Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material

The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na 3 V 2 (PO 4 ) 2 F 3 /C are the subject of intense research focused o...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 585 - 12
Main Authors Yan, Guochun, Mariyappan, Sathiya, Rousse, Gwenaelle, Jacquet, Quentin, Deschamps, Michael, David, Renald, Mirvaux, Boris, Freeland, John William, Tarascon, Jean-Marie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.02.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na 3 V 2 (PO 4 ) 2 F 3 /C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered Na x V 2 (PO 4 ) 2 F 3 phase of tetragonal symmetry ( I 4 /mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na + /Na 0 . We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10–20% increase in the overall energy density. Na 3 V 2 (PO 4 ) 2 F 3 is a promising cathode material for Na-ion batteries, although its third sodium is usually not accessible electrochemically. Here the authors realize a disordered tetragonal NVPF phase, which can reversibly uptake 3 Na-ions and enables improved energy density for the NVPF/C full cell.
AbstractList Na3V2(PO4)2F3 is a promising cathode material for Na-ion batteries, although its third sodium is usually not accessible electrochemically. Here the authors realize a disordered tetragonal NVPF phase, which can reversibly uptake 3 Na-ions and enables improved energy density for the NVPF/C full cell.
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na 3 V 2 (PO 4) 2 F 3 /C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered Na x V 2 (PO 4) 2 F 3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na + /Na 0. We track the sodium-driven structural/ charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10-20% increase in the overall energy density.
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10–20% increase in the overall energy density.Na3V2(PO4)2F3 is a promising cathode material for Na-ion batteries, although its third sodium is usually not accessible electrochemically. Here the authors realize a disordered tetragonal NVPF phase, which can reversibly uptake 3 Na-ions and enables improved energy density for the NVPF/C full cell.
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na 3 V 2 (PO 4 ) 2 F 3 /C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered Na x V 2 (PO 4 ) 2 F 3 phase of tetragonal symmetry ( I 4 /mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na + /Na 0 . We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10–20% increase in the overall energy density. Na 3 V 2 (PO 4 ) 2 F 3 is a promising cathode material for Na-ion batteries, although its third sodium is usually not accessible electrochemically. Here the authors realize a disordered tetragonal NVPF phase, which can reversibly uptake 3 Na-ions and enables improved energy density for the NVPF/C full cell.
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na 3 V 2 (PO 4 ) 2 F 3 /C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered Na x V 2 (PO 4 ) 2 F 3 phase of tetragonal symmetry ( I 4 /mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na + /Na 0 . We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10–20% increase in the overall energy density.
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10–20% increase in the overall energy density.
The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10-20% increase in the overall energy density.The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the natural abundance of sodium. Presently, sodium-ion batteries based on Na3V2(PO4)2F3/C are the subject of intense research focused on improving the energy density by harnessing the third sodium, which has so far been reported to be electrochemically inaccessible. Here, we are able to trigger the activity of the third sodium electrochemically via the formation of a disordered NaxV2(PO4)2F3 phase of tetragonal symmetry (I4/mmm space group). This phase can reversibly uptake 3 sodium ions per formula unit over the 1 to 4.8 V voltage range, with the last one being re-inserted at 1.6 V vs Na+/Na0. We track the sodium-driven structural/charge compensation mechanism associated to the new phase and find that it remains disordered on cycling while its average vanadium oxidation state varies from 3 to 4.5. Full sodium-ion cells based on this phase as positive electrode and carbon as negative electrode show a 10-20% increase in the overall energy density.
ArticleNumber 585
Author Deschamps, Michael
Mirvaux, Boris
Tarascon, Jean-Marie
Yan, Guochun
Freeland, John William
David, Renald
Mariyappan, Sathiya
Rousse, Gwenaelle
Jacquet, Quentin
Author_xml – sequence: 1
  givenname: Guochun
  surname: Yan
  fullname: Yan, Guochun
  organization: Chimie du Solide-Energie, UMR 8260, Collège de France, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), School of Metallurgy and Environment, Central South University
– sequence: 2
  givenname: Sathiya
  surname: Mariyappan
  fullname: Mariyappan, Sathiya
  organization: Chimie du Solide-Energie, UMR 8260, Collège de France, Réseau sur le Stockage Electrochimique de l’Energie (RS2E)
– sequence: 3
  givenname: Gwenaelle
  surname: Rousse
  fullname: Rousse, Gwenaelle
  organization: Chimie du Solide-Energie, UMR 8260, Collège de France, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), Sorbonne Université - 4 Place Jussieu
– sequence: 4
