Metabolome analysis using multiple data mining approaches suggests luteolin biosynthesis in Physcomitrella patens
The model land plant Physcomitrella patens synthesizes flavonoids which may act as protectant of ultraviolet-B radiation. We aimed to uncover its flavonoid profile, for which metabolome analysis using liquid chromatography coupled with Ion trap/Orbitrap mass spectrometry was performed. From the 80%...
Saved in:
Published in | Plant Biotechnology Vol. 37; no. 3; pp. 377 - 381 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japanese Society for Plant Biotechnology
25.09.2020
Japan Science and Technology Agency Japanese Society for Plant Cell and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The model land plant Physcomitrella patens synthesizes flavonoids which may act as protectant of ultraviolet-B radiation. We aimed to uncover its flavonoid profile, for which metabolome analysis using liquid chromatography coupled with Ion trap/Orbitrap mass spectrometry was performed. From the 80% methanol extracts, 661 valid peaks were detected. Prediction of the elemental compositions within a mass accuracy of 2 ppm indicated that 217 peaks had single elemental composition. A compound database search revealed 47 peaks to be annotated as secondary metabolites based on the compound database search. Comprehensive substituent search by ShiftedIonsFinder showed there were 13 peaks of potential flavonoid derivatives. Interestingly, a peak having m/z 287.0551, corresponding to that of luteolin, was detected, even though flavone synthase has never been identified in P. patens. Using P. patens labeled with stable isotopes (13C-, 15N-, 18O-, and 34S), we confirmed the elemental composition of the peak as C15H10O6. By a comparison of MS/MS spectra with that of authentic standard, the peak was identified as luteolin or related flavone isomers. This is the first report of luteolin or related flavones synthesis and the possibility of the existence of an unknown enzyme with flavone synthase activity in P. patens. |
---|---|
AbstractList | The model land plant Physcomitrella patens synthesizes flavonoids which may act as protectant of ultraviolet-B radiation. We aimed to uncover its flavonoid profile, for which metabolome analysis using liquid chromatography coupled with Ion trap/Orbitrap mass spectrometry was performed. From the 80% methanol extracts, 661 valid peaks were detected. Prediction of the elemental compositions within a mass accuracy of 2 ppm indicated that 217 peaks had single elemental composition. A compound database search revealed 47 peaks to be annotated as secondary metabolites based on the compound database search. Comprehensive substituent search by ShiftedIonsFinder showed there were 13 peaks of potential flavonoid derivatives. Interestingly, a peak having m/z 287.0551, corresponding to that of luteolin, was detected, even though flavone synthase has never been identified in P. patens. Using P. patens labeled with stable isotopes (13C-, 15N-, 18O-, and 34S), we confirmed the elemental composition of the peak as C15H10O6. By a comparison of MS/MS spectra with that of authentic standard, the peak was identified as luteolin or related flavone isomers. This is the first report of luteolin or related flavones synthesis and the possibility of the existence of an unknown enzyme with flavone synthase activity in P. patens. The model land plant Physcomitrella patens synthesizes flavonoids which may act as protectant of ultraviolet-B radiation. We aimed to uncover its flavonoid profile, for which metabolome analysis using liquid chromatography coupled with Ion trap/Orbitrap mass spectrometry was performed. From the 80% methanol extracts, 661 valid peaks were detected. Prediction of the elemental compositions within a mass accuracy of 2 ppm indicated that 217 peaks had single elemental composition. A compound database search revealed 47 peaks to be annotated as secondary metabolites based on the compound database search. Comprehensive substituent search by ShiftedIonsFinder showed there were 13 peaks of potential flavonoid derivatives. Interestingly, a peak having m / z 287.0551, corresponding to that of luteolin, was detected, even though flavone synthase has never been identified in P. patens . Using P . patens labeled with stable isotopes ( 13 C-, 15 N-, 18 O-, and 34 S), we confirmed the elemental composition of the peak as C 15 H 10 O 6 . By a comparison of MS/MS spectra with that of authentic standard, the peak was identified as luteolin or related flavone isomers. This is the first report of luteolin or related flavones synthesis and the possibility of the existence of an unknown enzyme with flavone synthase activity in P. patens . |
Author | Hiraga, Yasuhide Shimada, Norimoto Suzuki, Hideyuki Sakurai, Nozomu Kera, Kota Ara, Takeshi Nagashima, Yoshiki |
Author_xml | – sequence: 1 fullname: Hiraga, Yasuhide organization: Research and Development Department, Kazusa DNA Research Institute – sequence: 2 fullname: Ara, Takeshi organization: Research and Development Department, Kazusa DNA Research Institute – sequence: 3 fullname: Nagashima, Yoshiki organization: Research and Development Department, Kazusa DNA Research Institute – sequence: 4 fullname: Shimada, Norimoto organization: Research and Development Department, Kazusa DNA Research Institute – sequence: 5 fullname: Sakurai, Nozomu organization: Research and Development Department, Kazusa DNA Research Institute – sequence: 6 fullname: Suzuki, Hideyuki organization: Research and Development Department, Kazusa DNA Research Institute – sequence: 7 fullname: Kera, Kota organization: Research and Development Department, Kazusa DNA Research Institute |
BookMark | eNptkdtq3DAQhk1JaQ7tOxhy05vdSJblA4VCCT0EUtpC7sVIHttaZMmR5ILfvnI2XegBgTTS_P_HjOYyO7POYpZdU7LnnNKb2YCNUruIarTOuGHdF2RPeMHli-yCsrLeVZSWZ09xsSt5Q86zyxAOhBSckuJVds4YaZqC8Ivs8StGkIkyYQ4WzBp0yJeg7ZBPi4l6Nph3ECGftN0eYZ69AzViyMMyDBhiyM0S0Rlt81RUWG1MyQRJ9-_jGpSbdPRoDOQzRLThdfayBxPwzfN5lT18-vhw-2V3_-3z3e2H-53idRl3qpMlVrLlvIK-ZFx2tGW8V1BWCphsG0yrqfu-bWvCm6ZpVQEUe0pKKVXHrrL3R-y8yAk7hTZ6MGL2egK_Cgda_JmxehSD-ylqzuuKVwnw9hng3eOSGhWTDmprxKJbgihKzqqmLiqapNd_SQ9u8ek3N1VZt21V0yap3h1VyrsQPPanYigR22TFv5MVBRFPk03uH0f3IUQY8OQFH7Uy-D8vqwXbtt-Mk1aN4AVa9gsq38Gc |
CitedBy_id | crossref_primary_10_1038_s41598_024_63508_8 |
Cites_doi | 10.1104/pp.110.154658 10.1021/acs.jnatprod.7b00085 10.1515/znc-1998-1-202 10.1016/j.phytochem.2005.07.013 10.1186/1471-2148-14-23 10.1038/35017595 10.1104/pp.104.1.171 10.1007/s11103-009-9565-z 10.1126/science.1150646 10.1111/tpj.13801 10.1186/1471-2148-11-104 10.3732/ajb.91.10.1535 10.1093/emboj/19.22.6150 10.5511/plantbiotechnology.14.0609c 10.1155/2014/194812 10.1093/pcp/pcr165 10.1016/0031-9422(92)83482-E 10.3389/fbioe.2015.00038 10.1007/s11306-018-1364-6 10.2307/3869583 10.1016/0305-1978(96)88877-6 10.1093/bioinformatics/bts660 10.1104/pp.96.3.680 10.1104/pp.126.2.485 10.1126/science.1065156 10.1038/ncomms12399 |
ContentType | Journal Article |
Copyright | 2020 Japanese Society for Plant Biotechnology Copyright Japan Science and Technology Agency 2020 2020 Japanese Society for Plant Biotechnology 2020 Japanese Society for Plant Biotechnology |
Copyright_xml | – notice: 2020 Japanese Society for Plant Biotechnology – notice: Copyright Japan Science and Technology Agency 2020 – notice: 2020 Japanese Society for Plant Biotechnology 2020 Japanese Society for Plant Biotechnology |
DBID | AAYXX CITATION 7QO 8FD FR3 P64 7X8 5PM |
DOI | 10.5511/plantbiotechnology.20.0525b |
DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-6114 |
EndPage | 381 |
ExternalDocumentID | 10_5511_plantbiotechnology_20_0525b article_plantbiotechnology_37_3_37_20_0525b_article_char_en |
Genre | General Information |
GroupedDBID | 123 29O 2WC 53G ACIWK ACPRK AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS E3Z HYE JSF JSH KQ8 M~E OK1 RJT RNS RPM RZJ TR2 AAYXX CITATION 7QO 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c574t-cdb4e6b9556af435bd1935fca46ca3b98e8e887ff997058889c2a1ef104bbcd3 |
IEDL.DBID | RPM |
ISSN | 1342-4580 |
IngestDate | Fri Sep 01 02:35:39 EDT 2023 Fri Aug 16 10:53:22 EDT 2024 Thu Oct 10 16:11:17 EDT 2024 Fri Aug 23 03:02:53 EDT 2024 Wed Apr 05 06:50:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-cdb4e6b9556af435bd1935fca46ca3b98e8e887ff997058889c2a1ef104bbcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Bioinformation and DDBJ Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan These authors contributed equally to this work. Present address: Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Present address: Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura, Chiba 285-0801, Japan Present address: Thermo Fisher Scientific, 3-9 Moriya-cho, Kanagawa, Yokohama, Kanagawa 221-0022, Japan |
OpenAccessLink | https://www.jstage.jst.go.jp/article/plantbiotechnology/37/3/37_20.0525b/_article/-char/en |
PMID | 33088205 |
PQID | 2447996718 |
PQPubID | 1976388 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557656 proquest_miscellaneous_2453687261 proquest_journals_2447996718 crossref_primary_10_5511_plantbiotechnology_20_0525b jstage_primary_article_plantbiotechnology_37_3_37_20_0525b_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 20200925 |
PublicationDateYYYYMMDD | 2020-09-25 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200925 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: c/o International Academic Printing Co., Ltd. YOKENDO Ltd |
PublicationTitle | Plant Biotechnology |
PublicationYear | 2020 |
Publisher | Japanese Society for Plant Biotechnology Japan Science and Technology Agency Japanese Society for Plant Cell and Molecular Biology |
Publisher_xml | – name: Japanese Society for Plant Biotechnology – name: Japan Science and Technology Agency – name: Japanese Society for Plant Cell and Molecular Biology |
References | Stafford HA (1991) Flavonoid evolution: An enzymic approach. Plant Physiol 96: 680–685 Sievers H, Burkhardt G, Becker H, Zinsmeister HD (1992) Hypnogenols and other dihydroflavonols from the moss Hypnum cupressiforme. Phytochemistry 31: 3233–3237 Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14: 23 Martens S, Mithofer A (2005) Flavones and flavone synthases. Phytochemistry 66: 2399–2407 Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19: 6150–6161 Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91: 1535–1556 Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5: 171–179 Sakurai N, Ara T, Kanaya S, Nakamura Y, Iijima Y, Enomoto M, Motegi T, Aoki K, Suzuki H, Shibata D (2013) An application of a relational database system for high-throughput prediction of elemental compositions from accurate mass values. Bioinformatics 29: 290–291 Waterman MJ, Nugraha AS, Hendra R, Ball GE, Robinson SA, Keller PA (2017) Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening activity. J Nat Prod 80: 2224–2231 Winkel-Shirley B (2001) Flavonoid biosynthesis: A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126: 485–493 Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, et al. (2012) KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53: e1 Koduri PK, Gordon GS, Barker EI, Colpitts CC, Ashton NW, Suh DY (2010) Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Mol Biol 72: 247–263 Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69 Kera K, Fine DD, Wherritt DJ, Nagashima Y, Shimada N, Ara T, Ogata Y, Sumner LW, Suzuki H (2018) Pathway-specific metabolome analysis with 18O2-labeled Medicago truncatula via a mass spectrometry-based approach. Metabolomics 14: 71 Webby RF, Markham KR, Lewis Smith RI (1996) Chemotypes of the Antarctic moss Bryum algens delineated by their flavonoid constituents. Biochem Syst Ecol 24: 469–475 Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA (2010) The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol 153: 1123–1134 Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294: 2351–2353 Wodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M, Becker B (2011) Origin of land plants: Do conjugating green algae hold the key? BMC Evol Biol 11: 104 Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R, et al. (2018) The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J 93: 515–533 Tohge T, Wendenburg R, Ishihara H, Nakabayashi R, Watanabe M, Sulpice R, Hoefgen R, Takayama H, Saito K, Stitt M, et al. (2016) Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nat Commun 7: 12399 Brinkmeier E, Geiger H, Zinsmeister HD (1998) Flavone-7-O-sophorotriosides and biflavonoids from the moss Leptostomum macrocarpon (Leptostomataceae). Z Naturforsch C 53: 1–3 Foyer CH, Lescure JC, Lefebvre C, Morot-Gaudry JF, Vincentz M, Vaucheret H (1994) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol 104: 171–178 Ara T, Enomoto M, Arita M, Ikeda C, Kera K, Yamada M, Nishioka T, Ikeda T, Nihei Y, Shibata D, et al. (2015) Metabolonote: A wiki-based database for managing hierarchical metadata of metabolome analyses. Front Bioeng Biotechnol 3: 38 Ries G, Heller W, Puchta H, Sandermann H, Seidlitz HK, Hohn B (2000) Elevated UV-B radiation reduces genome stability in plants. Nature 406: 98–101 Kera K, Ogata Y, Ara T, Nagashima Y, Shimada N, Nozomu S, Shibata D, Suzuki H (2014) ShiftedIonsFinder: A standalone Java tool for finding peaks with specified mass differences by comparing mass spectra of isotope-labeled and unlabeled data sets. Plant Biotechnol 31: 269–274 Sakurai N, Ara T, Enomoto M, Motegi T, Morishita Y, Kurabayashi A, Iijima Y, Ogata Y, Nakajima D, Suzuki H, et al. (2014) Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data. BioMed Res Int 2014: 1–11 22 23 24 25 26 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 26 doi: 10.1104/pp.110.154658 – ident: 22 doi: 10.1021/acs.jnatprod.7b00085 – ident: 3 doi: 10.1515/znc-1998-1-202 – ident: 13 doi: 10.1016/j.phytochem.2005.07.013 – ident: 16 doi: 10.1186/1471-2148-14-23 – ident: 15 doi: 10.1038/35017595 – ident: 4 doi: 10.1104/pp.104.1.171 – ident: 9 doi: 10.1007/s11103-009-9565-z – ident: 14 doi: 10.1126/science.1150646 – ident: 10 doi: 10.1111/tpj.13801 – ident: 25 doi: 10.1186/1471-2148-11-104 – ident: 11 doi: 10.3732/ajb.91.10.1535 – ident: 5 doi: 10.1093/emboj/19.22.6150 – ident: 8 doi: 10.5511/plantbiotechnology.14.0609c – ident: 17 doi: 10.1155/2014/194812 – ident: 1 doi: 10.1093/pcp/pcr165 – ident: 19 doi: 10.1016/0031-9422(92)83482-E – ident: 2 doi: 10.3389/fbioe.2015.00038 – ident: 7 doi: 10.1007/s11306-018-1364-6 – ident: 12 doi: 10.2307/3869583 – ident: 23 doi: 10.1016/0305-1978(96)88877-6 – ident: 18 doi: 10.1093/bioinformatics/bts660 – ident: 20 doi: 10.1104/pp.96.3.680 – ident: 24 doi: 10.1104/pp.126.2.485 – ident: 6 doi: 10.1126/science.1065156 – ident: 21 doi: 10.1038/ncomms12399 |
SSID | ssj0025102 |
Score | 2.2665434 |
Snippet | The model land plant Physcomitrella patens synthesizes flavonoids which may act as protectant of ultraviolet-B radiation. We aimed to uncover its flavonoid... The model land plant Physcomitrella patens synthesizes flavonoids which may act as protectant of ultraviolet-B radiation. We aimed to uncover its flavonoid... |
SourceID | pubmedcentral proquest crossref jstage |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 377 |
SubjectTerms | Biosynthesis Chemical composition Data mining Flavones flavonoid Flavonoids Ions Isomers Isotopes LC-MS Liquid chromatography Mass spectrometry Mass spectroscopy Metabolites metabolome Physcomitrella patens Searching Secondary metabolites stable isotope Stable isotopes Ultraviolet radiation |
Title | Metabolome analysis using multiple data mining approaches suggests luteolin biosynthesis in Physcomitrella patens |
URI | https://www.jstage.jst.go.jp/article/plantbiotechnology/37/3/37_20.0525b/_article/-char/en https://www.proquest.com/docview/2447996718 https://search.proquest.com/docview/2453687261 https://pubmed.ncbi.nlm.nih.gov/PMC7557656 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Plant Biotechnology, 2020/09/25, Vol.37(3), pp.377-381 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9swEB12l7JsD6Wf1O22qLRXJ7H1ZR3L0mVZSOlhC3szkiylKYmTrp1D_31nHNsktKdiMBhZQvaMpPes5xmAT0JE5X3mU1OhGUQsTFqYgFQl5yKKiiKsE1Gcf1U338Xtvbw_ATn8C9OJ9r1bTurVelIvf3Tayu3aTwed2PTb_EpLRMlSTU_hFB10oOg9y0In67Y4uchTIYvZOXzEmQGBQTbdrrC3brlpx6_WSBAnlMnNXcA5MnuEm5TH7mCFevQTQdoiHOHPY_XkwXJ0_RSe9DiSfd739xmchPo5PD6ILvgCfs1DiyZebdaB2T72CCOd-4INMkJGAlG27pJEsCG8eGhYs1vQvlPD0C8DpfVh-DzN7xrRIjWC16QcRWddtg8kn2JbS0r4l3B3_eXu6ibtMyykXmrRpr5yIihnpFQ2InByFeI5Gb0VylvuTBHwKHSMxuiZRLJsfG6zEJHDOecr_grO6k0dXgMzGdcFNjLzHBsKwVRcVZmO1lqd5UomIIaXWm73cTRK5B9klvJvs5T5rOzMksDt3gBjpd4P_lWJ65LTaag83ks_sOEskMDlYMSyH6lNifBGI-fDJTqBD2MxjjHaOLF12OzoHslVoZFsJqCPjD92i6J0H5eg83bRuntnffPfNd_CRU4kn7bC5CWctQ-78A6RUOved57_B_gQEw8 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aA41xQPwUgQFGcE2bxHYcH9HEVMY6cSjSbpHtOF1Rm5YlPfDf816aRK3ghCJFimJbTt6z_X3xl_cAPglRps7FLtQFmkGUmQ4z7ZGqJFyUoqAI60QUp9fp5Ie4vJE3RyD7f2Fa0b6zi1G1XI2qxW2rrdys3LjXiY2_T8-VRJQs0_E9uI_jNRI9Se94FrpZu8nJRRIKmUUn8BHnBoQG8XizxP7axboZvlsjRRxRLjd7CifI7RFwUia7vTXqwU-EaXN_gEAP9ZN7C9LFE3jcIUn2edfjp3Dkq2fwaC--4HP4NfUNGnm5XnlmuugjjJTuc9YLCRlJRNmqTRPB-gDjvmb1dk47TzVDz_SU2Ifh89S_K8SL1Ahek3YU3XXR3JGAim0MaeFfwOziy-x8EnY5FkInlWhCV1jhU6ulTE2J0MkWiOhk6YxIneFWZx6PTJWl1iqSSJe1S0zsS2Rx1rqCv4Tjal35V8B0zFWGjUSOY0Pe64KnRaxKY4yKk1QGIPqXmm92kTRyZCBklvxvs-RJlLdmCeByZ4ChUucJ_6rEVc7p1FceytIvbDgPBHDWGzHvxmqdI8BRyPpwkQ7gw3AbRxltnZjKr7dURvI0U0g3A1AHxh-6RXG6D--g-7bxujt3ff3fNd_Dw8lsepVffb3-9gZOE6L8tDEmz-C4udv6t4iLGvuuHQV_AIQlFmU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BgqrlgHiKwAJGcE3z8Cs-ooVqWehqD4u0t8h2nFLUptlNeth_zzhNolZwQpEiRX7IyYzj74u_zAB8YqwU1iY2VAWagZWZCjPlkKqklJWs8BHWPVGcX4izn-z8ml_vpfrqRPvWLKfVaj2tlr86bWW9ttGgE4su56eSI0rmIqqLMroPD3DOxmIg6j3XQlfrNjopS0PGs3gCH_H9gPAgieoVjtksN-347Rpp4tTnczPHMEF-j6DTZ7PbW6ce_kaotnAHKPRQQ7m3KM2ewOMeTZLPu1E_hXuuegaP9mIMPoebuWvR0KvN2hHdRyAhXu2-IIOYkHiZKFl3qSLIEGTcNaTZLvzuU0PQO51P7kPwfpq7CjGj7wSvvX4UXXbZ3noRFam118O_gKvZ16vTs7DPsxBaLlkb2sIwJ4ziXOgS4ZMpENXx0momrKZGZQ6PTJalUjLmSJmVTXXiSmRyxtiCvoSjalO5V0BUQmWGncSWYkfOqYKKIpGl1lomqeABsOGh5vUumkaOLMSbJf_bLHka551ZAjjfGWBs1HvDvxpRmVN_GhqPdf1vbPguCOBkMGLez9cmR5AjkfnhQh3Ah7EYZ5rfPtGV22x9HU5FJpFyBiAPjD8Oy8fqPixBF-5idvcu-_q_W76HyeWXWf7j28X3N3Ccetbv98b4CRy1t1v3FqFRa951k-APTpUXeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolome+analysis+using+multiple+data+mining+approaches+suggests+luteolin+biosynthesis+in+Physcomitrella+patens&rft.jtitle=Plant+biotechnology+%28Tokyo%2C+Japan%29&rft.au=Hiraga%2C+Yasuhide&rft.au=Ara%2C+Takeshi&rft.au=Nagashima%2C+Yoshiki&rft.au=Shimada%2C+Norimoto&rft.date=2020-09-25&rft.pub=Japanese+Society+for+Plant+Cell+and+Molecular+Biology&rft.issn=1342-4580&rft.eissn=1347-6114&rft.volume=37&rft.issue=3&rft.spage=377&rft.epage=381&rft_id=info:doi/10.5511%2Fplantbiotechnology.20.0525b&rft_id=info%3Apmid%2F33088205&rft.externalDBID=PMC7557656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-4580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-4580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-4580&client=summon |