Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil

The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperatu...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 729; p. 138862
Main Authors Prata, David N., Rodrigues, Waldecy, Bermejo, Paulo H.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. [Display omitted] •The dose-response relationships suggest that the relationship between the annual average of temperature compensation and COVID-19 confirmed cases was approximately linear in the range of less than 25.8°C, which became flat above 25.8°C.•When the average temperature was below 25.8°C, each 1°C rise was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19.•There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer, in temperatures is above 25.8°C.•The polynomial (cubic) regression model can give insights to other researchers for testing new factors and revealing new determinants capable of fitting the trend regression to a maximum of R-squared in COVID-19 cases.
AbstractList The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil.Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil.The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053.In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.
The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. Unlabelled Image • The dose-response relationships suggest that the relationship between the annual average of temperature compensation and COVID-19 confirmed cases was approximately linear in the range of less than 25.8°C, which became flat above 25.8°C. • When the average temperature was below 25.8°C, each 1°C rise was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. • There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer, in temperatures is above 25.8°C. • The polynomial (cubic) regression model can give insights to other researchers for testing new factors and revealing new determinants capable of fitting the trend regression to a maximum of R-squared in COVID-19 cases.
The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.
The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers. [Display omitted] •The dose-response relationships suggest that the relationship between the annual average of temperature compensation and COVID-19 confirmed cases was approximately linear in the range of less than 25.8°C, which became flat above 25.8°C.•When the average temperature was below 25.8°C, each 1°C rise was associated with a −4.8951% (t = −2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19.•There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer, in temperatures is above 25.8°C.•The polynomial (cubic) regression model can give insights to other researchers for testing new factors and revealing new determinants capable of fitting the trend regression to a maximum of R-squared in COVID-19 cases.
The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how ecological factors affect the transmission and survival of the virus. Several studies have robustly identified a relationship between temperature and the number of cases. However, there is no specific study for a tropical climate such as Brazil. This work aims to determine the relationship of temperature to COVID-19 infection for the state capital cities of Brazil. Cumulative data with the daily number of confirmed cases was collected from February 27 to April 1, 2020, for all 27 state capital cities of Brazil affected by COVID-19. A generalized additive model (GAM) was applied to explore the linear and nonlinear relationship between annual average temperature compensation and confirmed cases. Also, a polynomial linear regression model was proposed to represent the behavior of the growth curve of COVID-19 in the capital cities of Brazil. The GAM dose-response curve suggested a negative linear relationship between temperatures and daily cumulative confirmed cases of COVID-19 in the range from 16.8 °C to 27.4 °C. Each 1 °C rise of temperature was associated with a -4.8951% (t = -2.29, p = 0.0226) decrease in the number of daily cumulative confirmed cases of COVID-19. A sensitivity analysis assessed the robustness of the results of the model. The predicted R-squared of the polynomial linear regression model was 0.81053. In this study, which features the tropical temperatures of Brazil, the variation in annual average temperatures ranged from 16.8 °C to 27.4 °C. Results indicated that temperatures had a negative linear relationship with the number of confirmed cases. The curve flattened at a threshold of 25.8 °C. There is no evidence supporting that the curve declined for temperatures above 25.8 °C. The study had the goal of supporting governance for healthcare policymakers.
ArticleNumber 138862
Author Prata, David N.
Rodrigues, Waldecy
Bermejo, Paulo H.
Author_xml – sequence: 1
  givenname: David N.
  surname: Prata
  fullname: Prata, David N.
  email: ddnprata@uft.edu.br
  organization: Institute of Regional Development, Graduate Program of Computational Modelling, Federal Univeristy of Tocantins. Quadra 109 Norte, 77001-090 Palmas, TO, Brazil
– sequence: 2
  givenname: Waldecy
  surname: Rodrigues
  fullname: Rodrigues, Waldecy
  organization: Institute of Regional Development, Graduate Program of Computational Modelling, Federal Univeristy of Tocantins. Quadra 109 Norte, 77001-090 Palmas, TO, Brazil
– sequence: 3
  givenname: Paulo H.
  surname: Bermejo
  fullname: Bermejo, Paulo H.
