2022_877621 crossref_primary_10_1016_j_onehlt_2020_100203 crossref_primary_10_1016_j_mbs_2023_109087 crossref_primary_10_2139_ssrn_3760975 crossref_primary_10_1016_j_scitotenv_2022_158636 crossref_primary_10_1016_j_amjms_2020_06_015 crossref_primary_10_3390_land14030598 crossref_primary_10_1016_j_chaos_2020_110294 crossref_primary_10_1016_j_envres_2022_114662 crossref_primary_10_1016_j_scitotenv_2021_148312 crossref_primary_10_1080_24694452_2022_2029342 crossref_primary_10_1016_j_envres_2020_110184 crossref_primary_10_1016_j_ijdrr_2022_103478 crossref_primary_10_1007_s11356_021_17305_9 crossref_primary_10_1371_journal_pone_0255229 crossref_primary_10_4236_aid_2022_122015 crossref_primary_10_3390_vaccines9111328 crossref_primary_10_1016_j_scitotenv_2020_144578 crossref_primary_10_2147_RMHP_S265008 crossref_primary_10_3934_math_2022471 crossref_primary_10_1007_s10668_021_01794_2 crossref_primary_10_1007_s10668_020_01028_x crossref_primary_10_1016_j_idm_2020_09_004 crossref_primary_10_1016_j_idm_2020_09_003 crossref_primary_10_1016_j_nantod_2023_102001 crossref_primary_10_1016_j_scitotenv_2020_142391 crossref_primary_10_1080_11926422_2021_2007966 crossref_primary_10_5572_ajae_2021_094 crossref_primary_10_1016_j_envpol_2021_118369 crossref_primary_10_3390_su13158504 crossref_primary_10_3390_ijerph18126636 crossref_primary_10_4081_gh_2022_1073 crossref_primary_10_1038_s41598_021_87692_z crossref_primary_10_1080_02786826_2020_1829536 crossref_primary_10_1136_bmjopen_2020_043269 crossref_primary_10_20473_jiet_v8i1_41281 crossref_primary_10_1029_2022GH000765 crossref_primary_10_1016_j_envint_2022_107301 crossref_primary_10_1016_j_envres_2021_111106 crossref_primary_10_32604_cmes_2024_046944 crossref_primary_10_1016_j_envres_2021_111104 crossref_primary_10_37871_jbres1155 crossref_primary_10_3389_fenvs_2021_772783 crossref_primary_10_1016_j_heliyon_2021_e06181 crossref_primary_10_3390_ijerph17155354 crossref_primary_10_1016_j_sste_2020_100390 crossref_primary_10_1016_S2542_5196_22_00174_7 crossref_primary_10_1016_j_envres_2020_110416 crossref_primary_10_1029_2020GH000292 crossref_primary_10_1177_11786302231156298 crossref_primary_10_4081_gh_2022_1065 crossref_primary_10_1016_j_idm_2022_06_006 crossref_primary_10_1111_brv_13167 crossref_primary_10_1080_20479700_2020_1858394 crossref_primary_10_1080_00207233_2022_2052536 crossref_primary_10_3389_fpubh_2024_1353441 crossref_primary_10_4081_gh_2022_1064 crossref_primary_10_1007_s11356_021_12648_9 crossref_primary_10_1016_j_ijheh_2020_113587 crossref_primary_10_3390_ijerph18020396 crossref_primary_10_1002_gch2_202000132 crossref_primary_10_1007_s00181_022_02319_0 crossref_primary_10_3390_su14095602 crossref_primary_10_1590_1982_3533_2022v31n3art09 crossref_primary_10_1007_s11356_021_16903_x crossref_primary_10_26634_jse_18_1_20121 crossref_primary_10_1016_j_envres_2020_110521 crossref_primary_10_20473_jkl_v13i3_2021_186_192 crossref_primary_10_3389_fmed_2020_607786 crossref_primary_10_3390_buildings12030365 crossref_primary_10_1007_s11356_021_12709_z crossref_primary_10_1007_s10668_020_01003_6 crossref_primary_10_1016_j_envpol_2020_115176 crossref_primary_10_3389_fenvs_2023_1104679 crossref_primary_10_1088_1748_9326_ac4cf2 crossref_primary_10_1177_1010539520944729 crossref_primary_10_3389_fpubh_2022_876691 crossref_primary_10_1016_j_jclepro_2021_127705 crossref_primary_10_1016_j_sciaf_2022_e01257 crossref_primary_10_1007_s10311_022_01418_9 crossref_primary_10_1007_s11356_021_12613_6 crossref_primary_10_1002_2475_8876_12183 crossref_primary_10_1007_s11356_022_21766_x crossref_primary_10_3390_su132111667 crossref_primary_10_1016_j_chaos_2020_110027 