Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit
Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to de...
Saved in:
Published in | Brain research Vol. 1565; pp. 8 - 17 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
27.05.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8993 1872-6240 1872-6240 |
DOI | 10.1016/j.brainres.2014.03.018 |
Cover
Loading…
Abstract | Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.
•Interactions between neural progenitor cells (NPC) and periventricular endothelial cells (PVEC) were delineated.•Embryonic brain endothelial cells (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation.•PVEC enhanced NPC proliferation and delayed NPC differentiation as evidenced by high expression of progenitor marker Nestin.•PVEC expressed increased Vegfa levels when co-cultured with NPC.•PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. |
---|---|
AbstractList | Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. •Interactions between neural progenitor cells (NPC) and periventricular endothelial cells (PVEC) were delineated.•Embryonic brain endothelial cells (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation.•PVEC enhanced NPC proliferation and delayed NPC differentiation as evidenced by high expression of progenitor marker Nestin.•PVEC expressed increased Vegfa levels when co-cultured with NPC.•PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. Abstract Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries.Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors and signaling mechanisms that regulate neurogenesis and angiogenesis are most prevalent during embryonic development. This study aimed to determine whether embryonic brain endothelial cells from the periventricular region (PVEC) present an advantage over adult brain EC in supporting NPC growth and differentiation. PVEC were isolated from E15 mouse brains, processed, and sorted with immunomagnetic beads using antibodies against CD31/PECAM. On immunofluorescence (IF) staining, nearly all cells were positive for EC markers CD31 and CD144/VE-Cadherin. In proliferation studies, NPC proliferation was highest in transwell co-culture with PVEC, approximately 2.3 fold increase compared to baseline versus 1.4 fold increase when co-cultured with adult brain endothelial cells (ABEC). These results correlated with the PVEC mediated delay in NPC differentiation, evidenced by high expression of progenitor marker Nestin evaluated by IF staining. Upon further characterization of PVEC in an angiogenesis assay measuring cord length, PVEC exhibited a high capacity to form cords in basal conditions compared to ABEC. This was enhanced in the presence of NPC, with both cell types displaying a preferential structural alignment resembling neurovascular networks. PVEC also expressed high Vegfa levels at baseline in comparison to NPC and ABEC. Vegfa levels increased when co-cultured with NPC. We demonstrate that PVEC and NPC co-cultures act synergistically to promote the formation of a neurovascular unit through dynamic and reciprocal communication. Our results suggest that PVEC/NPC could provide promising neuro-regenerative therapies for patients suffering brain injuries. |
Author | Ochoa, Angelica Thomas, Ajith J. Selim, Magdy H. da Silva, Cleide G Contreras, Mauricio A. Vasudevan, Anju Vissapragada, Ravi Ferran, Christiane Kumar, Vivek A. |
Author_xml | – sequence: 1 givenname: Ravi surname: Vissapragada fullname: Vissapragada, Ravi organization: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America – sequence: 2 givenname: Mauricio A. surname: Contreras fullname: Contreras, Mauricio A. organization: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America – sequence: 3 givenname: Cleide G surname: da Silva fullname: da Silva, Cleide G organization: The Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America – sequence: 4 givenname: Vivek A. surname: Kumar fullname: Kumar, Vivek A. organization: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America – sequence: 5 givenname: Angelica surname: Ochoa fullname: Ochoa, Angelica organization: College of Engineering, Boston University, Boston, MA, United States of America – sequence: 6 givenname: Anju surname: Vasudevan fullname: Vasudevan, Anju organization: Department of Psychiatry, Harvard Medical School and Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States of America – sequence: 7 givenname: Magdy H. surname: Selim fullname: Selim, Magdy H. organization: Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America – sequence: 8 givenname: Christiane surname: Ferran fullname: Ferran, Christiane organization: Division of Vascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America – sequence: 9 givenname: Ajith J. surname: Thomas fullname: Thomas, Ajith J. email: athomas6@bidmc.harvard.edu organization: Division of Neurosurgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States of America |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28475712$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24675025$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-O1SAUxokZ49wZfYVJNyZuWoFS2ibGqBP_JZO4UNeEwqlyh8IV6DXzDj609PaOJrNwXBHg930cvnPO0InzDhC6ILgimPDn22oI0rgAsaKYsArXFSbdA7QhXUtLThk-QRuMMS-7vq9P0VmM27yt6x4_QqeU8bbBtNmgX2-MNgFUMt5JW6jgY0zSXhcDpJ8ArthBMHtwKRg1WxkKcNqn72DNQoO1sZBOFw7mkA92wX8DZ5IPx7t8MPkEsciSYvRhkstDhR8LedD4vYyr75xlj9HDUdoIT47rOfr67u2Xyw_l1af3Hy9fX5WqaVkqpQbWqHYAObSM6w5IR1Xf9FoOoLseQJKakV5z2vWjBC3rkTSaMFo3uh1JV5-jZ6tvLu_HDDGJycSlYOnAz1GQhjLS8r5e0IsjOg8TaLELZpLhRtwmmIGnRyD_RNoxSKdM_Mt1rG1aQjPHV-4QcYDxD0KwWFoqtuK2pWJpqcC1wIdiX9wRKpMOMaaM2_vlr1Y55ED3BoKIyoBTsLZdaG_ut3h5x0JZ40z-7TXcQNz6OeTZybGJSAUWn5exW6aOsDxwnLf_NvifCn4D_77wCA |
CODEN | BRREAP |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2020_12_004 crossref_primary_10_1038_srep33428 crossref_primary_10_1063_5_0027211 crossref_primary_10_1007_s12031_020_01564_1 crossref_primary_10_3389_fnmol_2019_00085 crossref_primary_10_3233_JAD_170239 crossref_primary_10_1002_bdr2_1424 crossref_primary_10_3390_molecules24071219 crossref_primary_10_3390_mi11010021 crossref_primary_10_1016_j_devcel_2018_01_023 crossref_primary_10_1016_j_brainres_2019_146469 crossref_primary_10_1016_j_neures_2022_09_006 crossref_primary_10_1007_s12035_016_0286_4 crossref_primary_10_1016_j_reprotox_2020_06_010 crossref_primary_10_1186_s12987_020_00207_2 crossref_primary_10_3389_fphys_2021_636736 crossref_primary_10_3389_fnins_2018_00252 crossref_primary_10_1016_j_actbio_2016_07_043 crossref_primary_10_1038_s41598_020_77297_3 crossref_primary_10_1016_j_neuroscience_2020_05_046 crossref_primary_10_3389_fcell_2022_890852 crossref_primary_10_1186_s13046_018_0975_0 crossref_primary_10_1016_j_biocel_2014_08_003 crossref_primary_10_1002_tox_22723 crossref_primary_10_1038_srep14597 crossref_primary_10_1111_jnc_13362 crossref_primary_10_1523_JNEUROSCI_1201_21_2021 crossref_primary_10_1515_revneuro_2019_0023 crossref_primary_10_3390_ijms23105771 crossref_primary_10_3389_fncel_2015_00085 crossref_primary_10_1016_j_cdev_2023_203841 crossref_primary_10_3389_fonc_2020_00413 crossref_primary_10_3390_biom14030335 |
Cites_doi | 10.1073/pnas.182296499 10.1242/dev.059295 10.1073/pnas.0406795101 10.1016/j.pneurobio.2005.04.002 10.1161/CIRCRESAHA.109.199299 10.1634/stemcells.2007-0919 10.1128/MCB.20.23.8889-8902.2000 10.1163/156856208786140409 10.1038/sj.jcbfm.9600573 10.1038/nature03875 10.1016/S0012-1606(03)00356-7 10.1002/dvdy.22377 10.1002/cm.970170207 10.1016/j.expneurol.2004.04.011 10.1002/stem.541 10.1523/JNEUROSCI.16-19-06089.1996 10.1016/j.neures.2005.08.003 10.1016/j.cell.2007.06.054 10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C 10.1016/S0002-9440(10)64154-5 10.1038/nn1657 10.1038/jcbfm.2008.38 10.1073/pnas.0506020102 10.1038/nn2074 10.1038/jcbfm.2008.32 10.1016/S0361-9230(01)00770-5 10.1126/science.1095505 10.1038/cr.2007.53 10.1055/s-0038-1657611 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3 10.1016/j.yexmp.2005.03.004 10.1016/j.mcn.2010.05.006 10.1007/s11064-010-0207-2 10.1038/ng1211 10.1006/mcne.1999.0762 10.1016/j.yexcr.2012.06.002 10.1007/s10616-010-9315-8 10.1111/j.1750-3639.2004.tb00060.x 10.1371/journal.pone.0009414 10.1152/ajpcell.00389.2001 10.1038/nrg1158 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Elsevier B.V. 2015 INIST-CNRS Copyright © 2014 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.brainres.2014.03.018 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 17 |
ExternalDocumentID | 24675025 28475712 10_1016_j_brainres_2014_03_018 S0006899314003667 1_s2_0_S0006899314003667 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPCBC SSN SSZ T5K Z5R ZGI ~G- .55 .GJ 41~ 53G AACTN AAQXK AAYJJ ABWVN ACRPL ADIYS ADMUD ADNMO AFCTW AFJKZ AFKWA AGHFR AI. AJOXV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HMQ HVGLF HZ~ MVM PKN R2- RIG SEW SNS VH1 WUQ X7M XPP AADPK AAIAV ABYKQ AJBFU EFLBG AAYXX AGQPQ AGRNS AIGII APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c574t-ade45c7beab746d8e182c959dabed89eea13419d6289faeda3f15d14235d7f183 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 1872-6240 |
IngestDate | Thu Aug 07 14:07:07 EDT 2025 Mon Jul 21 06:07:41 EDT 2025 Wed Apr 02 07:27:34 EDT 2025 Thu Apr 24 23:07:38 EDT 2025 Tue Jul 01 01:21:42 EDT 2025 Fri Feb 23 02:19:43 EST 2024 Sun Feb 23 10:19:30 EST 2025 Tue Aug 26 16:33:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Periventricular endothelial cell Neurovascular niche Angiogenesis Neural progenitor cell Proliferation Differentiation Neurogenesis Vascular endothelial growth factor Cell proliferation Endothelial cell Precursor cell Vascular endothelium growth factor Progenitor cell |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-ade45c7beab746d8e182c959dabed89eea13419d6289faeda3f15d14235d7f183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24675025 |
PQID | 1524176938 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1524176938 pubmed_primary_24675025 pascalfrancis_primary_28475712 crossref_primary_10_1016_j_brainres_2014_03_018 crossref_citationtrail_10_1016_j_brainres_2014_03_018 elsevier_sciencedirect_doi_10_1016_j_brainres_2014_03_018 elsevier_clinicalkeyesjournals_1_s2_0_S0006899314003667 elsevier_clinicalkey_doi_10_1016_j_brainres_2014_03_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-27 |
PublicationDateYYYYMMDD | 2014-05-27 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Miyake (bib23) 2000; 20 Roitbak, Li, Cunningham (bib31) 2008; 28 Michalczyk, Ziman (bib22) 2005; 20 Park (bib28) 2010; 28 Chen, Magavi, Macklis (bib7) 2004; 101 Ford (bib12) 2006; 103 Gama Sosa (bib13) 2007; 17 Palmer, Willhoite, Gage (bib26) 2000; 425 Sun (bib37) 2010; 239 Ara (bib3) 2010; 35 Yang, Cepko (bib42) 1996; 16 Shih, Smith (bib35) 2005; 79 Papetti, Herman (bib27) 2002; 282 Schanzer (bib32) 2004; 14 Ramirez-Castillejo (bib29) 2006; 9 Alvarez-Buylla, Seri, Doetsch (bib1) 2002; 57 Jin (bib17) 2002; 99 Leventhal (bib21) 1999; 13 Breier (bib4) 1997; 78 Vasudevan (bib133a) 2008; 11 Xue, Yuan (bib41) 2010; 45 Golmohammadi (bib14) 2008; 26 Ii (bib16) 2009; 105 Demeter (bib8) 2004; 188 Teng (bib38) 2008; 28 Lee (bib19) 1990; 17 Demeter (bib9) 2005; 53 Rauch (bib30) 2008; 19 Nakajima (bib25) 2011; 138 Shih (bib34) 2002; 161 Shen (bib33) 2004; 304 Wada (bib39) 2011; 63 Lambrechts (bib18) 2003; 34 Carmeliet, Tessier-Lavigne (bib6) 2005; 436 Wang (bib40) 2008; 28 Lee (bib20) 2007; 130 Flamme, Frolich, Risau (bib11) 1997; 173 Muffley (bib24) 2012; 318 Carmeliet (bib5) 2003; 4 Haigh (bib15) 2003; 262 Androutsellis-Theotokis (bib2) 2010; 5 Emsley (bib10) 2005; 75 Ara (10.1016/j.brainres.2014.03.018_bib3) 2010; 35 Shih (10.1016/j.brainres.2014.03.018_bib34) 2002; 161 Golmohammadi (10.1016/j.brainres.2014.03.018_bib14) 2008; 26 Ford (10.1016/j.brainres.2014.03.018_bib12) 2006; 103 Chen (10.1016/j.brainres.2014.03.018_bib7) 2004; 101 Shih (10.1016/j.brainres.2014.03.018_bib35) 2005; 79 Carmeliet (10.1016/j.brainres.2014.03.018_bib6) 2005; 436 Roitbak (10.1016/j.brainres.2014.03.018_bib31) 2008; 28 Schanzer (10.1016/j.brainres.2014.03.018_bib32) 2004; 14 Carmeliet (10.1016/j.brainres.2014.03.018_bib5) 2003; 4 Emsley (10.1016/j.brainres.2014.03.018_bib10) 2005; 75 Park (10.1016/j.brainres.2014.03.018_bib28) 2010; 28 Leventhal (10.1016/j.brainres.2014.03.018_bib21) 1999; 13 Alvarez-Buylla (10.1016/j.brainres.2014.03.018_bib1) 2002; 57 Papetti (10.1016/j.brainres.2014.03.018_bib27) 2002; 282 Demeter (10.1016/j.brainres.2014.03.018_bib9) 2005; 53 Vasudevan (10.1016/j.brainres.2014.03.018_bib133a) 2008; 11 Flamme (10.1016/j.brainres.2014.03.018_bib11) 1997; 173 Teng (10.1016/j.brainres.2014.03.018_bib38) 2008; 28 Demeter (10.1016/j.brainres.2014.03.018_bib8) 2004; 188 Breier (10.1016/j.brainres.2014.03.018_bib4) 1997; 78 Gama Sosa (10.1016/j.brainres.2014.03.018_bib13) 2007; 17 Muffley (10.1016/j.brainres.2014.03.018_bib24) 2012; 318 Shen (10.1016/j.brainres.2014.03.018_bib33) 2004; 304 Palmer (10.1016/j.brainres.2014.03.018_bib26) 2000; 425 Nakajima (10.1016/j.brainres.2014.03.018_bib25) 2011; 138 Miyake (10.1016/j.brainres.2014.03.018_bib23) 2000; 20 Androutsellis-Theotokis (10.1016/j.brainres.2014.03.018_bib2) 2010; 5 Rauch (10.1016/j.brainres.2014.03.018_bib30) 2008; 19 Jin (10.1016/j.brainres.2014.03.018_bib17) 2002; 99 Lee (10.1016/j.brainres.2014.03.018_bib19) 1990; 17 Michalczyk (10.1016/j.brainres.2014.03.018_bib22) 2005; 20 Lambrechts (10.1016/j.brainres.2014.03.018_bib18) 2003; 34 Sun (10.1016/j.brainres.2014.03.018_bib37) 2010; 239 Haigh (10.1016/j.brainres.2014.03.018_bib15) 2003; 262 Wang (10.1016/j.brainres.2014.03.018_bib40) 2008; 28 Lee (10.1016/j.brainres.2014.03.018_bib20) 2007; 130 Xue (10.1016/j.brainres.2014.03.018_bib41) 2010; 45 Yang (10.1016/j.brainres.2014.03.018_bib42) 1996; 16 Ii (10.1016/j.brainres.2014.03.018_bib16) 2009; 105 Wada (10.1016/j.brainres.2014.03.018_bib39) 2011; 63 Ramirez-Castillejo (10.1016/j.brainres.2014.03.018_bib29) 2006; 9 |
References_xml | – volume: 239 start-page: 2345 year: 2010 end-page: 2353 ident: bib37 article-title: Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling publication-title: Dev. Dyn. – volume: 101 start-page: 16357 year: 2004 end-page: 16362 ident: bib7 article-title: Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 425 start-page: 479 year: 2000 end-page: 494 ident: bib26 article-title: Vascular niche for adult hippocampal neurogenesis publication-title: J. Comp. Neurol. – volume: 13 start-page: 450 year: 1999 end-page: 464 ident: bib21 article-title: Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma publication-title: Mol. Cell. Neurosci. – volume: 161 start-page: 35 year: 2002 end-page: 41 ident: bib34 article-title: Molecular profiling of angiogenesis markers publication-title: Am. J. Pathol. – volume: 26 start-page: 979 year: 2008 end-page: 987 ident: bib14 article-title: Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain publication-title: Stem Cells – volume: 28 start-page: 2162 year: 2010 end-page: 2171 ident: bib28 article-title: Nestin is required for the proper self-renewal of neural stem cells publication-title: Stem Cells – volume: 16 start-page: 6089 year: 1996 end-page: 6099 ident: bib42 article-title: Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells publication-title: J. Neurosci. – volume: 75 start-page: 321 year: 2005 end-page: 341 ident: bib10 article-title: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells publication-title: Prog. Neurobiol. – volume: 318 start-page: 2085 year: 2012 end-page: 2093 ident: bib24 article-title: Differentiation state determines neural effects on microvascular endothelial cells publication-title: Exp. Cell Res. – volume: 19 start-page: 1469 year: 2008 end-page: 1485 ident: bib30 article-title: Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks publication-title: J. Biomater. Sci. Polym. Ed. – volume: 9 start-page: 331 year: 2006 end-page: 339 ident: bib29 article-title: Pigment epithelium-derived factor is a niche signal for neural stem cell renewal publication-title: Nat. Neurosci. – volume: 99 start-page: 11946 year: 2002 end-page: 11950 ident: bib17 article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 188 start-page: 254 year: 2004 end-page: 267 ident: bib8 article-title: Fate of cloned embryonic neuroectodermal cells implanted into the adult, newborn and embryonic forebrain publication-title: Exp. Neurol. – volume: 20 start-page: 665 year: 2005 end-page: 671 ident: bib22 article-title: Nestin structure and predicted function in cellular cytoskeletal organisation publication-title: Histol. Histopathol. – volume: 63 start-page: 25 year: 2011 end-page: 33 ident: bib39 article-title: A multi-gene transcriptional profiling approach to the discovery of cell signature markers publication-title: Cytotechnology – volume: 45 start-page: 26 year: 2010 end-page: 36 ident: bib41 article-title: Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells publication-title: Mol. Cell. Neurosci. – volume: 4 start-page: 710 year: 2003 end-page: 720 ident: bib5 article-title: Blood vessels and nerves: common signals, pathways and diseases publication-title: Nat. Rev. Genet. – volume: 105 start-page: 860 year: 2009 end-page: 868 ident: bib16 article-title: Concurrent vasculogenesis and neurogenesis from adult neural stem cells publication-title: Circ. Res. – volume: 304 start-page: 1338 year: 2004 end-page: 1340 ident: bib33 article-title: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells publication-title: Science – volume: 78 start-page: 678 year: 1997 end-page: 683 ident: bib4 article-title: Angiogenesis in embryos and ischemic diseases publication-title: Thromb. Haemost. – volume: 173 start-page: 206 year: 1997 end-page: 210 ident: bib11 article-title: Molecular mechanisms of vasculogenesis and embryonic angiogenesis publication-title: J. Cell. Physiol. – volume: 20 start-page: 8889 year: 2000 end-page: 8902 ident: bib23 article-title: Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle publication-title: Mol. Cell. Biol. – volume: 11 start-page: 429 year: 2008 end-page: 439 ident: bib133a article-title: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain publication-title: Nature neuroscience – volume: 282 start-page: C947 year: 2002 end-page: C970 ident: bib27 article-title: Mechanisms of normal and tumor-derived angiogenesis publication-title: Am. J. Physiol.: Cell Physiol. – volume: 79 start-page: 14 year: 2005 end-page: 22 ident: bib35 article-title: Quantitative multi-gene transcriptional profiling using real-time PCR with a master template publication-title: Exp. Mol. Pathol. – volume: 138 start-page: 1771 year: 2011 end-page: 1782 ident: bib25 article-title: Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway publication-title: Development – volume: 14 start-page: 237 year: 2004 end-page: 248 ident: bib32 article-title: Direct stimulation of adult neural stem cells publication-title: Brain Pathol. – volume: 130 start-page: 691 year: 2007 end-page: 703 ident: bib20 article-title: Autocrine VEGF signaling is required for vascular homeostasis publication-title: Cell – volume: 28 start-page: 1361 year: 2008 end-page: 1368 ident: bib40 article-title: Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF publication-title: J. Cereb. Blood Flow Metab. – volume: 262 start-page: 225 year: 2003 end-page: 241 ident: bib15 article-title: Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling publication-title: Dev. Biol. – volume: 35 start-page: 1455 year: 2010 end-page: 1470 ident: bib3 article-title: Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain publication-title: Neurochem. Res. – volume: 103 start-page: 2512 year: 2006 end-page: 2517 ident: bib12 article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks publication-title: Proc. Natl. Acad. Sci. USA – volume: 436 start-page: 193 year: 2005 end-page: 200 ident: bib6 article-title: Common mechanisms of nerve and blood vessel wiring publication-title: Nature – volume: 28 start-page: 1530 year: 2008 end-page: 1542 ident: bib31 article-title: Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling publication-title: J. Cereb. Blood Flow Metab. – volume: 53 start-page: 331 year: 2005 end-page: 342 ident: bib9 article-title: Studies on the use of NE-4C embryonic neuroectodermal stem cells for targeting brain tumour publication-title: Neurosci. Res. – volume: 34 start-page: 383 year: 2003 end-page: 394 ident: bib18 article-title: VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death publication-title: Nat. Genet. – volume: 57 start-page: 751 year: 2002 end-page: 758 ident: bib1 article-title: Identification of neural stem cells in the adult vertebrate brain publication-title: Brain Res. Bull. – volume: 5 start-page: e9414 year: 2010 ident: bib2 article-title: Angiogenic factors stimulate growth of adult neural stem cells publication-title: PloS One – volume: 17 start-page: 118 year: 1990 end-page: 132 ident: bib19 article-title: The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis publication-title: Cell Motil. Cytoskelet. – volume: 28 start-page: 764 year: 2008 end-page: 771 ident: bib38 article-title: Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke publication-title: J. Cereb. Blood Flow Metab. – volume: 17 start-page: 619 year: 2007 end-page: 626 ident: bib13 article-title: Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact publication-title: Cell Res. – volume: 99 start-page: 11946 year: 2002 ident: 10.1016/j.brainres.2014.03.018_bib17 article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.182296499 – volume: 138 start-page: 1771 year: 2011 ident: 10.1016/j.brainres.2014.03.018_bib25 article-title: Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway publication-title: Development doi: 10.1242/dev.059295 – volume: 101 start-page: 16357 year: 2004 ident: 10.1016/j.brainres.2014.03.018_bib7 article-title: Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406795101 – volume: 75 start-page: 321 year: 2005 ident: 10.1016/j.brainres.2014.03.018_bib10 article-title: Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2005.04.002 – volume: 105 start-page: 860 year: 2009 ident: 10.1016/j.brainres.2014.03.018_bib16 article-title: Concurrent vasculogenesis and neurogenesis from adult neural stem cells publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.199299 – volume: 26 start-page: 979 year: 2008 ident: 10.1016/j.brainres.2014.03.018_bib14 article-title: Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain publication-title: Stem Cells doi: 10.1634/stemcells.2007-0919 – volume: 20 start-page: 8889 year: 2000 ident: 10.1016/j.brainres.2014.03.018_bib23 article-title: Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.23.8889-8902.2000 – volume: 19 start-page: 1469 year: 2008 ident: 10.1016/j.brainres.2014.03.018_bib30 article-title: Co-culture of primary neural progenitor and endothelial cells in a macroporous gel promotes stable vascular networks in vivo publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/156856208786140409 – volume: 28 start-page: 764 year: 2008 ident: 10.1016/j.brainres.2014.03.018_bib38 article-title: Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600573 – volume: 436 start-page: 193 year: 2005 ident: 10.1016/j.brainres.2014.03.018_bib6 article-title: Common mechanisms of nerve and blood vessel wiring publication-title: Nature doi: 10.1038/nature03875 – volume: 262 start-page: 225 year: 2003 ident: 10.1016/j.brainres.2014.03.018_bib15 article-title: Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling publication-title: Dev. Biol. doi: 10.1016/S0012-1606(03)00356-7 – volume: 239 start-page: 2345 year: 2010 ident: 10.1016/j.brainres.2014.03.018_bib37 article-title: Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling publication-title: Dev. Dyn. doi: 10.1002/dvdy.22377 – volume: 17 start-page: 118 year: 1990 ident: 10.1016/j.brainres.2014.03.018_bib19 article-title: The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis publication-title: Cell Motil. Cytoskelet. doi: 10.1002/cm.970170207 – volume: 188 start-page: 254 year: 2004 ident: 10.1016/j.brainres.2014.03.018_bib8 article-title: Fate of cloned embryonic neuroectodermal cells implanted into the adult, newborn and embryonic forebrain publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2004.04.011 – volume: 28 start-page: 2162 year: 2010 ident: 10.1016/j.brainres.2014.03.018_bib28 article-title: Nestin is required for the proper self-renewal of neural stem cells publication-title: Stem Cells doi: 10.1002/stem.541 – volume: 16 start-page: 6089 year: 1996 ident: 10.1016/j.brainres.2014.03.018_bib42 article-title: Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-19-06089.1996 – volume: 53 start-page: 331 year: 2005 ident: 10.1016/j.brainres.2014.03.018_bib9 article-title: Studies on the use of NE-4C embryonic neuroectodermal stem cells for targeting brain tumour publication-title: Neurosci. Res. doi: 10.1016/j.neures.2005.08.003 – volume: 130 start-page: 691 year: 2007 ident: 10.1016/j.brainres.2014.03.018_bib20 article-title: Autocrine VEGF signaling is required for vascular homeostasis publication-title: Cell doi: 10.1016/j.cell.2007.06.054 – volume: 173 start-page: 206 year: 1997 ident: 10.1016/j.brainres.2014.03.018_bib11 article-title: Molecular mechanisms of vasculogenesis and embryonic angiogenesis publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C – volume: 161 start-page: 35 year: 2002 ident: 10.1016/j.brainres.2014.03.018_bib34 article-title: Molecular profiling of angiogenesis markers publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64154-5 – volume: 9 start-page: 331 year: 2006 ident: 10.1016/j.brainres.2014.03.018_bib29 article-title: Pigment epithelium-derived factor is a niche signal for neural stem cell renewal publication-title: Nat. Neurosci. doi: 10.1038/nn1657 – volume: 28 start-page: 1530 year: 2008 ident: 10.1016/j.brainres.2014.03.018_bib31 article-title: Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2008.38 – volume: 103 start-page: 2512 year: 2006 ident: 10.1016/j.brainres.2014.03.018_bib12 article-title: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506020102 – volume: 11 start-page: 429 year: 2008 ident: 10.1016/j.brainres.2014.03.018_bib133a article-title: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain publication-title: Nature neuroscience doi: 10.1038/nn2074 – volume: 28 start-page: 1361 year: 2008 ident: 10.1016/j.brainres.2014.03.018_bib40 article-title: Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2008.32 – volume: 57 start-page: 751 year: 2002 ident: 10.1016/j.brainres.2014.03.018_bib1 article-title: Identification of neural stem cells in the adult vertebrate brain publication-title: Brain Res. Bull. doi: 10.1016/S0361-9230(01)00770-5 – volume: 304 start-page: 1338 year: 2004 ident: 10.1016/j.brainres.2014.03.018_bib33 article-title: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells publication-title: Science doi: 10.1126/science.1095505 – volume: 17 start-page: 619 year: 2007 ident: 10.1016/j.brainres.2014.03.018_bib13 article-title: Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact publication-title: Cell Res. doi: 10.1038/cr.2007.53 – volume: 78 start-page: 678 year: 1997 ident: 10.1016/j.brainres.2014.03.018_bib4 article-title: Angiogenesis in embryos and ischemic diseases publication-title: Thromb. Haemost. doi: 10.1055/s-0038-1657611 – volume: 20 start-page: 665 year: 2005 ident: 10.1016/j.brainres.2014.03.018_bib22 article-title: Nestin structure and predicted function in cellular cytoskeletal organisation publication-title: Histol. Histopathol. – volume: 425 start-page: 479 year: 2000 ident: 10.1016/j.brainres.2014.03.018_bib26 article-title: Vascular niche for adult hippocampal neurogenesis publication-title: J. Comp. Neurol. doi: 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3 – volume: 79 start-page: 14 year: 2005 ident: 10.1016/j.brainres.2014.03.018_bib35 article-title: Quantitative multi-gene transcriptional profiling using real-time PCR with a master template publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2005.03.004 – volume: 45 start-page: 26 year: 2010 ident: 10.1016/j.brainres.2014.03.018_bib41 article-title: Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2010.05.006 – volume: 35 start-page: 1455 year: 2010 ident: 10.1016/j.brainres.2014.03.018_bib3 article-title: Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain publication-title: Neurochem. Res. doi: 10.1007/s11064-010-0207-2 – volume: 34 start-page: 383 year: 2003 ident: 10.1016/j.brainres.2014.03.018_bib18 article-title: VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death publication-title: Nat. Genet. doi: 10.1038/ng1211 – volume: 13 start-page: 450 year: 1999 ident: 10.1016/j.brainres.2014.03.018_bib21 article-title: Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma publication-title: Mol. Cell. Neurosci. doi: 10.1006/mcne.1999.0762 – volume: 318 start-page: 2085 year: 2012 ident: 10.1016/j.brainres.2014.03.018_bib24 article-title: Differentiation state determines neural effects on microvascular endothelial cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2012.06.002 – volume: 63 start-page: 25 year: 2011 ident: 10.1016/j.brainres.2014.03.018_bib39 article-title: A multi-gene transcriptional profiling approach to the discovery of cell signature markers publication-title: Cytotechnology doi: 10.1007/s10616-010-9315-8 – volume: 14 start-page: 237 year: 2004 ident: 10.1016/j.brainres.2014.03.018_bib32 article-title: Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor publication-title: Brain Pathol. doi: 10.1111/j.1750-3639.2004.tb00060.x – volume: 5 start-page: e9414 year: 2010 ident: 10.1016/j.brainres.2014.03.018_bib2 article-title: Angiogenic factors stimulate growth of adult neural stem cells publication-title: PloS One doi: 10.1371/journal.pone.0009414 – volume: 282 start-page: C947 year: 2002 ident: 10.1016/j.brainres.2014.03.018_bib27 article-title: Mechanisms of normal and tumor-derived angiogenesis publication-title: Am. J. Physiol.: Cell Physiol. doi: 10.1152/ajpcell.00389.2001 – volume: 4 start-page: 710 year: 2003 ident: 10.1016/j.brainres.2014.03.018_bib5 article-title: Blood vessels and nerves: common signals, pathways and diseases publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1158 |
SSID | ssj0003390 |
Score | 2.2995741 |
Snippet | Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However, the factors... Abstract Interactions between neural progenitor cells (NPC) and endothelial cells (EC) from adult vascular beds have been well explored previously. However,... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | Angiogenesis Animals Biological and medical sciences Cells, Cultured Cerebral Ventricles - embryology Differentiation Endothelial Cells - cytology Endothelial Cells - metabolism Fundamental and applied biological sciences. Psychology Mice Mice, Inbred C57BL Neovascularization, Physiologic - physiology Neural progenitor cell Neural Stem Cells - cytology Neural Stem Cells - metabolism Neurogenesis Neurology Neurovascular niche Periventricular endothelial cell Proliferation Vascular endothelial growth factor Vertebrates: nervous system and sense organs |
Title | Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899314003667 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899314003667 https://dx.doi.org/10.1016/j.brainres.2014.03.018 https://www.ncbi.nlm.nih.gov/pubmed/24675025 https://www.proquest.com/docview/1524176938 |
Volume | 1565 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELem8YI0IWAwykdlpIm3rEljJ_FjqZjKBtOEmLQ3y4nPUkdJq6Z94IW_gD-aO8fJmACBtqcoH5c4ucvPd9bv7hg7tCpPlcAfydoqjoQcu8gUMUSZUoCg6WziKFD8eJbNLsTJpbzcYdMuF4ZolQH7W0z3aB2OjMLXHK3mc8rxjTOMFlIMERCGM8oop-p1aNNH369pHmnarrNQ5ExX_5IlfHVUUhsGDGuJ4iV8sVNq_vHnCWpvZRr8bK7td_F3h9RPTMcP2YPgUfJJO-hHbAfqx2x_UmM0_fUbf8M9x9Mvnu-zH2_n7fv6BUDuR4De9xce6Fqc6h4TA9IvC5o1h9pSitZiTlfDYtFwU1tORTDxAHG7gCBhHc6tPLcPGo4ivE-L5EvHjZfpea98i2JP2MXxu8_TWRT6MUSVzMUmMhaErPISTJmLzBaAsUmlpLKmBFsoAOOrw9kMgzhnwJrUJdIm6LBJmzvEjqdst17W8IzxWJSqQO1lpXICYkAYSCsTQ2lNUgDAgMlOCboKxcqpZ8ZCd6y0K90pT5PydJxqVN6AjXq5VVuu458Seadj3SWjInxqnFFuJwlNQIFGJ7oZ61j_ZqkDpnrJG8b-X08d3jDE_jXJz5B5Mh6w151laoQK0r-pYbnF4Uh016j3Jd7koDXZa2mcMCX6v8_vMLQX7D7tEbdinL9ku5v1Fl6hy7Yph_6fHLJ7k-mnD-e0fX86O_sJ1phIFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-N7gEkhIDxUT6GkRBvoUljJ_VjmZg6tvVpk_ZmOfFF6ihp1bQP_A_80dw5TmACBILXOJc4ufPPd9bv7gDeOJ2nWtJCcq6MI6nGVWQnMUaZ1kigWbmk4kDxfJ7NLuXHK3W1B0ddLgzTKgP2t5ju0TpcGYW_OVovFpzjG2cULaQUIhAMZ_kt2OfqVHIA-9OT09m8B-Q0bY9aOHhmgR8Sha_fFdyJgSJbZnlJX--U-3_8eo-6u7YN_bmqbXnxe5_U703H9-FecCrFtJ33A9jD-iEcTGsKqD9_EW-Fp3n68_MD-Pp-0X6yPwMUfgbkgH8SgbEluPQxkyD9yaDdCKwdZ2ktF3w3LpeNsLUTXAeTLjC9CxkVNmFs7el92AgSEX1mpFhVwnqZnvoqdiT2CC6PP1wczaLQkiEqVS63kXUoVZkXaItcZm6CFJ6UWmlnC3QTjWh9gTiXURxXWXQ2rRLlEvLZlMsrgo_HMKhXNT4FEctCT0iBWaEriTESEqSljbFwNpkg4hBUpwRThnrl3DZjaTpi2rXplGdYeSZODSlvCKNebt1W7PijRN7p2HT5qISghjaVf5PEJgBBYxLTjE1sfjLWIehe8oa9_9VbD28YYv-Z7GqoPBkP4XVnmYbQgvVva1ztaDqKPDZuf0kPedKa7Hdp2jMVucDP_mNqr-D27OL8zJydzE-fwx0eYarFOH8Bg-1mhy_Jg9sWh2GFfgOYo0kx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+crosstalk+between+periventricular+endothelial+cells+and+neural+progenitor+cells+promotes+the+formation+of+a+neurovascular+unit&rft.jtitle=Brain+research&rft.au=Vissapragada%2C+Ravi&rft.au=Contreras%2C+Mauricio+A&rft.au=da+Silva%2C+Cleide+G&rft.au=Kumar%2C+Vivek+A&rft.date=2014-05-27&rft.issn=1872-6240&rft.eissn=1872-6240&rft.volume=1565&rft.spage=8&rft_id=info:doi/10.1016%2Fj.brainres.2014.03.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899314X00223%2Fcov150h.gif |