  givenname: Quentin
  surname: Jacquet
  fullname: Jacquet, Quentin
  organization: Chimie du Solide-Energie, UMR 8260, Collège de France
– sequence: 5
  givenname: Michael
  surname: Deschamps
  fullname: Deschamps, Michael
  organization: Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS, CEMHTI UPR3079, Univ. Orléans
– sequence: 6
  givenname: Renald
  surname: David
  fullname: David, Renald
  organization: LRCS, Université de Picardie Jules Verne
– sequence: 7
  givenname: Boris
  surname: Mirvaux
  fullname: Mirvaux, Boris
  organization: Chimie du Solide-Energie, UMR 8260, Collège de France, Réseau sur le Stockage Electrochimique de l’Energie (RS2E)
– sequence: 8
  givenname: John William
  surname: Freeland
  fullname: Freeland, John William
  organization: Advanced Photon Source, Argonne National Laboratory
– sequence: 9
  givenname: Jean-Marie
  surname: Tarascon
  fullname: Tarascon, Jean-Marie
  email: jean-marie.tarascon@college-de-france.fr
  organization: Chimie du Solide-Energie, UMR 8260, Collège de France, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), Sorbonne Université - 4 Place Jussieu
BackLink https://hal.sorbonne-universite.fr/hal-02021279$$DView record in HAL
https://www.osti.gov/servlets/purl/1505146$$D View this record in Osti.gov
BookMark eNp9kk9v1DAQxSNUREvpF-AUwaU9BPw3ji9IVUXZSivKAbhaE3t216usXexspf329TYV0D3Ul1jj33uejN_b6ijEgFX1npJPlPDucxZUtKohVDek41I3u1fVCSOCNlQxfvTf_rg6y3lNyuKadkK8qY45UWWnxEk1zPxyhanGgGm5qyG4OsOiFHJ0frupfQx1D-OIyWOu7z0UpMYB7ZiiXeHGWxiGXb0Bh7XzOSaHCV39Hfhvdv7jVlywa15O93oY3lWvFzBkPHv6nla_rr_-vJo189tvN1eX88ZKJcbGdr0F1nfQatUKKQT0fWedo9Kxvu1AC9JjpwnpYSGtYgvFea-l0ojEadvy0-pm8nUR1uYu-Q2knYngzWMhpqWBNHo7oFFFQpSTLWIrOO1BO0KUBXCOW4pQvL5MXnfbfoPOYhgTDM9Mn58EvzLLeG9a3jImRDH4MBnEPHqTrR_RrmwMoczQUElkeccCXUzQ6sB7djk3-xphhFGm9D0t7PlTRyn-2WIezcZni8MAAeM2G0aVlkx2ghT04wG6jtsUyuz3lOwUbakuFJsom2LOCRd_O6DE7MNmprCZEjbzGDazK6LuQFT-DMaSlzIFP7ws5ZM0l3vCEtO_rl5QPQBhrOlg
CitedBy_id crossref_primary_10_1021_acsami_4c21356
crossref_primary_10_1021_acs_jpclett_3c01750
crossref_primary_10_1039_D2QI01568D
crossref_primary_10_1039_D3MH00003F
crossref_primary_10_1016_j_cej_2020_126109
crossref_primary_10_1021_acsenergylett_5c00315
crossref_primary_10_1002_aenm_202400373
crossref_primary_10_1016_j_pmatsci_2024_101382
crossref_primary_10_1002_smll_201903723
crossref_primary_10_1016_j_jechem_2020_03_047
crossref_primary_10_1002_adfm_202010694
crossref_primary_10_1002_smll_202104416
crossref_primary_10_1021_acsami_2c07897
crossref_primary_10_1016_j_electacta_2021_137905
crossref_primary_10_1149_1945_7111_ad1c12
crossref_primary_10_1002_adsu_202200047
crossref_primary_10_1039_D0NA00230E
crossref_primary_10_3390_batteries10080279
crossref_primary_10_1039_D0TA09553B
crossref_primary_10_1002_inf2_12225
crossref_primary_10_1016_j_jpowsour_2024_234405
crossref_primary_10_1021_acsaem_1c02787
crossref_primary_10_1002_adma_202102802
crossref_primary_10_1016_j_jpowsour_2022_231257
crossref_primary_10_1021_acsaem_1c03079
crossref_primary_10_1016_j_jechem_2024_02_013
crossref_primary_10_1016_j_molstruc_2024_138524
crossref_primary_10_1088_1361_6528_ac1718
crossref_primary_10_1149_1945_7111_ac42f2
crossref_primary_10_1002_smll_202308681
crossref_primary_10_1021_acsomega_4c02896
crossref_primary_10_1016_j_ensm_2022_10_011
crossref_primary_10_1088_2399_1984_abc103
crossref_primary_10_1002_adfm_202300135
crossref_primary_10_1002_aenm_201901785
crossref_primary_10_1051_bioconf_202412910010
crossref_primary_10_1016_j_jpowsour_2023_233741
crossref_primary_10_1002_sstr_202100217
crossref_primary_10_1002_adfm_202304617
crossref_primary_10_1016_j_cej_2019_123952
crossref_primary_10_1039_D2TA05971A
crossref_primary_10_1016_j_carbon_2019_10_045
crossref_primary_10_1021_acsaem_1c00579
crossref_primary_10_1016_j_jpowsour_2022_231727
crossref_primary_10_1016_j_joule_2020_06_003
crossref_primary_10_1016_j_jpowsour_2022_231726
crossref_primary_10_1016_j_ensm_2022_02_044
crossref_primary_10_1038_s41467_020_14444_4
crossref_primary_10_1016_j_cej_2024_151538
crossref_primary_10_1039_D4QI01141D
crossref_primary_10_1002_batt_202400076
crossref_primary_10_1016_j_jelechem_2020_114187
crossref_primary_10_1016_j_scriptamat_2022_114500
crossref_primary_10_1002_smtd_202101428
crossref_primary_10_1039_D3SC03498D
crossref_primary_10_1021_acsami_2c01894
crossref_primary_10_1021_acs_chemmater_9b02124
crossref_primary_10_1038_s41467_021_23132_w
crossref_primary_10_1088_2752_5724_acc7bb
crossref_primary_10_1039_C9TA11221A
crossref_primary_10_1002_aenm_202003399
crossref_primary_10_1016_j_ensm_2022_02_042
crossref_primary_10_1002_aenm_201903542
crossref_primary_10_1016_j_jallcom_2021_162862
crossref_primary_10_1021_acs_jpcc_1c04367
crossref_primary_10_1021_acs_chemmater_0c03190
crossref_primary_10_1002_eng2_12328
crossref_primary_10_1016_j_enchem_2020_100031
crossref_primary_10_1021_jacs_1c06727
crossref_primary_10_1002_adfm_201904398
crossref_primary_10_1016_j_jssc_2019_121010
crossref_primary_10_1002_smll_202302726
crossref_primary_10_1039_D0TA06230H
crossref_primary_10_1016_j_jpowsour_2022_231986
crossref_primary_10_1016_j_jpowsour_2025_236519
crossref_primary_10_1002_batt_201900054
crossref_primary_10_1016_j_jechem_2022_09_016
crossref_primary_10_1016_S1003_6326_22_65792_3
crossref_primary_10_1021_acsami_0c05370
crossref_primary_10_1021_acsenergylett_1c00426
crossref_primary_10_1002_smll_202310699
crossref_primary_10_1088_2515_7655_ac01ef
