Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit

Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to de...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1565; pp. 8 - 17
Main Authors Vissapragada, Ravi, Contreras, Mauricio A., da Silva, Cleide G, Kumar, Vivek A., Ochoa, Angelica, Vasudevan, Anju, Selim, Magdy H., Ferran, Christiane, Thomas, Ajith J.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 27.05.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0006-8993
1872-6240
1872-6240
DOI10.1016/j.brainres.2014.03.018

Cover

Loading…
Abstract Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. •Interactions between neural progenitor cells (NPC) and periventricular endothelial cells (PVEC) were delineated.•Embryonic brain endothelial cells (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation.•PVEC enhanced NPC proliferation and delayed NPC differentiation as evidenced by high expression of progenitor marker Nestin.•PVEC expressed increased Vegfa levels when co-cultured with NPC.•PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.
AbstractList Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.
Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. •Interactions between neural progenitor cells (NPC) and periventricular endothelial cells (PVEC) were delineated.•Embryonic brain endothelial cells (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation.•PVEC enhanced NPC proliferation and delayed NPC differentiation as evidenced by high expression of progenitor marker Nestin.•PVEC expressed increased Vegfa levels when co-cultured with NPC.•PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.
Abstract Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.
Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.
Author Ochoa, Angelica
Thomas, Ajith J.
Selim, Magdy H.
da Silva, Cleide G
Contreras, Mauricio A.
Vasudevan, Anju
Vissapragada, Ravi
Ferran, Christiane
Kumar, Vivek A.
Author_xml – sequence: 1
  givenname: Ravi
  surname: Vissapragada
  fullname: Vissapragada, Ravi
  organization: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
– sequence: 2
  givenname: Mauricio A.
  surname: Contreras
  fullname: Contreras, Mauricio A.
  organization: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
– sequence: 3
  givenname: Cleide G
  surname: da Silva
  fullname: da Silva, Cleide G
  organization: The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
– sequence: 4
  givenname: Vivek A.
  surname: Kumar
  fullname: Kumar, Vivek A.
  organization: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
– sequence: 5
  givenname: Angelica
  surname: Ochoa
  fullname: Ochoa, Angelica
  organization: College of Engineering, Boston University, Boston, MA, United States of America
– sequence: 6
  givenname: Anju
  surname: Vasudevan
  fullname: Vasudevan, Anju
  organization: Department of Psychiatry, Harvard Medical School and Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States of America
– sequence: 7
  givenname: Magdy H.
  surname: Selim
  fullname: Selim, Magdy H.
  organization: Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
– sequence: 8
  givenname: Christiane
  surname: Ferran
  fullname: Ferran, Christiane
  organization: Division of Vascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
– sequence: 9
  givenname: Ajith J.
  surname: Thomas
  fullname: Thomas, Ajith J.
  email: athomas6@bidmc.harvard.edu
  organization: Division of Neurosurgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28475712$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24675025$$D View this record in MEDLINE/PubMed
