Engineered polyethylene terephthalate hydrolases: perspectives and limits

Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerizati...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 108; no. 1; p. 404
Main Authors Kawai, Fusako, Iizuka, Ryo, Kawabata, Takeshi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. Key points • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling Graphical Abstract
AbstractList Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. Key points • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling Graphical Abstract
Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling
Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling.Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling.
Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling.
ArticleNumber 404
Author Kawai, Fusako
Kawabata, Takeshi
Iizuka, Ryo
Author_xml – sequence: 1
  givenname: Fusako
  orcidid: 0000-0002-3206-6093
  surname: Kawai
  fullname: Kawai, Fusako
  email: fkawai@okayama-u.ac.jp
  organization: Graduate School of Environmental and Life Sciences, Okayama University
– sequence: 2
  givenname: Ryo
  orcidid: 0000-0002-9328-5628
  surname: Iizuka
  fullname: Iizuka, Ryo
  organization: Graduate School of Science, The University of Tokyo
– sequence: 3
  givenname: Takeshi
  orcidid: 0000-0002-0032-9688
  surname: Kawabata
  fullname: Kawabata, Takeshi
  organization: Graduate School of Information Sciences, Tohoku University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38953996$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHDEcxUOx1HXtP9BDGejFy7T5OZn0UoqoFYRevIdM5rs7kWwyTbLC_vfNumpbD_YUSD7v8fLeCToKMQBCHwj-TDCWXzLGVLAWU94SRilt6Ru0IJzRFneEH6EFJlK0Uqj-GJ3kfIcxoX3XvUPHrFeCKdUt0PVFWLsAkGBs5uh3UKadhwBNqVfzVCbjTYFm2o0pepMhf21mSHkGW9w95MaEsfFu40o-RW9Xxmd4_3gu0e3lxe35j_bm59X1-feb1grJS2sUE3iUnI-9ZaLmH3qiSLcaiMJ26ISkEq-AMMywGC0dBmmJxEpiZiwXPVuibwfbeTtsYLQQSjJez8ltTNrpaJz-9yW4Sa_jvSaEEsU7Vh3OHh1S_LWFXPTGZQvemwBxmzUjgnWyFiz_j2IpmOS0trlEn16gd3GbQm1iT_FecMpUpT7-nf459tMgFegPgE0x5wQrbV0xxcX9Z5zXBOv99vqwva7b64ftNa1S-kL65P6qiB1EucJhDelP7FdUvwETD8Av
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_137775
crossref_primary_10_1016_j_hazadv_2025_100629
crossref_primary_10_1016_j_chemosphere_2025_144108
crossref_primary_10_1021_acs_jcim_4c01369
crossref_primary_10_3390_md22100441
Cites_doi 10.1021/acssuchemeng.4c00060
10.1038/s41929-022-00821-3
10.1021/ma9005318
10.1002/bit.25941
10.1073/pnas.1718804115
10.3389/fmicb.2022.851969
10.1016/j.jhazmat.2023.131574
10.1007/s42768-023-00134-6
10.1002/advs.201900491
10.1093/bioinformatics/btm404
10.1021/acscatal.1c05856
10.1126/science.aad635
10.1016/j.jbiosc.2017.02.007
10.1093/protein/gzab022
10.1016/j.scitotenv.2019.134841
10.1007/s00253-014-5860-y
10.1002/pro.4500
10.1073/pnas.2006753117
10.1093/sysbio/sys062
10.1021/acscatal.1c05800
10.1016/j.procbio.2020.04.001
10.1038/s42004-023-00998-z
10.1038/s41467-017-02255-z
10.1021/acscatal.4c00400
10.1002/bit.28305
10.1038/s41467-019-13492-9
10.1007/s00253-014-6272-8
10.1038/s41467-023-40233-w
10.1002/cssc.202100740
10.1038/s41586-022-04599-z
10.1021/acs.chemrev.2c00644
10.1007/s10295-009-0562-7
10.1021/acscatal.3c02922
10.3389/fbioe.2023.1263996
10.1016/j.enzmictec.2022.110142
10.1002/marc.200500410
10.1186/s13568-022-01474-y
10.1007/s11157-024-09688-1
10.1021/acscatal.9b00568
10.1002/biot.200600095
10.1093/naar/gkac993
10.1016/j.europolymj.2020.109873
10.1002/anie.202203061
10.3390/life11121349
10.1016/J.JHAZMAT.2023.131386
10.1016/j.oneear.2020.10.020
10.1038/s41467-024-45662-9
10.1007/s00253-018-9374-x
10.1126/sciadv.aay4054
10.1093/nar/gks1154
10.1016/j.csbj.2021.12.042
10.1128/AEM.01842-21
10.1126/sciadv.170078
10.1002/2211-5463.12053
10.1038/s41929-021-00616-y
10.1016/j.nbt.2022.02.006
10.1021/acscatal.2c02275
10.1002/cssc.202101062
10.1021/acscatal.0c05126
10.1039/d2gc01834a
10.3390/polym14132366
10.1038/s41467-022-35237-x
10.3389/fmicb.2020.00114
10.1016/0079-6700(94)00001-1
10.1021/acssuschemeng.0c01638
10.1007/s00253-011-3781-6
10.1002/biot.201600450
10.1038/s41467-023-37415-x
10.1038/s41598-019-52379-z
10.1002/elsc.202100105
10.1038/s41467-018-02881-1
10.1016/j.bbrc.2018.11.148
10.1021/acscatal.1c01204
10.1128/AEM.06725-11
10.1002/anie.202218390
10.1111/1758-2229.12878
10.1021/acs.biochem.8b00624
10.1021/bi401561p
10.1016/j.marpol.2018.03.022
10.1101/2024.04.01.587509
10.1016/j.copbio.2023.103053
10.1038/s41467-019-09326-3
10.3389/fmicb.2021.803896
10.1007/s00253-019-09717-y
10.1007/s13205-021-02988-1
10.1021/acscatal.4c00299
10.1016/j.enzmictec.2020.109715
10.1128/AEM.02773-17
10.1016/j.jhazmat.2021.127417
10.1038/s41586-020-2149-4
10.1016/j.jhazmat.2022/12816
10.1016/j.jhazmat.2023.132297
10.1099/ijsem.0.005709
10.1186/s40643-023-00648-1
10.1111/febs.16736
10.1002/biot.201400620
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
8FD
C1K
FR3
K9.
M7N
P64
7X8
7S9
L.6
5PM
DOI 10.1007/s00253-024-13222-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1432-0614
EndPage 404
ExternalDocumentID PMC11219463
38953996
10_1007_s00253_024_13222_2
Genre Journal Article
Review
GrantInformation_xml – fundername: Okayama University
GroupedDBID ---
-Y2
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
203
23M
28-
29~
2J2
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6J9
6NX
78A
7WY
7X7
88E
88I
8AO
8CJ
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AAHBH
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANXM
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACUHS
ACULB
ACZOJ
ADBBV
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BVXVI
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBO
EBS
EDH
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0C
M1P
M2P
M4Y
M7P
MA-
ML0
MM.
N2Q
NB0
NDZJH
NHB
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
PF0
PHGZM
PHGZT
PMFND
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBY
SCLPG
SCM
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z8Z
ZMTXR
ZOVNA
ZXP
ZY4
~02
~8M
~EX
~KM
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
8FD
C1K
FR3
GROUPED_DOAJ
K9.
M7N
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c574t-a9350d744d8c35253b81916fb190cb657270fe130305dc2bb7c1709703ac4583
IEDL.DBID C24
ISSN 0175-7598
1432-0614
IngestDate Thu Aug 21 18:32:19 EDT 2025
Fri Jul 11 01:36:18 EDT 2025
Fri Jul 11 02:05:36 EDT 2025
Wed Aug 13 11:13:41 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Sun Jul 06 05:06:35 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Thu May 29 04:39:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PET hydrolase
Engineering
Crystalline PET
Amorphous PET
Industrial biorecycling
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-a9350d744d8c35253b81916fb190cb657270fe130305dc2bb7c1709703ac4583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3206-6093
0000-0002-0032-9688
0000-0002-9328-5628
OpenAccessLink https://link.springer.com/10.1007/s00253-024-13222-2
PMID 38953996
PQID 3074854239
PQPubID 54065
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11219463
proquest_miscellaneous_3153670077
proquest_miscellaneous_3075374295
proquest_journals_3074854239
pubmed_primary_38953996
crossref_citationtrail_10_1007_s00253_024_13222_2
crossref_primary_10_1007_s00253_024_13222_2
springer_journals_10_1007_s00253_024_13222_2
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Applied microbiology and biotechnology
PublicationTitleAbbrev Appl Microbiol Biotechnol
PublicationTitleAlternate Appl Microbiol Biotechnol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CC Chen (13222_CR11) 2021; 4
MA Larkin (13222_CR36) 2007; 23
H Zhang (13222_CR94) 2022; 12
L Amalia (13222_CR1) 2024; 85
F Kawai (13222_CR30) 2021; 14
X Li (13222_CR41) 2023; 10
H Lu (13222_CR44) 2022; 604
Y Zheng (13222_CR96) 2024; 14
F Kawai (13222_CR34) 2014; 98
L Pfaff (13222_CR62) 2022; 12
TB Thomsen (13222_CR78) 2022; 69
W Zeng (13222_CR93) 2022; 12
M Oda (13222_CR56) 2018; 102
F Kawai (13222_CR33) 2020; 8
V Tournier (13222_CR81) 2023; 123
IE Napper (13222_CR53) 2020; 3
R Wei (13222_CR86) 2016; 113
P Perez-Garcia (13222_CR61) 2023; 6
A Oren (13222_CR57) 2023; 73
SH Lee (13222_CR38) 2023; 459
R Wei (13222_CR88) 2022; 12
R Geyer (13222_CR23) 2017; 3
N Lenfant (13222_CR39) 2013; 41
Y Cui (13222_CR14) 2021; 11
GJ Palm (13222_CR58) 2019; 10
S Chiba (13222_CR13) 2018; 96
13222_CR9
W Wang (13222_CR84) 2020; 708
13222_CR7
N Numoto (13222_CR55) 2018; 57
L Shi (13222_CR71) 2023; 62
S Weigert (13222_CR89) 2021; 34
C Sonnendecker (13222_CR73) 2022; 15
S Sulaiman (13222_CR74) 2012; 78
A Biundo (13222_CR6) 2017; 12
T Paysan-Lafosse (13222_CR60) 2023; 51
G Arnal (13222_CR2) 2023; 13
T Kawabata (13222_CR29) 2017; 124
K Cverenkárová (13222_CR16) 2021; 11
F Kawai (13222_CR32) 2019; 103
C Meilleur (13222_CR47) 2009; 36
Y Qiao (13222_CR64) 2022; 424
K Makryniotos (13222_CR46) 2023; 455
R Wei (13222_CR87) 2019; 10
AM da Costa (13222_CR17) 2020; 95
13222_CR18
F Liu (13222_CR43) 2023; 11
X-Q Chen (13222_CR12) 2022; 433
PK Richter (13222_CR66) 2023; 14
13222_CR20
E Erickson (13222_CR21) 2022; 13
R-J Müller (13222_CR51) 2005; 26
BC Knott (13222_CR35) 2020; 117
Q Li (13222_CR40) 2022; 20
S Brott (13222_CR10) 2021; 22
F Zhu (13222_CR97) 2021; 40
S Joo (13222_CR28) 2018; 9
HP Austin (13222_CR3) 2018; 115
X Han (13222_CR24) 2017; 8
S Yoshida (13222_CR92) 2016; 351
13222_CR69
A Nakamura (13222_CR52) 2021; 11
A Bollinger (13222_CR8) 2020; 11
JM Hutchinson (13222_CR27) 1995; 20
13222_CR70
Z Zhang (13222_CR95) 2022; 24
DN Moyses (13222_CR49) 2021; 11
EL Bell (13222_CR4) 2022; 5
DH Huson (13222_CR26) 2012; 61
ÅM Ronqvist (13222_CR67) 2009; 42
SH Lee (13222_CR37) 2024; 14
S Weigert (13222_CR90) 2022; 31
R Wei (13222_CR85) 2019; 6
13222_CR83
T Sang (13222_CR68) 2020; 136
13222_CR80
V Tournier (13222_CR82) 2020; 580
M Furukawa (13222_CR22) 2019; 9
H Hong (13222_CR25) 2023; 14
Z Ding (13222_CR19) 2023; 453
S Sulaiman (13222_CR75) 2014; 53
X Xi (13222_CR91) 2021; 143
F Kawai (13222_CR31) 2022; 12
V Pirillo (13222_CR63) 2023; 290
13222_CR48
J Then (13222_CR77) 2016; 6
J Then (13222_CR76) 2015; 10
C Liu (13222_CR42) 2019; 508
M Lu (13222_CR45) 2022; 13
A Mrigwani (13222_CR50) 2023; 120
TB Thomsen (13222_CR79) 2023; 162
T Nimchua (13222_CR54) 2007; 2
P Pandey (13222_CR59) 2023; 5
Y Cui (13222_CR15) 2024; 15
13222_CR65
P Benyathiar (13222_CR5) 2022; 14
HF Son (13222_CR72) 2019; 9
References_xml – ident: 13222_CR9
  doi: 10.1021/acssuchemeng.4c00060
– volume: 5
  start-page: 673
  year: 2022
  ident: 13222_CR4
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00821-3
– volume: 42
  start-page: 5128
  year: 2009
  ident: 13222_CR67
  publication-title: Macromolecules
  doi: 10.1021/ma9005318
– volume: 113
  start-page: 1658
  year: 2016
  ident: 13222_CR86
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.25941
– volume: 115
  start-page: E4350
  year: 2018
  ident: 13222_CR3
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1718804115
– volume: 13
  start-page: 851969
  year: 2022
  ident: 13222_CR45
  publication-title: Front Micrbiol
  doi: 10.3389/fmicb.2022.851969
– volume: 455
  start-page: 131574
  year: 2023
  ident: 13222_CR46
  publication-title: J Haz Mater
  doi: 10.1016/j.jhazmat.2023.131574
– volume: 5
  start-page: 205
  year: 2023
  ident: 13222_CR59
  publication-title: Waste Dispos Sustain Energy
  doi: 10.1007/s42768-023-00134-6
– volume: 6
  start-page: 1900491
  year: 2019
  ident: 13222_CR85
  publication-title: Adv Sci
  doi: 10.1002/advs.201900491
– volume: 23
  start-page: 2947
  year: 2007
  ident: 13222_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 12
  start-page: 3382
  year: 2022
  ident: 13222_CR88
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c05856
– volume: 351
  start-page: 1196
  year: 2016
  ident: 13222_CR92
  publication-title: Science
  doi: 10.1126/science.aad635
– volume: 124
  start-page: 28
  year: 2017
  ident: 13222_CR29
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2017.02.007
– volume: 34
  start-page: 1
  year: 2021
  ident: 13222_CR89
  publication-title: Protein Eng Des Sel
  doi: 10.1093/protein/gzab022
– volume: 40
  start-page: 678
  issue: 2
  year: 2021
  ident: 13222_CR97
  publication-title: Jiyinzuxue yu Yingyong Shengwuxue (Genom Appl Biol)
– volume: 708
  start-page: 134841
  year: 2020
  ident: 13222_CR84
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.134841
– volume: 98
  start-page: 10053
  year: 2014
  ident: 13222_CR34
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-014-5860-y
– volume: 31
  start-page: e4500
  year: 2022
  ident: 13222_CR90
  publication-title: Protein Sci
  doi: 10.1002/pro.4500
– volume: 117
  start-page: 25476
  year: 2020
  ident: 13222_CR35
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2006753117
– volume: 61
  start-page: 1061
  year: 2012
  ident: 13222_CR26
  publication-title: Syst Biol
  doi: 10.1093/sysbio/sys062
– volume: 12
  start-page: 3033
  year: 2022
  ident: 13222_CR93
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c05800
– volume: 95
  start-page: 81
  year: 2020
  ident: 13222_CR17
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2020.04.001
– volume: 6
  start-page: 193
  year: 2023
  ident: 13222_CR61
  publication-title: Commun Chem
  doi: 10.1038/s42004-023-00998-z
– volume: 8
  start-page: 2106
  year: 2017
  ident: 13222_CR24
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02255-z
– volume: 14
  start-page: 3627
  year: 2024
  ident: 13222_CR96
  publication-title: ACS Catal
  doi: 10.1021/acscatal.4c00400
– volume: 120
  start-page: 674
  year: 2023
  ident: 13222_CR50
  publication-title: Abstract Biotechnology and Bioengineering
  doi: 10.1002/bit.28305
– volume: 10
  start-page: 5581
  year: 2019
  ident: 13222_CR87
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13492-9
– ident: 13222_CR48
  doi: 10.1007/s00253-014-6272-8
– volume: 14
  start-page: 4556
  year: 2023
  ident: 13222_CR25
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-40233-w
– volume: 14
  start-page: 1
  year: 2021
  ident: 13222_CR30
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202100740
– volume: 604
  start-page: 662
  year: 2022
  ident: 13222_CR44
  publication-title: Nature
  doi: 10.1038/s41586-022-04599-z
– volume: 123
  start-page: 5612
  year: 2023
  ident: 13222_CR81
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.2c00644
– volume: 36
  start-page: 853
  year: 2009
  ident: 13222_CR47
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-009-0562-7
– volume: 13
  start-page: 13156
  year: 2023
  ident: 13222_CR2
  publication-title: ACS Catal
  doi: 10.1021/acscatal.3c02922
– volume: 11
  start-page: 1263996
  year: 2023
  ident: 13222_CR43
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2023.1263996
– volume: 162
  start-page: 110142
  year: 2023
  ident: 13222_CR79
  publication-title: Enzyme Microb Technol
  doi: 10.1016/j.enzmictec.2022.110142
– volume: 26
  start-page: 1400
  year: 2005
  ident: 13222_CR51
  publication-title: Macromol Rapid Commun
  doi: 10.1002/marc.200500410
– volume: 12
  start-page: 134
  year: 2022
  ident: 13222_CR31
  publication-title: AMB Express
  doi: 10.1186/s13568-022-01474-y
– ident: 13222_CR69
  doi: 10.1007/s11157-024-09688-1
– volume: 9
  start-page: 3519
  year: 2019
  ident: 13222_CR72
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b00568
– volume: 2
  start-page: 361
  year: 2007
  ident: 13222_CR54
  publication-title: Biotechnol J
  doi: 10.1002/biot.200600095
– volume: 51
  start-page: D418
  issue: D1
  year: 2023
  ident: 13222_CR60
  publication-title: Nucleic Acids Res
  doi: 10.1093/naar/gkac993
– volume: 136
  start-page: 109873
  year: 2020
  ident: 13222_CR68
  publication-title: Eur Polym J
  doi: 10.1016/j.europolymj.2020.109873
– ident: 13222_CR20
  doi: 10.1002/anie.202203061
– volume: 11
  start-page: 1349
  year: 2021
  ident: 13222_CR16
  publication-title: Life
  doi: 10.3390/life11121349
– volume: 453
  start-page: 131386
  year: 2023
  ident: 13222_CR19
  publication-title: J Hazard Mater
  doi: 10.1016/J.JHAZMAT.2023.131386
– volume: 3
  start-page: 621
  year: 2020
  ident: 13222_CR53
  publication-title: One Earth
  doi: 10.1016/j.oneear.2020.10.020
– volume: 15
  start-page: 1417
  year: 2024
  ident: 13222_CR15
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-45662-9
– volume: 102
  start-page: 10067
  year: 2018
  ident: 13222_CR56
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-018-9374-x
– ident: 13222_CR65
  doi: 10.1126/sciadv.aay4054
– volume: 41
  start-page: D423
  year: 2013
  ident: 13222_CR39
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1154
– volume: 20
  start-page: 459
  year: 2022
  ident: 13222_CR40
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.12.042
– ident: 13222_CR7
  doi: 10.1128/AEM.01842-21
– volume: 3
  start-page: e1700782
  year: 2017
  ident: 13222_CR23
  publication-title: Sci Adv
  doi: 10.1126/sciadv.170078
– volume: 6
  start-page: 425
  year: 2016
  ident: 13222_CR77
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12053
– volume: 4
  start-page: 425
  year: 2021
  ident: 13222_CR11
  publication-title: Nat Catal
  doi: 10.1038/s41929-021-00616-y
– volume: 69
  start-page: 28
  year: 2022
  ident: 13222_CR78
  publication-title: New Biotechnol
  doi: 10.1016/j.nbt.2022.02.006
– volume: 12
  start-page: 9790
  year: 2022
  ident: 13222_CR62
  publication-title: ACS Catal
  doi: 10.1021/acscatal.2c02275
– volume: 15
  start-page: e202101062
  year: 2022
  ident: 13222_CR73
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202101062
– volume: 11
  start-page: 1340
  year: 2021
  ident: 13222_CR14
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c05126
– volume: 24
  start-page: 5998
  year: 2022
  ident: 13222_CR95
  publication-title: Green Chem
  doi: 10.1039/d2gc01834a
– volume: 14
  start-page: 2366
  year: 2022
  ident: 13222_CR5
  publication-title: Polymers
  doi: 10.3390/polym14132366
– volume: 13
  start-page: 7850
  year: 2022
  ident: 13222_CR21
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35237-x
– volume: 11
  start-page: 114
  year: 2020
  ident: 13222_CR8
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00114
– volume: 20
  start-page: 703
  year: 1995
  ident: 13222_CR27
  publication-title: Prog Mater Sci
  doi: 10.1016/0079-6700(94)00001-1
– volume: 8
  start-page: 8894
  year: 2020
  ident: 13222_CR33
  publication-title: ACS Sustainable Chem Eng
  doi: 10.1021/acssuschemeng.0c01638
– ident: 13222_CR80
  doi: 10.1007/s00253-011-3781-6
– volume: 12
  start-page: 1600450
  year: 2017
  ident: 13222_CR6
  publication-title: Biotechnol J
  doi: 10.1002/biot.201600450
– volume: 14
  start-page: 1905
  year: 2023
  ident: 13222_CR66
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-37415-x
– volume: 9
  start-page: 16038
  year: 2019
  ident: 13222_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52379-z
– volume: 22
  start-page: 192
  year: 2021
  ident: 13222_CR10
  publication-title: Eng Life Sci
  doi: 10.1002/elsc.202100105
– volume: 9
  start-page: 382
  year: 2018
  ident: 13222_CR28
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-02881-1
– volume: 508
  start-page: 289
  year: 2019
  ident: 13222_CR42
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2018.11.148
– volume: 11
  start-page: 8550
  year: 2021
  ident: 13222_CR52
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c01204
– volume: 78
  start-page: 1556
  year: 2012
  ident: 13222_CR74
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.06725-11
– volume: 62
  start-page: e202218390
  year: 2023
  ident: 13222_CR71
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202218390
– ident: 13222_CR83
  doi: 10.1111/1758-2229.12878
– volume: 57
  start-page: 5289
  year: 2018
  ident: 13222_CR55
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b00624
– volume: 53
  start-page: 1858
  year: 2014
  ident: 13222_CR75
  publication-title: Biochemistry
  doi: 10.1021/bi401561p
– volume: 96
  start-page: 204
  year: 2018
  ident: 13222_CR13
  publication-title: Mar Policy
  doi: 10.1016/j.marpol.2018.03.022
– ident: 13222_CR70
  doi: 10.1101/2024.04.01.587509
– volume: 85
  start-page: 103063
  year: 2024
  ident: 13222_CR1
  publication-title: Curr Opn Biotechnol
  doi: 10.1016/j.copbio.2023.103053
– volume: 10
  start-page: 1717
  year: 2019
  ident: 13222_CR58
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09326-3
– volume: 12
  start-page: 803896
  year: 2022
  ident: 13222_CR94
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.803896
– volume: 103
  start-page: 4253
  year: 2019
  ident: 13222_CR32
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-019-09717-y
– volume: 11
  start-page: 435
  year: 2021
  ident: 13222_CR49
  publication-title: Biotech
  doi: 10.1007/s13205-021-02988-1
– volume: 14
  start-page: 4108
  year: 2024
  ident: 13222_CR37
  publication-title: ACS Catal
  doi: 10.1021/acscatal.4c00299
– volume: 143
  start-page: 109715
  year: 2021
  ident: 13222_CR91
  publication-title: Enzyme Microb Technol
  doi: 10.1016/j.enzmictec.2020.109715
– ident: 13222_CR18
  doi: 10.1128/AEM.02773-17
– volume: 424
  start-page: 127417
  year: 2022
  ident: 13222_CR64
  publication-title: J Hazad Mater
  doi: 10.1016/j.jhazmat.2021.127417
– volume: 580
  start-page: 216
  year: 2020
  ident: 13222_CR82
  publication-title: Nature
  doi: 10.1038/s41586-020-2149-4
– volume: 433
  start-page: 128816
  year: 2022
  ident: 13222_CR12
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022/12816
– volume: 459
  start-page: 132297
  year: 2023
  ident: 13222_CR38
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2023.132297
– volume: 73
  start-page: 005709
  year: 2023
  ident: 13222_CR57
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.005709
– volume: 10
  start-page: 26
  year: 2023
  ident: 13222_CR41
  publication-title: Bioresour Bioprocess
  doi: 10.1186/s40643-023-00648-1
– volume: 290
  start-page: 3185
  year: 2023
  ident: 13222_CR63
  publication-title: FEBS J
  doi: 10.1111/febs.16736
– volume: 10
  start-page: 592
  year: 2015
  ident: 13222_CR76
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400620
SSID ssj0012866
Score 2.5123632
SecondaryResourceType review_article
Snippet Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 404
SubjectTerms Biodegradation, Environmental
Biomedical and Life Sciences
Biotechnology
Depolymerization
Enzymatic activity
enzymatic hydrolysis
Enzyme activity
Ethylene glycol
Glass transition temperature
Grooves
hydrolases
Hydrolases - chemistry
Hydrolases - genetics
Hydrolases - metabolism
Hydrolysis
industrialization
Life Sciences
Machine learning
Microbial Genetics and Genomics
Microbiology
Microplastics
Mini-Review
Plastic debris
Polyethylene terephthalate
polyethylene terephthalates
Polyethylene Terephthalates - chemistry
Polyethylene Terephthalates - metabolism
Protein Engineering - methods
Recycling
State of the art
Substrates
Temperature requirements
Thermal stability
Transition temperatures
wastes
Title Engineered polyethylene terephthalate hydrolases: perspectives and limits
URI https://link.springer.com/article/10.1007/s00253-024-13222-2
https://www.ncbi.nlm.nih.gov/pubmed/38953996
https://www.proquest.com/docview/3074854239
https://www.proquest.com/docview/3075374295
https://www.proquest.com/docview/3153670077
https://pubmed.ncbi.nlm.nih.gov/PMC11219463
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4hEBI9oJZHcUsjI_VWVnLsXdvbW6CkPNSeQIKTtWuPFaTIiXA45N93Zv2gAYrUi6PIk2g9-5hv_O18C_CVYogi4BsKWRojOEIIjVoJiToMTakxiLjA-dfv-PxGXt6q27YorO52u3eUpFup-2I3Ds_MOUrh6AFBC--G4tydKVqucWi5gzBtGEoKjCJROm1LZV7_j9Vw9AJjvtwq-YwvdWFo_B62W_zoj5oO_wBrWO3AZnOi5HIH3v2lL7gLF903LPz5bLpE6hWKMuiTM3E-WUzMlKCmP1kWD5Th1lh_9-dPxZe1b6rCn3IFVL0H1-Oz69Nz0Z6dIHKVyIUwOlJBkUhZpDkrnkaWM7O4tAQAchsrgi1BiRzAAlXkobVJPkwCTfPf5Eyl7sN6NavwAPzcEkqxqggQDZOoVg6xjE1CuQvysR0eDDsPZnmrK87HW0yzXhHZeT0jr2fO61nowbf-N_NGVeNN68OuY7J2htUZrU0yVSxf6MFRf5vmBhMepsLZo7NREeX-Wr1hQ0s-lyoliQcfm77um0RgjoV7Yw_SlVHQG7A29-qd6n7iNLoJxg61jCMPjrsB89T2fz_qp_8z_wxboRvMvL3mENYXD4_4hUDSwg5gY3Ty42TMnz_vrs4Gbo7wNT4duBcPdL0JR38AgcMLww
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwEB0tXSHggGBhIbCAkeAEllLHjhMkDhWwarsfF4q0N8tJJipSlVabrlB_D3-UsfOxlIWVOOwxyrRyxjN-Yz3PM8AbwhBFha_gsrSWO4TgKaaKS0yFsGWKYeQanE9O4_E3OT1TZzvws-uF8afdO0rSr9R9s5uDZ8c5Su7pAS7ao5RHuPlBG7X64-QzzepbIQ6_zD6NeXuXAM-Vlmtu00iFhZaySHKnABplbqcSlxkBYp7FimA8LNEt6KEqcpFlOh_qMKV8sLmjFulvb8FuouJEDWB3NJp-nfZkhUgaSpSQmGuVJm1vzt8HvY1_V4raq2cz_yBoPe4dPoD7bcHKRk2EPYQdrPbgdnOF5WYP7v0maPgIJt0TFmy1XGyQwoBgDRnNHq7m67ldUG3L5pvinLbUNdYf2Oqy27NmtirYwrVc1Y9hdhMO3odBtazwKbA8o7IoU0WIaB1rm8khlrHVtFlCd09IAMPOgyZvhczdfRoL00swe68b8rrxXjcigHf9b1aNjMe11gfdxJg2pWtDi6FMlNNLDOB1_5qS0TEstsLlhbdRkSaIV9fYEMa43iitA3jSzHU_JKoenVJwHECyFQW9gRMD335TfZ97UXCqm4epjKMA3ncBczn2f3_qs_8zfwV3xrOTY3M8OT16DneFD2x3tucABuvzC3xBFdo6e9lmCANzwzn5CxMJQZY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIhAcEBQKgQJGghNYzTp2nCBxqCirLoWKQyv1FtmJo0VaZaMmFdpfxV9kxvkoS6EShx6jTCJnPJM31vg9A7xGDFFY-AouS2M4IQRPXaq4dKkQpkxdGBHB-etRfHAiP5-q0w34OXBh_G73oSXZcRpIpalqd-ui3B2JbwTV1H-U3LcKuOi3VR661Q9ctDUfZvs4w2-EmH46_njA-3MFeK60bLlJIxUWWsoiyUkNNLK0aolLi-CY21ghpIelo597qIpcWKvziQ5TzA2TU5sRX3sDbkoiH2MCnYi9sW0hkq45ipjMtUqTnqXz9yGvI-Gl8vbyLs0_WrUeAaf34V5furK9LtYewIartuBWd5jlagvu_iZt-BBmw5UrWL1crBwGBAKcYziPrp63c7PAKpfNV8UZLq4b17xn9QXvs2GmKtiCyFfNIzi-Dvduw2a1rNwTYLnFAsmqInTOUP_WyokrY6Nx2eToxJAAJoMHs7yXNKeTNRbZKMbsvZ6h1zPv9UwE8HZ8pu4EPa603hkmJuuTu8nwtygTRcqJAbwab2NaUq_FVG557m1UpBHs1RU2iDbEktI6gMfdXI9DwjqSNIPjAJK1KBgNSBZ8_U71fe7lwbGCnqQyjgJ4NwTMxdj__alP_8_8Jdz-tj_NvsyODp_BHeHjmjb57MBme3bunmOp1toXPj0YZNecjr8ASBFEfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+polyethylene+terephthalate+hydrolases%3A+perspectives+and+limits&rft.jtitle=Applied+microbiology+and+biotechnology&rft.au=Kawai%2C+Fusako&rft.au=Iizuka%2C+Ryo&rft.au=Kawabata%2C+Takeshi&rft.date=2024-12-01&rft.issn=1432-0614&rft.eissn=1432-0614&rft.volume=108&rft.issue=1&rft.spage=404&rft_id=info:doi/10.1007%2Fs00253-024-13222-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0175-7598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0175-7598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0175-7598&client=summon