crossref_primary_10_3390_ijerph19094989 crossref_primary_10_1016_j_rineng_2024_103507 crossref_primary_10_55761_abclima_v33i19_16545 crossref_primary_10_18273_saluduis_53_e_21037 crossref_primary_10_3390_ijerph17155477 crossref_primary_10_1016_j_jviromet_2024_115076 crossref_primary_10_7717_peerj_10655 crossref_primary_10_1016_j_scitotenv_2021_146579 crossref_primary_10_1029_2021GH000455 crossref_primary_10_1007_s00704_023_04656_1 crossref_primary_10_1038_s41598_021_87803_w crossref_primary_10_1016_j_envres_2021_112348 crossref_primary_10_21601_ejeph_11056 crossref_primary_10_3934_mbe_2021131 crossref_primary_10_1007_s11356_021_18382_6 crossref_primary_10_1016_j_scitotenv_2020_141022 crossref_primary_10_1007_s10668_020_00854_3 crossref_primary_10_1002_pa_2648 crossref_primary_10_1038_s41598_021_85493_y crossref_primary_10_1016_j_envpol_2020_116326 crossref_primary_10_1029_2022GH000727 crossref_primary_10_1016_j_bsheal_2024_10_001 crossref_primary_10_3748_wjg_v27_i35_5822 crossref_primary_10_3390_electronics10020184 crossref_primary_10_3390_ijerph18063214 crossref_primary_10_1016_j_enceco_2022_10_002 crossref_primary_10_1007_s11356_020_11273_2 crossref_primary_10_1016_j_envres_2020_110692 crossref_primary_10_1016_j_scitotenv_2020_142810 crossref_primary_10_4103_abr_abr_145_21 crossref_primary_10_3390_ijerph192012997 crossref_primary_10_1016_j_envres_2020_110576 crossref_primary_10_3390_ijerph19137814 crossref_primary_10_1007_s11356_020_12165_1 crossref_primary_10_1016_j_scitotenv_2020_140881 crossref_primary_10_1016_j_envres_2021_110972 crossref_primary_10_1007_s42398_021_00176_8 crossref_primary_10_1007_s11356_021_14625_8 crossref_primary_10_1016_j_cscee_2021_100113 crossref_primary_10_1016_j_ecoenv_2021_112297 crossref_primary_10_1016_j_jobb_2021_02_001 crossref_primary_10_2147_RMHP_S279695 crossref_primary_10_1002_ieam_4481 crossref_primary_10_1007_s10668_020_01016_1 crossref_primary_10_1016_j_cej_2020_127522 crossref_primary_10_1016_j_biochi_2021_09_009 crossref_primary_10_1016_j_heliyon_2024_e25810 crossref_primary_10_1016_j_heliyon_2021_e07504 crossref_primary_10_1016_j_scitotenv_2020_142801 crossref_primary_10_1016_j_envres_2021_112249 crossref_primary_10_1016_j_jenvman_2021_112662 crossref_primary_10_1016_j_scitotenv_2020_143343 crossref_primary_10_1002_widm_1462 crossref_primary_10_1007_s11356_021_16666_5 crossref_primary_10_1007_s42398_021_00165_x crossref_primary_10_1080_09603123_2022_2083090 crossref_primary_10_1038_s41598_021_90873_5 |
Cites_doi | 10.1155/2011/734690 10.1128/JVI.03544-13 10.1016/j.scitotenv.2020.138201 10.1128/JVI.41.2.353-359.1982 10.1128/AEM.02291-09 10.2807/1560-7917.ES2013.18.38.20590 10.1016/S2213-2600(20)30076-X 10.1093/aje/kws259 10.1016/j.scitotenv.2018.02.136 10.1073/pnas.1815029116 10.1127/0941-2948/2013/0507 10.2807/1560-7917.ES2014.19.35.20892 10.1016/j.scitotenv.2020.138647 10.1016/j.epidem.2015.06.002 10.1111/j.1445-5994.2007.01358.x 10.1016/j.scitotenv.2018.06.189 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.scitotenv.2020.138862 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 138862 |
ExternalDocumentID | PMC7182516 32361443 10_1016_j_scitotenv_2020_138862 S0048969720323792 |
Genre | Journal Article |
GeographicLocations | Brazil Cities |
GeographicLocations_xml | – name: Cities – name: Brazil |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c574t-dfe08bc4ffe6b5d7a696990a3e8bc489941911612b62285dd7872f4af510d62d3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Aug 21 18:18:58 EDT 2025 Fri Jul 11 16:44:35 EDT 2025 Fri Jul 11 12:34:02 EDT 2025 Thu Apr 03 07:00:11 EDT 2025 Tue Jul 01 03:35:40 EDT 2025 Thu Apr 24 22:57:20 EDT 2025 Fri Feb 23 02:50:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Brazil Tropical temperature Generalized additive model Transmission |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-dfe08bc4ffe6b5d7a696990a3e8bc489941911612b62285dd7872f4af510d62d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7182516 |
PMID | 32361443 |
PQID | 2398148837 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182516 proquest_miscellaneous_2574337578 proquest_miscellaneous_2398148837 pubmed_primary_32361443 crossref_citationtrail_10_1016_j_scitotenv_2020_138862 crossref_primary_10_1016_j_scitotenv_2020_138862 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_138862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-10 |
PublicationDateYYYYMMDD | 2020-08-10 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lowen, Steel (bb0055) 2014; 88 Barreca, Shimshack (bb0010) 2012; 176 Casanova, Jeon, Rutala, Weber, Sobsey (bb0025) 2010; 76 Wang, Goggins, Chan (bb0085) 2018; 643 Yongjiana, Jingubc, Fengmingb, Liqingb (bb0110) 2020 Wang, Jiang, Gong, Lu, Guo, Lu, Guo, Li, Zheng, Li, Yang, Zeng, Chen, Zheng, Li (bb0090) 2020 Zhu, Xie (bb0115) 2020 Moriyama, Ichinohe (bb0060) 2019; 116 Hastie, Tibshirani (bb0040) 1990 Xu, Shi, Wang, Zhang, Huang, Zhang, Liu, Zhao, Liu, Zhu (bb0100) 2020 Ng, Cowling (bb0065) 2014; 19 Thai, Choisy, Duong, Thiem, Yen, Hien (bb0075) 2015; 13 Chan, Peiris, Lam, Poon, Yuen, Seto (bb0030) 2011 Bukhari, Jameel (bb0020) 2020 Chu, Tian, Ren, Zhang, Zhang, Liu (bb0035) 1982; 41 Wu, Lang, Ma, Song, Kang, He, Zhang, Lu, Lin, Ling (bb0095) 2018; 628 Bi, Wang, Hiller (bb0015) 2007; 37 Liu, Zhou, Yao, Zhang, Li, Xu, He, Wang, Fu, Niu, Yan, Shi, Ren, Niu, Zhu, Li, Luo, Zhang (bb0050) 2020 Núñez-Delgado (bb0070) 2020 Van Doremalen, Bushmaker, Munster (bb0080) 2013; 18 Yip, Chang, Yeung, Yu (bb0105) 2007; 70 Alvares, Stape, Sentelhas, Goncalves, Sparoveket (bb0005) 2014; 22 Le, Le, Parikh, Brooks, Gardellini, Izurieta (bb0045) 2020 Bi (10.1016/j.scitotenv.2020.138862_bb0015) 2007; 37 Moriyama (10.1016/j.scitotenv.2020.138862_bb0060) 2019; 116 Barreca (10.1016/j.scitotenv.2020.138862_bb0010) 2012; 176 Wang (10.1016/j.scitotenv.2020.138862_bb0090) 2020 Chu (10.1016/j.scitotenv.2020.138862_bb0035) 1982; 41 Ng (10.1016/j.scitotenv.2020.138862_bb0065) 2014; 19 Wu (10.1016/j.scitotenv.2020.138862_bb0095) 2018; 628 Van Doremalen (10.1016/j.scitotenv.2020.138862_bb0080) 2013; 18 Thai (10.1016/j.scitotenv.2020.138862_bb0075) 2015; 13 Bukhari (10.1016/j.scitotenv.2020.138862_bb0020) 2020 Yongjiana (10.1016/j.scitotenv.2020.138862_bb0110) 2020 Chan (10.1016/j.scitotenv.2020.138862_bb0030) 2011 Le (10.1016/j.scitotenv.2020.138862_bb0045) 2020 Yip (10.1016/j.scitotenv.2020.138862_bb0105) 2007; 70 Zhu (10.1016/j.scitotenv.2020.138862_bb0115) 2020 Alvares (10.1016/j.scitotenv.2020.138862_bb0005) 2014; 22 Hastie (10.1016/j.scitotenv.2020.138862_bb0040) 1990 Núñez-Delgado (10.1016/j.scitotenv.2020.138862_bb0070) 2020 Liu (10.1016/j.scitotenv.2020.138862_bb0050) 2020 Xu (10.1016/j.scitotenv.2020.138862_bb0100) 2020 Casanova (10.1016/j.scitotenv.2020.138862_bb0025) 2010; 76 Wang (10.1016/j.scitotenv.2020.138862_bb0085) 2018; 643 Lowen (10.1016/j.scitotenv.2020.138862_bb0055) 2014; 88 32773241 - Sci Total Environ. 2020 Dec 1;746:141323 |
References_xml | – year: 2011 ident: bb0030 article-title: The effects of temperature and relative humidity on the viability of the SARS coronavirus publication-title: Adv. Virol. – year: 2020 ident: bb0090 article-title: Temperature significantly change COVID-19 transmission in 429 cities publication-title: medRxiv – year: 2020 ident: bb0110 article-title: Association between short-term exposure to air pollution and COVID-19 infection: evidence from China publication-title: Science of the Total Environment – volume: 176 start-page: S114 year: 2012 end-page: S122 ident: bb0010 article-title: Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States publication-title: Am. J. Epidemiol. – volume: 37 start-page: 550 year: 2007 end-page: 554 ident: bb0015 article-title: Weather: driving force behind the transmission of severe acute respiratory syndrome in China? publication-title: Intern. Med. J. – year: 1990 ident: bb0040 article-title: Generalized Additive Models – year: 2020 ident: bb0070 article-title: What do we know about the SARS-CoV-2 coronavirus in the environment? publication-title: Science of the Total Environment – volume: 628 start-page: 766 year: 2018 end-page: 771 ident: bb0095 article-title: Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China publication-title: Sci. Total Environ. – volume: 41 start-page: 353 year: 1982 end-page: 359 ident: bb0035 article-title: Occurrence of temperature-sensitive influenza A viruses in nature publication-title: J. Virol. – volume: 13 start-page: 65 year: 2015 end-page: 73 ident: bb0075 article-title: Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam publication-title: Epidemics – volume: 88 start-page: 7692 year: 2014 end-page: 7695 ident: bb0055 article-title: Roles of humidity and temperature in shaping influenza seasonality publication-title: J. Virol. – volume: 70 start-page: 39 year: 2007 end-page: 46 ident: bb0105 article-title: Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens, Hong Kong publication-title: J. Environ. Health – volume: 19 year: 2014 ident: bb0065 article-title: Association between temperature, humidity and ebolavirus disease outbreaks in Africa, 1976 to 2014 publication-title: Euro Surveill. – year: 2020 ident: bb0115 article-title: Association between ambient temperature and COVID-19 infection in 122 cities from China publication-title: Science of the Total Environment – volume: 76 start-page: 2712 year: 2010 end-page: 2717 ident: bb0025 article-title: Effects of air temperature and relative humidity on coronavirus survival on surfaces publication-title: Appl. Environ. Microbiol. – volume: 116 start-page: 3118 year: 2019 end-page: 3125 ident: bb0060 article-title: High ambient temperature dampens adaptive immune responses to influenza A virus infection publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 643 start-page: 414 year: 2018 end-page: 422 ident: bb0085 article-title: A time-series study of the association of rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus and norovirus infection among children in Hong Kong publication-title: Sci. Total Environ. – year: 2020 ident: bb0020 article-title: Will Coronavirus Pandemic Diminish by Summer? SSRN – year: 2020 ident: bb0100 article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome publication-title: Lancet Respir. Med. – year: 2020 ident: bb0050 article-title: Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China publication-title: Sci. Total Environ. – year: 2020 ident: bb0045 article-title: Ecological and health infrastructure factors affecting the transmission and mortality of COVID-19 publication-title: BMC Infect. Dis. – volume: 18 year: 2013 ident: bb0080 article-title: Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions publication-title: Eurosurveillance – volume: 22 start-page: 711 year: 2014 end-page: 728 ident: bb0005 article-title: Koppen’s climate classification map for Brazil publication-title: Meteorol. Z. – year: 2011 ident: 10.1016/j.scitotenv.2020.138862_bb0030 article-title: The effects of temperature and relative humidity on the viability of the SARS coronavirus publication-title: Adv. Virol. doi: 10.1155/2011/734690 – volume: 88 start-page: 7692 issue: 14 year: 2014 ident: 10.1016/j.scitotenv.2020.138862_bb0055 article-title: Roles of humidity and temperature in shaping influenza seasonality publication-title: J. Virol. doi: 10.1128/JVI.03544-13 – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0090 article-title: Temperature significantly change COVID-19 transmission in 429 cities publication-title: medRxiv – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0115 article-title: Association between ambient temperature and COVID-19 infection in 122 cities from China doi: 10.1016/j.scitotenv.2020.138201 – volume: 41 start-page: 353 issue: 2 year: 1982 ident: 10.1016/j.scitotenv.2020.138862_bb0035 article-title: Occurrence of temperature-sensitive influenza A viruses in nature publication-title: J. Virol. doi: 10.1128/JVI.41.2.353-359.1982 – year: 1990 ident: 10.1016/j.scitotenv.2020.138862_bb0040 – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0020 – volume: 76 start-page: 2712 issue: 9 year: 2010 ident: 10.1016/j.scitotenv.2020.138862_bb0025 article-title: Effects of air temperature and relative humidity on coronavirus survival on surfaces publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02291-09 – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0045 article-title: Ecological and health infrastructure factors affecting the transmission and mortality of COVID-19 publication-title: BMC Infect. Dis. – volume: 18 year: 2013 ident: 10.1016/j.scitotenv.2020.138862_bb0080 article-title: Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES2013.18.38.20590 – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0110 article-title: Association between short-term exposure to air pollution and COVID-19 infection: evidence from China – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0100 article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30076-X – volume: 176 start-page: S114 issue: Suppl. 7 year: 2012 ident: 10.1016/j.scitotenv.2020.138862_bb0010 article-title: Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kws259 – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0050 article-title: Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China publication-title: Sci. Total Environ. – volume: 628 start-page: 766 year: 2018 ident: 10.1016/j.scitotenv.2020.138862_bb0095 article-title: Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.136 – volume: 116 start-page: 3118 issue: 8 year: 2019 ident: 10.1016/j.scitotenv.2020.138862_bb0060 article-title: High ambient temperature dampens adaptive immune responses to influenza A virus infection publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1815029116 – volume: 22 start-page: 711 issue: 6 year: 2014 ident: 10.1016/j.scitotenv.2020.138862_bb0005 article-title: Koppen’s climate classification map for Brazil publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2013/0507 – volume: 19 issue: 35 year: 2014 ident: 10.1016/j.scitotenv.2020.138862_bb0065 article-title: Association between temperature, humidity and ebolavirus disease outbreaks in Africa, 1976 to 2014 publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES2014.19.35.20892 – year: 2020 ident: 10.1016/j.scitotenv.2020.138862_bb0070 article-title: What do we know about the SARS-CoV-2 coronavirus in the environment? doi: 10.1016/j.scitotenv.2020.138647 – volume: 70 start-page: 39 issue: 3 year: 2007 ident: 10.1016/j.scitotenv.2020.138862_bb0105 article-title: Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens, Hong Kong publication-title: J. Environ. Health – volume: 13 start-page: 65 year: 2015 ident: 10.1016/j.scitotenv.2020.138862_bb0075 article-title: Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam publication-title: Epidemics doi: 10.1016/j.epidem.2015.06.002 – volume: 37 start-page: 550 year: 2007 ident: 10.1016/j.scitotenv.2020.138862_bb0015 article-title: Weather: driving force behind the transmission of severe acute respiratory syndrome in China? publication-title: Intern. Med. J. doi: 10.1111/j.1445-5994.2007.01358.x – volume: 643 start-page: 414 year: 2018 ident: 10.1016/j.scitotenv.2020.138862_bb0085 article-title: A time-series study of the association of rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus and norovirus infection among children in Hong Kong publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.189 – reference: 32773241 - Sci Total Environ. 2020 Dec 1;746:141323 |
SSID | ssj0000781 |
Score | 2.6874886 |
Snippet | The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 138862 |
SubjectTerms | Betacoronavirus Brazil capital Cities Coronavirus Infections COVID-19 COVID-19 infection dose response Generalized additive model governance growth curves health services Humans Pandemics Pneumonia, Viral public health regression analysis SARS-CoV-2 Temperature Transmission Tropical temperature tropics viruses |
Title | Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.138862 https://www.ncbi.nlm.nih.gov/pubmed/32361443 https://www.proquest.com/docview/2398148837 https://www.proquest.com/docview/2574337578 https://pubmed.ncbi.nlm.nih.gov/PMC7182516 |
Volume | 729 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NQ0hICEFh0A0mI_EAD2GJ7cYxb6Ns6qgYEtpgPEWJ7YigKqnaFGk88LdzFycdBcEeeIqS2FFyX76L734H8MzkLjI2U0FkjAzQSoogSaQMMqNMkcuIc0e1w-9O48m5fHsxutiCcV8LQ2mVne33Nr211t2Vg46aB_OypBpfmehY0z4iF0qTHZZSkZS__HGV5kFgNn6XGRUbR2_keOFzmxp9028YKHLqAZEkMf_bCvWnB_p7IuUvK9PxXbjTuZTs0L_1Pdhy1QBu-iaTlwPYObqqZcNhnTIvB3Db_7JjvhLpPnw-c-hDe4xlRnkdlEWEhJ9dMl8evGTj9x9P3gSRZg0tcSgi9K-NlRV7vlzlL5pFPSeeM9PCtLK6YK8X2fdy9gDOj4_OxpOg67wQmJGSTWALFya5kUXh4nxkVRYj6XSYCUdXMUSTGOahr8jzmPNkZC2qPS9kVqCG25hbsQPbVV25R8CykOcqclroJJR5pLWVJjSJUS60hZVuCHFP7dR0sOTUHWOW9vlnX9M1m1JiU-rZNIRwPXHukTmun_KqZ2e6IWQprh_XT37aC0CK9KV9laxy9WqZEoQiRpUY6v9jDNJVCGoeMISHXmjWby0IAEdKMQS1IU7rAQQBvnmnKr-0UODoWaCDGu_-z4ftwS06C1qc38ew3SxW7gl6Wk2-36rSPtw4PJlOTuk4_fBp-hMivi2E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NnRBICEFho3waiQd4iJY4TuLwNsqmlm3lpUPjyUpsRwRVSdWmk7a_nrs66SgI9sCrY0fOffnOufsdwFud20CbLPECrYWHVjL0pBTCy3Sii1wEnFuqHT6bxKNz8fkiutiBYVcLQ2mVre13Nn1trduRg5aaB_OypBpfIdM4pf-IPExStMO7hE4V9WD3cHwymtwY5ES6xnkCdRsXbKV54aubGt3TS4wVObWBkDLmfzuk_nRCf8-l_OVwOn4ID1qvkh26jT-CHVv14Y7rM3nVh72jm3I2nNbq87IP992tHXPFSI_h29SiG-1glhmldlAiEdJ-dsVchfCSDb98HX_ygpQ1dMqhlNB1Gysr9m65yt83i3pObGd6jdTK6oJ9XGTX5ewJnB8fTYcjr22-4OkoEY1nCuvLXIuisHEemSSLkXSpn4WWRjFKExjpobvI85hzGRmDms8LkRWo5CbmJtyDXlVX9imwzOd5Etg0TKUv8iBNjdC-ljqxvimMsAOIO2or3SKTU4OMmepS0H6oDZsUsUk5Ng3A3yycO3CO25d86NiptuRM4RFy--I3nQAopC_9WskqW6-WilAUMbDEaP8fc5CuYUj9Awaw74Rms-uQMHCECAeQbInTZgKhgG8_qcrvazRwdC7QR42f_c-HvYa7o-nZqTodT06ewz164q1hf19Ar1ms7Et0vJr8VatYPwHkJi6S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+significantly+changes+COVID-19+transmission+in+%28sub%29tropical+cities+of+Brazil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Prata%2C+David+N.&rft.au=Rodrigues%2C+Waldecy&rft.au=Bermejo%2C+Paulo+H.&rft.date=2020-08-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=729&rft.spage=138862&rft.epage=138862&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.138862&rft_id=info%3Apmid%2F32361443&rft.externalDocID=PMC7182516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |