The evolution and future of influenza pandemic preparedness
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become app...
Saved in:
Published in | Experimental & molecular medicine Vol. 53; no. 5; pp. 737 - 749 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2021
Springer Nature B.V 생화학분자생물학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
Influenza: Learning to plan for pandemics
The long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades. |
---|---|
AbstractList | The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.Influenza: Learning to plan for pandemicsThe long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades. The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. The long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades. The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. Influenza: Learning to plan for pandemics The long history of combating and planning for influenza pandemics should inform the fight against novel coronaviruses such as SARS-Cov-2. Richard Webby and co-workers at St. Jude Children’s Research Hospital in Memphis, USA review the history of preparing for influenza pandemics, including the global influenza surveillance network set up by the World Health Organization (WHO) in the 1950s. The 2009 H1N1 pandemic prompted WHO and the US Centers for Disease Control and Prevention to develop more detailed risk assessment tools drawing on laboratory research, genomics, industrial vaccine development, and surveillance of emerging animal strains that might transfer to humans. These tools and experience are proving successful in containing the H7N9 influenza that emerged in 2013, and could serve as models for managing coronaviruses, whose pandemic potential has only become apparent in the past two decades. The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises. KCI Citation Count: 0 |
Author | Webby, Richard J. Kackos, Christina M. Harrington, Walter N. |
Author_xml | – sequence: 1 givenname: Walter N. orcidid: 0000-0003-3314-584X surname: Harrington fullname: Harrington, Walter N. organization: Department of Infectious Diseases, St. Jude Children’s Research Hospital – sequence: 2 givenname: Christina M. surname: Kackos fullname: Kackos, Christina M. organization: Department of Infectious Diseases, St. Jude Children’s Research Hospital, St. Jude Children’s Research Hospital, Graduate School of Biomedical Sciences – sequence: 3 givenname: Richard J. surname: Webby fullname: Webby, Richard J. email: Richard.Webby@Stjude.Org organization: Department of Infectious Diseases, St. Jude Children’s Research Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33953324$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002715886$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc1rFTEUxYNU7OvTf8CFDLjRxWi-k0EolOJHoSDIcx0yeTdt2nnJmMwU9K83fVOrdtFVFvd3Tu495wgdxBQBoZcEvyOY6feFUKpkiylpMZaYtfgJWlHc0VZywg7Qqs5lyyRhh-iolCuMqeCKP0OHjHWCMcpX6MPmEhq4ScM8hRQbG7eNn6c5Q5N8E6IfZoi_bDPWAeyCa8YMo82wjVDKc_TU26HAi7t3jb5_-rg5_dKef_18dnpy3jqh-NRaKbDsQPTYM6qFsOAFxoJqDrRnW6uU6zX3inDKtMACpOolEN5x4pTqPVujt4tvzN5cu2CSDfv3IpnrbE6-bc5MpzTTjFf2eGHHud_B1kGcsh3MmMPO5p975f-TGC6rz43RuOsUodXgzZ1BTj9mKJPZheJgGGyENBdDRQ21hkxIRV8_QK_SnGONolJM1Rt5jXmNXv270f0qfzqoAF0Al1MpGfw9QrC5LdosRZtatNkXbXAV6QciFyZ722G9KgyPS9kiLfWfeAH579qPqH4DbMC6oQ |
CitedBy_id | crossref_primary_10_1016_j_jep_2023_116322 crossref_primary_10_1016_j_ymthe_2024_12_052 crossref_primary_10_1016_j_jtcme_2024_03_008 crossref_primary_10_1016_j_evalprogplan_2021_101994 crossref_primary_10_2903_sp_efsa_2024_EN_8692 crossref_primary_10_1016_j_jmgm_2025_108983 crossref_primary_10_1016_j_ymthe_2025_01_003 crossref_primary_10_1016_j_cell_2023_08_011 crossref_primary_10_3389_fcimb_2021_827790 crossref_primary_10_3389_fddev_2024_1382266 crossref_primary_10_1360_TB_2023_1087 crossref_primary_10_1016_j_foodcont_2023_110138 crossref_primary_10_1055_a_2500_1878 crossref_primary_10_1146_annurev_nutr_062320_115937 crossref_primary_10_1371_journal_ppat_1012110 crossref_primary_10_1016_j_vaccine_2025_126900 crossref_primary_10_1039_D3MD00513E crossref_primary_10_1093_aje_kwab175 crossref_primary_10_1128_jvi_00928_24 crossref_primary_10_1016_j_ijbiomac_2022_12_066 crossref_primary_10_3390_ani13111832 crossref_primary_10_1038_s41586_024_08246_7 crossref_primary_10_3390_vaccines12111220 crossref_primary_10_37349_eds_2024_00037 crossref_primary_10_1016_j_ecoinf_2024_102827 crossref_primary_10_3390_v16060829 crossref_primary_10_1021_acsinfecdis_3c00381 crossref_primary_10_1038_s41541_024_01037_1 crossref_primary_10_1016_j_bbagrm_2024_195023 crossref_primary_10_1364_BOE_533457 crossref_primary_10_3390_v14061312 crossref_primary_10_3390_su15097633 crossref_primary_10_1126_science_abm0271 crossref_primary_10_1038_s41586_023_06261_8 crossref_primary_10_1038_s42003_023_04459_0 crossref_primary_10_12938_bmfh_2022_014 crossref_primary_10_1007_s12257_022_0115_8 crossref_primary_10_1038_s41562_024_01940_6 crossref_primary_10_1016_j_micpath_2023_106030 crossref_primary_10_1080_22221751_2024_2387910 crossref_primary_10_3389_fimmu_2023_1076772 crossref_primary_10_3390_vaccines10081355 crossref_primary_10_1007_s11418_022_01660_z crossref_primary_10_1186_s13104_025_07143_0 crossref_primary_10_1126_science_adf0900 crossref_primary_10_1016_j_apsb_2023_08_010 crossref_primary_10_1186_s42826_024_00214_6 crossref_primary_10_1016_j_intman_2023_101056 crossref_primary_10_1016_j_scitotenv_2024_173692 crossref_primary_10_1038_s41598_024_72618_2 crossref_primary_10_1002_smll_202301801 crossref_primary_10_3390_v15010200 crossref_primary_10_3390_ijerph192114318 crossref_primary_10_3390_v14010051 crossref_primary_10_3389_fpubh_2023_1300228 crossref_primary_10_1016_j_jep_2023_116485 crossref_primary_10_1007_s11262_024_02118_y crossref_primary_10_1093_jbcr_irac076 crossref_primary_10_1016_j_heliyon_2024_e40645 crossref_primary_10_3390_pathogens14010027 crossref_primary_10_1016_j_lanmic_2024_100973 crossref_primary_10_1002_jmv_70230 crossref_primary_10_3389_fpubh_2022_911029 crossref_primary_10_1016_j_idh_2023_05_004 crossref_primary_10_1021_jacsau_3c00695 crossref_primary_10_1016_j_trac_2024_117979 crossref_primary_10_3390_ijms252010941 crossref_primary_10_1038_s41467_024_45205_2 crossref_primary_10_1136_bmjgh_2022_009912 crossref_primary_10_7554_eLife_86051 crossref_primary_10_3390_vaccines13030267 crossref_primary_10_1186_s41182_022_00463_y crossref_primary_10_3390_vaccines12060664 crossref_primary_10_1038_s41467_024_53301_6 crossref_primary_10_1071_MA24010 crossref_primary_10_1021_acsami_3c15699 crossref_primary_10_3389_fimmu_2021_826621 crossref_primary_10_3389_fpubh_2023_1200438 crossref_primary_10_1016_j_arr_2023_102068 crossref_primary_10_1038_s12276_021_00608_9 crossref_primary_10_1146_annurev_virology_111821_120445 crossref_primary_10_3389_fpubh_2024_1383536 crossref_primary_10_1016_j_ijregi_2024_100453 crossref_primary_10_58318_2957_5702_2024_18_75_93 crossref_primary_10_29254_2077_4214_2022_3_166_250_257 crossref_primary_10_1080_02648725_2023_2191081 crossref_primary_10_1111_irv_70095 crossref_primary_10_3389_fimmu_2022_1025884 crossref_primary_10_1186_s12979_023_00344_w crossref_primary_10_1016_j_diagmicrobio_2022_115764 crossref_primary_10_1021_acsinfecdis_3c00429 crossref_primary_10_3390_molecules27175494 crossref_primary_10_1016_j_antiviral_2024_105897 crossref_primary_10_1002_ddr_70080 crossref_primary_10_1080_10095020_2023_2275619 crossref_primary_10_1186_s12929_023_00950_2 crossref_primary_10_1016_j_ab_2022_114847 crossref_primary_10_1021_acsnano_3c06526 crossref_primary_10_1002_anie_202400413 crossref_primary_10_1021_acsnano_4c02130 crossref_primary_10_1016_j_bsheal_2025_03_003 crossref_primary_10_3389_fcimb_2023_1179552 crossref_primary_10_3390_vaccines10050714 crossref_primary_10_3389_fgene_2023_1164274 crossref_primary_10_1016_j_bios_2022_114511 crossref_primary_10_3390_v15102033 crossref_primary_10_1002_ange_202400413 crossref_primary_10_3390_v16071136 crossref_primary_10_1089_hs_2023_0146 crossref_primary_10_1099_jgv_0_001802 crossref_primary_10_12688_f1000research_152870_1 crossref_primary_10_1038_s41541_023_00773_0 crossref_primary_10_1038_s42003_022_04005_4 crossref_primary_10_1136_leader_2022_000603 crossref_primary_10_3390_pr10020327 crossref_primary_10_18527_2500_2236_2022_9_1_71_74 crossref_primary_10_3390_v16060883 crossref_primary_10_3390_vaccines12111289 crossref_primary_10_1038_s41598_022_22770_4 crossref_primary_10_1128_jvi_01612_24 crossref_primary_10_1155_tbed_5569836 crossref_primary_10_1371_journal_ppat_1010106 crossref_primary_10_1128_mbio_03589_24 crossref_primary_10_1016_j_biomaterials_2024_122736 crossref_primary_10_3389_fimmu_2024_1473428 |
Cites_doi | 10.1128/JVI.01668-09 10.3390/v10090461 10.1038/nbt.2436 10.3201/eid2402.171360 10.1001/jama.1944.62850140004008 10.1146/annurev.biochem.69.1.531 10.1038/nature08260 10.2903/sp.efsa.2014.EN-571 10.1038/nrd.2017.243 10.1128/JVI.01164-17 10.1016/S0140-6736(00)78541-2 10.1016/j.coi.2011.07.016 10.1038/39218 10.1007/978-3-540-92165-3_6 10.1006/viro.1993.1155 10.1016/j.cell.2018.03.030 10.1056/nejmoa2022483 10.1016/j.antiviral.2013.10.013 10.1073/pnas.1113801108 10.1016/j.jinf.2014.02.012 10.1038/s41586-020-2798-3 10.1016/j.coviro.2012.03.003 10.1056/NEJMoa1716197 10.1159/000157337 10.1016/j.tim.2018.03.005 10.1073/pnas.87.2.786 10.1016/j.ijantimicag.2020.106080 10.1101/2020.06.11.145920 10.2105/AJPH.2018.304609 10.1056/NEJMp068205 10.1183/13993003.01710-2016 10.1128/mBio.01996-15 10.1056/NEJMoa060930 10.1016/j.drudis.2008.03.024 10.1089/vim.2017.0141 10.1038/emi.2013.64 10.1038/s41591-020-0937-x 10.1016/S0140-6736(73)92196-X 10.1056/NEJMoa1304459 10.1016/j.chom.2013.02.008 10.1128/mBio.00018-10 10.1016/S0264-410X(98)00005-X 10.1038/nature08182 10.3201/eid2403.171852 10.1126/science.1239844 10.1016/j.ajpath.2014.08.030 10.1111/nyas.12462 10.1093/infdis/jis935 10.1128/mBio.00417-16 10.2105/AJPH.37.8.1013 10.1126/science.1090350 10.1016/S0092-8674(00)81771-7 10.2807/1560-7917.ES.2019.24.3.1800698 10.7554/eLife.26437 10.1128/JVI.03110-12 10.1111/1600-0498.12312 10.1111/j.1863-2378.2008.01217.x 10.1038/s41598-019-40175-8 10.1111/irv.12570 10.1016/0166-0934(89)90004-9 10.1086/599206 10.1093/infdis/jiz295 10.1016/j.chom.2020.09.008 10.1038/nature15379 10.1038/nature10831 10.1126/science.1213362 10.1016/S0264-410X(03)00071-9 10.1128/JVI.00137-12 10.1371/journal.ppat.1001329 10.1242/dmm.007823 10.1371/journal.pone.0033383 10.1016/S1473-3099(14)70999-5 10.1016/j.vaccine.2017.06.003 10.1371/journal.ppat.1000012 10.1074/jbc.M114.588541 10.1016/j.jmb.2005.11.002 10.1093/infdis/jiy103 10.3390/v20801530 10.7554/eLife.18491 10.1093/infdis/jiy711 10.1093/infdis/jiv195 10.1056/NEJMoa044021 10.1128/mr.56.1.152-179.1992 10.1038/ncomms5794 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ACYCR |
DOI | 10.1038/s12276-021-00603-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 749 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9783834 PMC8099712 33953324 10_1038_s12276_021_00603_0 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: World Health Organization (WHO) grantid: HHSN272201400006C funderid: https://doi.org/10.13039/100004423 – fundername: NIAID NIH HHS grantid: HHSN272201400006C – fundername: ; grantid: HHSN272201400006C |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD AZQEC COVID DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM AAADF AAPBV AFGXO |
ID | FETCH-LOGICAL-c574t-a65069e5b0f32855aef5005284e2b3da77cb84f714238505e67b6e14941c77bf3 |
IEDL.DBID | 7X7 |
ISSN | 1226-3613 2092-6413 |
IngestDate | Tue Nov 21 21:43:30 EST 2023 Thu Aug 21 13:49:13 EDT 2025 Fri Jul 11 04:43:31 EDT 2025 Wed Aug 13 07:37:28 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 04:10:30 EDT 2025 Fri Feb 21 02:40:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-a65069e5b0f32855aef5005284e2b3da77cb84f714238505e67b6e14941c77bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3314-584X |
OpenAccessLink | https://www.proquest.com/docview/2537005495?pq-origsite=%requestingapplication% |
PMID | 33953324 |
PQID | 2537005495 |
PQPubID | 2041975 |
PageCount | 13 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9783834 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8099712 proquest_miscellaneous_2522620911 proquest_journals_2537005495 pubmed_primary_33953324 crossref_primary_10_1038_s12276_021_00603_0 crossref_citationtrail_10_1038_s12276_021_00603_0 springer_journals_10_1038_s12276_021_00603_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Springer Nature B.V 생화학분자생물학회 |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: 생화학분자생물학회 |
References | ZhuHInfectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigsScience20133411831861:CAS:528:DC%2BC3sXhtVOku7rO2370437610.1126/science.1239844 CDC. Influenza Risk Assessment Tool (IRAT). https://www.cdc.gov/flu/pandemic-resources/national-strategy/risk-assessment.htm (n.d.). ScholtissekCPigs as ‘mixing vessels’ for the creation of new pandemic influenza A virusesMed Prin Pract.20042657110.1159/000157337 LipsitchMViral factors in influenza pandemic risk assessmentElife20165e1849127834632515652710.7554/eLife.18491 Potter, C. W. Textbook of Influenza. Chronicle of influenza Pandemics. (Blackwell Science LTD, 1998). KimHWebsterRGWebbyRJInfluenza virus: dealing with a drifting and shifting pathogenViral Immunol.2018311741831:CAS:528:DC%2BC1cXnsFamsrg%3D2937308610.1089/vim.2017.0141 StevensJGlycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificitiesJ. Mol. Biol.2006355114311551:CAS:528:DC%2BD2MXhtlGlsL3O1634353310.1016/j.jmb.2005.11.002 SuttonTCThe pandemic threat of emerging H5 and H7 avian influenza virusesViruses201810461616430110.3390/v10090461 MaWThe role of swine in the generation of novel influenza virusesZoonoses Public Health2009563263371:CAS:528:DC%2BD1MXhtVejur%2FO1948631610.1111/j.1863-2378.2008.01217.x SteelJInfluenza virus vaccine based on the conserved hemagglutinin stalk domainMbio20101e000181020689752291265810.1128/mBio.00018-10 (NIH), N.I.H. Clinical trials of monoclonal antibodies to prevent COVID-19 now enrolling. https://www.nih.gov/news-events/news-releases/clinical-trials-monoclonal-antibodies-prevent-covid-19-now-enrolling (2020). KrammerFPalesePUniversal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domainJ. Infect. Dis.2019219S62S671:CAS:528:DC%2BB3cXjvFajt7Y%3D30715353645231810.1093/infdis/jiy711 DolanBIt wasn’t supposed to be a coronavirus: the quest for an influenza A(H5N1)‐derived vaccine and the limits of pandemic preparednessCentaurus20206233134310.1111/1600-0498.12312 SmithWAndrewesCHLaidlawPPA virus obtained from influenza patientsLancet1933222666810.1016/S0140-6736(00)78541-2 HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D22723413481078610.1126/science.1213362 Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. Biorxiv 2020.06.11.145920 (2020) https://doi.org/10.1101/2020.06.11.145920. HonceRSchultz-CherrySRecipe for zoonosis: how influenza virus leaps into human circulationCell Host Microbe2020285065081:CAS:528:DC%2BB3cXitFOiu7vE33031768753993210.1016/j.chom.2020.09.008 UngchusakKProbable person-to-person transmission of avian influenza A (H5N1)N. Engl. J. Med.20053523333401:CAS:528:DC%2BD2MXnvVKgtA%3D%3D1566821910.1056/NEJMoa044021 DasSRDefining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selectionCell Host Microbe2013133143231:CAS:528:DC%2BC3sXktFaqsbg%3D23498956374722610.1016/j.chom.2013.02.008 BrookeCBPopulation diversity and collective interactions during influenza virus infectionJ. Virol.201791e011641728855247566050310.1128/JVI.01164-17 ChenY-QInfluenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodiesCell2018173417429.e101:CAS:528:DC%2BC1cXntFaiu7k%3D29625056589093610.1016/j.cell.2018.03.030 HorwoodPFCo-circulation of influenza A H5, H7, and H9 viruses and co-infected poultry in live bird markets, CambodiaEmerg. Infect. Dis.20182435235529350140578291010.3201/eid2402.171360 RussellCJHuMOkdaFAInfluenza hemagglutinin protein stability, activation, and pandemic riskTrends Microbiol2018268418531:CAS:528:DC%2BC1cXnsFCmsro%3D29681430615082810.1016/j.tim.2018.03.005 SandbulteMRDiscordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza virusesProc. Natl Acad. Sci.201110820748207531:CAS:528:DC%2BC38Xkt1Ojsw%3D%3D2214379810.1073/pnas.1113801108 NachbagauerRAge dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humansMbio20167e01996151:CAS:528:DC%2BC2sXotVSgsg%3D%3D26787832472501410.1128/mBio.01996-15 ReumanPDKeelySSchiffGMAssessment of signs of influenza illness in the ferret modelJ. Virol. Methods19892427341:STN:280:DyaL1MzktVOmug%3D%3D276016310.1016/0166-0934(89)90004-9 PardiNHoganMJPorterFWWeissmanDmRNA vaccines—a new era in vaccinologyNat. Rev. Drug Discov.2018172612791:CAS:528:DC%2BC1cXnvVKgsQ%3D%3D29326426590679910.1038/nrd.2017.243 SmithGJDOrigins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemicNature2009459112211251:CAS:528:DC%2BD1MXnslKqtL0%3D1951628310.1038/nature08182 WebsterRGGovorkovaEAContinuing challenges in influenzaAnn. N.Y. Acad. Sci.2017132311513910.1111/nyas.12462 ErbeldingEJA universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseasesJ. Infect. Dis.20182183473541:CAS:528:DC%2BC1MXhtlGht7bM29506129627917010.1093/infdis/jiy103 LehnertRPletzMReussASchabergTAntiviral medications in seasonal and pandemic influenzaDtsch. Aerzteblatt Online2016113799807 ClaasECJJongJCde, BeekRvan, RimmelzwaanGFOsterhausADMEHuman influenza virus A/HongKong/156/97 (H5N1) infectionVaccine1998169779781:STN:280:DyaK1czkslalug%3D%3D968234610.1016/S0264-410X(98)00005-X Nardi, M. D. et al. Development of a risk assessment methodological framework for potentially pandemic influenza strains (FLURISK). Efsa Supporting Publ 11, (2014). ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ19672242274882710.1038/nature08260 DrexlerJFCormanVMDrostenCEcology, evolution and classification of bat coronaviruses in the aftermath of SARSAntivir. Res.201410145561:CAS:528:DC%2BC3sXhvFyksrnP2418412810.1016/j.antiviral.2013.10.013 ZhongWLevineMZStockpiled Avian Influenza A(H7N9) vaccines induce robust, nonneutralizing functional antibodies against antigenically drifted fifth-wave A(H7N9) virusesJ. Infect. Dis.2019220127612801:CAS:528:DC%2BB3cXnsFKrs7g%3D3116929310.1093/infdis/jiz295 YenCThe development of global vaccine stockpilesLancet Infect. Dis.20151534034725661473471237910.1016/S1473-3099(14)70999-5 KilbourneEDJohanssonBEGrajowerBIndependent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteinsProc. Natl Acad. Sci.1990877867901:CAS:528:DyaK3cXhtFKrur0%3D230056210.1073/pnas.87.2.786 ZhouLRisk factors for human illness with avian influenza A (H5N1) virus infection in ChinaJ. Infect. Dis.20091991726173419416076275902710.1086/599206 WHO. Global Influenza Surveillance and Response System (GISRS). https://www.who.int/influenza/gisrs_laboratory/en/ (2020). BelserJAKatzJMTumpeyTMThe ferret as a model organism to study influenza A virus infectionDis. Model Mech.201145755791:CAS:528:DC%2BC3MXhtFKqt77J21810904318022010.1242/dmm.007823 JiaNGlycomic characterization of respiratory tract tissues of ferrets implications for its use in influenza virus infection studiesJ. Biol. Chem.201428928489285041:CAS:528:DC%2BC2cXhslektLvM25135641419249910.1074/jbc.M114.588541 KandunINThree Indonesian clusters of H5N1 virus infection in 2005N. Engl. J. Med.2006355218621941:CAS:528:DC%2BD28Xht1Chsb3N1712401610.1056/NEJMoa060930 CheungPPHGeneration and characterization of influenza A viruses with altered polymerase fidelityNat. Commun.201451:CAS:528:DC%2BC2MXksVCitb8%3D25183443415540510.1038/ncomms5794 ParkJ-KPre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge modelNat. Med.202026124012461:CAS:528:DC%2BB3cXht1yjtbfK3260133610.1038/s41591-020-0937-x ScorzaFBPardiNNew kids on the block: RNA-based influenza virus vaccinesNato Adv. Sci. Inst. Se2018620 CouchRBAntibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidaseJ. Infect. Dis.20132079749811:CAS:528:DC%2BC3sXivVGht7w%3D23307936363345010.1093/infdis/jis935 BurkeSATrockSCUse of influenza risk assessment tool for prepandemic preparednessEmerg. Infect. Dis.20182447147729460739582335610.3201/eid2403.171852 PlotkinSRobinsonJMCunninghamGIqbalRLarsenSThe complexity and cost of vaccine manufacturing—an overviewVaccine2017354064407128647170551873410.1016/j.vaccine.2017.06.003 ChenJStructure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the Labile conformationCell1998954094171:CAS:528:DyaK1cXntlCqt70%3D981471010.1016/S0092-8674(00)81771-7 MaWThe NS segment of an H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV ▿ †J. Virol.2009842122213320007264281236910.1128/JVI.01668-09 BouvierNMLowenACAnimal models for influenza virus pathogenesis and transmissionViruses201021530156321442033306365310.3390/v20801530 PaulyMDProcarioMCLauringASA novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A virusesElife20176e2643728598328551100810.7554/eLife.26437 KooninLMPatelATimely antiviral administration during an influenza pandemic: key componentsAm. J. Public Health2018108S215S22030192657612966110.2105/AJPH.2018.304609 MemoliMJEvaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge modelMbio20167e00417161:CAS:528:DC%2BC2sXmvVahu7o%3D27094330495952110.1128/mBio.00417-16 CastrucciMRGenetic reassortment between avian and human influenza A viruses in Italian pigsVirology19931935035061:CAS:528:DyaK3sXhs1Knsro%3D843858610.1006/viro.1993.1155 WebbyRJWebsterRGAre we ready for pandemic influenza?Science2003302151915221:CAS:528:DC%2BD3sXpt1Smsbw%3D1464583610.1126/science.1090350 FrancisTSalkJEQuilliganJJExperience with vaccination against influenza in the spring of 1947: a prelimin MJ Memoli (603_CR41) 2008; 13 PF Horwood (603_CR55) 2018; 24 RG Webster (603_CR15) 2006; 355 M Lipsitch (603_CR18) 2016; 5 603_CR58 603_CR59 E Takashita (603_CR73) 2019; 24 J Stevens (603_CR35) 2006; 355 CB Brooke (603_CR62) 2017; 91 N Jia (603_CR53) 2014; 289 B Petsch (603_CR92) 2012; 30 KK-W To (603_CR25) 2014; 69 PPH Cheung (603_CR63) 2014; 5 RG Webster (603_CR21) 1972; 47 JF Drexler (603_CR98) 2014; 101 KPY Hui (603_CR38) 2017; 49 FG Hayden (603_CR72) 2018; 379 RJ Webby (603_CR54) 2003; 302 Y-Q Chen (603_CR81) 2018; 173 K Ungchusak (603_CR45) 2005; 352 FB Scorza (603_CR91) 2018; 6 DR Kapczynski (603_CR16) 2009; 333 BJ Ward (603_CR28) 2018; 14 MR Sandbulte (603_CR82) 2011; 108 B Dolan (603_CR97) 2020; 62 KY Lai (603_CR26) 2013; 2 TC Sutton (603_CR56) 2018; 10 MR Castrucci (603_CR37) 1993; 193 C Yen (603_CR50) 2015; 15 603_CR5 JJ Skehel (603_CR66) 2000; 69 G Bajic (603_CR89) 2019; 9 603_CR6 J Steel (603_CR85) 2010; 1 603_CR75 R Lehnert (603_CR100) 2016; 113 603_CR1 W Ma (603_CR27) 2009; 84 603_CR4 SR Das (603_CR80) 2013; 13 CJ Russell (603_CR67) 2018; 26 RB Couch (603_CR43) 2013; 207 L Zhou (603_CR47) 2009; 199 MJ Memoli (603_CR79) 2016; 7 603_CR93 R Honce (603_CR12) 2020; 28 H Zaraket (603_CR70) 2013; 87 SS Lakdawala (603_CR52) 2015; 526 SA Burke (603_CR32) 2018; 24 NM Bouvier (603_CR51) 2010; 2 AM PAYNE (603_CR10) 1953; 8 J Chen (603_CR64) 1998; 95 F Krammer (603_CR49) 2020; 586 S Herfst (603_CR68) 2012; 336 C Scholtissek (603_CR22) 2004; 2 CH Andrewes (603_CR39) 1941; 22 MD Pauly (603_CR61) 2017; 6 603_CR11 RG Webster (603_CR42) 2017; 1323 JA Belser (603_CR31) 2011; 4 M Imai (603_CR34) 2012; 2 T Jefferson (603_CR71) 2014; 4 PD Reuman (603_CR30) 1989; 24 H Kim (603_CR2) 2018; 31 603_CR94 603_CR95 603_CR96 W Ma (603_CR36) 2009; 56 R Gao (603_CR57) 2013; 368 Y Itoh (603_CR29) 2009; 460 EJ Erbelding (603_CR76) 2018; 218 MI Nelson (603_CR23) 2008; 4 RG Webster (603_CR17) 1992; 56 JC Jong (603_CR13) 1997; 389 W Zhu (603_CR24) 2012; 7 J-K Park (603_CR88) 2020; 26 ED Kilbourne (603_CR83) 1990; 87 C Gerdil (603_CR74) 2003; 21 IN Kandun (603_CR46) 2006; 355 Ede Vries (603_CR65) 2011; 7 S Fukuyama (603_CR19) 2011; 23 S Plotkin (603_CR48) 2017; 35 ArnoldS Monto (603_CR78) 1973; 301 W Smith (603_CR7) 1933; 222 Y Song (603_CR101) 2020; 56 M Imai (603_CR69) 2012; 486 F Krammer (603_CR84) 2019; 219 T Francis (603_CR9) 1947; 37 Members of the Commission on Influenza (603_CR8) 1944; 124 603_CR33 R Hai (603_CR86) 2012; 86 R Nachbagauer (603_CR87) 2016; 7 JC Kash (603_CR20) 2015; 185 N Pardi (603_CR90) 2018; 17 GJD Smith (603_CR3) 2009; 459 AS Monto (603_CR77) 2015; 212 LM Koonin (603_CR99) 2018; 108 T Ziegler (603_CR102) 2018; 12 H Zhu (603_CR40) 2013; 341 603_CR44 W Zhong (603_CR60) 2019; 220 ECJ Claas (603_CR14) 1998; 16 |
References_xml | – reference: ZhouLRisk factors for human illness with avian influenza A (H5N1) virus infection in ChinaJ. Infect. Dis.20091991726173419416076275902710.1086/599206 – reference: WHO. Influenza: H5N1. https://www.who.int/news-room/q-a-detail/h5n1-influenza (2012). – reference: YenCThe development of global vaccine stockpilesLancet Infect. Dis.20151534034725661473471237910.1016/S1473-3099(14)70999-5 – reference: KapczynskiDRSwayneDEInfluenza vaccines for avian speciesCurr. Top. Microbiol.2009333133152 – reference: KooninLMPatelATimely antiviral administration during an influenza pandemic: key componentsAm. J. Public Health2018108S215S22030192657612966110.2105/AJPH.2018.304609 – reference: ZieglerTMamahitACoxNJ65 years of influenza surveillance by a World Health Organization‐coordinated global networkInfluenza Other Respir.20181255856510.1111/irv.12570 – reference: Members of the Commission on InfluenzaA clinical evaluation of vaccination against influenza: preliminary reportJ. Am. Med. Assoc.194412498298510.1001/jama.1944.62850140004008 – reference: ChenY-QInfluenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodiesCell2018173417429.e101:CAS:528:DC%2BC1cXntFaiu7k%3D29625056589093610.1016/j.cell.2018.03.030 – reference: WebsterRGGovorkovaEAH5N1 influenza—continuing evolution and spreadN. Engl. J. Med.2006355217421771:CAS:528:DC%2BD28Xht1Chsb%2FF1712401410.1056/NEJMp068205 – reference: PardiNHoganMJPorterFWWeissmanDmRNA vaccines—a new era in vaccinologyNat. Rev. Drug Discov.2018172612791:CAS:528:DC%2BC1cXnvVKgsQ%3D%3D29326426590679910.1038/nrd.2017.243 – reference: SongYCOVID-19 treatment: close to a cure?—A rapid review of pharmacotherapies for the novel coronavirusInt. J. Antimicrob. Agric.2020561060801:CAS:528:DC%2BB3cXhsVClsLrN10.1016/j.ijantimicag.2020.106080 – reference: CouchRBAntibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidaseJ. Infect. Dis.20132079749811:CAS:528:DC%2BC3sXivVGht7w%3D23307936363345010.1093/infdis/jis935 – reference: SuttonTCThe pandemic threat of emerging H5 and H7 avian influenza virusesViruses201810461616430110.3390/v10090461 – reference: WHO. Global Influenza Surveillance and Response System (GISRS). https://www.who.int/influenza/gisrs_laboratory/en/ (2020). – reference: KilbourneEDJohanssonBEGrajowerBIndependent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteinsProc. Natl Acad. Sci.1990877867901:CAS:528:DyaK3cXhtFKrur0%3D230056210.1073/pnas.87.2.786 – reference: LipsitchMViral factors in influenza pandemic risk assessmentElife20165e1849127834632515652710.7554/eLife.18491 – reference: ZaraketHBridgesOARussellCJThe pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in miceJ. Virol.201387482648341:CAS:528:DC%2BC3sXmtlCjs7c%3D23449784362429510.1128/JVI.03110-12 – reference: WebbyRJWebsterRGAre we ready for pandemic influenza?Science2003302151915221:CAS:528:DC%2BD3sXpt1Smsbw%3D1464583610.1126/science.1090350 – reference: TakashitaEDetection of influenza A(H3N2) viruses exhibiting reduced susceptibility to the novel cap-dependent endonuclease inhibitor baloxavir in Japan, December 2018Eurosurveillance2019241800698634484110.2807/1560-7917.ES.2019.24.3.1800698 – reference: (WHO), W.H.O. Tool for Influenza Pandemic Risk Assessment (TIPRA). (2016). – reference: ZhuHInfectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigsScience20133411831861:CAS:528:DC%2BC3sXhtVOku7rO2370437610.1126/science.1239844 – reference: HaiRInfluenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypesJ. Virol.201286577457811:CAS:528:DC%2BC38XmslOit7k%3D22398287334725710.1128/JVI.00137-12 – reference: ClaasECJJongJCde, BeekRvan, RimmelzwaanGFOsterhausADMEHuman influenza virus A/HongKong/156/97 (H5N1) infectionVaccine1998169779781:STN:280:DyaK1czkslalug%3D%3D968234610.1016/S0264-410X(98)00005-X – reference: ZhongWLevineMZStockpiled Avian Influenza A(H7N9) vaccines induce robust, nonneutralizing functional antibodies against antigenically drifted fifth-wave A(H7N9) virusesJ. Infect. Dis.2019220127612801:CAS:528:DC%2BB3cXnsFKrs7g%3D3116929310.1093/infdis/jiz295 – reference: ImaiMExperimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferretsNature20124864204281:CAS:528:DC%2BC38XovFyrsLY%3D22722205338810310.1038/nature10831 – reference: ChenJStructure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the Labile conformationCell1998954094171:CAS:528:DyaK1cXntlCqt70%3D981471010.1016/S0092-8674(00)81771-7 – reference: JeffersonTNeuraminidase inhibitors for preventing and treating influenza in adults and childrenCochrane Database Syst. Rev.20144CD008965 – reference: VriesEdeDissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathwayPlos Pathog.20117e100132921483486306899510.1371/journal.ppat.1001329 – reference: MaWThe NS segment of an H5N1 Highly Pathogenic Avian Influenza Virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV ▿ †J. Virol.2009842122213320007264281236910.1128/JVI.01668-09 – reference: PAYNEAMThe influenza programme of WHOBull World Health Organ.195387557741:STN:280:DyaG2c%2FhsFejtw%3D%3D130945042554202 – reference: JongJCde, ClaasECJOsterhausADMEWebsterRGLimWLA pandemic warning?Nature19973895545549335492709547710.1038/39218 – reference: SandbulteMRDiscordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza virusesProc. Natl Acad. Sci.201110820748207531:CAS:528:DC%2BC38Xkt1Ojsw%3D%3D2214379810.1073/pnas.1113801108 – reference: ZhuWMutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in micePLoS One20127e333831:CAS:528:DC%2BC38Xkslagsr0%3D22438920330530710.1371/journal.pone.0033383 – reference: ImaiMKawaokaYThe role of receptor binding specificity in interspecies transmission of influenza virusesCurr. Opin. Virol.201221601671:CAS:528:DC%2BC38Xltl2rsLc%3D22445963560575210.1016/j.coviro.2012.03.003 – reference: ErbeldingEJA universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseasesJ. Infect. Dis.20182183473541:CAS:528:DC%2BC1MXhtlGht7bM29506129627917010.1093/infdis/jiy103 – reference: Nardi, M. D. et al. Development of a risk assessment methodological framework for potentially pandemic influenza strains (FLURISK). Efsa Supporting Publ 11, (2014). – reference: HonceRSchultz-CherrySRecipe for zoonosis: how influenza virus leaps into human circulationCell Host Microbe2020285065081:CAS:528:DC%2BB3cXitFOiu7vE33031768753993210.1016/j.chom.2020.09.008 – reference: WardBJThe establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines?Hum. Vacc. Immunother.20181400001:CAS:528:DC%2BC1cXitV2gtbY%3D – reference: ParkJ-KPre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge modelNat. Med.202026124012461:CAS:528:DC%2BB3cXht1yjtbfK3260133610.1038/s41591-020-0937-x – reference: SmithWAndrewesCHLaidlawPPA virus obtained from influenza patientsLancet1933222666810.1016/S0140-6736(00)78541-2 – reference: BurkeSATrockSCUse of influenza risk assessment tool for prepandemic preparednessEmerg. Infect. Dis.20182447147729460739582335610.3201/eid2403.171852 – reference: FrancisTSalkJEQuilliganJJExperience with vaccination against influenza in the spring of 1947: a preliminary reportAm. J. Public Health Nations Health194737101310161:STN:280:DC%2BD1c%2FjsVWlug%3D%3D18016577162389510.2105/AJPH.37.8.1013 – reference: Knipe, D. M. & Howley, P. Fields virology. (Lippincott Williams & Wilkins (LWW), 2013). – reference: FukuyamaSKawaokaYThe pathogenesis of influenza virus infections: the contributions of virus and host factorsCurr. Opin. Immunol.2011234814861:CAS:528:DC%2BC3MXhtV2qu7jN21840185316372510.1016/j.coi.2011.07.016 – reference: ToKK-WUnique reassortant of influenza A(H7N9) virus associated with severe disease emerging in Hong KongJ. Infect.201469606824576826712757510.1016/j.jinf.2014.02.012 – reference: (NIH), N.I.H. Clinical trials of monoclonal antibodies to prevent COVID-19 now enrolling. https://www.nih.gov/news-events/news-releases/clinical-trials-monoclonal-antibodies-prevent-covid-19-now-enrolling (2020). – reference: KashJCTaubenbergerJKThe role of viral, host, and secondary bacterial factors in influenza pathogenesisAm. J. Pathol.20151851528153625747532445031010.1016/j.ajpath.2014.08.030 – reference: CastrucciMRGenetic reassortment between avian and human influenza A viruses in Italian pigsVirology19931935035061:CAS:528:DyaK3sXhs1Knsro%3D843858610.1006/viro.1993.1155 – reference: BajicGAutoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodiesSci. Rep.20199349230837606640130710.1038/s41598-019-40175-8 – reference: LaiKYHuman H7N9 avian influenza virus infection: a review and pandemic risk assessmentEmerg. Microbes Infect.201321510.1038/emi.2013.64 – reference: Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. Biorxiv 2020.06.11.145920 (2020) https://doi.org/10.1101/2020.06.11.145920. – reference: NachbagauerRAge dependence and isotype specificity of influenza virus hemagglutinin stalk-reactive antibodies in humansMbio20167e01996151:CAS:528:DC%2BC2sXotVSgsg%3D%3D26787832472501410.1128/mBio.01996-15 – reference: CDC. Vaccine effectiveness: how well do the flu vaccines work? https://www.cdc.gov/flu/vaccines-work/vaccineeffect.htm (2020). – reference: DrexlerJFCormanVMDrostenCEcology, evolution and classification of bat coronaviruses in the aftermath of SARSAntivir. Res.201410145561:CAS:528:DC%2BC3sXhvFyksrnP2418412810.1016/j.antiviral.2013.10.013 – reference: AndrewesCHGloverRESpread of infection from the respiratory tract of the Ferret. I. Transmission of influenza A virusBr. J. Exp. Pathol.19412291972065394 – reference: PlotkinSRobinsonJMCunninghamGIqbalRLarsenSThe complexity and cost of vaccine manufacturing—an overviewVaccine2017354064407128647170551873410.1016/j.vaccine.2017.06.003 – reference: WebsterRGLaverWGThe origin of pandemic influenzaBull World Health Organ1972474494521:STN:280:DyaE3s7osVSquw%3D%3D45409942480853 – reference: SmithGJDOrigins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemicNature2009459112211251:CAS:528:DC%2BD1MXnslKqtL0%3D1951628310.1038/nature08182 – reference: JiaNGlycomic characterization of respiratory tract tissues of ferrets implications for its use in influenza virus infection studiesJ. Biol. Chem.201428928489285041:CAS:528:DC%2BC2cXhslektLvM25135641419249910.1074/jbc.M114.588541 – reference: PetschBProtective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infectionNat. Biotechnol.201230121012161:CAS:528:DC%2BC38Xhs1ymsbjO2315988210.1038/nbt.2436 – reference: HuiKPYTropism and innate host responses of influenza A/H5N6 virus: an analysis of ex vivo and in vitro cultures of the human respiratory tractEur. Respir. J.20174916017102827517310.1183/13993003.01710-2016 – reference: MaWThe role of swine in the generation of novel influenza virusesZoonoses Public Health2009563263371:CAS:528:DC%2BD1MXhtVejur%2FO1948631610.1111/j.1863-2378.2008.01217.x – reference: GerdilCThe annual production cycle for influenza vaccineVaccine200321177617791268609310.1016/S0264-410X(03)00071-9 – reference: GaoRHuman infection with a novel avian-origin influenza A (H7N9) virusN. Engl. J. Med.2013368188818971:CAS:528:DC%2BC3sXnsl2gsrc%3D2357762810.1056/NEJMoa1304459 – reference: CDC. Asian Lineage Avian Influenza A(H7N9) virus. https://www.cdc.gov/flu/avianflu/h7n9-virus.htm (2018). – reference: WebsterRGBeanWJGormanOTChambersTMKawaokaYEvolution and ecology of influenza A virusesMicrobiol Rev.1992561521791:STN:280:DyaK383lt1OqtQ%3D%3D157910837285910.1128/mr.56.1.152-179.1992 – reference: PaulyMDProcarioMCLauringASA novel twelve class fluctuation test reveals higher than expected mutation rates for influenza A virusesElife20176e2643728598328551100810.7554/eLife.26437 – reference: SkehelJJWileyDCReceptor binding and membrane fusion in virus entry: the influenza hemagglutininAnnu Rev. Biochem2000695315691:CAS:528:DC%2BD3cXnt1ajtbY%3D1096646810.1146/annurev.biochem.69.1.531 – reference: Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—Preliminary Report. N. Engl. J. Med. (2020) https://doi.org/10.1056/nejmoa2022483. – reference: NelsonMIMultiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918PLoS Pathog.20084e100001218463694226284910.1371/journal.ppat.1000012 – reference: LehnertRPletzMReussASchabergTAntiviral medications in seasonal and pandemic influenzaDtsch. Aerzteblatt Online2016113799807 – reference: MontoArnoldSKendalAlanPEffect of neuraminidase antibody on Hong Kong influenzaLancet197330162362510.1016/S0140-6736(73)92196-X – reference: BrookeCBPopulation diversity and collective interactions during influenza virus infectionJ. Virol.201791e011641728855247566050310.1128/JVI.01164-17 – reference: ReumanPDKeelySSchiffGMAssessment of signs of influenza illness in the ferret modelJ. Virol. Methods19892427341:STN:280:DyaL1MzktVOmug%3D%3D276016310.1016/0166-0934(89)90004-9 – reference: HaydenFGBaloxavir Marboxil for uncomplicated influenza in adults and adolescentsN. Engl. J. Med.20183799139231:CAS:528:DC%2BC1cXhslCksb7M3018445510.1056/NEJMoa1716197 – reference: Potter, C. W. Textbook of Influenza. Chronicle of influenza Pandemics. (Blackwell Science LTD, 1998). – reference: WebsterRGGovorkovaEAContinuing challenges in influenzaAnn. N.Y. Acad. Sci.2017132311513910.1111/nyas.12462 – reference: SteelJInfluenza virus vaccine based on the conserved hemagglutinin stalk domainMbio20101e000181020689752291265810.1128/mBio.00018-10 – reference: KandunINThree Indonesian clusters of H5N1 virus infection in 2005N. Engl. J. Med.2006355218621941:CAS:528:DC%2BD28Xht1Chsb3N1712401610.1056/NEJMoa060930 – reference: Times N. Y. Coronavirus vaccine tracker. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html (2020). – reference: UngchusakKProbable person-to-person transmission of avian influenza A (H5N1)N. Engl. J. Med.20053523333401:CAS:528:DC%2BD2MXnvVKgtA%3D%3D1566821910.1056/NEJMoa044021 – reference: CDC. Influenza Risk Assessment Tool (IRAT). https://www.cdc.gov/flu/pandemic-resources/national-strategy/risk-assessment.htm (n.d.). – reference: LakdawalaSSThe soft palate is an important site of adaptation for transmissible influenza virusesNature20155261221251:CAS:528:DC%2BC2MXhs1SitLzF26416728459281510.1038/nature15379 – reference: MontoASAntibody to influenza virus neuraminidase: an independent correlate of protectionJ. Infect. Dis.2015212119111991:CAS:528:DC%2BC1cXjs12g2585895710.1093/infdis/jiv195 – reference: CheungPPHGeneration and characterization of influenza A viruses with altered polymerase fidelityNat. Commun.201451:CAS:528:DC%2BC2MXksVCitb8%3D25183443415540510.1038/ncomms5794 – reference: BouvierNMLowenACAnimal models for influenza virus pathogenesis and transmissionViruses201021530156321442033306365310.3390/v20801530 – reference: KrammerFSARS-CoV-2 vaccines in developmentNature20205865165271:CAS:528:DC%2BB3cXitVyhs73N3296700610.1038/s41586-020-2798-3 – reference: HerfstSAirborne transmission of influenza A/H5N1 virus between ferretsScience2012336153415411:CAS:528:DC%2BC38Xoslaksbw%3D22723413481078610.1126/science.1213362 – reference: ItohYIn vitro and in vivo characterization of new swine-origin H1N1 influenza virusesNature2009460102110251:CAS:528:DC%2BD1MXhtVWhsbvJ19672242274882710.1038/nature08260 – reference: WHO. Candidate vaccine viruses for avian influenza A(H7N9). https://www.who.int/influenza/vaccines/virus/candidates_reagents/a_h7n9/en/ (2020). – reference: ScorzaFBPardiNNew kids on the block: RNA-based influenza virus vaccinesNato Adv. Sci. Inst. Se2018620 – reference: KrammerFPalesePUniversal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domainJ. Infect. Dis.2019219S62S671:CAS:528:DC%2BB3cXjvFajt7Y%3D30715353645231810.1093/infdis/jiy711 – reference: BelserJAKatzJMTumpeyTMThe ferret as a model organism to study influenza A virus infectionDis. Model Mech.201145755791:CAS:528:DC%2BC3MXhtFKqt77J21810904318022010.1242/dmm.007823 – reference: MemoliMJEvaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge modelMbio20167e00417161:CAS:528:DC%2BC2sXmvVahu7o%3D27094330495952110.1128/mBio.00417-16 – reference: DasSRDefining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selectionCell Host Microbe2013133143231:CAS:528:DC%2BC3sXktFaqsbg%3D23498956374722610.1016/j.chom.2013.02.008 – reference: RussellCJHuMOkdaFAInfluenza hemagglutinin protein stability, activation, and pandemic riskTrends Microbiol2018268418531:CAS:528:DC%2BC1cXnsFCmsro%3D29681430615082810.1016/j.tim.2018.03.005 – reference: HorwoodPFCo-circulation of influenza A H5, H7, and H9 viruses and co-infected poultry in live bird markets, CambodiaEmerg. Infect. Dis.20182435235529350140578291010.3201/eid2402.171360 – reference: StevensJGlycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificitiesJ. Mol. Biol.2006355114311551:CAS:528:DC%2BD2MXhtlGlsL3O1634353310.1016/j.jmb.2005.11.002 – reference: MemoliMJMorensDMTaubenbergerJKPandemic and seasonal influenza: therapeutic challengesDrug Discov. Today2008135905951:CAS:528:DC%2BD1cXotlCmu7k%3D18598914255603410.1016/j.drudis.2008.03.024 – reference: ScholtissekCPigs as ‘mixing vessels’ for the creation of new pandemic influenza A virusesMed Prin Pract.20042657110.1159/000157337 – reference: KimHWebsterRGWebbyRJInfluenza virus: dealing with a drifting and shifting pathogenViral Immunol.2018311741831:CAS:528:DC%2BC1cXnsFamsrg%3D2937308610.1089/vim.2017.0141 – reference: DolanBIt wasn’t supposed to be a coronavirus: the quest for an influenza A(H5N1)‐derived vaccine and the limits of pandemic preparednessCentaurus20206233134310.1111/1600-0498.12312 – volume: 84 start-page: 2122 year: 2009 ident: 603_CR27 publication-title: J. Virol. doi: 10.1128/JVI.01668-09 – volume: 10 start-page: 461 year: 2018 ident: 603_CR56 publication-title: Viruses doi: 10.3390/v10090461 – volume: 30 start-page: 1210 year: 2012 ident: 603_CR92 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2436 – volume: 24 start-page: 352 year: 2018 ident: 603_CR55 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2402.171360 – volume: 124 start-page: 982 year: 1944 ident: 603_CR8 publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.1944.62850140004008 – volume: 69 start-page: 531 year: 2000 ident: 603_CR66 publication-title: Annu Rev. Biochem doi: 10.1146/annurev.biochem.69.1.531 – volume: 460 start-page: 1021 year: 2009 ident: 603_CR29 publication-title: Nature doi: 10.1038/nature08260 – ident: 603_CR33 doi: 10.2903/sp.efsa.2014.EN-571 – volume: 17 start-page: 261 year: 2018 ident: 603_CR90 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.243 – volume: 91 start-page: e01164 year: 2017 ident: 603_CR62 publication-title: J. Virol. doi: 10.1128/JVI.01164-17 – volume: 222 start-page: 66 year: 1933 ident: 603_CR7 publication-title: Lancet doi: 10.1016/S0140-6736(00)78541-2 – volume: 23 start-page: 481 year: 2011 ident: 603_CR19 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2011.07.016 – volume: 113 start-page: 799 year: 2016 ident: 603_CR100 publication-title: Dtsch. Aerzteblatt Online – volume: 389 start-page: 554 year: 1997 ident: 603_CR13 publication-title: Nature doi: 10.1038/39218 – ident: 603_CR5 – volume: 333 start-page: 133 year: 2009 ident: 603_CR16 publication-title: Curr. Top. Microbiol. doi: 10.1007/978-3-540-92165-3_6 – volume: 193 start-page: 503 year: 1993 ident: 603_CR37 publication-title: Virology doi: 10.1006/viro.1993.1155 – ident: 603_CR58 – volume: 173 start-page: 417 year: 2018 ident: 603_CR81 publication-title: Cell doi: 10.1016/j.cell.2018.03.030 – ident: 603_CR94 doi: 10.1056/nejmoa2022483 – volume: 101 start-page: 45 year: 2014 ident: 603_CR98 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2013.10.013 – volume: 108 start-page: 20748 year: 2011 ident: 603_CR82 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1113801108 – ident: 603_CR96 – volume: 69 start-page: 60 year: 2014 ident: 603_CR25 publication-title: J. Infect. doi: 10.1016/j.jinf.2014.02.012 – ident: 603_CR44 – volume: 586 start-page: 516 year: 2020 ident: 603_CR49 publication-title: Nature doi: 10.1038/s41586-020-2798-3 – volume: 2 start-page: 160 year: 2012 ident: 603_CR34 publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2012.03.003 – volume: 379 start-page: 913 year: 2018 ident: 603_CR72 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1716197 – volume: 2 start-page: 65 year: 2004 ident: 603_CR22 publication-title: Med Prin Pract. doi: 10.1159/000157337 – ident: 603_CR59 – volume: 26 start-page: 841 year: 2018 ident: 603_CR67 publication-title: Trends Microbiol doi: 10.1016/j.tim.2018.03.005 – volume: 87 start-page: 786 year: 1990 ident: 603_CR83 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.87.2.786 – volume: 56 start-page: 106080 year: 2020 ident: 603_CR101 publication-title: Int. J. Antimicrob. Agric. doi: 10.1016/j.ijantimicag.2020.106080 – ident: 603_CR93 doi: 10.1101/2020.06.11.145920 – volume: 108 start-page: S215 year: 2018 ident: 603_CR99 publication-title: Am. J. Public Health doi: 10.2105/AJPH.2018.304609 – volume: 355 start-page: 2174 year: 2006 ident: 603_CR15 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp068205 – volume: 49 start-page: 1601710 year: 2017 ident: 603_CR38 publication-title: Eur. Respir. J. doi: 10.1183/13993003.01710-2016 – volume: 7 start-page: e01996 year: 2016 ident: 603_CR87 publication-title: Mbio doi: 10.1128/mBio.01996-15 – volume: 355 start-page: 2186 year: 2006 ident: 603_CR46 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa060930 – volume: 13 start-page: 590 year: 2008 ident: 603_CR41 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2008.03.024 – volume: 31 start-page: 174 year: 2018 ident: 603_CR2 publication-title: Viral Immunol. doi: 10.1089/vim.2017.0141 – volume: 14 start-page: 00 year: 2018 ident: 603_CR28 publication-title: Hum. Vacc. Immunother. – volume: 2 start-page: 1 year: 2013 ident: 603_CR26 publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2013.64 – volume: 26 start-page: 1240 year: 2020 ident: 603_CR88 publication-title: Nat. Med. doi: 10.1038/s41591-020-0937-x – volume: 301 start-page: 623 year: 1973 ident: 603_CR78 publication-title: Lancet doi: 10.1016/S0140-6736(73)92196-X – volume: 368 start-page: 1888 year: 2013 ident: 603_CR57 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1304459 – volume: 13 start-page: 314 year: 2013 ident: 603_CR80 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.02.008 – volume: 1 start-page: e00018 year: 2010 ident: 603_CR85 publication-title: Mbio doi: 10.1128/mBio.00018-10 – volume: 16 start-page: 977 year: 1998 ident: 603_CR14 publication-title: Vaccine doi: 10.1016/S0264-410X(98)00005-X – volume: 459 start-page: 1122 year: 2009 ident: 603_CR3 publication-title: Nature doi: 10.1038/nature08182 – volume: 24 start-page: 471 year: 2018 ident: 603_CR32 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2403.171852 – ident: 603_CR4 – volume: 341 start-page: 183 year: 2013 ident: 603_CR40 publication-title: Science doi: 10.1126/science.1239844 – ident: 603_CR11 – volume: 185 start-page: 1528 year: 2015 ident: 603_CR20 publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2014.08.030 – volume: 1323 start-page: 115 year: 2017 ident: 603_CR42 publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/nyas.12462 – volume: 207 start-page: 974 year: 2013 ident: 603_CR43 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis935 – volume: 7 start-page: e00417 year: 2016 ident: 603_CR79 publication-title: Mbio doi: 10.1128/mBio.00417-16 – ident: 603_CR95 – volume: 37 start-page: 1013 year: 1947 ident: 603_CR9 publication-title: Am. J. Public Health Nations Health doi: 10.2105/AJPH.37.8.1013 – volume: 302 start-page: 1519 year: 2003 ident: 603_CR54 publication-title: Science doi: 10.1126/science.1090350 – volume: 95 start-page: 409 year: 1998 ident: 603_CR64 publication-title: Cell doi: 10.1016/S0092-8674(00)81771-7 – volume: 24 start-page: 1800698 year: 2019 ident: 603_CR73 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2019.24.3.1800698 – volume: 6 start-page: e26437 year: 2017 ident: 603_CR61 publication-title: Elife doi: 10.7554/eLife.26437 – volume: 87 start-page: 4826 year: 2013 ident: 603_CR70 publication-title: J. Virol. doi: 10.1128/JVI.03110-12 – volume: 47 start-page: 449 year: 1972 ident: 603_CR21 publication-title: Bull World Health Organ – volume: 62 start-page: 331 year: 2020 ident: 603_CR97 publication-title: Centaurus doi: 10.1111/1600-0498.12312 – volume: 56 start-page: 326 year: 2009 ident: 603_CR36 publication-title: Zoonoses Public Health doi: 10.1111/j.1863-2378.2008.01217.x – ident: 603_CR1 – volume: 9 start-page: 3492 year: 2019 ident: 603_CR89 publication-title: Sci. Rep. doi: 10.1038/s41598-019-40175-8 – volume: 4 start-page: CD008965 year: 2014 ident: 603_CR71 publication-title: Cochrane Database Syst. Rev. – volume: 12 start-page: 558 year: 2018 ident: 603_CR102 publication-title: Influenza Other Respir. doi: 10.1111/irv.12570 – volume: 24 start-page: 27 year: 1989 ident: 603_CR30 publication-title: J. Virol. Methods doi: 10.1016/0166-0934(89)90004-9 – ident: 603_CR75 – volume: 199 start-page: 1726 year: 2009 ident: 603_CR47 publication-title: J. Infect. Dis. doi: 10.1086/599206 – volume: 220 start-page: 1276 year: 2019 ident: 603_CR60 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiz295 – ident: 603_CR6 – volume: 8 start-page: 755 year: 1953 ident: 603_CR10 publication-title: Bull World Health Organ. – volume: 28 start-page: 506 year: 2020 ident: 603_CR12 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.09.008 – volume: 526 start-page: 122 year: 2015 ident: 603_CR52 publication-title: Nature doi: 10.1038/nature15379 – volume: 486 start-page: 420 year: 2012 ident: 603_CR69 publication-title: Nature doi: 10.1038/nature10831 – volume: 336 start-page: 1534 year: 2012 ident: 603_CR68 publication-title: Science doi: 10.1126/science.1213362 – volume: 21 start-page: 1776 year: 2003 ident: 603_CR74 publication-title: Vaccine doi: 10.1016/S0264-410X(03)00071-9 – volume: 86 start-page: 5774 year: 2012 ident: 603_CR86 publication-title: J. Virol. doi: 10.1128/JVI.00137-12 – volume: 7 start-page: e1001329 year: 2011 ident: 603_CR65 publication-title: Plos Pathog. doi: 10.1371/journal.ppat.1001329 – volume: 4 start-page: 575 year: 2011 ident: 603_CR31 publication-title: Dis. Model Mech. doi: 10.1242/dmm.007823 – volume: 7 start-page: e33383 year: 2012 ident: 603_CR24 publication-title: PLoS One doi: 10.1371/journal.pone.0033383 – volume: 15 start-page: 340 year: 2015 ident: 603_CR50 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(14)70999-5 – volume: 35 start-page: 4064 year: 2017 ident: 603_CR48 publication-title: Vaccine doi: 10.1016/j.vaccine.2017.06.003 – volume: 4 start-page: e1000012 year: 2008 ident: 603_CR23 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000012 – volume: 6 start-page: 20 year: 2018 ident: 603_CR91 publication-title: Nato Adv. Sci. Inst. Se – volume: 289 start-page: 28489 year: 2014 ident: 603_CR53 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.588541 – volume: 355 start-page: 1143 year: 2006 ident: 603_CR35 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.11.002 – volume: 218 start-page: 347 year: 2018 ident: 603_CR76 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy103 – volume: 2 start-page: 1530 year: 2010 ident: 603_CR51 publication-title: Viruses doi: 10.3390/v20801530 – volume: 5 start-page: e18491 year: 2016 ident: 603_CR18 publication-title: Elife doi: 10.7554/eLife.18491 – volume: 22 start-page: 91 year: 1941 ident: 603_CR39 publication-title: Br. J. Exp. Pathol. – volume: 219 start-page: S62 year: 2019 ident: 603_CR84 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy711 – volume: 212 start-page: 1191 year: 2015 ident: 603_CR77 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiv195 – volume: 352 start-page: 333 year: 2005 ident: 603_CR45 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa044021 – volume: 56 start-page: 152 year: 1992 ident: 603_CR17 publication-title: Microbiol Rev. doi: 10.1128/mr.56.1.152-179.1992 – volume: 5 year: 2014 ident: 603_CR63 publication-title: Nat. Commun. doi: 10.1038/ncomms5794 |
SSID | ssj0025474 |
Score | 2.601156 |
SecondaryResourceType | review_article |
Snippet | The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred... |
SourceID | nrf pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 737 |
SubjectTerms | 692/699/255 692/699/255/1578 Animals Biomedical and Life Sciences Biomedicine Coronaviridae Coronaviruses COVID-19 - epidemiology COVID-19 - prevention & control Disease control Disease transmission Humans Influenza Influenza A virus - isolation & purification Influenza, Human - epidemiology Influenza, Human - prevention & control Medical Biochemistry Molecular Medicine Pandemics Pandemics - prevention & control Review Review Article Risk Assessment Severe acute respiratory syndrome coronavirus 2 Stem Cells Strains (organisms) Surveillance Vaccine development World Health Organization 생화학 |
SummonAdditionalLinks | – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71ISEuCFoegYIMQlwgIvE74rRCVGWlcoFKvVlO4sCqNFltt0jtr2fGeaCFgsTFOWRsje2xPR5__gzwssor3FL7IsXEpETonZaZ15jkRdB1XWY1BfSPP-mjEzk_VadbwMe7MBG0Hykt4zQ9osPeXuScG4LL4uY304QB2oZdompH296dzeaf59M2S8nIvYwZdCpwtRquymTC3lDKxnK03a6amzzNPwGTv52axsXo8C7cGbxINuv1vgdbod2D_RlWqTu_Yq9YxHXGgPke3Doejs_34R0aBQs_Bmtjvq1ZzynCuoYt-udKrj1bUmD5fFGx5SpEgDpNh_fh5PDDl_dH6fB6QlopI9epR99LF0GVWSO4VcqHRlEQ2MrAS1F7Y6rSysbk6FBZ9IOCNqUOuGGSeWVM2YgHsNN2bXgErDY1iuq6sVUhC28LmzU4L4k655n0UiWQj43oqoFanF64-O7iEbewrm94hw3vYsO7LIHXU55lT6zxT-kX2DfurFo44sOm79fOna0cev0fHYWvrJAJHIxd54aReOG4Eob80gK1fD79xjFEByO-Dd0lyXDi5cd5P4GHfU9POglBAFyOhZsNG5gESJ_NP-3iW-TptnQrOecJvBmt5Zdaf6_q4_8TfwK3ebRnwmAewM56dRmeop-0Lp8NA-MneGAH0w priority: 102 providerName: Springer Nature |
Title | The evolution and future of influenza pandemic preparedness |
URI | https://link.springer.com/article/10.1038/s12276-021-00603-0 https://www.ncbi.nlm.nih.gov/pubmed/33953324 https://www.proquest.com/docview/2537005495 https://www.proquest.com/docview/2522620911 https://pubmed.ncbi.nlm.nih.gov/PMC8099712 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002715886 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental and Molecular Medicine, 2021, 53(0), , pp.1-13 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbYJiFeEGxcMkZlEOIFoiWxHTviAZVq06i0CQGT-mY5tjOqsbRrOyT49ZzjuK3KZS-xlDiRYx_b37n4O4S8srkFldpUKVxkioTeaZ2ZEi555Uvn6syhQf_0rDw558ORGEWD2zyGVS7XxLBQu4lFG_lhIZhEfFGJ99PrFLNGoXc1ptDYIjtIXYZSLUdrhUvwwMKcA8RIGexb8dBMxtThHG5KDL8FZTorMaZoY2PaamfNvzDn36GTf_hPw7Z0_IDcj3iS9jsBeEju-HaX7PVb0KWvftLXNER4BtP5Lrl7Gh3pe-QdiAf1P6LcUdM62rGL0ElDx13ikl-GTtHEfDW2dDrzIVQdF8ZH5Pz46OvgJI15FFIrJF-kBlBYWXlRZw0rlBDGNwLNwYr7ombOSGlrxRuZA7RSgIh8KevSg-rEcytl3bDHZLudtP4poU46qFq6RtmKV0ZVKmtghWIuLzJuuEhIvuxEbSPJOOa6-K6Ds5sp3XW8ho7XoeN1lpA3q3emHcXGrbVfwtjoSzvWyIyN5cVEX8404P-PGg1ZivGEHCyHTsc5OddrCUrIi9VjmE3oIjGtn9xgnQIZ-mEHSMiTbqRXbWIMQ3EL-LjckIFVBWzP5pN2_C0wdis8n5wXCXm7lJZ1s_7_q_u3_8Uzcq8I8ovRlwdkezG78c8BIS3qXpgGPbLT7w-_DKH8cHT26TPcHZSDXrA6_AZ8aw3Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8LQNCXhBsPERGGAQ8ALRkjiOHSGEJmBq2bqnTeqbcWIHqrG0tB1o_Ch-I3dO0qp87G0vjhQ7kX0-37fvAJ6VcYkqtclDbGRICb3DIjIZNnHuMmuLyJJBf3CY9Y7Tj0MxXINf3V0YCqvsaKIn1HZcko18JxFcknyRi7eTbyFVjSLvaldCo0GLfXf-A1W22Zv-e9zf50my9-HoXS9sqwqEpZDpPDQok2S5E0VU8UQJYVwlyDiqUpcU3Bopy0KllYxR0FAoH7hMFplDRSKNSymLiuN_1-EKMt6IlD05XCp4IvVZn2MUaUKOfLK9pBNxtTPDl5LCfVF5jzKKYVphhOv1tPqXjPt3qOYf_lrPBvduwo1WfmW7DcLdgjVXb8LWbo26--k5e8F8RKk31W_C1UHruN-C14iOzH1v8ZyZ2rImmwkbV2zUFEr5adiETNqno5JNps6HxhMhvg3HlwLhO7BRj2t3D5iVFodmtlJlnuZG5SqqkCJyGydRalIRQNwBUZdtUnOqrfFVe-c6V7oBvEbAaw94HQXwcvHNpEnpceHop7g3-qQcacrETc_PY30y1ahv9DUZzhRPA9jutk63NGCmlxgbwJNFN55ecsmY2o3PaExCFQGQ4wRwt9npxZw4p9DfBH8uV3BgMYDms9pTj774DOGK7kPHSQCvOmxZTuv_S71_8Soew7Xe0eBAH_QP9x_A9cTjMkV-bsPGfHrmHqJ0Ni8e-SPB4NNln8HfkaJEDQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61W6nigqDlEShgEHCBaJPYiR0hVBXaVZfSVYWo1JubOA6sSpNldwsqP41f15m8quXRWy-JlDiRPR6P5_F5BuC58Q2a1Ens4kW6lNDbTb0kwosf2yjLUi8jh_7-KNo9FB-OwqMl-N2ehSFYZSsTK0GdlYZ85P0g5JL0izjs5w0s4mB7sDn57lIFKYq0tuU0ahbZs-c_0XybvR1u41y_CILBzuf3u25TYcA1oRRzN0H9JIptmHo5D1QYJjYPyVGqhA1SniVSmlSJXPqodCjUFWwk08iiUSF8I2Wac_zvMqxIsop6sPJuZ3TwqTP3QlHlgPZRwXE57prNkR2Pq_4MH0oC_6Ip70WEaFrYFpeLaf4vjfdv4OYf0dtqUxzcgpuNNsu2ava7DUu2WIP1rQIt-dNz9pJV-NLKcb8Gq_tNGH8d3iBzMvuj4XqWFBmrc5uwMmfjumzKr4RNyMF9OjZsMrUVUJ7E8h04vBYa34VeURb2PrBMZtg0ynJlYhEnKlZejvKRZ37giUSEDvgtEbVpUpxTpY1vugq1c6VrwmskvK4Irz0HXnXfTOoEH1e2foZzo0_MWFNebrp_KfXJVKP1MdTkRlNcOLDRTp1uJMJMX_KvA0-717iWKUCTFLY8ozYB1QfA_ceBe_VMd33inIDAAf5cLvBA14D6s_imGH-t8oUrOh3tBw68brnlslv_H-qDq0fxBFZx_emPw9HeQ7gRVKxMMNAN6M2nZ_YRqmrz9HGzJhgcX_cyvACrJEmo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+and+future+of+influenza+pandemic+preparedness&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Harrington+Walter+N.&rft.au=Kackos+Christina+M.&rft.au=Webby+Richard+J.&rft.date=2021-05-01&rft.pub=%EC%83%9D%ED%99%94%ED%95%99%EB%B6%84%EC%9E%90%EC%83%9D%EB%AC%BC%ED%95%99%ED%9A%8C&rft.issn=1226-3613&rft.eissn=2092-6413&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs12276-021-00603-0&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9783834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3613&client=summon |