Engineered polyethylene terephthalate hydrolases: perspectives and limits
Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerizati...
Saved in:
Published in | Applied microbiology and biotechnology Vol. 108; no. 1; p. 404 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals.
Key points
•
PET hydrolases must be thermophilic, but their operation must be below 70 °C
•
Classical and state-of-the-art engineering approaches are useful for PET hydrolases
•
Enzyme activity on crystalline PET is most expected for future PET biorecycling
Graphical Abstract |
---|---|
AbstractList | Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals.
Key points
•
PET hydrolases must be thermophilic, but their operation must be below 70 °C
•
Classical and state-of-the-art engineering approaches are useful for PET hydrolases
•
Enzyme activity on crystalline PET is most expected for future PET biorecycling
Graphical Abstract Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling.Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling. Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling. |
ArticleNumber | 404 |
Author | Kawai, Fusako Kawabata, Takeshi Iizuka, Ryo |
Author_xml | – sequence: 1 givenname: Fusako orcidid: 0000-0002-3206-6093 surname: Kawai fullname: Kawai, Fusako email: fkawai@okayama-u.ac.jp organization: Graduate School of Environmental and Life Sciences, Okayama University – sequence: 2 givenname: Ryo orcidid: 0000-0002-9328-5628 surname: Iizuka fullname: Iizuka, Ryo organization: Graduate School of Science, The University of Tokyo – sequence: 3 givenname: Takeshi orcidid: 0000-0002-0032-9688 surname: Kawabata fullname: Kawabata, Takeshi organization: Graduate School of Information Sciences, Tohoku University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38953996$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LHDEcxUOx1HXtP9BDGejFy7T5OZn0UoqoFYRevIdM5rs7kWwyTbLC_vfNumpbD_YUSD7v8fLeCToKMQBCHwj-TDCWXzLGVLAWU94SRilt6Ru0IJzRFneEH6EFJlK0Uqj-GJ3kfIcxoX3XvUPHrFeCKdUt0PVFWLsAkGBs5uh3UKadhwBNqVfzVCbjTYFm2o0pepMhf21mSHkGW9w95MaEsfFu40o-RW9Xxmd4_3gu0e3lxe35j_bm59X1-feb1grJS2sUE3iUnI-9ZaLmH3qiSLcaiMJ26ISkEq-AMMywGC0dBmmJxEpiZiwXPVuibwfbeTtsYLQQSjJez8ltTNrpaJz-9yW4Sa_jvSaEEsU7Vh3OHh1S_LWFXPTGZQvemwBxmzUjgnWyFiz_j2IpmOS0trlEn16gd3GbQm1iT_FecMpUpT7-nf459tMgFegPgE0x5wQrbV0xxcX9Z5zXBOv99vqwva7b64ftNa1S-kL65P6qiB1EucJhDelP7FdUvwETD8Av |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_137775 crossref_primary_10_1016_j_hazadv_2025_100629 crossref_primary_10_1016_j_chemosphere_2025_144108 crossref_primary_10_1021_acs_jcim_4c01369 crossref_primary_10_3390_md22100441 |
Cites_doi | 10.1021/acssuchemeng.4c00060 10.1038/s41929-022-00821-3 10.1021/ma9005318 10.1002/bit.25941 10.1073/pnas.1718804115 10.3389/fmicb.2022.851969 10.1016/j.jhazmat.2023.131574 10.1007/s42768-023-00134-6 10.1002/advs.201900491 10.1093/bioinformatics/btm404 10.1021/acscatal.1c05856 10.1126/science.aad635 10.1016/j.jbiosc.2017.02.007 10.1093/protein/gzab022 10.1016/j.scitotenv.2019.134841 10.1007/s00253-014-5860-y 10.1002/pro.4500 10.1073/pnas.2006753117 10.1093/sysbio/sys062 10.1021/acscatal.1c05800 10.1016/j.procbio.2020.04.001 10.1038/s42004-023-00998-z 10.1038/s41467-017-02255-z 10.1021/acscatal.4c00400 10.1002/bit.28305 10.1038/s41467-019-13492-9 10.1007/s00253-014-6272-8 10.1038/s41467-023-40233-w 10.1002/cssc.202100740 10.1038/s41586-022-04599-z 10.1021/acs.chemrev.2c00644 10.1007/s10295-009-0562-7 10.1021/acscatal.3c02922 10.3389/fbioe.2023.1263996 10.1016/j.enzmictec.2022.110142 10.1002/marc.200500410 10.1186/s13568-022-01474-y 10.1007/s11157-024-09688-1 10.1021/acscatal.9b00568 10.1002/biot.200600095 10.1093/naar/gkac993 10.1016/j.europolymj.2020.109873 10.1002/anie.202203061 10.3390/life11121349 10.1016/J.JHAZMAT.2023.131386 10.1016/j.oneear.2020.10.020 10.1038/s41467-024-45662-9 10.1007/s00253-018-9374-x 10.1126/sciadv.aay4054 10.1093/nar/gks1154 10.1016/j.csbj.2021.12.042 10.1128/AEM.01842-21 10.1126/sciadv.170078 10.1002/2211-5463.12053 10.1038/s41929-021-00616-y 10.1016/j.nbt.2022.02.006 10.1021/acscatal.2c02275 10.1002/cssc.202101062 10.1021/acscatal.0c05126 10.1039/d2gc01834a 10.3390/polym14132366 10.1038/s41467-022-35237-x 10.3389/fmicb.2020.00114 10.1016/0079-6700(94)00001-1 10.1021/acssuschemeng.0c01638 10.1007/s00253-011-3781-6 10.1002/biot.201600450 10.1038/s41467-023-37415-x 10.1038/s41598-019-52379-z 10.1002/elsc.202100105 10.1038/s41467-018-02881-1 10.1016/j.bbrc.2018.11.148 10.1021/acscatal.1c01204 10.1128/AEM.06725-11 10.1002/anie.202218390 10.1111/1758-2229.12878 10.1021/acs.biochem.8b00624 10.1021/bi401561p 10.1016/j.marpol.2018.03.022 10.1101/2024.04.01.587509 10.1016/j.copbio.2023.103053 10.1038/s41467-019-09326-3 10.3389/fmicb.2021.803896 10.1007/s00253-019-09717-y 10.1007/s13205-021-02988-1 10.1021/acscatal.4c00299 10.1016/j.enzmictec.2020.109715 10.1128/AEM.02773-17 10.1016/j.jhazmat.2021.127417 10.1038/s41586-020-2149-4 10.1016/j.jhazmat.2022/12816 10.1016/j.jhazmat.2023.132297 10.1099/ijsem.0.005709 10.1186/s40643-023-00648-1 10.1111/febs.16736 10.1002/biot.201400620 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 8FD C1K FR3 K9. M7N P64 7X8 7S9 L.6 5PM |
DOI | 10.1007/s00253-024-13222-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1432-0614 |
EndPage | 404 |
ExternalDocumentID | PMC11219463 38953996 10_1007_s00253_024_13222_2 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Okayama University |
GroupedDBID | --- -Y2 .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 28- 29~ 2J2 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6J9 6NX 78A 7WY 7X7 88E 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AAHBH AAHNG AAIAL AAJKR AAJSJ AAKKN AANXM AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACACY ACBXY ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACUHS ACULB ACZOJ ADBBV ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AI. AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI C24 C6C CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBO EBS EDH EDO EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IHR IJ- IKXTQ INH INR ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW KPH LAS LK8 LLZTM M0C M1P M2P M4Y M7P MA- ML0 MM. N2Q NB0 NDZJH NHB NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P PF0 PHGZM PHGZT PMFND PQBIZ PQBZA PQQKQ PROAC PSQYO PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBY SCLPG SCM SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z8Z ZMTXR ZOVNA ZXP ZY4 ~02 ~8M ~EX ~KM AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 8FD C1K FR3 GROUPED_DOAJ K9. M7N P64 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c574t-a9350d744d8c35253b81916fb190cb657270fe130305dc2bb7c1709703ac4583 |
IEDL.DBID | C24 |
ISSN | 0175-7598 1432-0614 |
IngestDate | Thu Aug 21 18:32:19 EDT 2025 Fri Jul 11 01:36:18 EDT 2025 Fri Jul 11 02:05:36 EDT 2025 Wed Aug 13 11:13:41 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Sun Jul 06 05:06:35 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Thu May 29 04:39:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | PET hydrolase Engineering Crystalline PET Amorphous PET Industrial biorecycling |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-a9350d744d8c35253b81916fb190cb657270fe130305dc2bb7c1709703ac4583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3206-6093 0000-0002-0032-9688 0000-0002-9328-5628 |
OpenAccessLink | https://link.springer.com/10.1007/s00253-024-13222-2 |
PMID | 38953996 |
PQID | 3074854239 |
PQPubID | 54065 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11219463 proquest_miscellaneous_3153670077 proquest_miscellaneous_3075374295 proquest_journals_3074854239 pubmed_primary_38953996 crossref_citationtrail_10_1007_s00253_024_13222_2 crossref_primary_10_1007_s00253_024_13222_2 springer_journals_10_1007_s00253_024_13222_2 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Applied microbiology and biotechnology |
PublicationTitleAbbrev | Appl Microbiol Biotechnol |
PublicationTitleAlternate | Appl Microbiol Biotechnol |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | CC Chen (13222_CR11) 2021; 4 MA Larkin (13222_CR36) 2007; 23 H Zhang (13222_CR94) 2022; 12 L Amalia (13222_CR1) 2024; 85 F Kawai (13222_CR30) 2021; 14 X Li (13222_CR41) 2023; 10 H Lu (13222_CR44) 2022; 604 Y Zheng (13222_CR96) 2024; 14 F Kawai (13222_CR34) 2014; 98 L Pfaff (13222_CR62) 2022; 12 TB Thomsen (13222_CR78) 2022; 69 W Zeng (13222_CR93) 2022; 12 M Oda (13222_CR56) 2018; 102 F Kawai (13222_CR33) 2020; 8 V Tournier (13222_CR81) 2023; 123 IE Napper (13222_CR53) 2020; 3 R Wei (13222_CR86) 2016; 113 P Perez-Garcia (13222_CR61) 2023; 6 A Oren (13222_CR57) 2023; 73 SH Lee (13222_CR38) 2023; 459 R Wei (13222_CR88) 2022; 12 R Geyer (13222_CR23) 2017; 3 N Lenfant (13222_CR39) 2013; 41 Y Cui (13222_CR14) 2021; 11 GJ Palm (13222_CR58) 2019; 10 S Chiba (13222_CR13) 2018; 96 13222_CR9 W Wang (13222_CR84) 2020; 708 13222_CR7 N Numoto (13222_CR55) 2018; 57 L Shi (13222_CR71) 2023; 62 S Weigert (13222_CR89) 2021; 34 C Sonnendecker (13222_CR73) 2022; 15 S Sulaiman (13222_CR74) 2012; 78 A Biundo (13222_CR6) 2017; 12 T Paysan-Lafosse (13222_CR60) 2023; 51 G Arnal (13222_CR2) 2023; 13 T Kawabata (13222_CR29) 2017; 124 K Cverenkárová (13222_CR16) 2021; 11 F Kawai (13222_CR32) 2019; 103 C Meilleur (13222_CR47) 2009; 36 Y Qiao (13222_CR64) 2022; 424 K Makryniotos (13222_CR46) 2023; 455 R Wei (13222_CR87) 2019; 10 AM da Costa (13222_CR17) 2020; 95 13222_CR18 F Liu (13222_CR43) 2023; 11 X-Q Chen (13222_CR12) 2022; 433 PK Richter (13222_CR66) 2023; 14 13222_CR20 E Erickson (13222_CR21) 2022; 13 R-J Müller (13222_CR51) 2005; 26 BC Knott (13222_CR35) 2020; 117 Q Li (13222_CR40) 2022; 20 S Brott (13222_CR10) 2021; 22 F Zhu (13222_CR97) 2021; 40 S Joo (13222_CR28) 2018; 9 HP Austin (13222_CR3) 2018; 115 X Han (13222_CR24) 2017; 8 S Yoshida (13222_CR92) 2016; 351 13222_CR69 A Nakamura (13222_CR52) 2021; 11 A Bollinger (13222_CR8) 2020; 11 JM Hutchinson (13222_CR27) 1995; 20 13222_CR70 Z Zhang (13222_CR95) 2022; 24 DN Moyses (13222_CR49) 2021; 11 EL Bell (13222_CR4) 2022; 5 DH Huson (13222_CR26) 2012; 61 ÅM Ronqvist (13222_CR67) 2009; 42 SH Lee (13222_CR37) 2024; 14 S Weigert (13222_CR90) 2022; 31 R Wei (13222_CR85) 2019; 6 13222_CR83 T Sang (13222_CR68) 2020; 136 13222_CR80 V Tournier (13222_CR82) 2020; 580 M Furukawa (13222_CR22) 2019; 9 H Hong (13222_CR25) 2023; 14 Z Ding (13222_CR19) 2023; 453 S Sulaiman (13222_CR75) 2014; 53 X Xi (13222_CR91) 2021; 143 F Kawai (13222_CR31) 2022; 12 V Pirillo (13222_CR63) 2023; 290 13222_CR48 J Then (13222_CR77) 2016; 6 J Then (13222_CR76) 2015; 10 C Liu (13222_CR42) 2019; 508 M Lu (13222_CR45) 2022; 13 A Mrigwani (13222_CR50) 2023; 120 TB Thomsen (13222_CR79) 2023; 162 T Nimchua (13222_CR54) 2007; 2 P Pandey (13222_CR59) 2023; 5 Y Cui (13222_CR15) 2024; 15 13222_CR65 P Benyathiar (13222_CR5) 2022; 14 HF Son (13222_CR72) 2019; 9 |
References_xml | – ident: 13222_CR9 doi: 10.1021/acssuchemeng.4c00060 – volume: 5 start-page: 673 year: 2022 ident: 13222_CR4 publication-title: Nat Catal doi: 10.1038/s41929-022-00821-3 – volume: 42 start-page: 5128 year: 2009 ident: 13222_CR67 publication-title: Macromolecules doi: 10.1021/ma9005318 – volume: 113 start-page: 1658 year: 2016 ident: 13222_CR86 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25941 – volume: 115 start-page: E4350 year: 2018 ident: 13222_CR3 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1718804115 – volume: 13 start-page: 851969 year: 2022 ident: 13222_CR45 publication-title: Front Micrbiol doi: 10.3389/fmicb.2022.851969 – volume: 455 start-page: 131574 year: 2023 ident: 13222_CR46 publication-title: J Haz Mater doi: 10.1016/j.jhazmat.2023.131574 – volume: 5 start-page: 205 year: 2023 ident: 13222_CR59 publication-title: Waste Dispos Sustain Energy doi: 10.1007/s42768-023-00134-6 – volume: 6 start-page: 1900491 year: 2019 ident: 13222_CR85 publication-title: Adv Sci doi: 10.1002/advs.201900491 – volume: 23 start-page: 2947 year: 2007 ident: 13222_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 12 start-page: 3382 year: 2022 ident: 13222_CR88 publication-title: ACS Catal doi: 10.1021/acscatal.1c05856 – volume: 351 start-page: 1196 year: 2016 ident: 13222_CR92 publication-title: Science doi: 10.1126/science.aad635 – volume: 124 start-page: 28 year: 2017 ident: 13222_CR29 publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2017.02.007 – volume: 34 start-page: 1 year: 2021 ident: 13222_CR89 publication-title: Protein Eng Des Sel doi: 10.1093/protein/gzab022 – volume: 40 start-page: 678 issue: 2 year: 2021 ident: 13222_CR97 publication-title: Jiyinzuxue yu Yingyong Shengwuxue (Genom Appl Biol) – volume: 708 start-page: 134841 year: 2020 ident: 13222_CR84 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.134841 – volume: 98 start-page: 10053 year: 2014 ident: 13222_CR34 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-014-5860-y – volume: 31 start-page: e4500 year: 2022 ident: 13222_CR90 publication-title: Protein Sci doi: 10.1002/pro.4500 – volume: 117 start-page: 25476 year: 2020 ident: 13222_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2006753117 – volume: 61 start-page: 1061 year: 2012 ident: 13222_CR26 publication-title: Syst Biol doi: 10.1093/sysbio/sys062 – volume: 12 start-page: 3033 year: 2022 ident: 13222_CR93 publication-title: ACS Catal doi: 10.1021/acscatal.1c05800 – volume: 95 start-page: 81 year: 2020 ident: 13222_CR17 publication-title: Process Biochem doi: 10.1016/j.procbio.2020.04.001 – volume: 6 start-page: 193 year: 2023 ident: 13222_CR61 publication-title: Commun Chem doi: 10.1038/s42004-023-00998-z – volume: 8 start-page: 2106 year: 2017 ident: 13222_CR24 publication-title: Nat Commun doi: 10.1038/s41467-017-02255-z – volume: 14 start-page: 3627 year: 2024 ident: 13222_CR96 publication-title: ACS Catal doi: 10.1021/acscatal.4c00400 – volume: 120 start-page: 674 year: 2023 ident: 13222_CR50 publication-title: Abstract Biotechnology and Bioengineering doi: 10.1002/bit.28305 – volume: 10 start-page: 5581 year: 2019 ident: 13222_CR87 publication-title: Nat Commun doi: 10.1038/s41467-019-13492-9 – ident: 13222_CR48 doi: 10.1007/s00253-014-6272-8 – volume: 14 start-page: 4556 year: 2023 ident: 13222_CR25 publication-title: Nat Commun doi: 10.1038/s41467-023-40233-w – volume: 14 start-page: 1 year: 2021 ident: 13222_CR30 publication-title: ChemSusChem doi: 10.1002/cssc.202100740 – volume: 604 start-page: 662 year: 2022 ident: 13222_CR44 publication-title: Nature doi: 10.1038/s41586-022-04599-z – volume: 123 start-page: 5612 year: 2023 ident: 13222_CR81 publication-title: Chem Rev doi: 10.1021/acs.chemrev.2c00644 – volume: 36 start-page: 853 year: 2009 ident: 13222_CR47 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-009-0562-7 – volume: 13 start-page: 13156 year: 2023 ident: 13222_CR2 publication-title: ACS Catal doi: 10.1021/acscatal.3c02922 – volume: 11 start-page: 1263996 year: 2023 ident: 13222_CR43 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2023.1263996 – volume: 162 start-page: 110142 year: 2023 ident: 13222_CR79 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2022.110142 – volume: 26 start-page: 1400 year: 2005 ident: 13222_CR51 publication-title: Macromol Rapid Commun doi: 10.1002/marc.200500410 – volume: 12 start-page: 134 year: 2022 ident: 13222_CR31 publication-title: AMB Express doi: 10.1186/s13568-022-01474-y – ident: 13222_CR69 doi: 10.1007/s11157-024-09688-1 – volume: 9 start-page: 3519 year: 2019 ident: 13222_CR72 publication-title: ACS Catal doi: 10.1021/acscatal.9b00568 – volume: 2 start-page: 361 year: 2007 ident: 13222_CR54 publication-title: Biotechnol J doi: 10.1002/biot.200600095 – volume: 51 start-page: D418 issue: D1 year: 2023 ident: 13222_CR60 publication-title: Nucleic Acids Res doi: 10.1093/naar/gkac993 – volume: 136 start-page: 109873 year: 2020 ident: 13222_CR68 publication-title: Eur Polym J doi: 10.1016/j.europolymj.2020.109873 – ident: 13222_CR20 doi: 10.1002/anie.202203061 – volume: 11 start-page: 1349 year: 2021 ident: 13222_CR16 publication-title: Life doi: 10.3390/life11121349 – volume: 453 start-page: 131386 year: 2023 ident: 13222_CR19 publication-title: J Hazard Mater doi: 10.1016/J.JHAZMAT.2023.131386 – volume: 3 start-page: 621 year: 2020 ident: 13222_CR53 publication-title: One Earth doi: 10.1016/j.oneear.2020.10.020 – volume: 15 start-page: 1417 year: 2024 ident: 13222_CR15 publication-title: Nat Commun doi: 10.1038/s41467-024-45662-9 – volume: 102 start-page: 10067 year: 2018 ident: 13222_CR56 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-018-9374-x – ident: 13222_CR65 doi: 10.1126/sciadv.aay4054 – volume: 41 start-page: D423 year: 2013 ident: 13222_CR39 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1154 – volume: 20 start-page: 459 year: 2022 ident: 13222_CR40 publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.12.042 – ident: 13222_CR7 doi: 10.1128/AEM.01842-21 – volume: 3 start-page: e1700782 year: 2017 ident: 13222_CR23 publication-title: Sci Adv doi: 10.1126/sciadv.170078 – volume: 6 start-page: 425 year: 2016 ident: 13222_CR77 publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12053 – volume: 4 start-page: 425 year: 2021 ident: 13222_CR11 publication-title: Nat Catal doi: 10.1038/s41929-021-00616-y – volume: 69 start-page: 28 year: 2022 ident: 13222_CR78 publication-title: New Biotechnol doi: 10.1016/j.nbt.2022.02.006 – volume: 12 start-page: 9790 year: 2022 ident: 13222_CR62 publication-title: ACS Catal doi: 10.1021/acscatal.2c02275 – volume: 15 start-page: e202101062 year: 2022 ident: 13222_CR73 publication-title: ChemSusChem doi: 10.1002/cssc.202101062 – volume: 11 start-page: 1340 year: 2021 ident: 13222_CR14 publication-title: ACS Catal doi: 10.1021/acscatal.0c05126 – volume: 24 start-page: 5998 year: 2022 ident: 13222_CR95 publication-title: Green Chem doi: 10.1039/d2gc01834a – volume: 14 start-page: 2366 year: 2022 ident: 13222_CR5 publication-title: Polymers doi: 10.3390/polym14132366 – volume: 13 start-page: 7850 year: 2022 ident: 13222_CR21 publication-title: Nat Commun doi: 10.1038/s41467-022-35237-x – volume: 11 start-page: 114 year: 2020 ident: 13222_CR8 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00114 – volume: 20 start-page: 703 year: 1995 ident: 13222_CR27 publication-title: Prog Mater Sci doi: 10.1016/0079-6700(94)00001-1 – volume: 8 start-page: 8894 year: 2020 ident: 13222_CR33 publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.0c01638 – ident: 13222_CR80 doi: 10.1007/s00253-011-3781-6 – volume: 12 start-page: 1600450 year: 2017 ident: 13222_CR6 publication-title: Biotechnol J doi: 10.1002/biot.201600450 – volume: 14 start-page: 1905 year: 2023 ident: 13222_CR66 publication-title: Nat Commun doi: 10.1038/s41467-023-37415-x – volume: 9 start-page: 16038 year: 2019 ident: 13222_CR22 publication-title: Sci Rep doi: 10.1038/s41598-019-52379-z – volume: 22 start-page: 192 year: 2021 ident: 13222_CR10 publication-title: Eng Life Sci doi: 10.1002/elsc.202100105 – volume: 9 start-page: 382 year: 2018 ident: 13222_CR28 publication-title: Nat Commun doi: 10.1038/s41467-018-02881-1 – volume: 508 start-page: 289 year: 2019 ident: 13222_CR42 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2018.11.148 – volume: 11 start-page: 8550 year: 2021 ident: 13222_CR52 publication-title: ACS Catal doi: 10.1021/acscatal.1c01204 – volume: 78 start-page: 1556 year: 2012 ident: 13222_CR74 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.06725-11 – volume: 62 start-page: e202218390 year: 2023 ident: 13222_CR71 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202218390 – ident: 13222_CR83 doi: 10.1111/1758-2229.12878 – volume: 57 start-page: 5289 year: 2018 ident: 13222_CR55 publication-title: Biochemistry doi: 10.1021/acs.biochem.8b00624 – volume: 53 start-page: 1858 year: 2014 ident: 13222_CR75 publication-title: Biochemistry doi: 10.1021/bi401561p – volume: 96 start-page: 204 year: 2018 ident: 13222_CR13 publication-title: Mar Policy doi: 10.1016/j.marpol.2018.03.022 – ident: 13222_CR70 doi: 10.1101/2024.04.01.587509 – volume: 85 start-page: 103063 year: 2024 ident: 13222_CR1 publication-title: Curr Opn Biotechnol doi: 10.1016/j.copbio.2023.103053 – volume: 10 start-page: 1717 year: 2019 ident: 13222_CR58 publication-title: Nat Commun doi: 10.1038/s41467-019-09326-3 – volume: 12 start-page: 803896 year: 2022 ident: 13222_CR94 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.803896 – volume: 103 start-page: 4253 year: 2019 ident: 13222_CR32 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-019-09717-y – volume: 11 start-page: 435 year: 2021 ident: 13222_CR49 publication-title: Biotech doi: 10.1007/s13205-021-02988-1 – volume: 14 start-page: 4108 year: 2024 ident: 13222_CR37 publication-title: ACS Catal doi: 10.1021/acscatal.4c00299 – volume: 143 start-page: 109715 year: 2021 ident: 13222_CR91 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2020.109715 – ident: 13222_CR18 doi: 10.1128/AEM.02773-17 – volume: 424 start-page: 127417 year: 2022 ident: 13222_CR64 publication-title: J Hazad Mater doi: 10.1016/j.jhazmat.2021.127417 – volume: 580 start-page: 216 year: 2020 ident: 13222_CR82 publication-title: Nature doi: 10.1038/s41586-020-2149-4 – volume: 433 start-page: 128816 year: 2022 ident: 13222_CR12 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022/12816 – volume: 459 start-page: 132297 year: 2023 ident: 13222_CR38 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2023.132297 – volume: 73 start-page: 005709 year: 2023 ident: 13222_CR57 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.005709 – volume: 10 start-page: 26 year: 2023 ident: 13222_CR41 publication-title: Bioresour Bioprocess doi: 10.1186/s40643-023-00648-1 – volume: 290 start-page: 3185 year: 2023 ident: 13222_CR63 publication-title: FEBS J doi: 10.1111/febs.16736 – volume: 10 start-page: 592 year: 2015 ident: 13222_CR76 publication-title: Biotechnol J doi: 10.1002/biot.201400620 |
SSID | ssj0012866 |
Score | 2.5123632 |
SecondaryResourceType | review_article |
Snippet | Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 404 |
SubjectTerms | Biodegradation, Environmental Biomedical and Life Sciences Biotechnology Depolymerization Enzymatic activity enzymatic hydrolysis Enzyme activity Ethylene glycol Glass transition temperature Grooves hydrolases Hydrolases - chemistry Hydrolases - genetics Hydrolases - metabolism Hydrolysis industrialization Life Sciences Machine learning Microbial Genetics and Genomics Microbiology Microplastics Mini-Review Plastic debris Polyethylene terephthalate polyethylene terephthalates Polyethylene Terephthalates - chemistry Polyethylene Terephthalates - metabolism Protein Engineering - methods Recycling State of the art Substrates Temperature requirements Thermal stability Transition temperatures wastes |
Title | Engineered polyethylene terephthalate hydrolases: perspectives and limits |
URI | https://link.springer.com/article/10.1007/s00253-024-13222-2 https://www.ncbi.nlm.nih.gov/pubmed/38953996 https://www.proquest.com/docview/3074854239 https://www.proquest.com/docview/3075374295 https://www.proquest.com/docview/3153670077 https://pubmed.ncbi.nlm.nih.gov/PMC11219463 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hEBI9oJZHcUsjI_VWVnLsXdvbW6CkPNSeQIKTtWuPFaTIiXA45N93Zv2gAYrUi6PIk2g9-5hv_O18C_CVYogi4BsKWRojOEIIjVoJiToMTakxiLjA-dfv-PxGXt6q27YorO52u3eUpFup-2I3Ds_MOUrh6AFBC--G4tydKVqucWi5gzBtGEoKjCJROm1LZV7_j9Vw9AJjvtwq-YwvdWFo_B62W_zoj5oO_wBrWO3AZnOi5HIH3v2lL7gLF903LPz5bLpE6hWKMuiTM3E-WUzMlKCmP1kWD5Th1lh_9-dPxZe1b6rCn3IFVL0H1-Oz69Nz0Z6dIHKVyIUwOlJBkUhZpDkrnkaWM7O4tAQAchsrgi1BiRzAAlXkobVJPkwCTfPf5Eyl7sN6NavwAPzcEkqxqggQDZOoVg6xjE1CuQvysR0eDDsPZnmrK87HW0yzXhHZeT0jr2fO61nowbf-N_NGVeNN68OuY7J2htUZrU0yVSxf6MFRf5vmBhMepsLZo7NREeX-Wr1hQ0s-lyoliQcfm77um0RgjoV7Yw_SlVHQG7A29-qd6n7iNLoJxg61jCMPjrsB89T2fz_qp_8z_wxboRvMvL3mENYXD4_4hUDSwg5gY3Ty42TMnz_vrs4Gbo7wNT4duBcPdL0JR38AgcMLww |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwEB0tXSHggGBhIbCAkeAEllLHjhMkDhWwarsfF4q0N8tJJipSlVabrlB_D3-UsfOxlIWVOOwxyrRyxjN-Yz3PM8AbwhBFha_gsrSWO4TgKaaKS0yFsGWKYeQanE9O4_E3OT1TZzvws-uF8afdO0rSr9R9s5uDZ8c5Su7pAS7ao5RHuPlBG7X64-QzzepbIQ6_zD6NeXuXAM-Vlmtu00iFhZaySHKnABplbqcSlxkBYp7FimA8LNEt6KEqcpFlOh_qMKV8sLmjFulvb8FuouJEDWB3NJp-nfZkhUgaSpSQmGuVJm1vzt8HvY1_V4raq2cz_yBoPe4dPoD7bcHKRk2EPYQdrPbgdnOF5WYP7v0maPgIJt0TFmy1XGyQwoBgDRnNHq7m67ldUG3L5pvinLbUNdYf2Oqy27NmtirYwrVc1Y9hdhMO3odBtazwKbA8o7IoU0WIaB1rm8khlrHVtFlCd09IAMPOgyZvhczdfRoL00swe68b8rrxXjcigHf9b1aNjMe11gfdxJg2pWtDi6FMlNNLDOB1_5qS0TEstsLlhbdRkSaIV9fYEMa43iitA3jSzHU_JKoenVJwHECyFQW9gRMD335TfZ97UXCqm4epjKMA3ncBczn2f3_qs_8zfwV3xrOTY3M8OT16DneFD2x3tucABuvzC3xBFdo6e9lmCANzwzn5CxMJQZY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAcEBQKgQJGghNYzTp2nCBxqCirLoWKQyv1FtmJo0VaZaMmFdpfxV9kxvkoS6EShx6jTCJnPJM31vg9A7xGDFFY-AouS2M4IQRPXaq4dKkQpkxdGBHB-etRfHAiP5-q0w34OXBh_G73oSXZcRpIpalqd-ui3B2JbwTV1H-U3LcKuOi3VR661Q9ctDUfZvs4w2-EmH46_njA-3MFeK60bLlJIxUWWsoiyUkNNLK0aolLi-CY21ghpIelo597qIpcWKvziQ5TzA2TU5sRX3sDbkoiH2MCnYi9sW0hkq45ipjMtUqTnqXz9yGvI-Gl8vbyLs0_WrUeAaf34V5furK9LtYewIartuBWd5jlagvu_iZt-BBmw5UrWL1crBwGBAKcYziPrp63c7PAKpfNV8UZLq4b17xn9QXvs2GmKtiCyFfNIzi-Dvduw2a1rNwTYLnFAsmqInTOUP_WyokrY6Nx2eToxJAAJoMHs7yXNKeTNRbZKMbsvZ6h1zPv9UwE8HZ8pu4EPa603hkmJuuTu8nwtygTRcqJAbwab2NaUq_FVG557m1UpBHs1RU2iDbEktI6gMfdXI9DwjqSNIPjAJK1KBgNSBZ8_U71fe7lwbGCnqQyjgJ4NwTMxdj__alP_8_8Jdz-tj_NvsyODp_BHeHjmjb57MBme3bunmOp1toXPj0YZNecjr8ASBFEfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+polyethylene+terephthalate+hydrolases%3A+perspectives+and+limits&rft.jtitle=Applied+microbiology+and+biotechnology&rft.au=Kawai%2C+Fusako&rft.au=Iizuka%2C+Ryo&rft.au=Kawabata%2C+Takeshi&rft.date=2024-12-01&rft.issn=1432-0614&rft.eissn=1432-0614&rft.volume=108&rft.issue=1&rft.spage=404&rft_id=info:doi/10.1007%2Fs00253-024-13222-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0175-7598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0175-7598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0175-7598&client=summon |