crossref_primary_10_1016_j_jpcs_2024_112008
crossref_primary_10_1016_j_jechem_2024_07_032
crossref_primary_10_1557_s43578_022_00646_7
crossref_primary_10_1021_acs_nanolett_2c03916
crossref_primary_10_1016_j_electacta_2023_143468
crossref_primary_10_1021_acs_chemmater_9b05205
crossref_primary_10_1039_D2TA00565D
crossref_primary_10_1016_j_mtnano_2020_100072
crossref_primary_10_1021_acsaem_1c04061
crossref_primary_10_1016_j_jpowsour_2022_232177
crossref_primary_10_1007_s11814_025_00388_2
crossref_primary_10_1039_C9EE02041A
crossref_primary_10_1039_D0CC03021J
crossref_primary_10_1002_aenm_202100729
crossref_primary_10_1039_C9CC05137F
crossref_primary_10_1002_adfm_202314851
crossref_primary_10_1016_j_xcrp_2020_100082
crossref_primary_10_1016_j_cej_2024_157264
crossref_primary_10_1016_j_est_2023_108781
crossref_primary_10_1039_D2NR03867F
crossref_primary_10_1002_cey2_222
crossref_primary_10_1002_cssc_202300244
crossref_primary_10_1016_j_jpowsour_2021_230485
crossref_primary_10_1002_adfm_202313998
crossref_primary_10_1039_D4MA00754A
crossref_primary_10_1002_ange_202419381
crossref_primary_10_1016_j_jallcom_2019_03_346
crossref_primary_10_5796_electrochemistry_20_00080
crossref_primary_10_1002_adfm_202314288
crossref_primary_10_1021_acsenergylett_2c02743
crossref_primary_10_1039_D0TA06614A
crossref_primary_10_1016_j_est_2024_111507
crossref_primary_10_1016_j_apmt_2021_101032
crossref_primary_10_1016_j_jechem_2021_06_015
crossref_primary_10_1039_D3YA00319A
crossref_primary_10_1021_acsaem_2c04090
crossref_primary_10_1002_celc_202001514
crossref_primary_10_1016_j_apsusc_2021_151495
crossref_primary_10_1021_acsami_0c14294
crossref_primary_10_1016_j_electacta_2020_136716
crossref_primary_10_3390_en16073051
crossref_primary_10_1021_acs_chemmater_4c02374
crossref_primary_10_1016_j_mseb_2024_117870
crossref_primary_10_1021_acssuschemeng_2c05775
crossref_primary_10_1002_celc_201901770
crossref_primary_10_1002_adfm_201908680
crossref_primary_10_1002_inf2_12184
crossref_primary_10_1016_j_ensm_2019_04_010
crossref_primary_10_1002_aenm_202302321
crossref_primary_10_1002_aenm_202002244
crossref_primary_10_1016_j_jallcom_2019_152430
crossref_primary_10_1039_C9TA07630A
crossref_primary_10_1002_eem2_12485
crossref_primary_10_1016_j_ensm_2020_11_010
crossref_primary_10_1002_batt_201900147
crossref_primary_10_1002_er_5397
crossref_primary_10_3390_met14121453
crossref_primary_10_1016_j_jpowsour_2021_230395
crossref_primary_10_1021_acs_chemrev_0c00767
crossref_primary_10_1021_acssuschemeng_3c02464
crossref_primary_10_1016_j_ensm_2022_04_025
crossref_primary_10_1002_celc_202000881
crossref_primary_10_1002_smll_202002200
crossref_primary_10_1021_acs_chemmater_3c00539
crossref_primary_10_1002_cssc_202100880
crossref_primary_10_1021_acsenergylett_4c00041
crossref_primary_10_1002_aenm_202300334
crossref_primary_10_1016_j_jpowsour_2020_229318
crossref_primary_10_1002_smtd_202200280
crossref_primary_10_1016_j_cclet_2022_107978
crossref_primary_10_1002_adfm_202214786
crossref_primary_10_3389_fchem_2021_670833
crossref_primary_10_1039_D0TA07912J
crossref_primary_10_1016_j_ces_2024_120522
crossref_primary_10_1021_acsami_4c08777
crossref_primary_10_1016_j_cej_2021_133456
crossref_primary_10_1016_j_nanoen_2020_105417
crossref_primary_10_1002_adfm_202204995
crossref_primary_10_1039_D3SC05593K
crossref_primary_10_1016_j_jpowsour_2023_233913
crossref_primary_10_1142_S1793604723400076
crossref_primary_10_1002_anie_201912964
crossref_primary_10_3390_ijms222112045
crossref_primary_10_1016_j_electacta_2021_138370
crossref_primary_10_1039_D0TA07872G
crossref_primary_10_1002_zaac_202000066
crossref_primary_10_1002_aenm_202403443
crossref_primary_10_1002_anie_202424572
crossref_primary_10_1021_acs_inorgchem_0c02546
crossref_primary_10_1039_D2TA05593G
crossref_primary_10_1021_acsami_2c15654
crossref_primary_10_4236_msce_2023_117004
crossref_primary_10_1016_j_jcis_2024_04_046
crossref_primary_10_1016_j_mtchem_2024_101978
crossref_primary_10_1002_anie_202003275
crossref_primary_10_1039_D1QM00179E
crossref_primary_10_1007_s12274_022_4583_0
crossref_primary_10_1021_acsnano_4c13052
crossref_primary_10_1021_acs_jpcc_1c04099
crossref_primary_10_3389_fphy_2019_00207
crossref_primary_10_1002_adma_202110108
crossref_primary_10_1002_batt_202400214
crossref_primary_10_1039_C9NR07545C
crossref_primary_10_1002_smll_202102010
crossref_primary_10_1016_j_ensm_2022_06_008
crossref_primary_10_1021_acs_chemmater_9b02220
crossref_primary_10_1002_aenm_202404999
crossref_primary_10_1016_j_apsusc_2021_150538
crossref_primary_10_1016_j_cej_2019_123661
crossref_primary_10_1039_D0CP03639K
crossref_primary_10_1021_acsaem_0c02622
crossref_primary_10_1016_j_nanoen_2024_110373
crossref_primary_10_1002_ange_202424572
crossref_primary_10_1016_j_procs_2022_01_294
crossref_primary_10_1002_advs_202200924
crossref_primary_10_1002_anie_201915666
crossref_primary_10_1039_D1NJ03779J
crossref_primary_10_1007_s10008_024_05836_3
crossref_primary_10_1002_ange_201912964
crossref_primary_10_1016_j_jiec_2024_01_047
crossref_primary_10_1016_j_jpowsour_2021_229771
crossref_primary_10_1016_j_jpowsour_2021_230515
crossref_primary_10_1002_chem_202100096
crossref_primary_10_1021_acsami_3c08915
crossref_primary_10_1016_j_jclepro_2024_143721
crossref_primary_10_3390_molecules25041000
crossref_primary_10_1039_C9CS00846B
crossref_primary_10_1016_j_cej_2021_130310
crossref_primary_10_1039_C9NR04790E
crossref_primary_10_1002_slct_202401605
crossref_primary_10_1016_j_ensm_2022_03_044
crossref_primary_10_1016_j_xcrp_2021_100665
crossref_primary_10_1038_s41467_022_31768_5
crossref_primary_10_1016_j_jpowsour_2020_228828
crossref_primary_10_1021_acsaem_0c01641
crossref_primary_10_1021_acsaem_4c03216
crossref_primary_10_1021_acssuschemeng_2c07572
crossref_primary_10_1016_j_inoche_2022_109881
crossref_primary_10_34133_energymatadv_0073
crossref_primary_10_1002_ange_202003275
crossref_primary_10_1149_1945_7111_ac001d
crossref_primary_10_1021_acs_chemmater_3c00745
crossref_primary_10_1016_j_nanoen_2024_109812
crossref_primary_10_1007_s12274_023_6005_3
crossref_primary_10_1016_j_electacta_2021_137722
crossref_primary_10_1016_j_scib_2020_01_018
crossref_primary_10_1002_ange_201915666
Cites_doi 10.1016/0368-2048(93)80014-D
10.1038/ncomms10308
10.1021/acs.jpcc.6b11413
10.1021/cm403679b
10.1039/c3ee40847g
10.1039/c3ee41379a
10.1002/mrc.984
10.1021/cr500192f
10.1021/ja406016j
10.1016/j.jpowsour.2012.10.034
10.1126/science.1212741
10.1002/adfm.201400561
10.1002/aenm.201200833
10.1021/cm202818u
10.1021/acs.chemmater.6b01989
10.1021/cm501644g
10.1016/j.ssi.2006.07.028
10.1021/acs.chemmater.5b02299
10.1149/2.0151514jes
10.1021/acs.chemmater.6b02659
10.1021/acs.chemmater.5b00361
10.1149/2.0311807jes
10.1021/cr100290v
10.1039/C5TA03780H
10.1002/aenm.201700514
10.1016/0926-2040(95)00002-8
10.1038/nmat4777
10.1149/2.0051605jes
10.1016/0921-4526(93)90108-I
10.1002/adma.201502449
10.1021/cm403728w
10.1038/nchem.2085
10.1002/aenm.201701912
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
College de France, Paris (France)
Research Network on Electrochemical Energy Storage (RS2E), Amiens (France)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
– name: College de France, Paris (France)
– name: Research Network on Electrochemical Energy Storage (RS2E), Amiens (France)
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
1XC
VOOES
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-019-08359-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_7e0d07d56ee6431ba9d007caadd3c1ea
PMC6362244
1505146
oai_HAL_hal_02021279v1
10_1038_s41467_019_08359_y
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
1XC
4.4
ABAWZ
BAPOH
CAG
COF
EJD
LGEZI
LOTEE
NADUK
NXXTH
VOOES
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
AFGXO
OIOZB
OTOTI
ZA5
5PM
PUEGO
ID FETCH-LOGICAL-c574t-c8bca2b8a69764544abb8cdd15d2b68a940be8900baf5c72f733b9579ee0d9c63
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:39 EDT 2025
Thu Aug 21 13:27:47 EDT 2025
Wed Nov 29 06:12:22 EST 2023
Sun Jul 06 06:10:46 EDT 2025
Mon Jul 21 10:07:29 EDT 2025
Wed Aug 13 06:31:12 EDT 2025
Tue Jul 01 02:21:22 EDT 2025
Thu Apr 24 23:07:17 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Materials science
Materials for energy and catalysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-c8bca2b8a69764544abb8cdd15d2b68a940be8900baf5c72f733b9579ee0d9c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
National Center for Scientific Research (CNRS) (France)
USDOE Office of Science (SC)
European Research Council (ERC)
AC02-06CH11357; 670116-ARPEMA
ORCID 0000-0001-8877-0015
0000-0003-2851-5906
0000-0001-8309-3932
0000-0002-7059-6845
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-08359-y
PMID 30718474
PQID 2175871619
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7e0d07d56ee6431ba9d007caadd3c1ea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6362244
osti_scitechconnect_1505146
hal_primary_oai_HAL_hal_02021279v1
proquest_miscellaneous_2179525840
proquest_journals_2175871619
crossref_primary_10_1038_s41467_019_08359_y
crossref_citationtrail_10_1038_s41467_019_08359_y
springer_journals_10_1038_s41467_019_08359_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-04
PublicationDateYYYYMMDD 2019-02-04
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Park (CR11) 2013; 135
Ponrouch (CR9) 2013; 6
Matts (CR22) 2015; 27
Broux (CR25) 2016; 28
Yang (CR2) 2011; 111
Zhang (CR15) 2016; 7
Bianchini (CR21) 2014; 26
Chihara (CR14) 2013; 227
Yan (CR20) 2018; 165
Park (CR18) 2014; 24
Bianchini, Xiao, Wang, Ceder (CR16) 2017; 7
Kubota, Komaba (CR5) 2015; 162
Li (CR28) 2013; 3
Massiot (CR32) 1995; 4
Dunn, Kamath, Tarascon (CR1) 2011; 334
Palomares (CR17) 2015; 3
Rodríguez-Carvajal (CR31) 1993; 192
Larcher, Tarascon (CR3) 2015; 7
Dugas, Zhang, Rozier, Tarascon (CR10) 2016; 163
Bianchini (CR23) 2015; 27
Grey, Tarascon (CR4) 2017; 16
CR8
Saracibar, Van der Ven, Arroyo-de Dompablo (CR27) 2012; 24
Broux (CR30) 2017; 121
Mu (CR12) 2015; 27
Pan, Hu, Chen (CR6) 2013; 6
Liu (CR24) 2014; 26
Massiot (CR33) 2002; 40
Dacek, Richards, Kitchaev, Ceder (CR19) 2016; 28
Yabuuchi, Kubota, Dahbi, Komaba (CR7) 2014; 114
Gover, Bryan, Burns, Barker (CR13) 2006; 177
Abbate (CR26) 1993; 62
Serras (CR29) 2013; 25
R Gover (8359_CR13) 2006; 177
H Li (8359_CR28) 2013; 3
HL Pan (8359_CR6) 2013; 6
V Palomares (8359_CR17) 2015; 3
M Bianchini (8359_CR23) 2015; 27
A Ponrouch (8359_CR9) 2013; 6
YU Park (8359_CR18) 2014; 24
N Yabuuchi (8359_CR7) 2014; 114
K Chihara (8359_CR14) 2013; 227
A Saracibar (8359_CR27) 2012; 24
M Bianchini (8359_CR16) 2017; 7
D Massiot (8359_CR32) 1995; 4
8359_CR8
B Zhang (8359_CR15) 2016; 7
ST Dacek (8359_CR19) 2016; 28
M Abbate (8359_CR26) 1993; 62
D Massiot (8359_CR33) 2002; 40
L Mu (8359_CR12) 2015; 27
D Larcher (8359_CR3) 2015; 7
R Dugas (8359_CR10) 2016; 163
IL Matts (8359_CR22) 2015; 27
T Broux (8359_CR30) 2017; 121
T Broux (8359_CR25) 2016; 28
G Yan (8359_CR20) 2018; 165
J Rodríguez-Carvajal (8359_CR31) 1993; 192
ZG Yang (8359_CR2) 2011; 111
M Bianchini (8359_CR21) 2014; 26
K Kubota (8359_CR5) 2015; 162
B Dunn (8359_CR1) 2011; 334
YU Park (8359_CR11) 2013; 135
P Serras (8359_CR29) 2013; 25
Z Liu (8359_CR24) 2014; 26
C Grey (8359_CR4) 2017; 16
References_xml – volume: 62
  start-page: 185
  year: 1993
  end-page: 195
  ident: CR26
  article-title: Soft X-ray absorption spectroscopy of vanadium oxides
  publication-title: J. Electron Spectros. Relat. Phenomena
  doi: 10.1016/0368-2048(93)80014-D
– volume: 7
  year: 2016
  ident: CR15
  article-title: Insertion compounds and composites made by ball milling for advanced sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10308
– volume: 121
  start-page: 4103
  year: 2017
  end-page: 4111
  ident: CR30
  article-title: VIV disproportionation upon sodium extraction from Na V (PO ) F observed by operando X-ray absorption spectroscopy and solid-state NMR
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11413
– volume: 25
  start-page: 4917
  year: 2013
  end-page: 4925
  ident: CR29
  article-title: Electrochemical Na extraction/insertion of Na V O (PO ) F
  publication-title: Chem. Mater.
  doi: 10.1021/cm403679b
– volume: 6
  start-page: 2338
  year: 2013
  end-page: 2360
  ident: CR6
  article-title: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40847g
– volume: 6
  start-page: 2361
  year: 2013
  end-page: 2369
  ident: CR9
  article-title: Towards high energy density sodium ion batteries through electrolyte optimization
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41379a
– volume: 40
  start-page: 70
  year: 2002
  end-page: 76
  ident: CR33
  article-title: Modelling one- and two-dimensional solid-state NMR spectra
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.984
– volume: 114
  start-page: 11636
  year: 2014
  end-page: 11682
  ident: CR7
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 135
  start-page: 13870
  year: 2013
  end-page: 13878
  ident: CR11
  article-title: A new high-energy cathode for a Na-ion battery with ultrahigh stability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406016j
– volume: 227
  start-page: 80
  year: 2013
  end-page: 85
  ident: CR14
  article-title: Cathode properties of Na M (PO ) F [M = Ti, Fe, V] for sodium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.034
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: CR1
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 24
  start-page: 4603
  year: 2014
  end-page: 4614
  ident: CR18
  article-title: A family of high-performance cathode materials for Na-ion batteries, Na (VO PO ) F (0 ≤ x ≤ 1): combined first-principles and experimental study
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400561
– volume: 3
  start-page: 428
  year: 2013
  end-page: 432
  ident: CR28
  article-title: A promising insertion anode material for lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200833
– ident: CR8
– volume: 24
  start-page: 495
  year: 2012
  end-page: 503
  ident: CR27
  article-title: Crystal structure, energetics, and electrochemistry of Li FeSiO polymorphs from first principles calculations
  publication-title: Chem. Mater.
  doi: 10.1021/cm202818u
– volume: 28
  start-page: 5450
  year: 2016
  end-page: 5460
  ident: CR19
  article-title: Structure and dynamics of fluorophosphate Na-ion battery cathodes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01989
– volume: 26
  start-page: 4238
  year: 2014
  end-page: 4247
  ident: CR21
  article-title: Na V (PO ) F revisited: a high-resolution diffraction study
  publication-title: Chem. Mater.
  doi: 10.1021/cm501644g
– volume: 177
  start-page: 1495
  year: 2006
  end-page: 1500
  ident: CR13
  article-title: The electrochemical insertion properties of sodium vanadium fluorophosphate, Na V (PO ) F
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2006.07.028
– volume: 27
  start-page: 6008
  year: 2015
  end-page: 6015
  ident: CR22
  article-title: Explaining performance-limiting mechanisms in fluorophosphate Na-ion battery cathodes through inactive transition-metal mixing and first-principles mobility calculations
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02299
– volume: 162
  start-page: A2538
  year: 2015
  end-page: A2550
  ident: CR5
  article-title: Review—practical issues and future perspective for Na-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0151514jes
– volume: 28
  start-page: 7683
  year: 2016
  end-page: 7692
  ident: CR25
  article-title: Comprehensive investigation of the Na V (PO ) F –NaV (PO ) F system by operando high resolution synchrotron X-ray diffraction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02659
– volume: 27
  start-page: 3009
  year: 2015
  end-page: 3020
  ident: CR23
  article-title: Comprehensive investigation of the Na V (PO ) F –NaV (PO ) F system by operando high resolution synchrotron X-ray diffraction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00361
– volume: 165
  start-page: A1222
  year: 2018
  end-page: A1230
  ident: CR20
  article-title: Assessment of the electrochemical stability of carbonate-based electrolytes in Na-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311807jes
– volume: 111
  start-page: 3577
  year: 2011
  end-page: 3613
  ident: CR2
  article-title: Electrochemical energy storage for green grid
  publication-title: Chem. Rev.
  doi: 10.1021/cr100290v
– volume: 3
  start-page: 23017
  year: 2015
  end-page: 23027
  ident: CR17
  article-title: Structural evolution of mixed valent (V3 + /V4 + ) and V4 + sodium vanadium fluorophosphates as cathodes in sodium-ion batteries: comparisons, overcharging and mid-term cycling
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03780H
– volume: 7
  start-page: 1700514
  year: 2017
  ident: CR16
  article-title: Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700514
– volume: 4
  start-page: 241
  year: 1995
  end-page: 248
  ident: CR32
  article-title: 71Ga and 69Ga nuclear magnetic resonance study of β-Ga O : resolution of four- and six-fold coordinated Ga sites in static conditions
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/0926-2040(95)00002-8
– volume: 16
  start-page: 45
  year: 2017
  end-page: 56
  ident: CR4
  article-title: Sustainability and in situ monitoring in battery development
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4777
– volume: 163
  start-page: A867
  year: 2016
  end-page: A874
  ident: CR10
  article-title: Optimization of Na-ion battery systems based on polyanionic or layered positive electrodes and carbon anodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0051605jes
– volume: 192
  start-page: 55
  year: 1993
  end-page: 69
  ident: CR31
  article-title: Recent advances in magnetic structure determination by neutron powder diffraction
  publication-title: Phys. B
  doi: 10.1016/0921-4526(93)90108-I
– volume: 27
  start-page: 6928
  year: 2015
  end-page: 6933
  ident: CR12
  article-title: Prototype sodium-ion batteries using an air-stable and Co/Ni-Free O3-layered metal oxide cathode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502449
– volume: 26
  start-page: 2513
  year: 2014
  end-page: 2521
  ident: CR24
  article-title: Local structure and dynamics in the Na ion battery positive electrode material Na V (PO ) F
  publication-title: Chem. Mater.
  doi: 10.1021/cm403728w
– volume: 7
  start-page: 19
  year: 2015
  end-page: 29
  ident: CR3
  article-title: Towards greener and more sustainable batteries for electrical energy storage
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2085
– volume: 192
  start-page: 55
  year: 1993
  ident: 8359_CR31
  publication-title: Phys. B
  doi: 10.1016/0921-4526(93)90108-I
– ident: 8359_CR8
  doi: 10.1002/aenm.201701912
– volume: 177
  start-page: 1495
  year: 2006
  ident: 8359_CR13
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2006.07.028
– volume: 135
  start-page: 13870
  year: 2013
  ident: 8359_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406016j
– volume: 114
  start-page: 11636
  year: 2014
  ident: 8359_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 162
  start-page: A2538
  year: 2015
  ident: 8359_CR5
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0151514jes
– volume: 163
  start-page: A867
  year: 2016
  ident: 8359_CR10
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0051605jes
– volume: 40
  start-page: 70
  year: 2002
  ident: 8359_CR33
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.984
– volume: 27
  start-page: 6928
  year: 2015
  ident: 8359_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502449
– volume: 4
  start-page: 241
  year: 1995
  ident: 8359_CR32
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/0926-2040(95)00002-8
– volume: 16
  start-page: 45
  year: 2017
  ident: 8359_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4777
– volume: 121
  start-page: 4103
  year: 2017
  ident: 8359_CR30
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b11413
– volume: 27
  start-page: 6008
  year: 2015
  ident: 8359_CR22
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02299
– volume: 24
  start-page: 4603
  year: 2014
  ident: 8359_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400561
– volume: 28
  start-page: 5450
  year: 2016
  ident: 8359_CR19
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01989
– volume: 334
  start-page: 928
  year: 2011
  ident: 8359_CR1
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 27
  start-page: 3009
  year: 2015
  ident: 8359_CR23
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00361
– volume: 26
  start-page: 4238
  year: 2014
  ident: 8359_CR21
  publication-title: Chem. Mater.
  doi: 10.1021/cm501644g
– volume: 26
  start-page: 2513
  year: 2014
  ident: 8359_CR24
  publication-title: Chem. Mater.
  doi: 10.1021/cm403728w
– volume: 24
  start-page: 495
  year: 2012
  ident: 8359_CR27
  publication-title: Chem. Mater.
  doi: 10.1021/cm202818u
– volume: 7
  start-page: 19
  year: 2015
  ident: 8359_CR3
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2085
– volume: 227
  start-page: 80
  year: 2013
  ident: 8359_CR14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.034
– volume: 7
  year: 2016
  ident: 8359_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10308
– volume: 165
  start-page: A1222
  year: 2018
  ident: 8359_CR20
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311807jes
– volume: 6
  start-page: 2338
  year: 2013
  ident: 8359_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40847g
– volume: 7
  start-page: 1700514
  year: 2017
  ident: 8359_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700514
– volume: 3
  start-page: 23017
  year: 2015
  ident: 8359_CR17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03780H
– volume: 3
  start-page: 428
  year: 2013
  ident: 8359_CR28
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200833
– volume: 6
  start-page: 2361
  year: 2013
  ident: 8359_CR9
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41379a
– volume: 28
  start-page: 7683
  year: 2016
  ident: 8359_CR25
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02659
– volume: 62
  start-page: 185
  year: 1993
  ident: 8359_CR26
  publication-title: J. Electron Spectros. Relat. Phenomena
  doi: 10.1016/0368-2048(93)80014-D
– volume: 111
  start-page: 3577
  year: 2011
  ident: 8359_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr100290v
– volume: 25
  start-page: 4917
  year: 2013
  ident: 8359_CR29
  publication-title: Chem. Mater.
  doi: 10.1021/cm403679b
SSID ssj0000391844
Score 2.6506267
Snippet The growing need to store an increasing amount of renewable energy in a sustainable way has rekindled interest for sodium-ion battery technology, owing to the...
Na3V2(PO4)2F3 is a promising cathode material for Na-ion batteries, although its third sodium is usually not accessible electrochemically. Here the authors...
SourceID doaj
pubmedcentral
osti
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 585
SubjectTerms 140/131
147/135
639/301
639/301/299
Chemical Sciences
Electric power
Electrodes
Energy
ENERGY STORAGE
Engineering Sciences
Flux density
Humanities and Social Sciences
Ions
materials for energy and catalysis
materials science
multidisciplinary
Other
Oxidation
Rechargeable batteries
Renewable energy
Science
Science (multidisciplinary)
Sodium
Sodium-ion batteries
Valence
Vanadium
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9yIPgiahXXVkmLD4ouzeZjkzxW8TiKVh-s9C3ka-nBda94e4X7751k985uQX3xNclmQ2Ym8xsy-Q1Cr11TMachyPFR-5IrHkoFh2VJvbQUIHBTqfTA-ctZPTvnpxfi4lapr5QT1tMD9xt3LCMJRAZRxwjOs3JWB3Br3oJdMl_FDI3A590KpvIZzDSELnx4JUOYOl7xfCaQ9GYHUIcuNyNPlAn7wb9cpnTIyRLMawQ57yZM3rk1zc5o-gg9HFAkPulX_xjdi-0TdL-vK7nZQ4s-ewPH_LAP2zbglW2gYbUM8_UVBllgl4k1IU7GN3MLQ_BQEMcPDAKLDb6yIeIw0HPGgM8s-0HffPvK39Ipg94ua-9TdD799P3jrBzKKpReSN6VXjlvqVO2BijCBefWOeVDqESgrlZWc-Ki0oQ42wgvaSMZiFNIHUEU2tfsGZq0yzY-R5j6xjlLbSUkhZm8I5aJ2kHU6WTkXhWo2m6x8QPneCp9sTD57psp04vFgFhMFovZFOjd7pvrnnHjr6M_JMntRia27NwAOmQGHTL_0qECHYHcR3PMTj6b1AZoOnHg65uqQPtJLQwgk0Sv61Meku8MAGrAnHWBDrbaYoZTYGVA10UKSCtdoMNdN9hvupSxbVyu8xgtKMBAUiA50rLResY97fwyM4HXAD8AnxXo_VYff__8z3v24n_s2T56QLMx0ZLwAzTpfq7jS8BnnXuVTfEXFkM3WQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLZgEBIXVDYRWpBBHEAQ1XHsxD6hghhGCAoHinqzvKUdaZq0TabS_HuePZ6pUolevSSW3-LP9vP3EHprmqI0EjY51kubM8FcLsBZ5tTWmgIEbgoRHjj_PKxmR-z7MT9OB259Cqvc-MToqF1nwxn5PvTjAdwX8tP5RR6yRoXb1ZRC4y66V8BKE0K6xPTb9owlsJ8LxtJbGVKK_Z5Fz0DCyx3AHjJfjdajSNsPq8xpCIqcdGBkI-B5M2zyxt1pXJKmO-hhwpL4YC38R-iObx-j--vskqsnaLGO4cA-Pu_DunW41w0U9J2bL88wSASbSK8Ju2V8NdfQBKe0ODbxCCxW-Ew7j10i6fQOH-ryL333-xd7T6cl1A5Rh5-io-nXP19meUqukFtesyG3wlhNjdAVABLGGdPGCOtcwR01ldCSEeOFJMTohtuaNnUJQuW19J44aavyGZq0XeufI0xtY4ymuuA1hS9ZQ3TJKwN7T1N7ZkWGis0UK5uYx0MCjIWKN-ClUGuxKBCLimJRqwx92PY5X_Nu3Nr6c5DctmXgzI4F3eWJSiaoahg4qR2vvAcYVhgtHQAkq8HDl7bwOkNvQO6jb8wOfqhQBpg6MOHLqyJDu0EtFOCTQLJrQzSSHRTAakCeVYb2Ntqiki_o1bXmZuj1thqsOFzN6NZ3y9hGcgpgkGSoHmnZaDzjmnZ-GvnAKwAhgNIy9HGjj9c___-cvbh9rLvoAY1mQnPC9tBkuFz6l4C_BvMqGtk_KLktcQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPQRfxE-sd0oUHxQttmnSJo-ruCyLnoKe3FvIV72FvVZuuwf73ztJuys9VPA1maQhM5P80sz8AvDC1HlhJB5yrJc2ZYK5VOBimVJbaYoQuM5FSHD-dFLOT9nijJ8dAN3lwsSg_UhpGZfpXXTY2zWLLp2FlBsEDTLd3oDDQNWOtn04nS6-LvZ_VgLnuWBsyJDJCvGHxqNdKJL1495yHkIhJy261ghuXg-WvHZjGjei2R24PSBIMu3HfBcOfHMPbvZvSm7vw6qP3CA-JvUR3Tiy1jUWrFu33FwQ1AMxkVQTz8jkaqlRhAyP4diBPWC1JRfaeeIGak7vyIkuvtOXXz6zV3RWYG0XLfcBnM4-fHs_T4cnFVLLK9alVhirqRG6RBjCOGPaGGGdy7mjphRassx4IbPM6JrbitZVgarklfQ-c9KWxUOYNG3jHwGhtjZGU53zimJP1mS64KXBE6epPLMigXw3xcoOfOPh2YuVivfehVC9WhSqRUW1qG0Cr_dtfvZsG_-Ufhc0t5cMTNmxoL38oQbLURUOPKscL71H8JUbLR3CIqtxXS9s7nUCz1Hvoz7m048qlCGSDvz38ipP4CiYhUJUEqh1bYhBsp1CMI14s0zgeGctalgB1grtnIfDaC4TeLavRt8NFzK68e0mykhOEQJmCVQjKxuNZ1zTLM8jC3iJ0AOxWQJvdvb4--N_n7PH_yd-BLdodBuaZuwYJt3lxj9BFNaZp4Pb_QIyXi0q
  priority: 102
  providerName: Springer Nature
Title Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material
URI https://link.springer.com/article/10.1038/s41467-019-08359-y
https://www.proquest.com/docview/2175871619
https://www.proquest.com/docview/2179525840
https://hal.sorbonne-universite.fr/hal-02021279
https://www.osti.gov/servlets/purl/1505146
https://pubmed.ncbi.nlm.nih.gov/PMC6362244
https://doaj.org/article/7e0d07d56ee6431ba9d007caadd3c1ea
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8ID5F2KgM4gEEYYnjxPYDQl21UlWsTEBR3yx_hVXqUujHRP97zk5a1GkgXhrJvrqO787-XW3_DqEXukwzLSDIMU6YmHJqYw6TZUwMUwQgcJlyf8H5bFj0R3Qwzsd7aJPuqBnAxY2hnc8nNZpP3_76uX4PDv-uvjLOjxc0uHvir-MAoBDxeh8dwMrEfEaDswbuh5k5ExDQ-I1mkkB_QCBr7tHc3MzOWhUo_WEFuvAHJlszcMAdUHr9SOW1fdWwXPXuojsNzsSd2jDuoT1X3Ue36syT6wdoWp_vwC5c_cOqsnihSihYzOxkdYlBW1gH6k2IpPHVRIEIblLmmIZjYLrGl8o6bBsCT2fxUGXfyMvzT_QV6WVQuwz2_RCNeqdfu_24SbwQm5zRZWy4NoporgoAKzSnVGnNjbVpbokuuBI00Y6LJNGqzA0jJctA4TkTziVWmCJ7hFrVrHKPESam1FoRleaMQEtGJyrLCw1xqWaOGh6hdDPE0jSs5D45xlSG3fGMy1otEtQig1rkOkKvt9_5UXNy_FP6xGtuK-n5tEPBbP5dNu4pGXQ8YTYvnAOIlmolLIAno2D2z0zqVISeg9532uh3PkpfBnjbs-SLqzRCh94sJGAXT8Br_Ekls5QAuQGVFhE62liL3Ji5BG_Ifciaigg921aDh_ttG1W52SrIiJwAUEwixHasbKc_uzXV5CJwhRcAUADBRejNxh7__Pjfx-zJ_7zuIbpNgrOQOKFHqLWcr9xTQGhL3Ub7bMzgk_c-tNFBpzP4MoDnyenw_DOUdotuO_z30Q7u-RvpMTta
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aRQheEFcRNsAgkEAQLXGcxHlAaFxKx7rCwzbtzfgWVqlLxtoO9U_xGzl2kk6dxN72ajuO43P7HJ8LwEtVxokq8JCjbaFDxpkJOSrLkOpcUoTAZcxdgPPuKBvss2-H6eEa_O1iYZxbZacTvaI2tXb_yDfxudSB-7j4cPI7dFWj3O1qV0KjYYsdu_iDR7bp--3PSN9XlPa_7H0ahG1VgVCnOZuFmistqeIyQ0vMUsakUlwbE6eGqozLgkXK8iKKlCxTndMyT_Br0rywNjKFzhKc9xpcZwlacheZ3v-6_Kfjsq1zxtrYnCjhm1PmNVHkIoUQ6xThYsX--TIBaNWOnBNmr0ahXgG6F900L9zVehPYvwO3W-xKthpmuwtrtroHN5pqlov7MGl8Roj14YREVoZMZYkN09qM58cEOYAon84TT-fkbCxxCGnL8Og2b8FkQY6lscS0SUGtISOZHNDXP76zN7SfYO_My8wD2L-SbX8Ivaqu7CMgVJdKSSrjNKc4k1aRTNJM4VlX5ZZpHkDcbbHQbaZzV3BjIvyNe8JFQxaBZBGeLGIRwNvlMydNno9LR390lFuOdDm6fUN9-ku0Ii9yXHiUmzSzFmFfrGRhEJBpiRYl0bGVAbxAuq_MMdgaCteGGN5l3i_O4gDWHVsIxEMuqa923k96JhDGI9LNAtjouEW0umcqziUlgOfLbtQa7ipIVrae-zFFShF8RgHkK1y2sp7Vnmp85POPZwh6EBUG8K7jx_OX_3_PHl--1mdwc7C3OxTD7dHOOtyiXmRoGLEN6M1O5_YJYr-ZeuoFjsDPq5bwf6NFa18
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IK4ibIBBIIEgauI4tweENraqY6NUiKG9Gd_CKnXJWNuh_jV-HcdO0imT2NtebcdxfC7-TnwuAK9kEUYyRyNHmVz5LGPaz1BZ-lSlgiIELsLMBjh_GSXDQ_b5KD5ag79tLIx1q2x1olPUulL2H3kfn4stuA_zftG4RYx3Bh9Pf_u2gpS9aW3LadQssm-Wf9B8m33Y20Fav6Z0sPv909BvKgz4Kk7Z3FeZVILKTCR4KrOYMSFlprQOY01lkomcBdJkeRBIUcQqpUUa4ZfFaW5MoHOVRDjvDVhPrVXUg_Xt3dH42-oPj829njHWROoEUdafMaeXAhs3hMgn95ed09AVDcAz7ti6ZPYqFPEO7L3stHnp5tYdiIO7cKdBsmSrZr17sGbK-3Czrm25fADT2oOEGBdcSESpyUwU2DCr9GRxQpAfiHTJPdFWJ-cTgUNIU5RHNVkMpktyIrQhukkRajQZiegHfTP-yt7SQYS9cydBD-HwWjb-EfTKqjSPgVBVSCmoCOOU4kxKBiKKE4mWr0wNU5kHYbvFXDV5z235jSl39-9RxmuycCQLd2ThSw_erZ45rbN-XDl621JuNdJm7HYN1dkv3igAnuLCg1THiTEIAkMpco3wTAk8XyIVGuHBS6R7Z47h1gG3bYjobR7-_Dz0YMOyBUd0ZFP8KusLpeYcQT3i3sSDzZZbeKOJZvxCbjx4sepGHWIvhkRpqoUbk8cUoWjgQdrhss56uj3l5NhlI08QAiFG9OB9y48XL___nj25eq3P4RZKNz_YG-1vwG3qJIb6AduE3vxsYZ4iEJzLZ43EEfh53UL-D65KcPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher+energy+and+safer+sodium+ion+batteries+via+an+electrochemically+made+disordered+Na3V2%28PO4%292F3+material&rft.jtitle=Nature+communications&rft.au=Yan%2C+Guochun&rft.au=Mariyappan%2C+Sathiya&rft.au=Rousse%2C+Gwena%C3%ABlle&rft.au=Jacquet%2C+Quentin&rft.date=2019-02-04&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft_id=info:doi/10.1038%2Fs41467-019-08359-y&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02021279v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon