The evolution and future of influenza pandemic preparedness

The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become app...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 53; no. 5; pp. 737 - 749
Main Authors Harrington, Walter N., Kackos, Christina M., Webby, Richard J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2021
Springer Nature B.V
생화학분자생물학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. Influenza: Learning to plan for pandemics The long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades.
AbstractList The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.Influenza: Learning to plan for pandemicsThe long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades.
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. The long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades.
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. Influenza: Learning to plan for pandemics The long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades.
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. KCI Citation Count: 0
Author Webby, Richard J.
Kackos, Christina M.
Harrington, Walter N.
Author_xml – sequence: 1
  givenname: Walter N.
  orcidid: 0000-0003-3314-584X
  surname: Harrington
  fullname: Harrington, Walter N.
  organization: Department of Infectious Diseases, St. Jude Children’s Research Hospital
– sequence: 2
  givenname: Christina M.
  surname: Kackos
  fullname: Kackos, Christina M.
  organization: Department of Infectious Diseases, St. Jude Children’s Research Hospital, St. Jude Children’s Research Hospital, Graduate School of Biomedical Sciences
– sequence: 3
  givenname: Richard J.
  surname: Webby
  fullname: Webby, Richard J.
  email: Richard.Webby@Stjude.Org
  organization: Department of Infectious Diseases, St. Jude Children’s Research Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33953324$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002715886$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc1rFTEUxYNU7OvTf8CFDLjRxWi-k0EolOJHoSDIcx0yeTdt2nnJmMwU9K83fVOrdtFVFvd3Tu495wgdxBQBoZcEvyOY6feFUKpkiylpMZaYtfgJWlHc0VZywg7Qqs5lyyRhh-iolCuMqeCKP0OHjHWCMcpX6MPmEhq4ScM8hRQbG7eNn6c5Q5N8E6IfZoi_bDPWAeyCa8YMo82wjVDKc_TU26HAi7t3jb5_-rg5_dKef_18dnpy3jqh-NRaKbDsQPTYM6qFsOAFxoJqDrRnW6uU6zX3inDKtMACpOolEN5x4pTqPVujt4tvzN5cu2CSDfv3IpnrbE6-bc5MpzTTjFf2eGHHud_B1kGcsh3MmMPO5p975f-TGC6rz43RuOsUodXgzZ1BTj9mKJPZheJgGGyENBdDRQ21hkxIRV8_QK_SnGONolJM1Rt5jXmNXv270f0qfzqoAF0Al1MpGfw9QrC5LdosRZtatNkXbXAV6QciFyZ722G9KgyPS9kiLfWfeAH579qPqH4DbMC6oQ
CitedBy_id crossref_primary_10_1016_j_jep_2023_116322
crossref_primary_10_1016_j_ymthe_2024_12_052
crossref_primary_10_1016_j_jtcme_2024_03_008
crossref_primary_10_1016_j_evalprogplan_2021_101994
crossref_primary_10_2903_sp_efsa_2024_EN_8692
crossref_primary_10_1016_j_jmgm_2025_108983
crossref_primary_10_1016_j_ymthe_2025_01_003
crossref_primary_10_1016_j_cell_2023_08_011
crossref_primary_10_3389_fcimb_2021_827790
crossref_primary_10_3389_fddev_2024_1382266
crossref_primary_10_1360_TB_2023_1087
crossref_primary_10_1016_j_foodcont_2023_110138
crossref_primary_10_1055_a_2500_1878
crossref_primary_10_1146_annurev_nutr_062320_115937
crossref_primary_10_1371_journal_ppat_1012110
crossref_primary_10_1016_j_vaccine_2025_126900
crossref_primary_10_1039_D3MD00513E
crossref_primary_10_1093_aje_kwab175
crossref_primary_10_1128_jvi_00928_24
crossref_primary_10_1016_j_ijbiomac_2022_12_066
crossref_primary_10_3390_ani13111832
crossref_primary_10_1038_s41586_024_08246_7
crossref_primary_10_3390_vaccines12111220
crossref_primary_10_37349_eds_2024_00037
crossref_primary_10_1016_j_ecoinf_2024_102827
crossref_primary_10_3390_v16060829
crossref_primary_10_1021_acsinfecdis_3c00381
crossref_primary_10_1038_s41541_024_01037_1
crossref_primary_10_1016_j_bbagrm_2024_195023
crossref_primary_10_1364_BOE_533457
crossref_primary_10_3390_v14061312
crossref_primary_10_3390_su15097633
crossref_primary_10_1126_science_abm0271
crossref_primary_10_1038_s41586_023_06261_8
crossref_primary_10_1038_s42003_023_04459_0
crossref_primary_10_12938_bmfh_2022_014
crossref_primary_10_1007_s12257_022_0115_8
crossref_primary_10_1038_s41562_024_01940_6
crossref_primary_10_1016_j_micpath_2023_106030
crossref_primary_10_1080_22221751_2024_2387910
crossref_primary_10_3389_fimmu_2023_1076772
crossref_primary_10_3390_vaccines10081355
crossref_primary_10_1007_s11418_022_01660_z
crossref_primary_10_1186_s13104_025_07143_0
crossref_primary_10_1126_science_adf0900
crossref_primary_10_1016_j_apsb_2023_08_010
crossref_primary_10_1186_s42826_024_00214_6
crossref_primary_10_1016_j_intman_2023_101056
crossref_primary_10_1016_j_scitotenv_2024_173692
crossref_primary_10_1038_s41598_024_72618_2
crossref_primary_10_1002_smll_202301801
crossref_primary_10_3390_v15010200
crossref_primary_10_3390_ijerph192114318
crossref_primary_10_3390_v14010051
crossref_primary_10_3389_fpubh_2023_1300228
crossref_primary_10_1016_j_jep_2023_116485
crossref_primary_10_1007_s11262_024_02118_y
crossref_primary_10_1093_jbcr_irac076
crossref_primary_10_1016_j_heliyon_2024_e40645
crossref_primary_10_3390_pathogens14010027
crossref_primary_10_1016_j_lanmic_2024_100973
crossref_primary_10_1002_jmv_70230
crossref_primary_10_3389_fpubh_2022_911029
crossref_primary_10_1016_j_idh_2023_05_004
crossref_primary_10_1021_jacsau_3c00695
crossref_primary_10_1016_j_trac_2024_117979
crossref_primary_10_3390_ijms252010941
crossref_primary_10_1038_s41467_024_45205_2
crossref_primary_10_1136_bmjgh_2022_009912
crossref_primary_10_7554_eLife_86051
crossref_primary_10_3390_vaccines13030267
crossref_primary_10_1186_s41182_022_00463_y
crossref_primary_10_3390_vaccines12060664
crossref_primary_10_1038_s41467_024_53301_6
crossref_primary_10_1071_MA24010
crossref_primary_10_1021_acsami_3c15699
crossref_primary_10_3389_fimmu_2021_826621
crossref_primary_10_3389_fpubh_2023_1200438
crossref_primary_10_1016_j_arr_2023_102068
crossref_primary_10_1038_s12276_021_00608_9
crossref_primary_10_1146_annurev_virology_111821_120445
crossref_primary_10_3389_fpubh_2024_1383536
crossref_primary_10_1016_j_ijregi_2024_100453
crossref_primary_10_58318_2957_5702_2024_18_75_93
crossref_primary_10_29254_2077_4214_2022_3_166_250_257
crossref_primary_10_1080_02648725_2023_2191081
crossref_primary_10_1111_irv_70095
crossref_primary_10_3389_fimmu_2022_1025884
crossref_primary_10_1186_s12979_023_00344_w
crossref_primary_10_1016_j_diagmicrobio_2022_115764
crossref_primary_10_1021_acsinfecdis_3c00429
crossref_primary_10_3390_molecules27175494
crossref_primary_10_1016_j_antiviral_2024_105897
crossref_primary_10_1002_ddr_70080
crossref_primary_10_1080_10095020_2023_2275619
crossref_primary_10_1186_s12929_023_00950_2
crossref_primary_10_1016_j_ab_2022_114847
crossref_primary_10_1021_acsnano_3c06526
crossref_primary_10_1002_anie_202400413
crossref_primary_10_1021_acsnano_4c02130
crossref_primary_10_1016_j_bsheal_2025_03_003
crossref_primary_10_3389_fcimb_2023_1179552
crossref_primary_10_3390_vaccines10050714
crossref_primary_10_3389_fgene_2023_1164274
crossref_primary_10_1016_j_bios_2022_114511
crossref_primary_10_3390_v15102033
crossref_primary_10_1002_ange_202400413
crossref_primary_10_3390_v16071136
crossref_primary_10_1089_hs_2023_0146
crossref_primary_10_1099_jgv_0_001802
crossref_primary_10_12688_f1000research_152870_1
crossref_primary_10_1038_s41541_023_00773_0
crossref_primary_10_1038_s42003_022_04005_4
crossref_primary_10_1136_leader_2022_000603
crossref_primary_10_3390_pr10020327
crossref_primary_10_18527_2500_2236_2022_9_1_71_74
crossref_primary_10_3390_v16060883
crossref_primary_10_3390_vaccines12111289
crossref_primary_10_1038_s41598_022_22770_4
crossref_primary_10_1128_jvi_01612_24
crossref_primary_10_1155_tbed_5569836
crossref_primary_10_1371_journal_ppat_1010106
crossref_primary_10_1128_mbio_03589_24
crossref_primary_10_1016_j_biomaterials_2024_122736
crossref_primary_10_3389_fimmu_2024_1473428
Cites_doi 10.1128/JVI.01668-09
10.3390/v10090461
10.1038/nbt.2436
10.3201/eid2402.171360
10.1001/jama.1944.62850140004008
10.1146/annurev.biochem.69.1.531
10.1038/nature08260
10.2903/sp.efsa.2014.EN-571
10.1038/nrd.2017.243
10.1128/JVI.01164-17
10.1016/S0140-6736(00)78541-2
10.1016/j.coi.2011.07.016
10.1038/39218
10.1007/978-3-540-92165-3_6
10.1006/viro.1993.1155
10.1016/j.cell.2018.03.030
10.1056/nejmoa2022483
10.1016/j.antiviral.2013.10.013
10.1073/pnas.1113801108
10.1016/j.jinf.2014.02.012
10.1038/s41586-020-2798-3
10.1016/j.coviro.2012.03.003
10.1056/NEJMoa1716197
10.1159/000157337
10.1016/j.tim.2018.03.005
10.1073/pnas.87.2.786
10.1016/j.ijantimicag.2020.106080
10.1101/2020.06.11.145920
10.2105/AJPH.2018.304609
10.1056/NEJMp068205
10.1183/13993003.01710-2016
10.1128/mBio.01996-15
10.1056/NEJMoa060930
10.1016/j.drudis.2008.03.024
10.1089/vim.2017.0141
10.1038/emi.2013.64
10.1038/s41591-020-0937-x
10.1016/S0140-6736(73)92196-X
10.1056/NEJMoa1304459
10.1016/j.chom.2013.02.008
10.1128/mBio.00018-10
10.1016/S0264-410X(98)00005-X
10.1038/nature08182
10.3201/eid2403.171852
10.1126/science.1239844
10.1016/j.ajpath.2014.08.030
10.1111/nyas.12462
10.1093/infdis/jis935
10.1128/mBio.00417-16
10.2105/AJPH.37.8.1013
10.1126/science.1090350
10.1016/S0092-8674(00)81771-7
10.2807/1560-7917.ES.2019.24.3.1800698
10.7554/eLife.26437
10.1128/JVI.03110-12
10.1111/1600-0498.12312
10.1111/j.1863-2378.2008.01217.x
10.1038/s41598-019-40175-8
10.1111/irv.12570
10.1016/0166-0934(89)90004-9
10.1086/599206
10.1093/infdis/jiz295
10.1016/j.chom.2020.09.008
10.1038/nature15379
10.1038/nature10831
10.1126/science.1213362
10.1016/S0264-410X(03)00071-9
10.1128/JVI.00137-12
10.1371/journal.ppat.1001329
10.1242/dmm.007823
10.1371/journal.pone.0033383
10.1016/S1473-3099(14)70999-5
10.1016/j.vaccine.2017.06.003
10.1371/journal.ppat.1000012
10.1074/jbc.M114.588541
10.1016/j.jmb.2005.11.002
10.1093/infdis/jiy103
10.3390/v20801530
10.7554/eLife.18491
10.1093/infdis/jiy711
10.1093/infdis/jiv195
10.1056/NEJMoa044021
10.1128/mr.56.1.152-179.1992
10.1038/ncomms5794
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ACYCR
DOI 10.1038/s12276-021-00603-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE

CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 749
ExternalDocumentID oai_kci_go_kr_ARTI_9783834
PMC8099712
33953324
10_1038_s12276_021_00603_0
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: World Health Organization (WHO)
  grantid: HHSN272201400006C
  funderid: https://doi.org/10.13039/100004423
– fundername: NIAID NIH HHS
  grantid: HHSN272201400006C
– fundername: ;
  grantid: HHSN272201400006C
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
AZQEC
COVID
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
AAADF
AAPBV
AFGXO
ID FETCH-LOGICAL-c574t-a65069e5b0f32855aef5005284e2b3da77cb84f714238505e67b6e14941c77bf3
IEDL.DBID 7X7
ISSN 1226-3613
2092-6413
IngestDate Tue Nov 21 21:43:30 EST 2023
Thu Aug 21 13:49:13 EDT 2025
Fri Jul 11 04:43:31 EDT 2025
Wed Aug 13 07:37:28 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 04:10:30 EDT 2025
Fri Feb 21 02:40:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-a65069e5b0f32855aef5005284e2b3da77cb84f714238505e67b6e14941c77bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3314-584X
OpenAccessLink https://www.proquest.com/docview/2537005495?pq-origsite=%requestingapplication%
PMID 33953324
PQID 2537005495
PQPubID 2041975
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9783834
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8099712
proquest_miscellaneous_2522620911
proquest_journals_2537005495
pubmed_primary_33953324
crossref_primary_10_1038_s12276_021_00603_0
crossref_citationtrail_10_1038_s12276_021_00603_0
springer_journals_10_1038_s12276_021_00603_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2021
Publisher Nature Publishing Group UK
Springer Nature B.V
생화학분자생물학회
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: 생화학분자생물학회
References ZhuHInfectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigsScience20133411831861:CAS:528:DC%2BC3sXhtVOku7rO2370437610.1126/science.1239844
CDC. Influenza Risk Assessment Tool (IRAT). https://www.cdc.gov/flu/pandemic-resources/national-strategy/risk-assessment.htm (n.d.).
ScholtissekCPigs as ‘mixing vessels’ for the creation of new pandemic influenza A virusesMed Prin Pract.20042657110.1159/000157337
LipsitchMViral factors in influenza pandemic risk assessmentElife20165e1849127834632515652710.7554/eLife.18491
Potter, C. W. Textbook of Influenza. Chronicle of influenza Pandemics. (Blackwell Science LTD, 1998).
KimHWebsterRGWebbyRJInfluenza virus: dealing with a drifting and shifting pathogenViral Immunol.2018311741831:CAS:528:DC%2BC1cXnsFamsrg%3D2937308610.1089/vim.2017.0141
StevensJGlycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificitiesJ. Mol. Biol.2006355114311551:CAS:528:DC%2BD2MXhtlGlsL3O1634353310.1016/j.jmb.2005.11.002
SuttonTCThe pandemic threat of emerging H5 and H7 avian influenza virusesViruses201810461616430110.3390/v10090461
MaWThe role of swine in the generation of novel influenza virusesZoonoses Public Health2009563263371:CAS:528:DC%2BD1MXhtVejur%2FO1948631610.1111/j.1863-2378.2008.01217.x
SteelJInfluenza virus vaccine based on the conserved hemagglutinin stalk domainMbio20101e000181020689752291265810.1128/mBio.00018-10
(NIH), N.I.H. Clinical trials of monoclonal antibodies to prevent COVID-19 now enrolling. https://www.nih.gov/news-events/news-releases/clinical-trials-monoclonal-antibodies-prevent-covid-19-now-enrolling (2020).
KrammerFPalesePUniversal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domainJ. Infect. Dis.2019219S62S671:CAS:528:DC%2BB3cXjvFajt7Y%3D30715353645231810.1093/infdis/jiy711
DolanBIt wasn’t supposed to be a coronavirus: the quest for an influenza A(H5N1)‐derived vaccine and the limits of pandemic preparednessCentaurus20206233134310.1111/1600-0498.12312
SmithWAndrewesCHLaidlawPPA virus obtained from influenza patientsLancet1933222666810.1016/S0140-6736(00)78541-2
HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D22723413481078610.1126/science.1213362
Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. Biorxiv 2020.06.11.145920 (2020) https://doi.org/10.1101/2020.06.11.145920.
HonceRSchultz-CherrySRecipe for zoonosis: how influenza virus leaps into human circulationCell Host Microbe2020285065081:CAS:528:DC%2BB3cXitFOiu7vE33031768753993210.1016/j.chom.2020.09.008
UngchusakKProbable person-to-person transmission of avian influenza A (H5N1)N. Engl. J. Med.20053523333401:CAS:528:DC%2BD2MXnvVKgtA%3D%3D1566821910.1056/NEJMoa044021
DasSRDefining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selectionCell Host Microbe2013133143231:CAS:528:DC%2BC3sXktFaqsbg%3D23498956374722610.1016/j.chom.2013.02.008
BrookeCBPopulation diversity and collective interactions during influenza virus infectionJ. Virol.201791e011641728855247566050310.1128/JVI.01164-17
ChenY-QInfluenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodiesCell2018173417429.e101:CAS:528:DC%2BC1cXntFaiu7k%3D29625056589093610.1016/j.cell.2018.03.030
HorwoodPFCo-circulation of influenza A H5, H7, and H9 viruses and co-infected poultry in live bird markets, CambodiaEmerg. Infect. Dis.20182435235529350140578291010.3201/eid2402.171360
RussellCJHuMOkdaFAInfluenza hemagglutinin protein stability, activation, and pandemic riskTrends Microbiol2018268418531:CAS:528:DC%2BC1cXnsFCmsro%3D29681430615082810.1016/j.tim.2018.03.005
SandbulteMRDiscordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza virusesProc. Natl Acad. Sci.201110820748207531:CAS:528:DC%2BC38Xkt1Ojsw%3D%3D2214379810.1073/pnas.1113801108
NachbagauerRAge dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humansMbio20167e01996151:CAS:528:DC%2BC2sXotVSgsg%3D%3D26787832472501410.1128/mBio.01996-15
ReumanPDKeelySSchiffGMAssessment of signs of influenza illness in the ferret modelJ. Virol. Methods19892427341:STN:280:DyaL1MzktVOmug%3D%3D276016310.1016/0166-0934(89)90004-9
PardiNHoganMJPorterFWWeissmanDmRNA vaccines—a new era in vaccinologyNat. Rev. Drug Discov.2018172612791:CAS:528:DC%2BC1cXnvVKgsQ%3D%3D29326426590679910.1038/nrd.2017.243
SmithGJDOrigins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemicNature2009459112211251:CAS:528:DC%2BD1MXnslKqtL0%3D1951628310.1038/nature08182
WebsterRGGovorkovaEAContinuing challenges in influenzaAnn. N.Y. Acad. Sci.2017132311513910.1111/nyas.12462
ErbeldingEJA universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseasesJ. Infect. Dis.20182183473541:CAS:528:DC%2BC1MXhtlGht7bM29506129627917010.1093/infdis/jiy103
LehnertRPletzMReussASchabergTAntiviral medications in seasonal and pandemic influenzaDtsch. Aerzteblatt Online2016113799807
ClaasECJJongJCde, BeekRvan, RimmelzwaanGFOsterhausADMEHuman influenza virus A/HongKong/156/97 (H5N1) infectionVaccine1998169779781:STN:280:DyaK1czkslalug%3D%3D968234610.1016/S0264-410X(98)00005-X
Nardi, M. D. et al. Development of a risk assessment methodological framework for potentially pandemic influenza strains (FLURISK). Efsa Supporting Publ 11, (2014).
ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ19672242274882710.1038/nature08260
DrexlerJFCormanVMDrostenCEcology, evolution and classification of bat coronaviruses in the aftermath of SARSAntivir. Res.201410145561:CAS:528:DC%2BC3sXhvFyksrnP2418412810.1016/j.antiviral.2013.10.013
ZhongWLevineMZStockpiled Avian Influenza A(H7N9) vaccines induce robust, nonneutralizing functional antibodies against antigenically drifted fifth-wave A(H7N9) virusesJ. Infect. Dis.2019220127612801:CAS:528:DC%2BB3cXnsFKrs7g%3D3116929310.1093/infdis/jiz295
YenCThe development of global vaccine stockpilesLancet Infect. Dis.20151534034725661473471237910.1016/S1473-3099(14)70999-5
KilbourneEDJohanssonBEGrajowerBIndependent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteinsProc. Natl Acad. Sci.1990877867901:CAS:528:DyaK3cXhtFKrur0%3D230056210.1073/pnas.87.2.786
ZhouLRisk factors for human illness with avian influenza A (H5N1) virus infection in ChinaJ. Infect. Dis.20091991726173419416076275902710.1086/599206
WHO. Global Influenza Surveillance and Response System (GISRS). https://www.who.int/influenza/gisrs_laboratory/en/ (2020).
BelserJAKatzJMTumpeyTMThe ferret as a model organism to study influenza A virus infectionDis. Model Mech.201145755791:CAS:528:DC%2BC3MXhtFKqt77J21810904318022010.1242/dmm.007823
JiaNGlycomic characterization of respiratory tract tissues of ferrets implications for its use in influenza virus infection studiesJ. Biol. Chem.201428928489285041:CAS:528:DC%2BC2cXhslektLvM25135641419249910.1074/jbc.M114.588541
KandunINThree Indonesian clusters of H5N1 virus infection in 2005N. Engl. J. Med.2006355218621941:CAS:528:DC%2BD28Xht1Chsb3N1712401610.1056/NEJMoa060930
CheungPPHGeneration and characterization of influenza A viruses with altered polymerase fidelityNat. Commun.201451:CAS:528:DC%2BC2MXksVCitb8%3D25183443415540510.1038/ncomms5794
ParkJ-KPre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge modelNat. Med.202026124012461:CAS:528:DC%2BB3cXht1yjtbfK3260133610.1038/s41591-020-0937-x
ScorzaFBPardiNNew kids on the block: RNA-based influenza virus vaccinesNato Adv. Sci. Inst. Se2018620
CouchRBAntibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidaseJ. Infect. Dis.20132079749811:CAS:528:DC%2BC3sXivVGht7w%3D23307936363345010.1093/infdis/jis935
BurkeSATrockSCUse of influenza risk assessment tool for prepandemic preparednessEmerg. Infect. Dis.20182447147729460739582335610.3201/eid2403.171852
PlotkinSRobinsonJMCunninghamGIqbalRLarsenSThe complexity and cost of vaccine manufacturing—an overviewVaccine2017354064407128647170551873410.1016/j.vaccine.2017.06.003
ChenJStructure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the Labile conformationCell1998954094171:CAS:528:DyaK1cXntlCqt70%3D981471010.1016/S0092-8674(00)81771-7
MaWThe NS segment of an H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV ▿ †J. Virol.2009842122213320007264281236910.1128/JVI.01668-09
BouvierNMLowenACAnimal models for influenza virus pathogenesis and transmissionViruses201021530156321442033306365310.3390/v20801530
PaulyMDProcarioMCLauringASA novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A virusesElife20176e2643728598328551100810.7554/eLife.26437
KooninLMPatelATimely antiviral administration during an influenza pandemic: key componentsAm. J. Public Health2018108S215S22030192657612966110.2105/AJPH.2018.304609
MemoliMJEvaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge modelMbio20167e00417161:CAS:528:DC%2BC2sXmvVahu7o%3D27094330495952110.1128/mBio.00417-16
CastrucciMRGenetic reassortment between avian and human influenza A viruses in Italian pigsVirology19931935035061:CAS:528:DyaK3sXhs1Knsro%3D843858610.1006/viro.1993.1155
WebbyRJWebsterRGAre we ready for pandemic influenza?Science2003302151915221:CAS:528:DC%2BD3sXpt1Smsbw%3D1464583610.1126/science.1090350
FrancisTSalkJEQuilliganJJExperience with vaccination against influenza in the spring of 1947: a prelimin
MJ Memoli (603_CR41) 2008; 13
PF Horwood (603_CR55) 2018; 24
RG Webster (603_CR15) 2006; 355
M Lipsitch (603_CR18) 2016; 5
603_CR58
603_CR59
E Takashita (603_CR73) 2019; 24
J Stevens (603_CR35) 2006; 355
CB Brooke (603_CR62) 2017; 91
N Jia (603_CR53) 2014; 289
B Petsch (603_CR92) 2012; 30
KK-W To (603_CR25) 2014; 69
PPH Cheung (603_CR63) 2014; 5
RG Webster (603_CR21) 1972; 47
JF Drexler (603_CR98) 2014; 101
KPY Hui (603_CR38) 2017; 49
FG Hayden (603_CR72) 2018; 379
RJ Webby (603_CR54) 2003; 302
Y-Q Chen (603_CR81) 2018; 173
K Ungchusak (603_CR45) 2005; 352
FB Scorza (603_CR91) 2018; 6
DR Kapczynski (603_CR16) 2009; 333
BJ Ward (603_CR28) 2018; 14
MR Sandbulte (603_CR82) 2011; 108
B Dolan (603_CR97) 2020; 62
KY Lai (603_CR26) 2013; 2
TC Sutton (603_CR56) 2018; 10
MR Castrucci (603_CR37) 1993; 193
C Yen (603_CR50) 2015; 15
603_CR5
JJ Skehel (603_CR66) 2000; 69
G Bajic (603_CR89) 2019; 9
603_CR6
J Steel (603_CR85) 2010; 1
603_CR75
R Lehnert (603_CR100) 2016; 113
603_CR1
W Ma (603_CR27) 2009; 84
603_CR4
SR Das (603_CR80) 2013; 13
CJ Russell (603_CR67) 2018; 26
RB Couch (603_CR43) 2013; 207
L Zhou (603_CR47) 2009; 199
MJ Memoli (603_CR79) 2016; 7
603_CR93
R Honce (603_CR12) 2020; 28
H Zaraket (603_CR70) 2013; 87
SS Lakdawala (603_CR52) 2015; 526
SA Burke (603_CR32) 2018; 24
NM Bouvier (603_CR51) 2010; 2
AM PAYNE (603_CR10) 1953; 8
J Chen (603_CR64) 1998; 95
F Krammer (603_CR49) 2020; 586
S Herfst (603_CR68) 2012; 336
C Scholtissek (603_CR22) 2004; 2
CH Andrewes (603_CR39) 1941; 22
MD Pauly (603_CR61) 2017; 6
603_CR11
RG Webster (603_CR42) 2017; 1323
JA Belser (603_CR31) 2011; 4
M Imai (603_CR34) 2012; 2
T Jefferson (603_CR71) 2014; 4
PD Reuman (603_CR30) 1989; 24
H Kim (603_CR2) 2018; 31
603_CR94
603_CR95
603_CR96
W Ma (603_CR36) 2009; 56
R Gao (603_CR57) 2013; 368
Y Itoh (603_CR29) 2009; 460
EJ Erbelding (603_CR76) 2018; 218
MI Nelson (603_CR23) 2008; 4
RG Webster (603_CR17) 1992; 56
JC Jong (603_CR13) 1997; 389
W Zhu (603_CR24) 2012; 7
J-K Park (603_CR88) 2020; 26
ED Kilbourne (603_CR83) 1990; 87
C Gerdil (603_CR74) 2003; 21
IN Kandun (603_CR46) 2006; 355
Ede Vries (603_CR65) 2011; 7
S Fukuyama (603_CR19) 2011; 23
S Plotkin (603_CR48) 2017; 35
ArnoldS Monto (603_CR78) 1973; 301
W Smith (603_CR7) 1933; 222
Y Song (603_CR101) 2020; 56
M Imai (603_CR69) 2012; 486
F Krammer (603_CR84) 2019; 219
T Francis (603_CR9) 1947; 37
Members of the Commission on Influenza (603_CR8) 1944; 124
603_CR33
R Hai (603_CR86) 2012; 86
R Nachbagauer (603_CR87) 2016; 7
JC Kash (603_CR20) 2015; 185
N Pardi (603_CR90) 2018; 17
GJD Smith (603_CR3) 2009; 459
AS Monto (603_CR77) 2015; 212
LM Koonin (603_CR99) 2018; 108
T Ziegler (603_CR102) 2018; 12
H Zhu (603_CR40) 2013; 341
603_CR44
W Zhong (603_CR60) 2019; 220
ECJ Claas (603_CR14) 1998; 16
References_xml – reference: ZhouLRisk factors for human illness with avian influenza A (H5N1) virus infection in ChinaJ. Infect. Dis.20091991726173419416076275902710.1086/599206
– reference: WHO. Influenza: H5N1. https://www.who.int/news-room/q-a-detail/h5n1-influenza (2012).
– reference: YenCThe development of global vaccine stockpilesLancet Infect. Dis.20151534034725661473471237910.1016/S1473-3099(14)70999-5
– reference: KapczynskiDRSwayneDEInfluenza vaccines for avian speciesCurr. Top. Microbiol.2009333133152
– reference: KooninLMPatelATimely antiviral administration during an influenza pandemic: key componentsAm. J. Public Health2018108S215S22030192657612966110.2105/AJPH.2018.304609
– reference: ZieglerTMamahitACoxNJ65 years of influenza surveillance by a World Health Organization‐coordinated global networkInfluenza Other Respir.20181255856510.1111/irv.12570
– reference: Members of the Commission on InfluenzaA clinical evaluation of vaccination against influenza: preliminary reportJ. Am. Med. Assoc.194412498298510.1001/jama.1944.62850140004008
– reference: ChenY-QInfluenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodiesCell2018173417429.e101:CAS:528:DC%2BC1cXntFaiu7k%3D29625056589093610.1016/j.cell.2018.03.030
– reference: WebsterRGGovorkovaEAH5N1 influenza—continuing evolution and spreadN. Engl. J. Med.2006355217421771:CAS:528:DC%2BD28Xht1Chsb%2FF1712401410.1056/NEJMp068205
– reference: PardiNHoganMJPorterFWWeissmanDmRNA vaccines—a new era in vaccinologyNat. Rev. Drug Discov.2018172612791:CAS:528:DC%2BC1cXnvVKgsQ%3D%3D29326426590679910.1038/nrd.2017.243
– reference: SongYCOVID-19 treatment: close to a cure?—A rapid review of pharmacotherapies for the novel coronavirusInt. J. Antimicrob. Agric.2020561060801:CAS:528:DC%2BB3cXhsVClsLrN10.1016/j.ijantimicag.2020.106080
– reference: CouchRBAntibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidaseJ. Infect. Dis.20132079749811:CAS:528:DC%2BC3sXivVGht7w%3D23307936363345010.1093/infdis/jis935
– reference: SuttonTCThe pandemic threat of emerging H5 and H7 avian influenza virusesViruses201810461616430110.3390/v10090461
– reference: WHO. Global Influenza Surveillance and Response System (GISRS). https://www.who.int/influenza/gisrs_laboratory/en/ (2020).
– reference: KilbourneEDJohanssonBEGrajowerBIndependent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteinsProc. Natl Acad. Sci.1990877867901:CAS:528:DyaK3cXhtFKrur0%3D230056210.1073/pnas.87.2.786
– reference: LipsitchMViral factors in influenza pandemic risk assessmentElife20165e1849127834632515652710.7554/eLife.18491
– reference: ZaraketHBridgesOARussellCJThe pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in miceJ. Virol.201387482648341:CAS:528:DC%2BC3sXmtlCjs7c%3D23449784362429510.1128/JVI.03110-12
– reference: WebbyRJWebsterRGAre we ready for pandemic influenza?Science2003302151915221:CAS:528:DC%2BD3sXpt1Smsbw%3D1464583610.1126/science.1090350
– reference: TakashitaEDetection of influenza A(H3N2) viruses exhibiting reduced susceptibility to the novel cap-dependent endonuclease inhibitor baloxavir in Japan, December 2018Eurosurveillance2019241800698634484110.2807/1560-7917.ES.2019.24.3.1800698
– reference: (WHO), W.H.O. Tool for Influenza Pandemic Risk Assessment (TIPRA). (2016).
– reference: ZhuHInfectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigsScience20133411831861:CAS:528:DC%2BC3sXhtVOku7rO2370437610.1126/science.1239844
– reference: HaiRInfluenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypesJ. Virol.201286577457811:CAS:528:DC%2BC38XmslOit7k%3D22398287334725710.1128/JVI.00137-12
– reference: ClaasECJJongJCde, BeekRvan, RimmelzwaanGFOsterhausADMEHuman influenza virus A/HongKong/156/97 (H5N1) infectionVaccine1998169779781:STN:280:DyaK1czkslalug%3D%3D968234610.1016/S0264-410X(98)00005-X
– reference: ZhongWLevineMZStockpiled Avian Influenza A(H7N9) vaccines induce robust, nonneutralizing functional antibodies against antigenically drifted fifth-wave A(H7N9) virusesJ. Infect. Dis.2019220127612801:CAS:528:DC%2BB3cXnsFKrs7g%3D3116929310.1093/infdis/jiz295
– reference: ImaiMExperimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferretsNature20124864204281:CAS:528:DC%2BC38XovFyrsLY%3D22722205338810310.1038/nature10831
– reference: ChenJStructure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the Labile conformationCell1998954094171:CAS:528:DyaK1cXntlCqt70%3D981471010.1016/S0092-8674(00)81771-7
– reference: JeffersonTNeuraminidase inhibitors for preventing and treating influenza in adults and childrenCochrane Database Syst. Rev.20144CD008965
– reference: VriesEdeDissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathwayPlos Pathog.20117e100132921483486306899510.1371/journal.ppat.1001329
– reference: MaWThe NS segment of an H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV ▿ †J. Virol.2009842122213320007264281236910.1128/JVI.01668-09
– reference: PAYNEAMThe influenza programme of WHOBull World Health Organ.195387557741:STN:280:DyaG2c%2FhsFejtw%3D%3D130945042554202
– reference: JongJCde, ClaasECJOsterhausADMEWebsterRGLimWLA pandemic warning?Nature19973895545549335492709547710.1038/39218
– reference: SandbulteMRDiscordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza virusesProc. Natl Acad. Sci.201110820748207531:CAS:528:DC%2BC38Xkt1Ojsw%3D%3D2214379810.1073/pnas.1113801108
– reference: ZhuWMutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in micePLoS One20127e333831:CAS:528:DC%2BC38Xkslagsr0%3D22438920330530710.1371/journal.pone.0033383
– reference: ImaiMKawaokaYThe role of receptor binding specificity in interspecies transmission of influenza virusesCurr. Opin. Virol.201221601671:CAS:528:DC%2BC38Xltl2rsLc%3D22445963560575210.1016/j.coviro.2012.03.003
– reference: ErbeldingEJA universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseasesJ. Infect. Dis.20182183473541:CAS:528:DC%2BC1MXhtlGht7bM29506129627917010.1093/infdis/jiy103
– reference: Nardi, M. D. et al. Development of a risk assessment methodological framework for potentially pandemic influenza strains (FLURISK). Efsa Supporting Publ 11, (2014).
– reference: HonceRSchultz-CherrySRecipe for zoonosis: how influenza virus leaps into human circulationCell Host Microbe2020285065081:CAS:528:DC%2BB3cXitFOiu7vE33031768753993210.1016/j.chom.2020.09.008
– reference: WardBJThe establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines?Hum. Vacc. Immunother.20181400001:CAS:528:DC%2BC1cXitV2gtbY%3D
– reference: ParkJ-KPre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge modelNat. Med.202026124012461:CAS:528:DC%2BB3cXht1yjtbfK3260133610.1038/s41591-020-0937-x
– reference: SmithWAndrewesCHLaidlawPPA virus obtained from influenza patientsLancet1933222666810.1016/S0140-6736(00)78541-2
– reference: BurkeSATrockSCUse of influenza risk assessment tool for prepandemic preparednessEmerg. Infect. Dis.20182447147729460739582335610.3201/eid2403.171852
– reference: FrancisTSalkJEQuilliganJJExperience with vaccination against influenza in the spring of 1947: a preliminary reportAm. J. Public Health Nations Health194737101310161:STN:280:DC%2BD1c%2FjsVWlug%3D%3D18016577162389510.2105/AJPH.37.8.1013
– reference: Knipe, D. M. & Howley, P. Fields virology. (Lippincott Williams & Wilkins (LWW), 2013).
– reference: FukuyamaSKawaokaYThe pathogenesis of influenza virus infections: the contributions of virus and host factorsCurr. Opin. Immunol.2011234814861:CAS:528:DC%2BC3MXhtV2qu7jN21840185316372510.1016/j.coi.2011.07.016
– reference: ToKK-WUnique reassortant of influenza A(H7N9) virus associated with severe disease emerging in Hong KongJ. Infect.201469606824576826712757510.1016/j.jinf.2014.02.012
– reference: (NIH), N.I.H. Clinical trials of monoclonal antibodies to prevent COVID-19 now enrolling. https://www.nih.gov/news-events/news-releases/clinical-trials-monoclonal-antibodies-prevent-covid-19-now-enrolling (2020).
– reference: KashJCTaubenbergerJKThe role of viral, host, and secondary bacterial factors in influenza pathogenesisAm. J. Pathol.20151851528153625747532445031010.1016/j.ajpath.2014.08.030
– reference: CastrucciMRGenetic reassortment between avian and human influenza A viruses in Italian pigsVirology19931935035061:CAS:528:DyaK3sXhs1Knsro%3D843858610.1006/viro.1993.1155
– reference: BajicGAutoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodiesSci. Rep.20199349230837606640130710.1038/s41598-019-40175-8
– reference: LaiKYHuman H7N9 avian influenza virus infection: a review and pandemic risk assessmentEmerg. Microbes Infect.201321510.1038/emi.2013.64
– reference: Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. Biorxiv 2020.06.11.145920 (2020) https://doi.org/10.1101/2020.06.11.145920.
– reference: NachbagauerRAge dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humansMbio20167e01996151:CAS:528:DC%2BC2sXotVSgsg%3D%3D26787832472501410.1128/mBio.01996-15
– reference: CDC. Vaccine effectiveness: how well do the flu vaccines work? https://www.cdc.gov/flu/vaccines-work/vaccineeffect.htm (2020).
– reference: DrexlerJFCormanVMDrostenCEcology, evolution and classification of bat coronaviruses in the aftermath of SARSAntivir. Res.201410145561:CAS:528:DC%2BC3sXhvFyksrnP2418412810.1016/j.antiviral.2013.10.013
– reference: AndrewesCHGloverRESpread of infection from the respiratory tract of the Ferret. I. Transmission of influenza A virusBr. J. Exp. Pathol.19412291972065394
– reference: PlotkinSRobinsonJMCunninghamGIqbalRLarsenSThe complexity and cost of vaccine manufacturing—an overviewVaccine2017354064407128647170551873410.1016/j.vaccine.2017.06.003
– reference: WebsterRGLaverWGThe origin of pandemic influenzaBull World Health Organ1972474494521:STN:280:DyaE3s7osVSquw%3D%3D45409942480853
– reference: SmithGJDOrigins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemicNature2009459112211251:CAS:528:DC%2BD1MXnslKqtL0%3D1951628310.1038/nature08182
– reference: JiaNGlycomic characterization of respiratory tract tissues of ferrets implications for its use in influenza virus infection studiesJ. Biol. Chem.201428928489285041:CAS:528:DC%2BC2cXhslektLvM25135641419249910.1074/jbc.M114.588541
– reference: PetschBProtective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infectionNat. Biotechnol.201230121012161:CAS:528:DC%2BC38Xhs1ymsbjO2315988210.1038/nbt.2436
– reference: HuiKPYTropism and innate host responses of influenza A/H5N6 virus: an analysis of ex vivo and in vitro cultures of the human respiratory tractEur. Respir. J.20174916017102827517310.1183/13993003.01710-2016
– reference: MaWThe role of swine in the generation of novel influenza virusesZoonoses Public Health2009563263371:CAS:528:DC%2BD1MXhtVejur%2FO1948631610.1111/j.1863-2378.2008.01217.x
– reference: GerdilCThe annual production cycle for influenza vaccineVaccine200321177617791268609310.1016/S0264-410X(03)00071-9
– reference: GaoRHuman infection with a novel avian-origin influenza A (H7N9) virusN. Engl. J. Med.2013368188818971:CAS:528:DC%2BC3sXnsl2gsrc%3D2357762810.1056/NEJMoa1304459
– reference: CDC. Asian Lineage Avian Influenza A(H7N9) virus. https://www.cdc.gov/flu/avianflu/h7n9-virus.htm (2018).
– reference: WebsterRGBeanWJGormanOTChambersTMKawaokaYEvolution and ecology of influenza A virusesMicrobiol Rev.1992561521791:STN:280:DyaK383lt1OqtQ%3D%3D157910837285910.1128/mr.56.1.152-179.1992
– reference: PaulyMDProcarioMCLauringASA novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A virusesElife20176e2643728598328551100810.7554/eLife.26437
– reference: SkehelJJWileyDCReceptor binding and membrane fusion in virus entry: the influenza hemagglutininAnnu Rev. Biochem2000695315691:CAS:528:DC%2BD3cXnt1ajtbY%3D1096646810.1146/annurev.biochem.69.1.531
– reference: Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—Preliminary Report. N. Engl. J. Med. (2020) https://doi.org/10.1056/nejmoa2022483.
– reference: NelsonMIMultiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918PLoS Pathog.20084e100001218463694226284910.1371/journal.ppat.1000012
– reference: LehnertRPletzMReussASchabergTAntiviral medications in seasonal and pandemic influenzaDtsch. Aerzteblatt Online2016113799807
– reference: MontoArnoldSKendalAlanPEffect of neuraminidase antibody on Hong Kong influenzaLancet197330162362510.1016/S0140-6736(73)92196-X
– reference: BrookeCBPopulation diversity and collective interactions during influenza virus infectionJ. Virol.201791e011641728855247566050310.1128/JVI.01164-17
– reference: ReumanPDKeelySSchiffGMAssessment of signs of influenza illness in the ferret modelJ. Virol. Methods19892427341:STN:280:DyaL1MzktVOmug%3D%3D276016310.1016/0166-0934(89)90004-9
– reference: HaydenFGBaloxavir Marboxil for uncomplicated influenza in adults and adolescentsN. Engl. J. Med.20183799139231:CAS:528:DC%2BC1cXhslCksb7M3018445510.1056/NEJMoa1716197
– reference: Potter, C. W. Textbook of Influenza. Chronicle of influenza Pandemics. (Blackwell Science LTD, 1998).
– reference: WebsterRGGovorkovaEAContinuing challenges in influenzaAnn. N.Y. Acad. Sci.2017132311513910.1111/nyas.12462
– reference: SteelJInfluenza virus vaccine based on the conserved hemagglutinin stalk domainMbio20101e000181020689752291265810.1128/mBio.00018-10
– reference: KandunINThree Indonesian clusters of H5N1 virus infection in 2005N. Engl. J. Med.2006355218621941:CAS:528:DC%2BD28Xht1Chsb3N1712401610.1056/NEJMoa060930
– reference: Times N. Y. Coronavirus vaccine tracker. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html (2020).
– reference: UngchusakKProbable person-to-person transmission of avian influenza A (H5N1)N. Engl. J. Med.20053523333401:CAS:528:DC%2BD2MXnvVKgtA%3D%3D1566821910.1056/NEJMoa044021
– reference: CDC. Influenza Risk Assessment Tool (IRAT). https://www.cdc.gov/flu/pandemic-resources/national-strategy/risk-assessment.htm (n.d.).
– reference: LakdawalaSSThe soft palate is an important site of adaptation for transmissible influenza virusesNature20155261221251:CAS:528:DC%2BC2MXhs1SitLzF26416728459281510.1038/nature15379
– reference: MontoASAntibody to influenza virus neuraminidase: an independent correlate of protectionJ. Infect. Dis.2015212119111991:CAS:528:DC%2BC1cXjs12g2585895710.1093/infdis/jiv195
– reference: CheungPPHGeneration and characterization of influenza A viruses with altered polymerase fidelityNat. Commun.201451:CAS:528:DC%2BC2MXksVCitb8%3D25183443415540510.1038/ncomms5794
– reference: BouvierNMLowenACAnimal models for influenza virus pathogenesis and transmissionViruses201021530156321442033306365310.3390/v20801530
– reference: KrammerFSARS-CoV-2 vaccines in developmentNature20205865165271:CAS:528:DC%2BB3cXitVyhs73N3296700610.1038/s41586-020-2798-3
– reference: HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D22723413481078610.1126/science.1213362
– reference: ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ19672242274882710.1038/nature08260
– reference: WHO. Candidate vaccine viruses for avian influenza A(H7N9). https://www.who.int/influenza/vaccines/virus/candidates_reagents/a_h7n9/en/ (2020).
– reference: ScorzaFBPardiNNew kids on the block: RNA-based influenza virus vaccinesNato Adv. Sci. Inst. Se2018620
– reference: KrammerFPalesePUniversal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domainJ. Infect. Dis.2019219S62S671:CAS:528:DC%2BB3cXjvFajt7Y%3D30715353645231810.1093/infdis/jiy711
– reference: BelserJAKatzJMTumpeyTMThe ferret as a model organism to study influenza A virus infectionDis. Model Mech.201145755791:CAS:528:DC%2BC3MXhtFKqt77J21810904318022010.1242/dmm.007823
– reference: MemoliMJEvaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge modelMbio20167e00417161:CAS:528:DC%2BC2sXmvVahu7o%3D27094330495952110.1128/mBio.00417-16
– reference: DasSRDefining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selectionCell Host Microbe2013133143231:CAS:528:DC%2BC3sXktFaqsbg%3D23498956374722610.1016/j.chom.2013.02.008
– reference: RussellCJHuMOkdaFAInfluenza hemagglutinin protein stability, activation, and pandemic riskTrends Microbiol2018268418531:CAS:528:DC%2BC1cXnsFCmsro%3D29681430615082810.1016/j.tim.2018.03.005
– reference: HorwoodPFCo-circulation of influenza A H5, H7, and H9 viruses and co-infected poultry in live bird markets, CambodiaEmerg. Infect. Dis.20182435235529350140578291010.3201/eid2402.171360
– reference: StevensJGlycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificitiesJ. Mol. Biol.2006355114311551:CAS:528:DC%2BD2MXhtlGlsL3O1634353310.1016/j.jmb.2005.11.002
– reference: MemoliMJMorensDMTaubenbergerJKPandemic and seasonal influenza: therapeutic challengesDrug Discov. Today2008135905951:CAS:528:DC%2BD1cXotlCmu7k%3D18598914255603410.1016/j.drudis.2008.03.024
– reference: ScholtissekCPigs as ‘mixing vessels’ for the creation of new pandemic influenza A virusesMed Prin Pract.20042657110.1159/000157337
– reference: KimHWebsterRGWebbyRJInfluenza virus: dealing with a drifting and shifting pathogenViral Immunol.2018311741831:CAS:528:DC%2BC1cXnsFamsrg%3D2937308610.1089/vim.2017.0141
– reference: DolanBIt wasn’t supposed to be a coronavirus: the quest for an influenza A(H5N1)‐derived vaccine and the limits of pandemic preparednessCentaurus20206233134310.1111/1600-0498.12312
– volume: 84
  start-page: 2122
  year: 2009
  ident: 603_CR27
  publication-title: J. Virol.
  doi: 10.1128/JVI.01668-09
– volume: 10
  start-page: 461
  year: 2018
  ident: 603_CR56
  publication-title: Viruses
  doi: 10.3390/v10090461
– volume: 30
  start-page: 1210
  year: 2012
  ident: 603_CR92
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2436
– volume: 24
  start-page: 352
  year: 2018
  ident: 603_CR55
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2402.171360
– volume: 124
  start-page: 982
  year: 1944
  ident: 603_CR8
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.1944.62850140004008
– volume: 69
  start-page: 531
  year: 2000
  ident: 603_CR66
  publication-title: Annu Rev. Biochem
  doi: 10.1146/annurev.biochem.69.1.531
– volume: 460
  start-page: 1021
  year: 2009
  ident: 603_CR29
  publication-title: Nature
  doi: 10.1038/nature08260
– ident: 603_CR33
  doi: 10.2903/sp.efsa.2014.EN-571
– volume: 17
  start-page: 261
  year: 2018
  ident: 603_CR90
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.243
– volume: 91
  start-page: e01164
  year: 2017
  ident: 603_CR62
  publication-title: J. Virol.
  doi: 10.1128/JVI.01164-17
– volume: 222
  start-page: 66
  year: 1933
  ident: 603_CR7
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)78541-2
– volume: 23
  start-page: 481
  year: 2011
  ident: 603_CR19
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2011.07.016
– volume: 113
  start-page: 799
  year: 2016
  ident: 603_CR100
  publication-title: Dtsch. Aerzteblatt Online
– volume: 389
  start-page: 554
  year: 1997
  ident: 603_CR13
  publication-title: Nature
  doi: 10.1038/39218
– ident: 603_CR5
– volume: 333
  start-page: 133
  year: 2009
  ident: 603_CR16
  publication-title: Curr. Top. Microbiol.
  doi: 10.1007/978-3-540-92165-3_6
– volume: 193
  start-page: 503
  year: 1993
  ident: 603_CR37
  publication-title: Virology
  doi: 10.1006/viro.1993.1155
– ident: 603_CR58
– volume: 173
  start-page: 417
  year: 2018
  ident: 603_CR81
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.030
– ident: 603_CR94
  doi: 10.1056/nejmoa2022483
– volume: 101
  start-page: 45
  year: 2014
  ident: 603_CR98
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2013.10.013
– volume: 108
  start-page: 20748
  year: 2011
  ident: 603_CR82
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1113801108
– ident: 603_CR96
– volume: 69
  start-page: 60
  year: 2014
  ident: 603_CR25
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2014.02.012
– ident: 603_CR44
– volume: 586
  start-page: 516
  year: 2020
  ident: 603_CR49
  publication-title: Nature
  doi: 10.1038/s41586-020-2798-3
– volume: 2
  start-page: 160
  year: 2012
  ident: 603_CR34
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2012.03.003
– volume: 379
  start-page: 913
  year: 2018
  ident: 603_CR72
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1716197
– volume: 2
  start-page: 65
  year: 2004
  ident: 603_CR22
  publication-title: Med Prin Pract.
  doi: 10.1159/000157337
– ident: 603_CR59
– volume: 26
  start-page: 841
  year: 2018
  ident: 603_CR67
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2018.03.005
– volume: 87
  start-page: 786
  year: 1990
  ident: 603_CR83
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.87.2.786
– volume: 56
  start-page: 106080
  year: 2020
  ident: 603_CR101
  publication-title: Int. J. Antimicrob. Agric.
  doi: 10.1016/j.ijantimicag.2020.106080
– ident: 603_CR93
  doi: 10.1101/2020.06.11.145920
– volume: 108
  start-page: S215
  year: 2018
  ident: 603_CR99
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2018.304609
– volume: 355
  start-page: 2174
  year: 2006
  ident: 603_CR15
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp068205
– volume: 49
  start-page: 1601710
  year: 2017
  ident: 603_CR38
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.01710-2016
– volume: 7
  start-page: e01996
  year: 2016
  ident: 603_CR87
  publication-title: Mbio
  doi: 10.1128/mBio.01996-15
– volume: 355
  start-page: 2186
  year: 2006
  ident: 603_CR46
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa060930
– volume: 13
  start-page: 590
  year: 2008
  ident: 603_CR41
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2008.03.024
– volume: 31
  start-page: 174
  year: 2018
  ident: 603_CR2
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2017.0141
– volume: 14
  start-page: 00
  year: 2018
  ident: 603_CR28
  publication-title: Hum. Vacc. Immunother.
– volume: 2
  start-page: 1
  year: 2013
  ident: 603_CR26
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2013.64
– volume: 26
  start-page: 1240
  year: 2020
  ident: 603_CR88
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0937-x
– volume: 301
  start-page: 623
  year: 1973
  ident: 603_CR78
  publication-title: Lancet
  doi: 10.1016/S0140-6736(73)92196-X
– volume: 368
  start-page: 1888
  year: 2013
  ident: 603_CR57
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1304459
– volume: 13
  start-page: 314
  year: 2013
  ident: 603_CR80
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.02.008
– volume: 1
  start-page: e00018
  year: 2010
  ident: 603_CR85
  publication-title: Mbio
  doi: 10.1128/mBio.00018-10
– volume: 16
  start-page: 977
  year: 1998
  ident: 603_CR14
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(98)00005-X
– volume: 459
  start-page: 1122
  year: 2009
  ident: 603_CR3
  publication-title: Nature
  doi: 10.1038/nature08182
– volume: 24
  start-page: 471
  year: 2018
  ident: 603_CR32
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2403.171852
– ident: 603_CR4
– volume: 341
  start-page: 183
  year: 2013
  ident: 603_CR40
  publication-title: Science
  doi: 10.1126/science.1239844
– ident: 603_CR11
– volume: 185
  start-page: 1528
  year: 2015
  ident: 603_CR20
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2014.08.030
– volume: 1323
  start-page: 115
  year: 2017
  ident: 603_CR42
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1111/nyas.12462
– volume: 207
  start-page: 974
  year: 2013
  ident: 603_CR43
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis935
– volume: 7
  start-page: e00417
  year: 2016
  ident: 603_CR79
  publication-title: Mbio
  doi: 10.1128/mBio.00417-16
– ident: 603_CR95
– volume: 37
  start-page: 1013
  year: 1947
  ident: 603_CR9
  publication-title: Am. J. Public Health Nations Health
  doi: 10.2105/AJPH.37.8.1013
– volume: 302
  start-page: 1519
  year: 2003
  ident: 603_CR54
  publication-title: Science
  doi: 10.1126/science.1090350
– volume: 95
  start-page: 409
  year: 1998
  ident: 603_CR64
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81771-7
– volume: 24
  start-page: 1800698
  year: 2019
  ident: 603_CR73
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2019.24.3.1800698
– volume: 6
  start-page: e26437
  year: 2017
  ident: 603_CR61
  publication-title: Elife
  doi: 10.7554/eLife.26437
– volume: 87
  start-page: 4826
  year: 2013
  ident: 603_CR70
  publication-title: J. Virol.
  doi: 10.1128/JVI.03110-12
– volume: 47
  start-page: 449
  year: 1972
  ident: 603_CR21
  publication-title: Bull World Health Organ
– volume: 62
  start-page: 331
  year: 2020
  ident: 603_CR97
  publication-title: Centaurus
  doi: 10.1111/1600-0498.12312
– volume: 56
  start-page: 326
  year: 2009
  ident: 603_CR36
  publication-title: Zoonoses Public Health
  doi: 10.1111/j.1863-2378.2008.01217.x
– ident: 603_CR1
– volume: 9
  start-page: 3492
  year: 2019
  ident: 603_CR89
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40175-8
– volume: 4
  start-page: CD008965
  year: 2014
  ident: 603_CR71
  publication-title: Cochrane Database Syst. Rev.
– volume: 12
  start-page: 558
  year: 2018
  ident: 603_CR102
  publication-title: Influenza Other Respir.
  doi: 10.1111/irv.12570
– volume: 24
  start-page: 27
  year: 1989
  ident: 603_CR30
  publication-title: J. Virol. Methods
  doi: 10.1016/0166-0934(89)90004-9
– ident: 603_CR75
– volume: 199
  start-page: 1726
  year: 2009
  ident: 603_CR47
  publication-title: J. Infect. Dis.
  doi: 10.1086/599206
– volume: 220
  start-page: 1276
  year: 2019
  ident: 603_CR60
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiz295
– ident: 603_CR6
– volume: 8
  start-page: 755
  year: 1953
  ident: 603_CR10
  publication-title: Bull World Health Organ.
– volume: 28
  start-page: 506
  year: 2020
  ident: 603_CR12
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.09.008
– volume: 526
  start-page: 122
  year: 2015
  ident: 603_CR52
  publication-title: Nature
  doi: 10.1038/nature15379
– volume: 486
  start-page: 420
  year: 2012
  ident: 603_CR69
  publication-title: Nature
  doi: 10.1038/nature10831
– volume: 336
  start-page: 1534
  year: 2012
  ident: 603_CR68
  publication-title: Science
  doi: 10.1126/science.1213362
– volume: 21
  start-page: 1776
  year: 2003
  ident: 603_CR74
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(03)00071-9
– volume: 86
  start-page: 5774
  year: 2012
  ident: 603_CR86
  publication-title: J. Virol.
  doi: 10.1128/JVI.00137-12
– volume: 7
  start-page: e1001329
  year: 2011
  ident: 603_CR65
  publication-title: Plos Pathog.
  doi: 10.1371/journal.ppat.1001329
– volume: 4
  start-page: 575
  year: 2011
  ident: 603_CR31
  publication-title: Dis. Model Mech.
  doi: 10.1242/dmm.007823
– volume: 7
  start-page: e33383
  year: 2012
  ident: 603_CR24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033383
– volume: 15
  start-page: 340
  year: 2015
  ident: 603_CR50
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(14)70999-5
– volume: 35
  start-page: 4064
  year: 2017
  ident: 603_CR48
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2017.06.003
– volume: 4
  start-page: e1000012
  year: 2008
  ident: 603_CR23
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000012
– volume: 6
  start-page: 20
  year: 2018
  ident: 603_CR91
  publication-title: Nato Adv. Sci. Inst. Se
– volume: 289
  start-page: 28489
  year: 2014
  ident: 603_CR53
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.588541
– volume: 355
  start-page: 1143
  year: 2006
  ident: 603_CR35
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.11.002
– volume: 218
  start-page: 347
  year: 2018
  ident: 603_CR76
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiy103
– volume: 2
  start-page: 1530
  year: 2010
  ident: 603_CR51
  publication-title: Viruses
  doi: 10.3390/v20801530
– volume: 5
  start-page: e18491
  year: 2016
  ident: 603_CR18
  publication-title: Elife
  doi: 10.7554/eLife.18491
– volume: 22
  start-page: 91
  year: 1941
  ident: 603_CR39
  publication-title: Br. J. Exp. Pathol.
– volume: 219
  start-page: S62
  year: 2019
  ident: 603_CR84
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiy711
– volume: 212
  start-page: 1191
  year: 2015
  ident: 603_CR77
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiv195
– volume: 352
  start-page: 333
  year: 2005
  ident: 603_CR45
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa044021
– volume: 56
  start-page: 152
  year: 1992
  ident: 603_CR17
  publication-title: Microbiol Rev.
  doi: 10.1128/mr.56.1.152-179.1992
– volume: 5
  year: 2014
  ident: 603_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5794
SSID ssj0025474
Score 2.601156
SecondaryResourceType review_article
Snippet The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 737
SubjectTerms 692/699/255
692/699/255/1578
Animals
Biomedical and Life Sciences
Biomedicine
Coronaviridae
Coronaviruses
COVID-19 - epidemiology
COVID-19 - prevention & control
Disease control
Disease transmission
Humans
Influenza
Influenza A virus - isolation & purification
Influenza, Human - epidemiology
Influenza, Human - prevention & control
Medical Biochemistry
Molecular Medicine
Pandemics
Pandemics - prevention & control
Review
Review Article
Risk Assessment
Severe acute respiratory syndrome coronavirus 2
Stem Cells
Strains (organisms)
Surveillance
Vaccine development
World Health Organization
생화학
SummonAdditionalLinks – databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ISEuCFoegYIMQlwgIvE74rRCVGWlcoFKvVlO4sCqNFltt0jtr2fGeaCFgsTFOWRsje2xPR5__gzwssor3FL7IsXEpETonZaZ15jkRdB1XWY1BfSPP-mjEzk_VadbwMe7MBG0Hykt4zQ9osPeXuScG4LL4uY304QB2oZdompH296dzeaf59M2S8nIvYwZdCpwtRquymTC3lDKxnK03a6amzzNPwGTv52axsXo8C7cGbxINuv1vgdbod2D_RlWqTu_Yq9YxHXGgPke3Doejs_34R0aBQs_Bmtjvq1ZzynCuoYt-udKrj1bUmD5fFGx5SpEgDpNh_fh5PDDl_dH6fB6QlopI9epR99LF0GVWSO4VcqHRlEQ2MrAS1F7Y6rSysbk6FBZ9IOCNqUOuGGSeWVM2YgHsNN2bXgErDY1iuq6sVUhC28LmzU4L4k655n0UiWQj43oqoFanF64-O7iEbewrm94hw3vYsO7LIHXU55lT6zxT-kX2DfurFo44sOm79fOna0cev0fHYWvrJAJHIxd54aReOG4Eob80gK1fD79xjFEByO-Dd0lyXDi5cd5P4GHfU9POglBAFyOhZsNG5gESJ_NP-3iW-TptnQrOecJvBmt5Zdaf6_q4_8TfwK3ebRnwmAewM56dRmeop-0Lp8NA-MneGAH0w
  priority: 102
  providerName: Springer Nature
Title The evolution and future of influenza pandemic preparedness
URI https://link.springer.com/article/10.1038/s12276-021-00603-0
https://www.ncbi.nlm.nih.gov/pubmed/33953324
https://www.proquest.com/docview/2537005495
https://www.proquest.com/docview/2522620911
https://pubmed.ncbi.nlm.nih.gov/PMC8099712
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002715886
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental and Molecular Medicine, 2021, 53(0), , pp.1-13
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbYJiFeEGxcMkZlEOIFoiWxHTviAZVq06i0CQGT-mY5tjOqsbRrOyT49ZzjuK3KZS-xlDiRYx_b37n4O4S8srkFldpUKVxkioTeaZ2ZEi555Uvn6syhQf_0rDw558ORGEWD2zyGVS7XxLBQu4lFG_lhIZhEfFGJ99PrFLNGoXc1ptDYIjtIXYZSLUdrhUvwwMKcA8RIGexb8dBMxtThHG5KDL8FZTorMaZoY2PaamfNvzDn36GTf_hPw7Z0_IDcj3iS9jsBeEju-HaX7PVb0KWvftLXNER4BtP5Lrl7Gh3pe-QdiAf1P6LcUdM62rGL0ElDx13ikl-GTtHEfDW2dDrzIVQdF8ZH5Pz46OvgJI15FFIrJF-kBlBYWXlRZw0rlBDGNwLNwYr7ombOSGlrxRuZA7RSgIh8KevSg-rEcytl3bDHZLudtP4poU46qFq6RtmKV0ZVKmtghWIuLzJuuEhIvuxEbSPJOOa6-K6Ds5sp3XW8ho7XoeN1lpA3q3emHcXGrbVfwtjoSzvWyIyN5cVEX8404P-PGg1ZivGEHCyHTsc5OddrCUrIi9VjmE3oIjGtn9xgnQIZ-mEHSMiTbqRXbWIMQ3EL-LjckIFVBWzP5pN2_C0wdis8n5wXCXm7lJZ1s_7_q_u3_8Uzcq8I8ovRlwdkezG78c8BIS3qXpgGPbLT7w-_DKH8cHT26TPcHZSDXrA6_AZ8aw3Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8LQNCXhBsPERGGAQ8ALRkjiOHSGEJmBq2bqnTeqbcWIHqrG0tB1o_Ch-I3dO0qp87G0vjhQ7kX0-37fvAJ6VcYkqtclDbGRICb3DIjIZNnHuMmuLyJJBf3CY9Y7Tj0MxXINf3V0YCqvsaKIn1HZcko18JxFcknyRi7eTbyFVjSLvaldCo0GLfXf-A1W22Zv-e9zf50my9-HoXS9sqwqEpZDpPDQok2S5E0VU8UQJYVwlyDiqUpcU3Bopy0KllYxR0FAoH7hMFplDRSKNSymLiuN_1-EKMt6IlD05XCp4IvVZn2MUaUKOfLK9pBNxtTPDl5LCfVF5jzKKYVphhOv1tPqXjPt3qOYf_lrPBvduwo1WfmW7DcLdgjVXb8LWbo26--k5e8F8RKk31W_C1UHruN-C14iOzH1v8ZyZ2rImmwkbV2zUFEr5adiETNqno5JNps6HxhMhvg3HlwLhO7BRj2t3D5iVFodmtlJlnuZG5SqqkCJyGydRalIRQNwBUZdtUnOqrfFVe-c6V7oBvEbAaw94HQXwcvHNpEnpceHop7g3-qQcacrETc_PY30y1ahv9DUZzhRPA9jutk63NGCmlxgbwJNFN55ecsmY2o3PaExCFQGQ4wRwt9npxZw4p9DfBH8uV3BgMYDms9pTj774DOGK7kPHSQCvOmxZTuv_S71_8Soew7Xe0eBAH_QP9x_A9cTjMkV-bsPGfHrmHqJ0Ni8e-SPB4NNln8HfkaJEDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W6nigqDlEShgEHCBaJPYiR0hVBXaVZfSVYWo1JubOA6sSpNldwsqP41f15m8quXRWy-JlDiRPR6P5_F5BuC58Q2a1Ens4kW6lNDbTb0kwosf2yjLUi8jh_7-KNo9FB-OwqMl-N2ehSFYZSsTK0GdlYZ85P0g5JL0izjs5w0s4mB7sDn57lIFKYq0tuU0ahbZs-c_0XybvR1u41y_CILBzuf3u25TYcA1oRRzN0H9JIptmHo5D1QYJjYPyVGqhA1SniVSmlSJXPqodCjUFWwk08iiUSF8I2Wac_zvMqxIsop6sPJuZ3TwqTP3QlHlgPZRwXE57prNkR2Pq_4MH0oC_6Ip70WEaFrYFpeLaf4vjfdv4OYf0dtqUxzcgpuNNsu2ava7DUu2WIP1rQIt-dNz9pJV-NLKcb8Gq_tNGH8d3iBzMvuj4XqWFBmrc5uwMmfjumzKr4RNyMF9OjZsMrUVUJ7E8h04vBYa34VeURb2PrBMZtg0ynJlYhEnKlZejvKRZ37giUSEDvgtEbVpUpxTpY1vugq1c6VrwmskvK4Irz0HXnXfTOoEH1e2foZzo0_MWFNebrp_KfXJVKP1MdTkRlNcOLDRTp1uJMJMX_KvA0-717iWKUCTFLY8ozYB1QfA_ceBe_VMd33inIDAAf5cLvBA14D6s_imGH-t8oUrOh3tBw68brnlslv_H-qDq0fxBFZx_emPw9HeQ7gRVKxMMNAN6M2nZ_YRqmrz9HGzJhgcX_cyvACrJEmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+and+future+of+influenza+pandemic+preparedness&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Harrington+Walter+N.&rft.au=Kackos+Christina+M.&rft.au=Webby+Richard+J.&rft.date=2021-05-01&rft.pub=%EC%83%9D%ED%99%94%ED%95%99%EB%B6%84%EC%9E%90%EC%83%9D%EB%AC%BC%ED%95%99%ED%9A%8C&rft.issn=1226-3613&rft.eissn=2092-6413&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs12276-021-00603-0&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9783834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3613&client=summon