  organization: Administration Department, University of Brasilia, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32361443$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPGzEUha2KqgToX2hnSReT-jHjx6KVaPpCQmJDK3VleTx3gqOJndqeSPDrcRRALZt4Y8k-5_jzPSfoyAcPCL0neE4w4R9X82RdDhn8dk4xLadMSk5foRmRQtUEU36EZhg3slZciWN0ktIKlyUkeYOOGWWcNA2boT83sN5ANHmKUCW39G5w1vg83lX21vglpGpx_fvya01UlaPxae1ScsFXzlfnaeo-5Bg2xTFWhccVdRiqL9Hcu_EMvR7MmODt436Kfn3_drP4WV9d_7hcXFzVthVNrvsBsOxsMwzAu7YXhhdghQ2D3alUqiGKEE5oxymVbd8LKejQmKEluOe0Z6fo8z53M3Vr6C34wjnqTXRrE-90ME7_f-PdrV6GrRZE0pbwEnD-GBDD3wlS1uWPFsbReAhT0rRwMiZaIQ9LmZKkkZKJIn33L9Yzz9Poi-DTXmBjSCnCoMsETS6zLZRu1ATrXdV6pZ-r1ruq9b7q4hcv_E9PHHZe7J1Qatk6iDsdeAu9i2Cz7oM7mPEALpTJrw
CitedBy_id crossref_primary_10_1007_s00024_022_03205_7
crossref_primary_10_1111_tbed_14102
crossref_primary_10_1016_j_envres_2021_110874
crossref_primary_10_4236_acs_2021_112018
crossref_primary_10_2196_27806
crossref_primary_10_1016_j_envres_2020_110596
crossref_primary_10_1016_j_idm_2023_02_005
crossref_primary_10_1080_07352166_2022_2057320
crossref_primary_10_3390_computation9010004
crossref_primary_10_1007_s11356_021_14038_7
crossref_primary_10_1016_j_crmicr_2025_100355
crossref_primary_10_1177_11769343231169377
crossref_primary_10_3390_su132111905
crossref_primary_10_3390_ijerph17217847
crossref_primary_10_1017_S095026882100039X
crossref_primary_10_1080_23311886_2023_2223398
crossref_primary_10_3390_app112311227
crossref_primary_10_1088_1742_6596_1943_1_012154
crossref_primary_10_3389_fpubh_2024_1430902
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103904
crossref_primary_10_31686_ijier_vol8_iss10_2710
crossref_primary_10_1371_journal_pone_0248075
crossref_primary_10_3390_pathogens10030256
crossref_primary_10_1016_j_chemosphere_2022_135708
crossref_primary_10_1007_s40808_020_00838_2
crossref_primary_10_1007_s11356_021_12668_5
crossref_primary_10_1177_01600176221145879
crossref_primary_10_1016_j_csbj_2022_08_009
crossref_primary_10_1016_j_pxur_2020_06_001
crossref_primary_10_1016_j_scowo_2025_100053
crossref_primary_10_3390_tropicalmed8040198
crossref_primary_10_1016_j_envres_2022_112887
crossref_primary_10_1016_j_scitotenv_2022_158003
crossref_primary_10_3390_ijerph17196955
crossref_primary_10_3390_ijerph17165634
crossref_primary_10_1007_s10257_023_00636_0
crossref_primary_10_1186_s12302_023_00754_z
crossref_primary_10_1080_15275922_2020_1836082
crossref_primary_10_1007_s11356_021_13834_5
crossref_primary_10_1007_s10640_020_00478_1
crossref_primary_10_3390_ijerph182010778
crossref_primary_10_1186_s12302_021_00550_7
crossref_primary_10_1088_1755_1315_884_1_012058
crossref_primary_10_1016_j_envres_2021_112272
crossref_primary_10_1029_2021GH000423
crossref_primary_10_1177_1471082X221124628
crossref_primary_10_1016_j_rser_2021_111239
crossref_primary_10_6339_21_JDS1010
crossref_primary_10_1038_s41598_021_01180_y
crossref_primary_10_1016_j_measen_2023_100819
crossref_primary_10_1016_j_scs_2021_102859
crossref_primary_10_2147_RMHP_S290153
crossref_primary_10_1080_09603123_2022_2160433
crossref_primary_10_1002_rmv_2153
crossref_primary_10_1177_11786302221147455
crossref_primary_10_7717_peerj_12732
crossref_primary_10_1016_j_scitotenv_2020_140709
crossref_primary_10_1016_j_scitotenv_2021_145586
crossref_primary_10_3390_math12050648
crossref_primary_10_1080_15287394_2021_1969304
crossref_primary_10_1007_s11356_021_13098_z
crossref_primary_10_1111_rsp3_12472
crossref_primary_10_3390_stats7030062
crossref_primary_10_1029_2024GH001025
crossref_primary_10_3389_fpubh_2020_604870
crossref_primary_10_1007_s41324_023_00536_y
crossref_primary_10_1016_j_buildenv_2024_112049
crossref_primary_10_1016_j_scitotenv_2020_143783
crossref_primary_10_1016_j_uclim_2021_100780
crossref_primary_10_3389_fpubh_2022_1039925
crossref_primary_10_1007_s10668_020_01166_2
crossref_primary_10_1016_j_scitotenv_2020_141484
crossref_primary_10_3389_fpubh_2020_00367
crossref_primary_10_1029_2020EF001936
crossref_primary_10_1016_j_puhe_2022_04_011
crossref_primary_10_1016_j_actatropica_2020_105731
crossref_primary_10_1016_j_heliyon_2023_e19365
crossref_primary_10_1038_s41598_021_87113_1
crossref_primary_10_1016_j_scitotenv_2021_145992
crossref_primary_10_1186_s43093_022_00126_8
crossref_primary_10_1371_journal_pone_0264893
crossref_primary_10_3390_su13084553
crossref_primary_10_1063_5_0061469
crossref_primary_10_1007_s42398_021_00207_4
crossref_primary_10_1016_j_gsd_2023_100932
crossref_primary_10_1016_j_cities_2020_102928
crossref_primary_10_54751_revistafoco_v17n2_012
crossref_primary_10_1063_5_0187736
crossref_primary_10_1016_j_cscee_2023_100410
crossref_primary_10_1515_jbcpp_2021_0007
crossref_primary_10_1186_s12982_024_00306_7
crossref_primary_10_1017_dmp_2022_195
crossref_primary_10_3389_fchem_2020_622632
crossref_primary_10_1016_j_rineng_2024_103106
crossref_primary_10_1007_s11356_020_11203_2
crossref_primary_10_1038_s41467_021_23866_7
crossref_primary_10_1016_j_amjms_2022_01_005
crossref_primary_10_1007_s40808_024_02236_4
crossref_primary_10_1186_s12889_020_10149_x
crossref_primary_10_1080_20477724_2021_2007336
crossref_primary_10_1016_j_onehlt_2022_100375
crossref_primary_10_3389_fpubh_2022_945448
crossref_primary_10_1007_s10237_020_01387_4
crossref_primary_10_1016_j_envres_2021_112071
crossref_primary_10_1016_j_scitotenv_2024_177449
crossref_primary_10_3390_ijerph17217958
crossref_primary_10_1029_2020GH000367
crossref_primary_10_1038_s41598_025_87363_3
crossref_primary_10_1016_j_scitotenv_2020_141447
crossref_primary_10_3390_stats7040064
crossref_primary_10_1007_s11869_021_01075_x
crossref_primary_10_1038_s41598_021_01189_3
crossref_primary_10_1016_j_scitotenv_2020_140244
crossref_primary_10_1016_j_jes_2022_02_016
crossref_primary_10_3390_ijerph19095099
crossref_primary_10_3389_fpubh_2021_586299
crossref_primary_10_31686_ijier_vol8_iss11_2725
crossref_primary_10_7322_abcshs_2021069_2004
crossref_primary_10_1007_s11356_021_15279_2
crossref_primary_10_1016_j_scs_2022_103772
crossref_primary_10_1016_j_scs_2021_103231
crossref_primary_10_3390_ijerph17239059
crossref_primary_10_1007_s11356_021_14875_6
crossref_primary_10_1038_s41598_024_84182_w
crossref_primary_10_1016_j_scs_2022_104187
crossref_primary_10_1002_ijfe_2586
crossref_primary_10_1016_j_envres_2020_110042
crossref_primary_10_3390_ijerph19159323
crossref_primary_10_1016_j_scitotenv_2020_141314
crossref_primary_10_1016_j_jenvman_2021_112392
crossref_primary_10_1016_j_scitotenv_2020_140348
crossref_primary_10_3390_rs13234946
crossref_primary_10_1016_j_scitotenv_2020_140112
crossref_primary_10_1016_j_scitotenv_2020_141323
crossref_primary_10_1080_11926422_2021_2006252
crossref_primary_10_4236_jep_2021_1212063
crossref_primary_10_3390_data5030068
crossref_primary_10_1016_j_scitotenv_2020_141320
crossref_primary_10_1016_j_envres_2020_110608
crossref_primary_10_1007_s00168_022_01193_z
crossref_primary_10_3389_fpubh_2020_605128
crossref_primary_10_1016_j_scitotenv_2020_144390
crossref_primary_10_1145_3494531
crossref_primary_10_1371_journal_pone_0242268
crossref_primary_10_1038_s41598_024_62300_y
crossref_primary_10_1016_j_diabres_2020_108267
crossref_primary_10_3390_ijerph18147592
crossref_primary_10_1016_j_isatra_2022_05_027
crossref_primary_10_1186_s42269_021_00484_3
crossref_primary_10_1007_s11356_020_10930_w
crossref_primary_10_1016_j_rineng_2025_104006
crossref_primary_10_1590_1678_4685_gmb_2020_0228
crossref_primary_10_61186_johe_12_1_18
crossref_primary_10_1016_j_renene_2024_122266
crossref_primary_10_3389_fpubh_2022_877621
crossref_primary_10_1016_j_onehlt_2020_100203
crossref_primary_10_1016_j_mbs_2023_109087
crossref_primary_10_2139_ssrn_3760975
crossref_primary_10_1016_j_scitotenv_2022_158636
crossref_primary_10_1016_j_amjms_2020_06_015
crossref_primary_10_3390_land14030598
crossref_primary_10_1016_j_chaos_2020_110294
crossref_primary_10_1016_j_envres_2022_114662
crossref_primary_10_1016_j_scitotenv_2021_148312
crossref_primary_10_1080_24694452_2022_2029342
crossref_primary_10_1016_j_envres_2020_110184
crossref_primary_10_1016_j_ijdrr_2022_103478
crossref_primary_10_1007_s11356_021_17305_9
crossref_primary_10_1371_journal_pone_0255229
crossref_primary_10_4236_aid_2022_122015
crossref_primary_10_3390_vaccines9111328
crossref_primary_10_1016_j_scitotenv_2020_144578
crossref_primary_10_2147_RMHP_S265008
crossref_primary_10_3934_math_2022471
crossref_primary_10_1007_s10668_021_01794_2
crossref_primary_10_1007_s10668_020_01028_x
crossref_primary_10_1016_j_idm_2020_09_004
crossref_primary_10_1016_j_idm_2020_09_003
crossref_primary_10_1016_j_nantod_2023_102001
crossref_primary_10_1016_j_scitotenv_2020_142391
crossref_primary_10_1080_11926422_2021_2007966
crossref_primary_10_5572_ajae_2021_094
crossref_primary_10_1016_j_envpol_2021_118369
crossref_primary_10_3390_su13158504
crossref_primary_10_3390_ijerph18126636
crossref_primary_10_4081_gh_2022_1073
crossref_primary_10_1038_s41598_021_87692_z
crossref_primary_10_1080_02786826_2020_1829536
crossref_primary_10_1136_bmjopen_2020_043269
crossref_primary_10_20473_jiet_v8i1_41281
crossref_primary_10_1029_2022GH000765
crossref_primary_10_1016_j_envint_2022_107301
crossref_primary_10_1016_j_envres_2021_111106
crossref_primary_10_32604_cmes_2024_046944
crossref_primary_10_1016_j_envres_2021_111104
crossref_primary_10_37871_jbres1155
crossref_primary_10_3389_fenvs_2021_772783
crossref_primary_10_1016_j_heliyon_2021_e06181
crossref_primary_10_3390_ijerph17155354
crossref_primary_10_1016_j_sste_2020_100390
crossref_primary_10_1016_S2542_5196_22_00174_7
crossref_primary_10_1016_j_envres_2020_110416
crossref_primary_10_1029_2020GH000292
crossref_primary_10_1177_11786302231156298
crossref_primary_10_4081_gh_2022_1065
crossref_primary_10_1016_j_idm_2022_06_006
crossref_primary_10_1111_brv_13167
crossref_primary_10_1080_20479700_2020_1858394
crossref_primary_10_1080_00207233_2022_2052536
crossref_primary_10_3389_fpubh_2024_1353441
crossref_primary_10_4081_gh_2022_1064
crossref_primary_10_1007_s11356_021_12648_9
crossref_primary_10_1016_j_ijheh_2020_113587
crossref_primary_10_3390_ijerph18020396
crossref_primary_10_1002_gch2_202000132
crossref_primary_10_1007_s00181_022_02319_0
crossref_primary_10_3390_su14095602
crossref_primary_10_1590_1982_3533_2022v31n3art09
crossref_primary_10_1007_s11356_021_16903_x
crossref_primary_10_26634_jse_18_1_20121
crossref_primary_10_1016_j_envres_2020_110521
crossref_primary_10_20473_jkl_v13i3_2021_186_192
crossref_primary_10_3389_fmed_2020_607786
crossref_primary_10_3390_buildings12030365
crossref_primary_10_1007_s11356_021_12709_z
crossref_primary_10_1007_s10668_020_01003_6
crossref_primary_10_1016_j_envpol_2020_115176
crossref_primary_10_3389_fenvs_2023_1104679
crossref_primary_10_1088_1748_9326_ac4cf2
crossref_primary_10_1177_1010539520944729
crossref_primary_10_3389_fpubh_2022_876691
crossref_primary_10_1016_j_jclepro_2021_127705
crossref_primary_10_1016_j_sciaf_2022_e01257
crossref_primary_10_1007_s10311_022_01418_9
crossref_primary_10_1007_s11356_021_12613_6
crossref_primary_10_1002_2475_8876_12183
crossref_primary_10_1007_s11356_022_21766_x
crossref_primary_10_3390_su132111667
crossref_primary_10_1016_j_chaos_2020_110027
crossref_primary_10_3390_ijerph19094989
crossref_primary_10_1016_j_rineng_2024_103507
crossref_primary_10_55761_abclima_v33i19_16545
crossref_primary_10_18273_saluduis_53_e_21037
crossref_primary_10_3390_ijerph17155477
crossref_primary_10_1016_j_jviromet_2024_115076
crossref_primary_10_7717_peerj_10655
crossref_primary_10_1016_j_scitotenv_2021_146579
crossref_primary_10_1029_2021GH000455
crossref_primary_10_1007_s00704_023_04656_1
crossref_primary_10_1038_s41598_021_87803_w
crossref_primary_10_1016_j_envres_2021_112348
crossref_primary_10_21601_ejeph_11056
crossref_primary_10_3934_mbe_2021131
crossref_primary_10_1007_s11356_021_18382_6
crossref_primary_10_1016_j_scitotenv_2020_141022
crossref_primary_10_1007_s10668_020_00854_3
crossref_primary_10_1002_pa_2648
crossref_primary_10_1038_s41598_021_85493_y
crossref_primary_10_1016_j_envpol_2020_116326
crossref_primary_10_1029_2022GH000727
crossref_primary_10_1016_j_bsheal_2024_10_001
crossref_primary_10_3748_wjg_v27_i35_5822
crossref_primary_10_3390_electronics10020184
crossref_primary_10_3390_ijerph18063214
crossref_primary_10_1016_j_enceco_2022_10_002
crossref_primary_10_1007_s11356_020_11273_2
crossref_primary_10_1016_j_envres_2020_110692
crossref_primary_10_1016_j_scitotenv_2020_142810
crossref_primary_10_4103_abr_abr_145_21
crossref_primary_10_3390_ijerph192012997
crossref_primary_10_1016_j_envres_2020_110576
crossref_primary_10_3390_ijerph19137814
crossref_primary_10_1007_s11356_020_12165_1
crossref_primary_10_1016_j_scitotenv_2020_140881
crossref_primary_10_1016_j_envres_2021_110972
crossref_primary_10_1007_s42398_021_00176_8
crossref_primary_10_1007_s11356_021_14625_8
crossref_primary_10_1016_j_cscee_2021_100113
crossref_primary_10_1016_j_ecoenv_2021_112297
crossref_primary_10_1016_j_jobb_2021_02_001
crossref_primary_10_2147_RMHP_S279695
crossref_primary_10_1002_ieam_4481
crossref_primary_10_1007_s10668_020_01016_1
crossref_primary_10_1016_j_cej_2020_127522
crossref_primary_10_1016_j_biochi_2021_09_009
crossref_primary_10_1016_j_heliyon_2024_e25810
crossref_primary_10_1016_j_heliyon_2021_e07504
crossref_primary_10_1016_j_scitotenv_2020_142801
crossref_primary_10_1016_j_envres_2021_112249
crossref_primary_10_1016_j_jenvman_2021_112662
crossref_primary_10_1016_j_scitotenv_2020_143343
crossref_primary_10_1002_widm_1462
crossref_primary_10_1007_s11356_021_16666_5
crossref_primary_10_1007_s42398_021_00165_x
crossref_primary_10_1080_09603123_2022_2083090
crossref_primary_10_1038_s41598_021_90873_5
Cites_doi 10.1155/2011/734690
10.1128/JVI.03544-13
10.1016/j.scitotenv.2020.138201
10.1128/JVI.41.2.353-359.1982
10.1128/AEM.02291-09
10.2807/1560-7917.ES2013.18.38.20590
10.1016/S2213-2600(20)30076-X
10.1093/aje/kws259
10.1016/j.scitotenv.2018.02.136
10.1073/pnas.1815029116
10.1127/0941-2948/2013/0507
10.2807/1560-7917.ES2014.19.35.20892
10.1016/j.scitotenv.2020.138647
10.1016/j.epidem.2015.06.002
10.1111/j.1445-5994.2007.01358.x
10.1016/j.scitotenv.2018.06.189
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.scitotenv.2020.138862
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 138862
ExternalDocumentID PMC7182516
32361443
10_1016_j_scitotenv_2020_138862
S0048969720323792
Genre Journal Article
GeographicLocations Brazil
Cities
GeographicLocations_xml – name: Cities
– name: Brazil
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c574t-dfe08bc4ffe6b5d7a696990a3e8bc489941911612b62285dd7872f4af510d62d3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Aug 21 18:18:58 EDT 2025
Fri Jul 11 16:44:35 EDT 2025
Fri Jul 11 12:34:02 EDT 2025
Thu Apr 03 07:00:11 EDT 2025
Tue Jul 01 03:35:40 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
Fri Feb 23 02:50:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Brazil
Tropical temperature
Generalized additive model
Transmission
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-dfe08bc4ffe6b5d7a696990a3e8bc489941911612b62285dd7872f4af510d62d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7182516
PMID 32361443
PQID 2398148837
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182516
proquest_miscellaneous_2574337578
proquest_miscellaneous_2398148837
pubmed_primary_32361443
crossref_citationtrail_10_1016_j_scitotenv_2020_138862
crossref_primary_10_1016_j_scitotenv_2020_138862
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_138862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-10
PublicationDateYYYYMMDD 2020-08-10
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lowen, Steel (bb0055) 2014; 88
Barreca, Shimshack (bb0010) 2012; 176
Casanova, Jeon, Rutala, Weber, Sobsey (bb0025) 2010; 76
Wang, Goggins, Chan (bb0085) 2018; 643
Yongjiana, Jingubc, Fengmingb, Liqingb (bb0110) 2020
Wang, Jiang, Gong, Lu, Guo, Lu, Guo, Li, Zheng, Li, Yang, Zeng, Chen, Zheng, Li (bb0090) 2020
Zhu, Xie (bb0115) 2020
Moriyama, Ichinohe (bb0060) 2019; 116
Hastie, Tibshirani (bb0040) 1990
Xu, Shi, Wang, Zhang, Huang, Zhang, Liu, Zhao, Liu, Zhu (bb0100) 2020
Ng, Cowling (bb0065) 2014; 19
Thai, Choisy, Duong, Thiem, Yen, Hien (bb0075) 2015; 13
Chan, Peiris, Lam, Poon, Yuen, Seto (bb0030) 2011
Bukhari, Jameel (bb0020) 2020
Chu, Tian, Ren, Zhang, Zhang, Liu (bb0035) 1982; 41