BookMark eNqNks-O1SAUxokZ49wZfYVJNyZuWoFS2ibGqBP_JZO4UNeEwqlyh8IV6DXzDj609PaOJrNwXBHg930cvnPO0InzDhC6ILgimPDn22oI0rgAsaKYsArXFSbdA7QhXUtLThk-QRuMMS-7vq9P0VmM27yt6x4_QqeU8bbBtNmgX2-MNgFUMt5JW6jgY0zSXhcDpJ8ArthBMHtwKRg1WxkKcNqn72DNQoO1sZBOFw7mkA92wX8DZ5IPx7t8MPkEsciSYvRhkstDhR8LedD4vYyr75xlj9HDUdoIT47rOfr67u2Xyw_l1af3Hy9fX5WqaVkqpQbWqHYAObSM6w5IR1Xf9FoOoLseQJKakV5z2vWjBC3rkTSaMFo3uh1JV5-jZ6tvLu_HDDGJycSlYOnAz1GQhjLS8r5e0IsjOg8TaLELZpLhRtwmmIGnRyD_RNoxSKdM_Mt1rG1aQjPHV-4QcYDxD0KwWFoqtuK2pWJpqcC1wIdiX9wRKpMOMaaM2_vlr1Y55ED3BoKIyoBTsLZdaG_ut3h5x0JZ40z-7TXcQNz6OeTZybGJSAUWn5exW6aOsDxwnLf_NvifCn4D_77wCA
CODEN BRREAP
CitedBy_id crossref_primary_10_1016_j_brainresbull_2020_12_004
crossref_primary_10_1038_srep33428
crossref_primary_10_1063_5_0027211
crossref_primary_10_1007_s12031_020_01564_1
crossref_primary_10_3389_fnmol_2019_00085
crossref_primary_10_3233_JAD_170239
crossref_primary_10_1002_bdr2_1424
crossref_primary_10_3390_molecules24071219
crossref_primary_10_3390_mi11010021
crossref_primary_10_1016_j_devcel_2018_01_023
crossref_primary_10_1016_j_brainres_2019_146469
crossref_primary_10_1016_j_neures_2022_09_006
crossref_primary_10_1007_s12035_016_0286_4
crossref_primary_10_1016_j_reprotox_2020_06_010
crossref_primary_10_1186_s12987_020_00207_2
crossref_primary_10_3389_fphys_2021_636736
crossref_primary_10_3389_fnins_2018_00252
crossref_primary_10_1016_j_actbio_2016_07_043
crossref_primary_10_1038_s41598_020_77297_3
crossref_primary_10_1016_j_neuroscience_2020_05_046
crossref_primary_10_3389_fcell_2022_890852
crossref_primary_10_1186_s13046_018_0975_0
crossref_primary_10_1016_j_biocel_2014_08_003
crossref_primary_10_1002_tox_22723
crossref_primary_10_1038_srep14597
crossref_primary_10_1111_jnc_13362
crossref_primary_10_1523_JNEUROSCI_1201_21_2021
crossref_primary_10_1515_revneuro_2019_0023
crossref_primary_10_3390_ijms23105771
crossref_primary_10_3389_fncel_2015_00085
crossref_primary_10_1016_j_cdev_2023_203841
crossref_primary_10_3389_fonc_2020_00413
crossref_primary_10_3390_biom14030335
Cites_doi 10.1073/pnas.182296499
10.1242/dev.059295
10.1073/pnas.0406795101
10.1016/j.pneurobio.2005.04.002
10.1161/CIRCRESAHA.109.199299
10.1634/stemcells.2007-0919
10.1128/MCB.20.23.8889-8902.2000
10.1163/156856208786140409
10.1038/sj.jcbfm.9600573
10.1038/nature03875
10.1016/S0012-1606(03)00356-7
10.1002/dvdy.22377
10.1002/cm.970170207
10.1016/j.expneurol.2004.04.011
10.1002/stem.541
10.1523/JNEUROSCI.16-19-06089.1996
10.1016/j.neures.2005.08.003
10.1016/j.cell.2007.06.054
10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C
10.1016/S0002-9440(10)64154-5
10.1038/nn1657
10.1038/jcbfm.2008.38
10.1073/pnas.0506020102
10.1038/nn2074
10.1038/jcbfm.2008.32
10.1016/S0361-9230(01)00770-5
10.1126/science.1095505
10.1038/cr.2007.53
10.1055/s-0038-1657611
10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3
10.1016/j.yexmp.2005.03.004
10.1016/j.mcn.2010.05.006
10.1007/s11064-010-0207-2
10.1038/ng1211
10.1006/mcne.1999.0762
10.1016/j.yexcr.2012.06.002
10.1007/s10616-010-9315-8
10.1111/j.1750-3639.2004.tb00060.x
10.1371/journal.pone.0009414
10.1152/ajpcell.00389.2001
10.1038/nrg1158
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Elsevier B.V.
2015 INIST-CNRS
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.brainres.2014.03.018
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1872-6240
EndPage 17
ExternalDocumentID 24675025
28475712
10_1016_j_brainres_2014_03_018
S0006899314003667
1_s2_0_S0006899314003667
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABTEW
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPCBC
SSN
SSZ
T5K
Z5R
ZGI
~G-
.55
.GJ
41~
53G
AACTN
AAQXK
AAYJJ
ABWVN
ACRPL
ADIYS
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
MVM
PKN
R2-
RIG
SEW
SNS
VH1
WUQ
X7M
XPP
AADPK
AAIAV
ABYKQ
AJBFU
EFLBG
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c574t-ade45c7beab746d8e182c959dabed89eea13419d6289faeda3f15d14235d7f183
IEDL.DBID .~1
ISSN 0006-8993
1872-6240
IngestDate Thu Aug 07 14:07:07 EDT 2025
Mon Jul 21 06:07:41 EDT 2025
Wed Apr 02 07:27:34 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Tue Jul 01 01:21:42 EDT 2025
Fri Feb 23 02:19:43 EST 2024
Sun Feb 23 10:19:30 EST 2025
Tue Aug 26 16:33:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Periventricular endothelial cell
Neurovascular niche
Angiogenesis
Neural progenitor cell
Proliferation
Differentiation
Neurogenesis
Vascular endothelial growth factor
Cell proliferation
Endothelial cell
Precursor cell
Vascular endothelium growth factor
Progenitor cell
Language English
License CC BY 4.0
Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-ade45c7beab746d8e182c959dabed89eea13419d6289faeda3f15d14235d7f183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24675025
PQID 1524176938
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1524176938
pubmed_primary_24675025
pascalfrancis_primary_28475712
crossref_primary_10_1016_j_brainres_2014_03_018
crossref_citationtrail_10_1016_j_brainres_2014_03_018
elsevier_sciencedirect_doi_10_1016_j_brainres_2014_03_018
elsevier_clinicalkeyesjournals_1_s2_0_S0006899314003667
elsevier_clinicalkey_doi_10_1016_j_brainres_2014_03_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-27
PublicationDateYYYYMMDD 2014-05-27
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-27
  day: 27
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Brain research
PublicationTitleAlternate Brain Res
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Miyake (bib23) 2000; 20
Roitbak, Li, Cunningham (bib31) 2008; 28
Michalczyk, Ziman (bib22) 2005; 20
Park (bib28) 2010; 28
Chen, Magavi, Macklis (bib7) 2004; 101
Ford (bib12) 2006; 103
Gama Sosa (bib13) 2007; 17
Palmer, Willhoite, Gage (bib26) 2000; 425
Sun (bib37) 2010; 239
Ara (bib3) 2010; 35
Yang, Cepko (bib42) 1996; 16
Shih, Smith (bib35) 2005; 79
Papetti, Herman (bib27) 2002; 282
Schanzer (bib32) 2004; 14
Ramirez-Castillejo (bib29) 2006; 9
Alvarez-Buylla, Seri, Doetsch (bib1) 2002; 57
Jin (bib17) 2002; 99
Leventhal (bib21) 1999; 13
Breier (bib4) 1997; 78
Vasudevan (bib133a) 2008; 11
Xue, Yuan (bib41) 2010; 45
Golmohammadi (bib14) 2008; 26
Ii (bib16) 2009; 105
Demeter (bib8) 2004; 188
Teng (bib38) 2008; 28
Lee (bib19) 1990; 17
Demeter (bib9) 2005; 53
Rauch (bib30) 2008; 19
Nakajima (bib25) 2011; 138
Shih (bib34) 2002; 161
Shen (bib33) 2004; 304
Wada (bib39) 2011; 63
Lambrechts (bib18) 2003; 34
Carmeliet, Tessier-Lavigne (bib6) 2005; 436
Wang (bib40) 2008; 28
Lee (bib20) 2007; 130
Flamme, Frolich, Risau (bib11) 1997; 173
Muffley (bib24) 2012; 318
Carmeliet (bib5) 2003; 4
Haigh (bib15) 2003; 262
Androutsellis-Theotokis (bib2) 2010; 5
Emsley (bib10) 2005; 75
Ara (10.1016/j.brainres.2014.03.018_bib3) 2010; 35
Shih (10.1016/j.brainres.2014.03.018_bib34) 2002; 161
Golmohammadi (10.1016/j.brainres.2014.03.018_bib14) 2008; 26
Ford (10.1016/j.brainres.2014.03.018_bib12) 2006; 103
Chen (10.1016/j.brainres.2014.03.018_bib7) 2004; 101
Shih (10.1016/j.brainres.2014.03.018_bib35) 2005; 79
Carmeliet (10.1016/j.brainres.2014.03.018_bib6) 2005; 436
Roitbak (10.1016/j.brainres.2014.03.018_bib31) 2008; 28
Schanzer (10.1016/j.brainres.2014.03.018_bib32) 2004; 14
Carmeliet (10.1016/j.brainres.2014.03.018_bib5) 2003; 4
Emsley (10.1016/j.brainres.2014.03.018_bib10) 2005; 75
Park (10.1016/j.brainres.2014.03.018_bib28) 2010; 28
Leventhal (10.1016/j.brainres.2014.03.018_bib21) 1999; 13
Alvarez-Buylla (10.1016/j.brainres.2014.03.018_bib1) 2002; 57
Papetti (10.1016/j.brainres.2014.03.018_bib27) 2002; 282
Demeter (10.1016/j.brainres.2014.03.018_bib9) 2005; 53
Vasudevan (10.1016/j.brainres.2014.03.018_bib133a) 2008; 11
Flamme (10.1016/j.brainres.2014.03.018_bib11) 1997; 173
Teng (10.1016/j.brainres.2014.03.018_bib38) 2008; 28
Demeter (10.1016/j.brainres.2014.03.018_bib8) 2004; 188
Breier (10.1016/j.brainres.2014.03.018_bib4) 1997; 78
Gama Sosa (10.1016/j.brainres.2014.03.018_bib13) 2007; 17
Muffley (10.1016/j.brainres.2014.03.018_bib24) 2012; 318
Shen (10.1016/j.brainres.2014.03.018_bib33) 2004; 304
Palmer (10.1016/j.brainres.2014.03.018_bib26) 2000; 425
Nakajima (10.1016/j.brainres.2014.03.018_bib25) 2011; 138
Miyake (10.1016/j.brainres.2014.03.018_bib23) 2000; 20
Androutsellis-Theotokis (10.1016/j.brainres.2014.03.018_bib2) 2010; 5
Rauch (10.1016/j.brainres.2014.03.018_bib30) 2008; 19
Jin (10.1016/j.brainres.2014.03.018_bib17) 2002; 99
Lee (10.1016/j.brainres.2014.03.018_bib19) 1990; 17
Michalczyk (10.1016/j.brainres.2014.03.018_bib22) 2005; 20
Lambrechts (10.1016/j.brainres.2014.03.018_bib18) 2003; 34
Sun (10.1016/j.brainres.2014.03.018_bib37) 2010; 239
Haigh (10.1016/j.brainres.2014.03.018_bib15) 2003; 262
Wang (10.1016/j.brainres.2014.03.018_bib40) 2008; 28
Lee (10.1016/j.brainres.2014.03.018_bib20) 2007; 130
Xue (10.1016/j.brainres.2014.03.018_bib41) 2010; 45
Yang (10.1016/j.brainres.2014.03.018_bib42) 1996; 16
Ii (10.1016/j.brainres.2014.03.018_bib16) 2009; 105
Wada (10.1016/j.brainres.2014.03.018_bib39) 2011; 63
Ramirez-Castillejo (10.1016/j.brainres.2014.03.018_bib29) 2006; 9
References_xml – volume: 239
  start-page: 2345
  year: 2010
  end-page: 2353
  ident: bib37
  article-title: Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling
  publication-title: Dev. Dyn.
– volume: 101
  start-page: 16357
  year: 2004
  end-page: 16362
  ident: bib7
  article-title: Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 425
  start-page: 479
  year: 2000
  end-page: 494
  ident: bib26
  article-title: Vascular niche for adult hippocampal neurogenesis
  publication-title: J. Comp. Neurol.
– volume: 13
  start-page: 450
  year: 1999
  end-page: 464
  ident: bib21
  article-title: Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma
  publication-title: Mol. Cell. Neurosci.
– volume: 161
  start-page: 35
  year: 2002
  end-page: 41
  ident: bib34
  article-title: Molecular profiling of angiogenesis markers
  publication-title: Am. J. Pathol.
– volume: 26
  start-page: 979
  year: 2008
  end-page: 987
  ident: bib14
  article-title: Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain
  publication-title: Stem Cells
– volume: 28
  start-page: 2162
  year: 2010
  end-page: 2171
  ident: bib28
  article-title: Nestin is required for the proper self-renewal of neural stem cells
  publication-title: Stem Cells
– volume: 16
  start-page: 6089
  year: 1996
  end-page: 6099
  ident: bib42
  article-title: Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells
  publication-title: J. Neurosci.
– volume: 75
  start-page: 321
  year: 2005
  end-page: 341
  ident: bib10
  article-title: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells
  publication-title: Prog. Neurobiol.
– volume: 318
  start-page: 2085
  year: 2012
  end-page: 2093
  ident: bib24
  article-title: Differentiation state determines neural effects on microvascular endothelial cells
  publication-title: Exp. Cell Res.
– volume: 19
  start-page: 1469
  year: 2008
  end-page: 1485
  ident: bib30
  article-title: Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 9
  start-page: 331
  year: 2006
  end-page: 339
  ident: bib29
  article-title: Pigment epithelium-derived factor is a niche signal for neural stem cell renewal
  publication-title: Nat. Neurosci.
– volume: 99
  start-page: 11946
  year: 2002
  end-page: 11950
  ident: bib17
  article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 188
  start-page: 254
  year: 2004
  end-page: 267
  ident: bib8
  article-title: Fate of cloned embryonic neuroectodermal cells implanted into the adult, newborn and embryonic forebrain
  publication-title: Exp. Neurol.
– volume: 20
  start-page: 665
  year: 2005
  end-page: 671
  ident: bib22
  article-title: Nestin structure and predicted function in cellular cytoskeletal organisation
  publication-title: Histol. Histopathol.
– volume: 63
  start-page: 25
  year: 2011
  end-page: 33
  ident: bib39
  article-title: A multi-gene transcriptional profiling approach to the discovery of cell signature markers
  publication-title: Cytotechnology
– volume: 45
  start-page: 26
  year: 2010
  end-page: 36
  ident: bib41
  article-title: Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells
  publication-title: Mol. Cell. Neurosci.
– volume: 4
  start-page: 710
  year: 2003
  end-page: 720
  ident: bib5
  article-title: Blood vessels and nerves: common signals, pathways and diseases
  publication-title: Nat. Rev. Genet.
– volume: 105
  start-page: 860
  year: 2009
  end-page: 868
  ident: bib16
  article-title: Concurrent vasculogenesis and neurogenesis from adult neural stem cells
  publication-title: Circ. Res.
– volume: 304
  start-page: 1338
  year: 2004
  end-page: 1340
  ident: bib33
  article-title: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells
  publication-title: Science
– volume: 78
  start-page: 678
  year: 1997
  end-page: 683
  ident: bib4
  article-title: Angiogenesis in embryos and ischemic diseases
  publication-title: Thromb. Haemost.
– volume: 173
  start-page: 206
  year: 1997
  end-page: 210
  ident: bib11
  article-title: Molecular mechanisms of vasculogenesis and embryonic angiogenesis
  publication-title: J. Cell. Physiol.
– volume: 20
  start-page: 8889
  year: 2000
  end-page: 8902
  ident: bib23
  article-title: Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle
  publication-title: Mol. Cell. Biol.
– volume: 11
  start-page: 429
  year: 2008
  end-page: 439
  ident: bib133a
  article-title: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain
  publication-title: Nature neuroscience
– volume: 282
  start-page: C947
  year: 2002
  end-page: C970
  ident: bib27
  article-title: Mechanisms of normal and tumor-derived angiogenesis
  publication-title: Am. J. Physiol.: Cell Physiol.
– volume: 79
  start-page: 14
  year: 2005
  end-page: 22
  ident: bib35
  article-title: Quantitative multi-gene transcriptional profiling using real-time PCR with a master template
  publication-title: Exp. Mol. Pathol.
– volume: 138
  start-page: 1771
  year: 2011
  end-page: 1782
  ident: bib25
  article-title: Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway
  publication-title: Development
– volume: 14
  start-page: 237
  year: 2004
  end-page: 248
  ident: bib32
  article-title: Direct stimulation of adult neural stem cells
  publication-title: Brain Pathol.
– volume: 130
  start-page: 691
  year: 2007
  end-page: 703
  ident: bib20
  article-title: Autocrine VEGF signaling is required for vascular homeostasis
  publication-title: Cell
– volume: 28
  start-page: 1361
  year: 2008
  end-page: 1368
  ident: bib40
  article-title: Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 262
  start-page: 225
  year: 2003
  end-page: 241
  ident: bib15
  article-title: Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling
  publication-title: Dev. Biol.
– volume: 35
  start-page: 1455
  year: 2010
  end-page: 1470
  ident: bib3
  article-title: Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain
  publication-title: Neurochem. Res.
– volume: 103
  start-page: 2512
  year: 2006
  end-page: 2517
  ident: bib12
  article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 436
  start-page: 193
  year: 2005
  end-page: 200
  ident: bib6
  article-title: Common mechanisms of nerve and blood vessel wiring
  publication-title: Nature
– volume: 28
  start-page: 1530
  year: 2008
  end-page: 1542
  ident: bib31
  article-title: Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 53
  start-page: 331
  year: 2005
  end-page: 342
  ident: bib9
  article-title: Studies on the use of NE-4C embryonic neuroectodermal stem cells for targeting brain tumour
  publication-title: Neurosci. Res.
– volume: 34
  start-page: 383
  year: 2003
  end-page: 394
  ident: bib18
  article-title: VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death
  publication-title: Nat. Genet.
– volume: 57
  start-page: 751
  year: 2002
  end-page: 758
  ident: bib1
  article-title: Identification of neural stem cells in the adult vertebrate brain
  publication-title: Brain Res. Bull.
– volume: 5
  start-page: e9414
  year: 2010
  ident: bib2
  article-title: Angiogenic factors stimulate growth of adult neural stem cells
  publication-title: PloS One
– volume: 17
  start-page: 118
  year: 1990
  end-page: 132
  ident: bib19
  article-title: The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis
  publication-title: Cell Motil. Cytoskelet.
– volume: 28
  start-page: 764
  year: 2008
  end-page: 771
  ident: bib38
  article-title: Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 17
  start-page: 619
  year: 2007
  end-page: 626
  ident: bib13
  article-title: Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact
  publication-title: Cell Res.
– volume: 99
  start-page: 11946
  year: 2002
  ident: 10.1016/j.brainres.2014.03.018_bib17
  article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.182296499
– volume: 138
  start-page: 1771
  year: 2011
  ident: 10.1016/j.brainres.2014.03.018_bib25
  article-title: Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway
  publication-title: Development
  doi: 10.1242/dev.059295
– volume: 101
  start-page: 16357
  year: 2004
  ident: 10.1016/j.brainres.2014.03.018_bib7
  article-title: Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0406795101
– volume: 75
  start-page: 321
  year: 2005
  ident: 10.1016/j.brainres.2014.03.018_bib10
  article-title: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2005.04.002
– volume: 105
  start-page: 860
  year: 2009
  ident: 10.1016/j.brainres.2014.03.018_bib16
  article-title: Concurrent vasculogenesis and neurogenesis from adult neural stem cells
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.199299
– volume: 26
  start-page: 979
  year: 2008
  ident: 10.1016/j.brainres.2014.03.018_bib14
  article-title: Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0919
– volume: 20
  start-page: 8889
  year: 2000
  ident: 10.1016/j.brainres.2014.03.018_bib23
  article-title: Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.23.8889-8902.2000
– volume: 19
  start-page: 1469
  year: 2008
  ident: 10.1016/j.brainres.2014.03.018_bib30
  article-title: Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks in vivo
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/156856208786140409
– volume: 28
  start-page: 764
  year: 2008
  ident: 10.1016/j.brainres.2014.03.018_bib38
  article-title: Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600573
– volume: 436
  start-page: 193
  year: 2005
  ident: 10.1016/j.brainres.2014.03.018_bib6
  article-title: Common mechanisms of nerve and blood vessel wiring
  publication-title: Nature
  doi: 10.1038/nature03875
– volume: 262
  start-page: 225
  year: 2003
  ident: 10.1016/j.brainres.2014.03.018_bib15
  article-title: Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling
  publication-title: Dev. Biol.
  doi: 10.1016/S0012-1606(03)00356-7
– volume: 239
  start-page: 2345
  year: 2010
  ident: 10.1016/j.brainres.2014.03.018_bib37
  article-title: Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.22377
– volume: 17
  start-page: 118
  year: 1990
  ident: 10.1016/j.brainres.2014.03.018_bib19
  article-title: The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis
  publication-title: Cell Motil. Cytoskelet.
  doi: 10.1002/cm.970170207
– volume: 188
  start-page: 254
  year: 2004
  ident: 10.1016/j.brainres.2014.03.018_bib8
  article-title: Fate of cloned embryonic neuroectodermal cells implanted into the adult, newborn and embryonic forebrain
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2004.04.011
– volume: 28
  start-page: 2162
  year: 2010
  ident: 10.1016/j.brainres.2014.03.018_bib28
  article-title: Nestin is required for the proper self-renewal of neural stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.541
– volume: 16
  start-page: 6089
  year: 1996
  ident: 10.1016/j.brainres.2014.03.018_bib42
  article-title: Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-19-06089.1996
– volume: 53
  start-page: 331
  year: 2005
  ident: 10.1016/j.brainres.2014.03.018_bib9
  article-title: Studies on the use of NE-4C embryonic neuroectodermal stem cells for targeting brain tumour
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2005.08.003
– volume: 130
  start-page: 691
  year: 2007
  ident: 10.1016/j.brainres.2014.03.018_bib20
  article-title: Autocrine VEGF signaling is required for vascular homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.054
– volume: 173
  start-page: 206
  year: 1997
  ident: 10.1016/j.brainres.2014.03.018_bib11
  article-title: Molecular mechanisms of vasculogenesis and embryonic angiogenesis
  publication-title: J. Cell. Physiol.
  doi: 10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C
– volume: 161
  start-page: 35
  year: 2002
  ident: 10.1016/j.brainres.2014.03.018_bib34
  article-title: Molecular profiling of angiogenesis markers
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64154-5
– volume: 9
  start-page: 331
  year: 2006
  ident: 10.1016/j.brainres.2014.03.018_bib29
  article-title: Pigment epithelium-derived factor is a niche signal for neural stem cell renewal
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1657
– volume: 28
  start-page: 1530
  year: 2008
  ident: 10.1016/j.brainres.2014.03.018_bib31
  article-title: Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2008.38
– volume: 103
  start-page: 2512
  year: 2006
  ident: 10.1016/j.brainres.2014.03.018_bib12
  article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506020102
– volume: 11
  start-page: 429
  year: 2008
  ident: 10.1016/j.brainres.2014.03.018_bib133a
  article-title: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain
  publication-title: Nature neuroscience
  doi: 10.1038/nn2074
– volume: 28
  start-page: 1361
  year: 2008
  ident: 10.1016/j.brainres.2014.03.018_bib40
  article-title: Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2008.32
– volume: 57
  start-page: 751
  year: 2002
  ident: 10.1016/j.brainres.2014.03.018_bib1
  article-title: Identification of neural stem cells in the adult vertebrate brain
  publication-title: Brain Res. Bull.
  doi: 10.1016/S0361-9230(01)00770-5
– volume: 304
  start-page: 1338
  year: 2004
  ident: 10.1016/j.brainres.2014.03.018_bib33
  article-title: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells
  publication-title: Science
  doi: 10.1126/science.1095505
– volume: 17
  start-page: 619
  year: 2007
  ident: 10.1016/j.brainres.2014.03.018_bib13
  article-title: Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact
  publication-title: Cell Res.
  doi: 10.1038/cr.2007.53
– volume: 78
  start-page: 678
  year: 1997
  ident: 10.1016/j.brainres.2014.03.018_bib4
  article-title: Angiogenesis in embryos and ischemic diseases
  publication-title: Thromb. Haemost.
  doi: 10.1055/s-0038-1657611
– volume: 20
  start-page: 665
  year: 2005
  ident: 10.1016/j.brainres.2014.03.018_bib22
  article-title: Nestin structure and predicted function in cellular cytoskeletal organisation
  publication-title: Histol. Histopathol.
– volume: 425
  start-page: 479
  year: 2000
  ident: 10.1016/j.brainres.2014.03.018_bib26
  article-title: Vascular niche for adult hippocampal neurogenesis
  publication-title: J. Comp. Neurol.
  doi: 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3
– volume: 79
  start-page: 14
  year: 2005
  ident: 10.1016/j.brainres.2014.03.018_bib35
  article-title: Quantitative multi-gene transcriptional profiling using real-time PCR with a master template
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2005.03.004
– volume: 45
  start-page: 26
  year: 2010
  ident: 10.1016/j.brainres.2014.03.018_bib41
  article-title: Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2010.05.006
– volume: 35
  start-page: 1455
  year: 2010
  ident: 10.1016/j.brainres.2014.03.018_bib3
  article-title: Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-010-0207-2
– volume: 34
  start-page: 383
  year: 2003
  ident: 10.1016/j.brainres.2014.03.018_bib18
  article-title: VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death
  publication-title: Nat. Genet.
  doi: 10.1038/ng1211
– volume: 13
  start-page: 450
  year: 1999
  ident: 10.1016/j.brainres.2014.03.018_bib21
  article-title: Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1006/mcne.1999.0762
– volume: 318
  start-page: 2085
  year: 2012
  ident: 10.1016/j.brainres.2014.03.018_bib24
  article-title: Differentiation state determines neural effects on microvascular endothelial cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2012.06.002
– volume: 63
  start-page: 25
  year: 2011
  ident: 10.1016/j.brainres.2014.03.018_bib39
  article-title: A multi-gene transcriptional profiling approach to the discovery of cell signature markers
  publication-title: Cytotechnology
  doi: 10.1007/s10616-010-9315-8
– volume: 14
  start-page: 237
  year: 2004
  ident: 10.1016/j.brainres.2014.03.018_bib32
  article-title: Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor
  publication-title: Brain Pathol.
  doi: 10.1111/j.1750-3639.2004.tb00060.x
– volume: 5
  start-page: e9414
  year: 2010
  ident: 10.1016/j.brainres.2014.03.018_bib2
  article-title: Angiogenic factors stimulate growth of adult neural stem cells
  publication-title: PloS One
  doi: 10.1371/journal.pone.0009414
– volume: 282
  start-page: C947
  year: 2002
  ident: 10.1016/j.brainres.2014.03.018_bib27
  article-title: Mechanisms of normal and tumor-derived angiogenesis
  publication-title: Am. J. Physiol.: Cell Physiol.
  doi: 10.1152/ajpcell.00389.2001
– volume: 4
  start-page: 710
  year: 2003
  ident: 10.1016/j.brainres.2014.03.018_bib5
  article-title: Blood vessels and nerves: common signals, pathways and diseases
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1158
SSID ssj0003390
Score 2.2995741
Snippet Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors...
Abstract Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However,...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8
SubjectTerms Angiogenesis
Animals
Biological and medical sciences
Cells, Cultured
Cerebral Ventricles - embryology
Differentiation
Endothelial Cells - cytology
Endothelial Cells - metabolism
Fundamental and applied biological sciences. Psychology
Mice
Mice, Inbred C57BL
Neovascularization, Physiologic - physiology
Neural progenitor cell
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neurogenesis
Neurology
Neurovascular niche
Periventricular endothelial cell
Proliferation
Vascular endothelial growth factor
Vertebrates: nervous system and sense organs
Title Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006899314003667
https://www.clinicalkey.es/playcontent/1-s2.0-S0006899314003667
https://dx.doi.org/10.1016/j.brainres.2014.03.018
https://www.ncbi.nlm.nih.gov/pubmed/24675025
https://www.proquest.com/docview/1524176938
Volume 1565
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELem8YI0IWAwykdlpIm3rEljJ_FjqZjKBtOEmLQ3y4nPUkdJq6Z94IW_gD-aO8fJmACBtqcoH5c4ucvPd9bv7hg7tCpPlcAfydoqjoQcu8gUMUSZUoCg6WziKFD8eJbNLsTJpbzcYdMuF4ZolQH7W0z3aB2OjMLXHK3mc8rxjTOMFlIMERCGM8oop-p1aNNH369pHmnarrNQ5ExX_5IlfHVUUhsGDGuJ4iV8sVNq_vHnCWpvZRr8bK7td_F3h9RPTMcP2YPgUfJJO-hHbAfqx2x_UmM0_fUbf8M9x9Mvnu-zH2_n7fv6BUDuR4De9xce6Fqc6h4TA9IvC5o1h9pSitZiTlfDYtFwU1tORTDxAHG7gCBhHc6tPLcPGo4ivE-L5EvHjZfpea98i2JP2MXxu8_TWRT6MUSVzMUmMhaErPISTJmLzBaAsUmlpLKmBFsoAOOrw9kMgzhnwJrUJdIm6LBJmzvEjqdst17W8IzxWJSqQO1lpXICYkAYSCsTQ2lNUgDAgMlOCboKxcqpZ8ZCd6y0K90pT5PydJxqVN6AjXq5VVuu458Seadj3SWjInxqnFFuJwlNQIFGJ7oZ61j_ZqkDpnrJG8b-X08d3jDE_jXJz5B5Mh6w151laoQK0r-pYbnF4Uh016j3Jd7koDXZa2mcMCX6v8_vMLQX7D7tEbdinL9ku5v1Fl6hy7Yph_6fHLJ7k-mnD-e0fX86O_sJ1phIFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gEkhIDxUT6GkRBvoUljJ_VjmZg6tvVpk_ZmOfFF6ihp1bQP_A_80dw5TmACBILXOJc4ufPPd9bv7gDeOJ2nWtJCcq6MI6nGVWQnMUaZ1kigWbmk4kDxfJ7NLuXHK3W1B0ddLgzTKgP2t5ju0TpcGYW_OVovFpzjG2cULaQUIhAMZ_kt2OfqVHIA-9OT09m8B-Q0bY9aOHhmgR8Sha_fFdyJgSJbZnlJX--U-3_8eo-6u7YN_bmqbXnxe5_U703H9-FecCrFtJ33A9jD-iEcTGsKqD9_EW-Fp3n68_MD-Pp-0X6yPwMUfgbkgH8SgbEluPQxkyD9yaDdCKwdZ2ktF3w3LpeNsLUTXAeTLjC9CxkVNmFs7el92AgSEX1mpFhVwnqZnvoqdiT2CC6PP1wczaLQkiEqVS63kXUoVZkXaItcZm6CFJ6UWmlnC3QTjWh9gTiXURxXWXQ2rRLlEvLZlMsrgo_HMKhXNT4FEctCT0iBWaEriTESEqSljbFwNpkg4hBUpwRThnrl3DZjaTpi2rXplGdYeSZODSlvCKNebt1W7PijRN7p2HT5qISghjaVf5PEJgBBYxLTjE1sfjLWIehe8oa9_9VbD28YYv-Z7GqoPBkP4XVnmYbQgvVva1ztaDqKPDZuf0kPedKa7Hdp2jMVucDP_mNqr-D27OL8zJydzE-fwx0eYarFOH8Bg-1mhy_Jg9sWh2GFfgOYo0kx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+crosstalk+between+periventricular+endothelial+cells+and+neural+progenitor+cells+promotes+the+formation+of+a+neurovascular+unit&rft.jtitle=Brain+research&rft.au=Vissapragada%2C+Ravi&rft.au=Contreras%2C+Mauricio+A&rft.au=da+Silva%2C+Cleide+G&rft.au=Kumar%2C+Vivek+A&rft.date=2014-05-27&rft.issn=1872-6240&rft.eissn=1872-6240&rft.volume=1565&rft.spage=8&rft_id=info:doi/10.1016%2Fj.brainres.2014.03.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899314X00223%2Fcov150h.gif