Wu, Lang, Ma, Song, Kang, He, Zhang, Lu, Lin, Ling (bb0095) 2018; 628
Bi, Wang, Hiller (bb0015) 2007; 37
Liu, Zhou, Yao, Zhang, Li, Xu, He, Wang, Fu, Niu, Yan, Shi, Ren, Niu, Zhu, Li, Luo, Zhang (bb0050) 2020
Núñez-Delgado (bb0070) 2020
Van Doremalen, Bushmaker, Munster (bb0080) 2013; 18
Yip, Chang, Yeung, Yu (bb0105) 2007; 70
Alvares, Stape, Sentelhas, Goncalves, Sparoveket (bb0005) 2014; 22
Le, Le, Parikh, Brooks, Gardellini, Izurieta (bb0045) 2020
Bi (10.1016/j.scitotenv.2020.138862_bb0015) 2007; 37
Moriyama (10.1016/j.scitotenv.2020.138862_bb0060) 2019; 116
Barreca (10.1016/j.scitotenv.2020.138862_bb0010) 2012; 176
Wang (10.1016/j.scitotenv.2020.138862_bb0090) 2020
Chu (10.1016/j.scitotenv.2020.138862_bb0035) 1982; 41
Ng (10.1016/j.scitotenv.2020.138862_bb0065) 2014; 19
Wu (10.1016/j.scitotenv.2020.138862_bb0095) 2018; 628
Van Doremalen (10.1016/j.scitotenv.2020.138862_bb0080) 2013; 18
Thai (10.1016/j.scitotenv.2020.138862_bb0075) 2015; 13
Bukhari (10.1016/j.scitotenv.2020.138862_bb0020) 2020
Yongjiana (10.1016/j.scitotenv.2020.138862_bb0110) 2020
Chan (10.1016/j.scitotenv.2020.138862_bb0030) 2011
Le (10.1016/j.scitotenv.2020.138862_bb0045) 2020
Yip (10.1016/j.scitotenv.2020.138862_bb0105) 2007; 70
Zhu (10.1016/j.scitotenv.2020.138862_bb0115) 2020
Alvares (10.1016/j.scitotenv.2020.138862_bb0005) 2014; 22
Hastie (10.1016/j.scitotenv.2020.138862_bb0040) 1990
Núñez-Delgado (10.1016/j.scitotenv.2020.138862_bb0070) 2020
Liu (10.1016/j.scitotenv.2020.138862_bb0050) 2020
Xu (10.1016/j.scitotenv.2020.138862_bb0100) 2020
Casanova (10.1016/j.scitotenv.2020.138862_bb0025) 2010; 76
Wang (10.1016/j.scitotenv.2020.138862_bb0085) 2018; 643
Lowen (10.1016/j.scitotenv.2020.138862_bb0055) 2014; 88
32773241 - Sci Total Environ. 2020 Dec 1;746:141323
References_xml – year: 2011
  ident: bb0030
  article-title: The effects of temperature and relative humidity on the viability of the SARS coronavirus
  publication-title: Adv. Virol.
– year: 2020
  ident: bb0090
  article-title: Temperature significantly change COVID-19 transmission in 429 cities
  publication-title: medRxiv
– year: 2020
  ident: bb0110
  article-title: Association between short-term exposure to air pollution and COVID-19 infection: evidence from China
  publication-title: Science of the Total Environment
– volume: 176
  start-page: S114
  year: 2012
  end-page: S122
  ident: bb0010
  article-title: Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States
  publication-title: Am. J. Epidemiol.
– volume: 37
  start-page: 550
  year: 2007
  end-page: 554
  ident: bb0015
  article-title: Weather: driving force behind the transmission of severe acute respiratory syndrome in China?
  publication-title: Intern. Med. J.
– year: 1990
  ident: bb0040
  article-title: Generalized Additive Models
– year: 2020
  ident: bb0070
  article-title: What do we know about the SARS-CoV-2 coronavirus in the environment?
  publication-title: Science of the Total Environment
– volume: 628
  start-page: 766
  year: 2018
  end-page: 771
  ident: bb0095
  article-title: Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China
  publication-title: Sci. Total Environ.
– volume: 41
  start-page: 353
  year: 1982
  end-page: 359
  ident: bb0035
  article-title: Occurrence of temperature-sensitive influenza A viruses in nature
  publication-title: J. Virol.
– volume: 13
  start-page: 65
  year: 2015
  end-page: 73
  ident: bb0075
  article-title: Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam
  publication-title: Epidemics
– volume: 88
  start-page: 7692
  year: 2014
  end-page: 7695
  ident: bb0055
  article-title: Roles of humidity and temperature in shaping influenza seasonality
  publication-title: J. Virol.
– volume: 70
  start-page: 39
  year: 2007
  end-page: 46
  ident: bb0105
  article-title: Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens, Hong Kong
  publication-title: J. Environ. Health
– volume: 19
  year: 2014
  ident: bb0065
  article-title: Association between temperature, humidity and ebolavirus disease outbreaks in Africa, 1976 to 2014
  publication-title: Euro Surveill.
– year: 2020
  ident: bb0115
  article-title: Association between ambient temperature and COVID-19 infection in 122 cities from China
  publication-title: Science of the Total Environment
– volume: 76
  start-page: 2712
  year: 2010
  end-page: 2717
  ident: bb0025
  article-title: Effects of air temperature and relative humidity on coronavirus survival on surfaces
  publication-title: Appl. Environ. Microbiol.
– volume: 116
  start-page: 3118
  year: 2019
  end-page: 3125
  ident: bb0060
  article-title: High ambient temperature dampens adaptive immune responses to influenza A virus infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 643
  start-page: 414
  year: 2018
  end-page: 422
  ident: bb0085
  article-title: A time-series study of the association of rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus and norovirus infection among children in Hong Kong
  publication-title: Sci. Total Environ.
– year: 2020
  ident: bb0020
  article-title: Will Coronavirus Pandemic Diminish by Summer? SSRN
– year: 2020
  ident: bb0100
  article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome
  publication-title: Lancet Respir. Med.
– year: 2020
  ident: bb0050
  article-title: Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China
  publication-title: Sci. Total Environ.
– year: 2020
  ident: bb0045
  article-title: Ecological and health infrastructure factors affecting the transmission and mortality of COVID-19
  publication-title: BMC Infect. Dis.
– volume: 18
  year: 2013
  ident: bb0080
  article-title: Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions
  publication-title: Eurosurveillance
– volume: 22
  start-page: 711
  year: 2014
  end-page: 728
  ident: bb0005
  article-title: Koppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
– year: 2011
  ident: 10.1016/j.scitotenv.2020.138862_bb0030
  article-title: The effects of temperature and relative humidity on the viability of the SARS coronavirus
  publication-title: Adv. Virol.
  doi: 10.1155/2011/734690
– volume: 88
  start-page: 7692
  issue: 14
  year: 2014
  ident: 10.1016/j.scitotenv.2020.138862_bb0055
  article-title: Roles of humidity and temperature in shaping influenza seasonality
  publication-title: J. Virol.
  doi: 10.1128/JVI.03544-13
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0090
  article-title: Temperature significantly change COVID-19 transmission in 429 cities
  publication-title: medRxiv
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0115
  article-title: Association between ambient temperature and COVID-19 infection in 122 cities from China
  doi: 10.1016/j.scitotenv.2020.138201
– volume: 41
  start-page: 353
  issue: 2
  year: 1982
  ident: 10.1016/j.scitotenv.2020.138862_bb0035
  article-title: Occurrence of temperature-sensitive influenza A viruses in nature
  publication-title: J. Virol.
  doi: 10.1128/JVI.41.2.353-359.1982
– year: 1990
  ident: 10.1016/j.scitotenv.2020.138862_bb0040
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0020
– volume: 76
  start-page: 2712
  issue: 9
  year: 2010
  ident: 10.1016/j.scitotenv.2020.138862_bb0025
  article-title: Effects of air temperature and relative humidity on coronavirus survival on surfaces
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02291-09
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0045
  article-title: Ecological and health infrastructure factors affecting the transmission and mortality of COVID-19
  publication-title: BMC Infect. Dis.
– volume: 18
  year: 2013
  ident: 10.1016/j.scitotenv.2020.138862_bb0080
  article-title: Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES2013.18.38.20590
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0110
  article-title: Association between short-term exposure to air pollution and COVID-19 infection: evidence from China
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0100
  article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30076-X
– volume: 176
  start-page: S114
  issue: Suppl. 7
  year: 2012
  ident: 10.1016/j.scitotenv.2020.138862_bb0010
  article-title: Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kws259
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0050
  article-title: Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China
  publication-title: Sci. Total Environ.
– volume: 628
  start-page: 766
  year: 2018
  ident: 10.1016/j.scitotenv.2020.138862_bb0095
  article-title: Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.136
– volume: 116
  start-page: 3118
  issue: 8
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138862_bb0060
  article-title: High ambient temperature dampens adaptive immune responses to influenza A virus infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1815029116
– volume: 22
  start-page: 711
  issue: 6
  year: 2014
  ident: 10.1016/j.scitotenv.2020.138862_bb0005
  article-title: Koppen’s climate classification map for Brazil
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2013/0507
– volume: 19
  issue: 35
  year: 2014
  ident: 10.1016/j.scitotenv.2020.138862_bb0065
  article-title: Association between temperature, humidity and ebolavirus disease outbreaks in Africa, 1976 to 2014
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES2014.19.35.20892
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138862_bb0070
  article-title: What do we know about the SARS-CoV-2 coronavirus in the environment?
  doi: 10.1016/j.scitotenv.2020.138647
– volume: 70
  start-page: 39
  issue: 3
  year: 2007
  ident: 10.1016/j.scitotenv.2020.138862_bb0105
  article-title: Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens, Hong Kong
  publication-title: J. Environ. Health
– volume: 13
  start-page: 65
  year: 2015
  ident: 10.1016/j.scitotenv.2020.138862_bb0075
  article-title: Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2015.06.002
– volume: 37
  start-page: 550
  year: 2007
  ident: 10.1016/j.scitotenv.2020.138862_bb0015
  article-title: Weather: driving force behind the transmission of severe acute respiratory syndrome in China?
  publication-title: Intern. Med. J.
  doi: 10.1111/j.1445-5994.2007.01358.x
– volume: 643
  start-page: 414
  year: 2018
  ident: 10.1016/j.scitotenv.2020.138862_bb0085
  article-title: A time-series study of the association of rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus and norovirus infection among children in Hong Kong
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.189
– reference: 32773241 - Sci Total Environ. 2020 Dec 1;746:141323
SSID ssj0000781
Score 2.6874886
Snippet The coronavirus disease 2019 (COVID-19) outbreak has become a severe public health issue. The novelty of the virus prompts a search for understanding of how...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 138862
SubjectTerms Betacoronavirus
Brazil
capital
Cities
Coronavirus Infections
COVID-19
COVID-19 infection
dose response
Generalized additive model
governance
growth curves
health services
Humans
Pandemics
Pneumonia, Viral
public health
regression analysis
SARS-CoV-2
Temperature
Transmission
Tropical temperature
tropics
viruses
Title Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil
URI https://dx.doi.org/10.1016/j.scitotenv.2020.138862
https://www.ncbi.nlm.nih.gov/pubmed/32361443
https://www.proquest.com/docview/2398148837
https://www.proquest.com/docview/2574337578
https://pubmed.ncbi.nlm.nih.gov/PMC7182516
Volume 729
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NQ0hICEFh0A0mI_EAD2GJ7cYxb6Ns6qgYEtpgPEWJ7YigKqnaFGk88LdzFycdBcEeeIqS2FFyX76L734H8MzkLjI2U0FkjAzQSoogSaQMMqNMkcuIc0e1w-9O48m5fHsxutiCcV8LQ2mVne33Nr211t2Vg46aB_OypBpfmehY0z4iF0qTHZZSkZS__HGV5kFgNn6XGRUbR2_keOFzmxp9028YKHLqAZEkMf_bCvWnB_p7IuUvK9PxXbjTuZTs0L_1Pdhy1QBu-iaTlwPYObqqZcNhnTIvB3Db_7JjvhLpPnw-c-hDe4xlRnkdlEWEhJ9dMl8evGTj9x9P3gSRZg0tcSgi9K-NlRV7vlzlL5pFPSeeM9PCtLK6YK8X2fdy9gDOj4_OxpOg67wQmJGSTWALFya5kUXh4nxkVRYj6XSYCUdXMUSTGOahr8jzmPNkZC2qPS9kVqCG25hbsQPbVV25R8CykOcqclroJJR5pLWVJjSJUS60hZVuCHFP7dR0sOTUHWOW9vlnX9M1m1JiU-rZNIRwPXHukTmun_KqZ2e6IWQprh_XT37aC0CK9KV9laxy9WqZEoQiRpUY6v9jDNJVCGoeMISHXmjWby0IAEdKMQS1IU7rAQQBvnmnKr-0UODoWaCDGu_-z4ftwS06C1qc38ew3SxW7gl6Wk2-36rSPtw4PJlOTuk4_fBp-hMivi2E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NnRBICEFho3waiQd4iJY4TuLwNsqmlm3lpUPjyUpsRwRVSdWmk7a_nrs66SgI9sCrY0fOffnOufsdwFud20CbLPECrYWHVjL0pBTCy3Sii1wEnFuqHT6bxKNz8fkiutiBYVcLQ2mVre13Nn1trduRg5aaB_OypBpfIdM4pf-IPExStMO7hE4V9WD3cHwymtwY5ES6xnkCdRsXbKV54aubGt3TS4wVObWBkDLmfzuk_nRCf8-l_OVwOn4ID1qvkh26jT-CHVv14Y7rM3nVh72jm3I2nNbq87IP992tHXPFSI_h29SiG-1glhmldlAiEdJ-dsVchfCSDb98HX_ygpQ1dMqhlNB1Gysr9m65yt83i3pObGd6jdTK6oJ9XGTX5ewJnB8fTYcjr22-4OkoEY1nCuvLXIuisHEemSSLkXSpn4WWRjFKExjpobvI85hzGRmDms8LkRWo5CbmJtyDXlVX9imwzOd5Etg0TKUv8iBNjdC-ljqxvimMsAOIO2or3SKTU4OMmepS0H6oDZsUsUk5Ng3A3yycO3CO25d86NiptuRM4RFy--I3nQAopC_9WskqW6-WilAUMbDEaP8fc5CuYUj9Awaw74Rms-uQMHCECAeQbInTZgKhgG8_qcrvazRwdC7QR42f_c-HvYa7o-nZqTodT06ewz164q1hf19Ar1ms7Et0vJr8VatYPwHkJi6S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+significantly+changes+COVID-19+transmission+in+%28sub%29tropical+cities+of+Brazil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Prata%2C+David+N.&rft.au=Rodrigues%2C+Waldecy&rft.au=Bermejo%2C+Paulo+H.&rft.date=2020-08-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=729&rft.spage=138862&rft.epage=138862&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.138862&rft_id=info%3Apmid%2F32361443&rft.externalDocID=PMC7182516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon