Effect of restricted emissions during COVID-19 on air quality in India

The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing expe...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 728; p. 138878
Main Authors Sharma, Shubham, Zhang, Mengyuan, Anshika, Gao, Jingsi, Zhang, Hongliang, Kota, Sri Harsha
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented. [Display omitted] •The effect of restricted human activities due to the COVID-19 pandemic in India on air quality in 22 cities was estimated.•PM2.5 had maximum reduction in most regions.•Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years.•The substantial reduction in concentrations resulted in a 4 times reduction in total ER.•PM2.5 could increase due to unfavourable meteorology but the average concentration would still be under CPCB limits.
AbstractList The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented. [Display omitted] •The effect of restricted human activities due to the COVID-19 pandemic in India on air quality in 22 cities was estimated.•PM2.5 had maximum reduction in most regions.•Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years.•The substantial reduction in concentrations resulted in a 4 times reduction in total ER.•PM2.5 could increase due to unfavourable meteorology but the average concentration would still be under CPCB limits.
The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM 10 , PM 2.5 , CO, NO 2 , ozone and SO 2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM 2.5 , PM 10 , CO, and NO 2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O 3 and negligible changes in SO 2 . The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM 2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented. Unlabelled Image • The effect of restricted human activities due to the COVID-19 pandemic in India on air quality in 22 cities was estimated. • PM 2.5 had maximum reduction in most regions. • Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years. • The substantial reduction in concentrations resulted in a 4 times reduction in total ER. • PM 2.5 could increase due to unfavourable meteorology but the average concentration would still be under CPCB limits.
The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM₁₀, PM₂.₅, CO, NO₂, ozone and SO₂ during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM₂.₅, PM₁₀, CO, and NO₂ in India were observed during lockdown period compared to previous years. While, there were 17% increase in O₃ and negligible changes in SO₂. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM₂.₅ could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.
The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM , PM , CO, NO , ozone and SO during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM , PM , CO, and NO in India were observed during lockdown period compared to previous years. While, there were 17% increase in O and negligible changes in SO . The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.
The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.
ArticleNumber 138878
Author Zhang, Hongliang
Zhang, Mengyuan
Kota, Sri Harsha
Anshika
Sharma, Shubham
Gao, Jingsi
Author_xml – sequence: 1
  givenname: Shubham
  surname: Sharma
  fullname: Sharma, Shubham
  organization: Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
– sequence: 2
  givenname: Mengyuan
  surname: Zhang
  fullname: Zhang, Mengyuan
  organization: Department of Environmental Science and Engineering, Fudan University, Shanghai, China
– sequence: 3
  surname: Anshika
  fullname: Anshika
  organization: Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
– sequence: 4
  givenname: Jingsi
  surname: Gao
  fullname: Gao, Jingsi
  organization: Engineering Technology Development Center of Urban Water Recycling, Shenzhen Polytechnic, Shenzhen, China
– sequence: 5
  givenname: Hongliang
  orcidid: 0000-0002-1797-2311
  surname: Zhang
  fullname: Zhang, Hongliang
  email: zhanghl@fudan.edu.cn
  organization: Department of Environmental Science and Engineering, Fudan University, Shanghai, China
– sequence: 6
  givenname: Sri Harsha
  orcidid: 0000-0002-1977-2954
  surname: Kota
  fullname: Kota, Sri Harsha
  email: harshakota@iitd.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32335409$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFPHCEYxUmj0dX6L7Qce5kVmGGBQ5uYrdZNTLyYXgkD31g2s6DAbOJ_XzZrN20vyoUAv_fyPd4ZOgoxAEKfKZlTQheX63m2vsQCYTtnhNXbVkohP6AZlUI1lLDFEZoR0slGLZQ4RWc5r0ldQtITdNqytuUdUTN0cz0MYAuOA06QS_K2gMOw8Tn7GDJ2U_LhES_vf66-N1ThGLDxCT9PZvTlBfuAV8F58xEdD2bMcPG6n6OHm-uH5W1zd_9jtby6aywXXWmUMXZoDQdrFDGKKzvYhTPCqN4aYL3ouBUD8HqWbS9kx_rOcSNp10rnWHuOvu1tn6Z-A85CKMmM-in5jUkvOhqv_30J_pd-jFstqOBS7gy-vBqk-DzVwLomtTCOJkCcsmZKct4JSuXbaKs4q6ZEVPTT32Md5vnzzRUQe8CmmHOC4YBQoneF6rU-FKp3hep9oVX59T9lxUyp3dR8fnyH_mqvh9rK1kPacRAsOJ9q79pF_6bHb21nwyc
CitedBy_id crossref_primary_10_1016_j_chemosphere_2021_130406
crossref_primary_10_3390_ijerph192013540
crossref_primary_10_1186_s12302_021_00575_y
crossref_primary_10_1108_AJEB_12_2020_0109
crossref_primary_10_3390_atmos13071115
crossref_primary_10_1007_s40808_021_01210_8
crossref_primary_10_1016_j_scitotenv_2020_141105
crossref_primary_10_1007_s40899_022_00763_5
crossref_primary_10_1016_j_ecoinf_2022_101674
crossref_primary_10_1016_j_trip_2022_100660
crossref_primary_10_46281_ijfb_v10i1_1738
crossref_primary_10_1038_s41598_021_87877_6
crossref_primary_10_3390_ijerph21091153
crossref_primary_10_1007_s10668_021_01328_w
crossref_primary_10_3390_ijerph17155279
crossref_primary_10_1002_pa_2729
crossref_primary_10_1016_j_jiph_2021_12_001
crossref_primary_10_1007_s40710_020_00490_z
crossref_primary_10_1039_D0EM00358A
crossref_primary_10_1007_s11356_021_12668_5
crossref_primary_10_1016_j_scitotenv_2020_140496
crossref_primary_10_3390_app11031212
crossref_primary_10_3390_su13052873
crossref_primary_10_1007_s10661_020_08810_4
crossref_primary_10_1007_s11356_021_16874_z
crossref_primary_10_1515_noise_2020_0022
crossref_primary_10_1007_s10653_023_01810_6
crossref_primary_10_3390_atmos12020131
crossref_primary_10_1016_j_marpolbul_2021_112739
crossref_primary_10_3390_su12218984
crossref_primary_10_1007_s13280_021_01574_2
crossref_primary_10_1016_j_envpol_2021_117664
crossref_primary_10_1515_noise_2020_0010
crossref_primary_10_1007_s10640_021_00628_z
crossref_primary_10_3390_encyclopedia1030043
crossref_primary_10_1007_s11356_021_13098_z
crossref_primary_10_1016_j_scitotenv_2020_139281
crossref_primary_10_1016_j_jes_2021_02_022
crossref_primary_10_1007_s11676_020_01287_4
crossref_primary_10_3390_rs13010005
crossref_primary_10_1007_s41324_021_00427_0
crossref_primary_10_36953_ECJ_021905_2162
crossref_primary_10_1007_s11356_021_14462_9
crossref_primary_10_5194_acp_22_9987_2022
crossref_primary_10_21467_ajgr_12_1_36_47
crossref_primary_10_3390_ijerph19063168
crossref_primary_10_3390_ijgi10060401
crossref_primary_10_1080_09613218_2023_2191923
crossref_primary_10_1007_s11869_021_01000_2
crossref_primary_10_1007_s11869_021_01046_2
crossref_primary_10_1007_s12647_021_00506_5
crossref_primary_10_5194_acp_23_9837_2023
crossref_primary_10_1007_s10668_021_01324_0
crossref_primary_10_1016_j_hazl_2020_100010
crossref_primary_10_61512_emobd_1498119
crossref_primary_10_1007_s40030_022_00702_9
crossref_primary_10_5572_ajae_2022_016
crossref_primary_10_1016_j_atmosenv_2023_120191
crossref_primary_10_1007_s11356_023_29501_w
crossref_primary_10_1016_j_envres_2021_111648
crossref_primary_10_1016_j_grets_2024_100074
crossref_primary_10_1016_j_scs_2021_103336
crossref_primary_10_1007_s11270_023_06278_9
crossref_primary_10_1080_15567036_2022_2079773
crossref_primary_10_1007_s11869_020_00892_w
crossref_primary_10_1016_j_uclim_2021_100888
crossref_primary_10_1016_j_uclim_2021_100882
crossref_primary_10_3197_096327122X16611552268645
crossref_primary_10_1007_s10668_020_01002_7
crossref_primary_10_1007_s40030_021_00546_9
crossref_primary_10_1016_j_envres_2024_119141
crossref_primary_10_1016_j_scitotenv_2020_141325
crossref_primary_10_1016_j_scitotenv_2020_140000
crossref_primary_10_1007_s40710_022_00603_w
crossref_primary_10_52586_4931
crossref_primary_10_1016_j_chemosphere_2020_128297
crossref_primary_10_4236_jep_2020_119042
crossref_primary_10_3390_atmos12020160
crossref_primary_10_1016_j_scitotenv_2020_141321
crossref_primary_10_1016_j_envpol_2021_117451
crossref_primary_10_3390_land10040373
crossref_primary_10_3389_fmars_2021_659686
crossref_primary_10_1016_j_scitotenv_2020_141320
crossref_primary_10_35940_ijeat_E3590_0611522
crossref_primary_10_3390_ijerph18073528
crossref_primary_10_1016_j_envpol_2021_118544
crossref_primary_10_1038_s41598_020_80429_4
crossref_primary_10_1007_s41810_023_00173_w
crossref_primary_10_5194_acp_23_3311_2023
crossref_primary_10_1016_j_rser_2021_111294
crossref_primary_10_3390_atmos13020161
crossref_primary_10_1002_jeq2_20192
crossref_primary_10_1016_j_cities_2022_103770
crossref_primary_10_1016_j_envpol_2022_120961
crossref_primary_10_1007_s11356_021_18071_4
crossref_primary_10_3390_rs13030488
crossref_primary_10_5194_acp_21_13931_2021
crossref_primary_10_5194_essd_12_2411_2020
crossref_primary_10_1016_j_scs_2024_105549
crossref_primary_10_3390_atmos12060659
crossref_primary_10_1007_s11356_021_12461_4
crossref_primary_10_1016_j_scs_2020_102382
crossref_primary_10_1016_j_scitotenv_2020_141978
crossref_primary_10_1038_s42949_023_00095_z
crossref_primary_10_1007_s13198_024_02572_9
crossref_primary_10_1007_s10874_021_09428_7
crossref_primary_10_1016_j_atmosenv_2024_120836
crossref_primary_10_1080_00207233_2021_1941662
crossref_primary_10_1016_j_envres_2021_110927
crossref_primary_10_1007_s10668_020_01004_5
crossref_primary_10_3390_ijerph182413347
crossref_primary_10_5194_acp_23_10751_2023
crossref_primary_10_1080_15275922_2021_1907818
crossref_primary_10_1016_j_apenergy_2021_117247
crossref_primary_10_1007_s41207_020_00189_5
crossref_primary_10_3390_pollutants1030011
crossref_primary_10_5696_2156_9614_10_28_201201
crossref_primary_10_1007_s12524_021_01343_4
crossref_primary_10_3390_rs15051262
crossref_primary_10_1007_s00477_021_02019_8
crossref_primary_10_1007_s42081_022_00165_z
crossref_primary_10_1016_j_heliyon_2022_e12239
crossref_primary_10_3390_atmos14060973
crossref_primary_10_1007_s10661_021_09342_1
crossref_primary_10_1016_j_sintl_2020_100021
crossref_primary_10_1007_s11270_024_07062_z
crossref_primary_10_1007_s10661_022_09855_3
crossref_primary_10_1007_s11356_023_25370_5
crossref_primary_10_1021_acs_est_2c04303
crossref_primary_10_1016_j_scitotenv_2021_145187
crossref_primary_10_1016_j_atmosres_2020_105362
crossref_primary_10_36548_jscp_2021_4_002
crossref_primary_10_1016_j_scitotenv_2020_140426
crossref_primary_10_1016_j_scitotenv_2020_141757
crossref_primary_10_1016_j_sjbs_2020_11_065
crossref_primary_10_1007_s42979_024_03500_1
crossref_primary_10_1016_j_atmosres_2021_105659
crossref_primary_10_1039_D0FD00082E
crossref_primary_10_1080_10106049_2021_1993351
crossref_primary_10_1007_s11356_021_17049_6
crossref_primary_10_5812_jhealthscope_122412
crossref_primary_10_1007_s41324_022_00481_2
crossref_primary_10_5572_ajae_2021_045
crossref_primary_10_1007_s13762_022_04580_3
crossref_primary_10_1007_s43546_025_00792_0
crossref_primary_10_1016_j_hazadv_2022_100078
crossref_primary_10_1016_j_scitotenv_2021_146681
crossref_primary_10_1016_j_jclepro_2021_127705
crossref_primary_10_1016_j_scitotenv_2021_145115
crossref_primary_10_1007_s12648_022_02380_6
crossref_primary_10_5696_2156_9614_11_30_210602
crossref_primary_10_1007_s11869_021_01039_1
crossref_primary_10_1088_1748_9326_abb6a2
crossref_primary_10_1016_j_atmosres_2023_106940
crossref_primary_10_1007_s11869_020_00944_1
crossref_primary_10_3390_su12135464
crossref_primary_10_1007_s13762_021_03641_3
crossref_primary_10_1016_j_atmosenv_2024_120649
crossref_primary_10_1080_19475705_2021_1949396
crossref_primary_10_1016_j_rinp_2021_104454
crossref_primary_10_1007_s00477_020_01905_x
crossref_primary_10_1016_j_rsase_2021_100546
crossref_primary_10_1007_s42488_024_00128_x
crossref_primary_10_17714_gumusfenbil_1162562
crossref_primary_10_1016_j_scitotenv_2021_148877
crossref_primary_10_3390_atmos13111928
crossref_primary_10_1016_j_jclepro_2021_125992
crossref_primary_10_3390_app11041458
crossref_primary_10_1016_j_envres_2020_110665
crossref_primary_10_1016_j_scitotenv_2020_140851
crossref_primary_10_2478_jengeo_2020_0009
crossref_primary_10_1016_j_rsase_2021_100551
crossref_primary_10_1680_jmuen_22_00030
crossref_primary_10_3748_wjg_v27_i35_5822
crossref_primary_10_1016_j_scitotenv_2020_140879
crossref_primary_10_1016_j_glt_2020_10_002
crossref_primary_10_1016_j_envres_2020_110692
crossref_primary_10_1002_sd_2554
crossref_primary_10_1016_j_scitotenv_2025_179078
crossref_primary_10_1109_ACCESS_2023_3236414
crossref_primary_10_1016_j_envres_2020_110454
crossref_primary_10_1016_j_scitotenv_2020_139658
crossref_primary_10_1007_s11869_020_00968_7
crossref_primary_10_1016_j_glt_2025_03_002
crossref_primary_10_2166_wst_2021_146
crossref_primary_10_1016_j_envres_2020_110443
crossref_primary_10_1029_2020GL089623
crossref_primary_10_1007_s10668_022_02228_3
crossref_primary_10_1007_s10661_021_09693_9
crossref_primary_10_1002_ep_13672
crossref_primary_10_3390_su12177216
crossref_primary_10_1080_15275922_2021_1940377
crossref_primary_10_3390_ijerph18020544
crossref_primary_10_1017_dmp_2020_372
crossref_primary_10_1016_j_envres_2021_111160
crossref_primary_10_1016_j_scitotenv_2020_140931
crossref_primary_10_1007_s10661_023_11582_2
crossref_primary_10_1016_j_scitotenv_2021_147607
crossref_primary_10_1007_s11356_022_19484_5
crossref_primary_10_1029_2020GH000351
crossref_primary_10_3390_atmos14081257
crossref_primary_10_5194_acp_21_5235_2021
crossref_primary_10_1088_1755_1315_1032_1_012029
crossref_primary_10_26453_otjhs_933314
crossref_primary_10_3390_toxics10110653
crossref_primary_10_1016_j_ancene_2020_100270
crossref_primary_10_3390_atmos11101118
crossref_primary_10_1016_j_uclim_2023_101446
crossref_primary_10_1016_j_envres_2020_109807
crossref_primary_10_1007_s43538_021_00052_3
crossref_primary_10_1016_j_apr_2022_101476
crossref_primary_10_1016_j_cartre_2021_100131
crossref_primary_10_1007_s10668_020_00898_5
crossref_primary_10_1021_acs_estlett_0c00764
crossref_primary_10_1007_s40726_022_00236_5
crossref_primary_10_1016_j_rsase_2021_100557
crossref_primary_10_1016_j_chemosphere_2020_127978
crossref_primary_10_1016_j_apacoust_2021_108582
crossref_primary_10_1007_s10668_020_00994_6
crossref_primary_10_1029_2021JD035440
crossref_primary_10_1016_j_uclim_2020_100758
crossref_primary_10_1016_j_envres_2021_111186
crossref_primary_10_1016_j_uclim_2023_101412
crossref_primary_10_1016_j_uclim_2020_100754
crossref_primary_10_1016_j_atmosres_2021_105823
crossref_primary_10_1080_15567036_2021_1902431
crossref_primary_10_1007_s12040_022_01883_4
crossref_primary_10_3390_en14113264
crossref_primary_10_1016_j_uclim_2021_101082
crossref_primary_10_1016_j_envpol_2020_115682
crossref_primary_10_1016_j_ancene_2020_100256
crossref_primary_10_3389_frsc_2021_705051
crossref_primary_10_1007_s11869_020_00879_7
crossref_primary_10_1007_s13762_022_04464_6
crossref_primary_10_1016_j_scitotenv_2020_140946
crossref_primary_10_1007_s42976_023_00375_5
crossref_primary_10_25259_JCH_9_2023
crossref_primary_10_3390_land11101635
crossref_primary_10_1016_j_scitotenv_2023_163872
crossref_primary_10_3390_atmos14010147
crossref_primary_10_3390_rs14184650
crossref_primary_10_33396_1728_0869_2021_4_15_24
crossref_primary_10_36953_ECJ_15502485
crossref_primary_10_1007_s11869_020_00842_6
crossref_primary_10_1007_s11869_020_00888_6
crossref_primary_10_1016_j_envpol_2020_115859
crossref_primary_10_1016_j_envres_2023_115288
crossref_primary_10_1007_s11869_020_00866_y
crossref_primary_10_1016_j_envres_2020_109835
crossref_primary_10_3390_atmos14040739
crossref_primary_10_1007_s11869_020_00940_5
crossref_primary_10_5194_gmd_14_7459_2021
crossref_primary_10_1007_s10668_021_01241_2
crossref_primary_10_1016_j_scitotenv_2024_171117
crossref_primary_10_1016_j_chemosphere_2022_134650
crossref_primary_10_5194_acp_22_12153_2022
crossref_primary_10_1007_s00477_021_02071_4
crossref_primary_10_3390_su13010118
crossref_primary_10_1007_s00128_020_02907_9
crossref_primary_10_1016_j_matpr_2021_07_296
crossref_primary_10_7759_cureus_12240
crossref_primary_10_1021_acs_est_1c05383
crossref_primary_10_1016_j_apr_2022_101438
crossref_primary_10_3390_su12239956
crossref_primary_10_1016_j_jclepro_2021_126561
crossref_primary_10_3390_recycling5040027
crossref_primary_10_1016_j_scitotenv_2020_144009
crossref_primary_10_3390_geographies1030021
crossref_primary_10_1016_j_uclim_2021_101059
crossref_primary_10_1007_s11270_023_06534_y
crossref_primary_10_1016_j_scitotenv_2020_143161
crossref_primary_10_1007_s11356_021_13813_w
crossref_primary_10_1007_s00128_020_02895_w
crossref_primary_10_3390_ijerph17176208
crossref_primary_10_1016_j_atmosres_2021_105876
crossref_primary_10_1016_j_scitotenv_2023_164527
crossref_primary_10_1080_09603123_2022_2105310
crossref_primary_10_3390_atmos12091097
crossref_primary_10_1016_j_scitotenv_2023_163443
crossref_primary_10_1038_s42949_021_00037_7
crossref_primary_10_20473_jkl_v12i1si_2020_11_20
crossref_primary_10_1016_j_resconrec_2022_106223
crossref_primary_10_1021_acs_estlett_0c00511
crossref_primary_10_1088_1755_1315_1032_1_012007
crossref_primary_10_1007_s11869_020_00877_9
crossref_primary_10_1007_s13143_023_00348_y
crossref_primary_10_1093_jtm_taab055
crossref_primary_10_1007_s12040_021_01722_y
crossref_primary_10_3390_ijerph17239055
crossref_primary_10_1016_j_apr_2022_101452
crossref_primary_10_1108_JEIM_01_2021_0040
crossref_primary_10_1007_s40899_022_00682_5
crossref_primary_10_1038_s41598_021_87673_2
crossref_primary_10_1186_s42269_023_01007_y
crossref_primary_10_3390_air1020010
crossref_primary_10_1126_sciadv_adq1071
crossref_primary_10_1016_j_ipm_2021_102810
crossref_primary_10_1007_s11600_023_01208_z
crossref_primary_10_3390_environments8040033
crossref_primary_10_1007_s11869_021_00990_3
crossref_primary_10_1007_s10708_024_11132_4
crossref_primary_10_3389_frsc_2022_792507
crossref_primary_10_1016_j_atmosenv_2024_121013
crossref_primary_10_1016_j_scitotenv_2021_146918
crossref_primary_10_1029_2020GL091591
crossref_primary_10_1177_14750902211028421
crossref_primary_10_3390_ijerph191912868
crossref_primary_10_1016_j_csr_2021_104511
crossref_primary_10_1016_j_envc_2021_100155
crossref_primary_10_1016_j_envpol_2020_116354
crossref_primary_10_1016_j_plaphy_2024_108876
crossref_primary_10_1007_s10661_024_12321_x
crossref_primary_10_1016_j_impact_2021_100295
crossref_primary_10_3390_app10238720
crossref_primary_10_1016_j_clce_2022_100001
crossref_primary_10_3390_su14095508
crossref_primary_10_1029_2023GL104854
crossref_primary_10_1016_j_scs_2021_103096
crossref_primary_10_1016_j_cmpb_2021_106468
crossref_primary_10_1007_s13762_020_03122_z
crossref_primary_10_1016_j_scitotenv_2020_144693
crossref_primary_10_3390_su14159386
crossref_primary_10_1016_j_uclim_2021_100838
crossref_primary_10_1016_j_uclim_2021_100839
crossref_primary_10_1007_s13198_021_01153_4
crossref_primary_10_51847_mhLv0Gijx5
crossref_primary_10_26634_jfet_16_2_17620
crossref_primary_10_34248_bsengineering_958063
crossref_primary_10_1016_j_envc_2021_100376
crossref_primary_10_3390_su12187440
crossref_primary_10_1021_acsearthspacechem_2c00397
crossref_primary_10_1016_j_apr_2022_101419
crossref_primary_10_1016_j_apr_2021_101119
crossref_primary_10_1029_2022RG000773
crossref_primary_10_1016_j_uclim_2021_100821
crossref_primary_10_3390_atmos13122064
crossref_primary_10_1088_1755_1315_1180_1_012006
crossref_primary_10_1007_s12648_023_02802_z
crossref_primary_10_1007_s11356_021_16078_5
crossref_primary_10_1007_s11356_020_11808_7
crossref_primary_10_1016_j_scitotenv_2020_143382
crossref_primary_10_20473_jkl_v12i1si_2020_70_78
crossref_primary_10_3389_fenvs_2023_1104679
crossref_primary_10_3390_atmos12030352
crossref_primary_10_1016_j_uclim_2021_100818
crossref_primary_10_1007_s10661_022_09808_w
crossref_primary_10_1016_j_uclim_2021_100813
crossref_primary_10_1007_s10661_024_13282_x
crossref_primary_10_1080_10962247_2021_1905104
crossref_primary_10_3390_rs12152420
crossref_primary_10_1007_s41810_020_00077_z
crossref_primary_10_3390_ijerph19020727
crossref_primary_10_1080_09720510_2021_1872691
crossref_primary_10_1016_j_uclim_2021_100803
crossref_primary_10_1016_j_jenvman_2021_114079
crossref_primary_10_1088_1748_9326_ac9703
crossref_primary_10_1016_j_uclim_2021_100802
crossref_primary_10_1007_s10661_023_11885_4
crossref_primary_10_35232_estudamhsd_759421
crossref_primary_10_1007_s12040_021_01666_3
crossref_primary_10_1016_j_envpol_2020_115471
crossref_primary_10_1080_00167223_2022_2053999
crossref_primary_10_3390_pathogens10081003
crossref_primary_10_32604_cmc_2021_014991
crossref_primary_10_3390_en13226044
crossref_primary_10_1007_s41324_022_00442_9
crossref_primary_10_1038_s41598_021_83393_9
crossref_primary_10_1016_j_uclim_2020_100719
crossref_primary_10_1007_s12524_020_01157_w
crossref_primary_10_1007_s42398_021_00213_6
crossref_primary_10_1016_j_atmosenv_2025_121115
crossref_primary_10_1016_j_cities_2023_104246
crossref_primary_10_3390_atmos11111174
crossref_primary_10_1016_j_apgeog_2022_102869
crossref_primary_10_1007_s00477_022_02362_4
crossref_primary_10_1021_acsearthspacechem_4c00332
crossref_primary_10_1016_j_envpol_2021_117988
crossref_primary_10_1525_elementa_2021_00176
crossref_primary_10_1007_s00248_021_01781_0
crossref_primary_10_1080_10807039_2022_2093155
crossref_primary_10_1007_s41324_021_00410_9
crossref_primary_10_1016_j_uclim_2020_100729
crossref_primary_10_3390_atmos11101137
crossref_primary_10_3390_en15062020
crossref_primary_10_1016_j_chaos_2023_114255
crossref_primary_10_1016_j_fuel_2021_121544
crossref_primary_10_1007_s41324_022_00499_6
crossref_primary_10_1016_j_scitotenv_2020_139086
crossref_primary_10_3390_atmos16030314
crossref_primary_10_1016_j_envpol_2020_115250
crossref_primary_10_1016_j_scitotenv_2020_142014
crossref_primary_10_3389_fenvs_2021_764294
crossref_primary_10_1016_j_scitotenv_2020_139087
crossref_primary_10_1016_j_heliyon_2022_e10402
crossref_primary_10_1016_j_envres_2021_112246
crossref_primary_10_3390_environments8040029
crossref_primary_10_3390_atmos14101578
crossref_primary_10_1007_s11356_024_33174_4
crossref_primary_10_1111_1462_2920_16023
crossref_primary_10_1002_bse_4065
crossref_primary_10_1007_s11356_023_27236_2
crossref_primary_10_3389_fenvs_2021_784959
crossref_primary_10_1016_j_biteb_2020_100491
crossref_primary_10_3390_atmos11090914
crossref_primary_10_3390_atmos15050607
crossref_primary_10_1007_s10668_024_05631_0
crossref_primary_10_1007_s12524_023_01770_5
crossref_primary_10_1007_s10668_020_00837_4
crossref_primary_10_1016_j_jenvman_2022_116907
crossref_primary_10_1007_s12040_023_02181_3
crossref_primary_10_1016_j_biocon_2022_109597
crossref_primary_10_1007_s11356_023_26919_0
crossref_primary_10_1016_j_nexres_2025_100243
crossref_primary_10_1080_15275922_2020_1836082
crossref_primary_10_7717_peerj_14489
crossref_primary_10_1016_j_energy_2020_118701
crossref_primary_10_1029_2021EF002061
crossref_primary_10_1016_j_jth_2021_101257
crossref_primary_10_1016_j_atmosenv_2024_120343
crossref_primary_10_1007_s10668_020_00933_5
crossref_primary_10_1007_s11769_022_1303_3
crossref_primary_10_1088_2515_7620_acb5e5
crossref_primary_10_3390_su132111803
crossref_primary_10_1016_j_uclim_2021_100791
crossref_primary_10_1016_j_atmosenv_2020_118132
crossref_primary_10_1109_LGRS_2021_3049887
crossref_primary_10_1007_s12647_022_00548_3
crossref_primary_10_1007_s10668_020_01034_z
crossref_primary_10_1016_j_gsf_2022_101368
crossref_primary_10_1007_s40201_022_00786_2
crossref_primary_10_1016_j_chemosphere_2024_142147
crossref_primary_10_1016_j_cities_2021_103308
crossref_primary_10_1016_j_rse_2023_113514
crossref_primary_10_1016_j_envres_2021_111990
crossref_primary_10_14233_ajchem_2021_23102
crossref_primary_10_1016_j_envres_2021_111754
crossref_primary_10_1016_j_pce_2023_103439
crossref_primary_10_1016_j_envres_2020_110121
crossref_primary_10_1016_j_iatssr_2022_05_001
crossref_primary_10_1007_s41748_021_00278_7
crossref_primary_10_1016_j_atmosenv_2023_120285
crossref_primary_10_1016_j_atmosenv_2021_118844
crossref_primary_10_3390_su14031438
crossref_primary_10_1007_s11869_020_00916_5
crossref_primary_10_1016_j_scitotenv_2021_150248
crossref_primary_10_1016_j_apr_2020_11_013
crossref_primary_10_1007_s40095_020_00379_5
crossref_primary_10_1142_S1793557122502473
crossref_primary_10_15415_jce_2020_71001
crossref_primary_10_3846_jeelm_2023_19472
crossref_primary_10_1016_j_envint_2024_108979
crossref_primary_10_3389_fenvs_2021_654651
crossref_primary_10_3390_ijerph17145167
crossref_primary_10_1088_2053_1591_ac35d0
crossref_primary_10_1007_s41885_020_00072_1
crossref_primary_10_1007_s42398_021_00207_4
crossref_primary_10_1016_j_seares_2024_102504
crossref_primary_10_1088_1748_9326_ac1012
crossref_primary_10_1007_s11116_021_10246_9
crossref_primary_10_1007_s10668_021_01434_9
crossref_primary_10_1016_j_eap_2021_07_012
crossref_primary_10_3390_atmos12060735
crossref_primary_10_1007_s41324_022_00456_3
crossref_primary_10_1016_j_apr_2020_11_005
crossref_primary_10_1016_j_envpol_2022_118984
crossref_primary_10_1080_10807039_2022_2157242
crossref_primary_10_3390_su142215258
crossref_primary_10_1016_j_atmosenv_2021_118423
crossref_primary_10_1007_s11356_022_21586_z
crossref_primary_10_1007_s12647_022_00615_9
crossref_primary_10_1007_s41324_021_00426_1
crossref_primary_10_1080_10962247_2023_2290710
crossref_primary_10_1080_00207233_2021_1929412
crossref_primary_10_1016_j_cegh_2020_08_017
crossref_primary_10_1093_aje_kwae171
crossref_primary_10_1590_0102_311x00242320
crossref_primary_10_1007_s10661_022_10362_8
crossref_primary_10_1016_j_jenvman_2021_112277
crossref_primary_10_1515_reveh_2021_0021
crossref_primary_10_1016_j_envpol_2021_116498
crossref_primary_10_1007_s00477_021_02033_w
crossref_primary_10_1016_j_trip_2020_100165
crossref_primary_10_1016_j_scitotenv_2020_142526
crossref_primary_10_1016_j_scitotenv_2020_140353
crossref_primary_10_1016_j_envres_2021_111314
crossref_primary_10_1016_j_scitotenv_2020_142533
crossref_primary_10_1007_s10874_024_09458_x
crossref_primary_10_3390_ijerph18073404
crossref_primary_10_1007_s11356_022_20997_2
crossref_primary_10_1007_s40710_022_00585_9
crossref_primary_10_1088_1755_1315_1013_1_012006
crossref_primary_10_1126_sciadv_abd6696
crossref_primary_10_1016_j_envsci_2023_04_009
crossref_primary_10_1038_s41612_023_00367_6
crossref_primary_10_17721_1728_2667_2021_216_3_5
crossref_primary_10_1016_j_envres_2020_110514
crossref_primary_10_1016_j_envres_2020_110515
crossref_primary_10_1177_09754253221122752
crossref_primary_10_2174_26669587_v2_e2203030
crossref_primary_10_1016_j_heliyon_2025_e41762
crossref_primary_10_3390_app14188169
crossref_primary_10_1016_j_envpol_2021_117153
crossref_primary_10_1016_j_scitotenv_2020_141621
crossref_primary_10_1016_j_uclim_2021_101013
crossref_primary_10_7189_jogh_12_05043
crossref_primary_10_1016_j_chemosphere_2023_139056
crossref_primary_10_24057_2071_9388_2021_012
crossref_primary_10_1016_j_eti_2021_101578
crossref_primary_10_3390_atmos13111871
crossref_primary_10_1038_s41598_021_94373_4
crossref_primary_10_3390_su12208661
crossref_primary_10_2478_acee_2023_0057
crossref_primary_10_3390_su16145969
crossref_primary_10_1007_s10640_020_00474_5
crossref_primary_10_1016_j_jeem_2022_102749
crossref_primary_10_1007_s10661_023_11949_5
crossref_primary_10_1007_s12524_022_01520_z
crossref_primary_10_1007_s11356_021_15508_8
crossref_primary_10_1108_MEQ_12_2021_0290
crossref_primary_10_1039_D1EM00187F
crossref_primary_10_15406_jabb_2021_08_00250
crossref_primary_10_1007_s11869_020_00958_9
crossref_primary_10_1080_19475705_2021_1914197
crossref_primary_10_1016_j_scitotenv_2020_142723
crossref_primary_10_3389_fenvs_2024_1519984
crossref_primary_10_20473_jkl_v12i1si_2020_51_59
crossref_primary_10_1016_j_envint_2022_107481
crossref_primary_10_3390_su131810212
crossref_primary_10_1007_s40899_022_00784_0
crossref_primary_10_1007_s00382_022_06247_8
crossref_primary_10_7717_peerj_9642
crossref_primary_10_1016_j_envadv_2021_100149
crossref_primary_10_1016_j_envres_2021_110839
crossref_primary_10_1016_j_rsase_2020_100382
crossref_primary_10_1007_s13143_021_00232_7
crossref_primary_10_1108_TQM_12_2021_0374
crossref_primary_10_1080_01919512_2021_2009332
crossref_primary_10_1007_s11869_020_00921_8
crossref_primary_10_1186_s42269_022_00706_2
crossref_primary_10_1016_j_scitotenv_2022_154299
crossref_primary_10_1007_s11069_024_06568_3
crossref_primary_10_1016_j_pce_2025_103863
crossref_primary_10_1016_j_jth_2021_101061
crossref_primary_10_1016_j_jenvman_2020_111496
crossref_primary_10_1007_s42398_021_00166_w
crossref_primary_10_1080_10095020_2022_2066575
crossref_primary_10_1007_s00500_021_06012_9
crossref_primary_10_1007_s10661_022_09932_7
crossref_primary_10_1016_j_jclepro_2021_126514
crossref_primary_10_1155_2021_6697707
crossref_primary_10_1016_j_pce_2022_103197
crossref_primary_10_1080_17597269_2021_2002648
crossref_primary_10_1002_bsd2_390
crossref_primary_10_1002_jnm_2993
crossref_primary_10_1016_j_envres_2021_110854
crossref_primary_10_1016_j_envpol_2020_115920
crossref_primary_10_1080_10807039_2021_1962242
crossref_primary_10_1080_09603123_2021_1917526
crossref_primary_10_3390_rs13214395
crossref_primary_10_1016_j_envpol_2020_115927
crossref_primary_10_3390_su16188229
crossref_primary_10_1007_s12040_020_01475_0
crossref_primary_10_1007_s10668_023_03495_4
crossref_primary_10_1039_D2VA00114D
crossref_primary_10_1016_j_esr_2022_100924
crossref_primary_10_1021_acs_estlett_1c00211
crossref_primary_10_1016_j_scitotenv_2020_139765
crossref_primary_10_1007_s00128_020_02877_y
crossref_primary_10_1038_s41598_022_16105_6
crossref_primary_10_1016_j_ijid_2020_11_187
crossref_primary_10_1016_j_jastp_2020_105491
crossref_primary_10_3390_ijerph17207375
crossref_primary_10_1016_j_envres_2021_111280
crossref_primary_10_1007_s10874_023_09456_5
crossref_primary_10_1016_j_atmosres_2021_105924
crossref_primary_10_1016_j_envpol_2022_119468
crossref_primary_10_1007_s13762_021_03505_w
crossref_primary_10_1016_j_apr_2021_02_002
crossref_primary_10_1016_j_glt_2024_06_003
crossref_primary_10_1007_s11869_023_01381_6
crossref_primary_10_1016_j_isci_2022_105297
crossref_primary_10_1016_j_envc_2021_100431
crossref_primary_10_1016_j_heliyon_2024_e39578
crossref_primary_10_1109_TEM_2022_3209786
crossref_primary_10_3390_ijerph191912904
crossref_primary_10_1016_j_scs_2020_102660
crossref_primary_10_3389_fpubh_2021_642630
crossref_primary_10_3390_ijerph19159022
crossref_primary_10_1007_s42452_020_03831_7
crossref_primary_10_1016_j_envres_2021_111051
crossref_primary_10_3390_ijerph191711111
crossref_primary_10_5327_Z2176_94781270
crossref_primary_10_1016_j_scitotenv_2021_147739
crossref_primary_10_1016_j_jece_2020_104144
crossref_primary_10_1016_j_apr_2022_101594
crossref_primary_10_1038_s41598_022_15664_y
crossref_primary_10_1007_s00484_020_02019_3
crossref_primary_10_1016_j_rsase_2021_100473
crossref_primary_10_1016_j_rsase_2021_100476
crossref_primary_10_1016_j_atmosenv_2020_117835
crossref_primary_10_3390_su15010642
crossref_primary_10_1007_s11869_020_00845_3
crossref_primary_10_3390_atmos14091390
crossref_primary_10_1007_s13201_022_01625_3
crossref_primary_10_3390_su15020892
crossref_primary_10_51800_ecd_1109104
crossref_primary_10_1016_j_uclim_2023_101533
crossref_primary_10_1016_j_envres_2020_109938
crossref_primary_10_1016_j_jclepro_2021_126674
crossref_primary_10_1007_s10661_021_09120_z
crossref_primary_10_3390_healthcare11142112
crossref_primary_10_3390_ijerph20010390
crossref_primary_10_1007_s10661_023_11922_2
crossref_primary_10_1515_noise_2022_0161
crossref_primary_10_1016_j_ijepes_2021_107757
crossref_primary_10_1080_03067319_2021_1902997
crossref_primary_10_3390_rs12233939
crossref_primary_10_1016_j_scitotenv_2021_145586
crossref_primary_10_1080_19475705_2021_1885503
crossref_primary_10_1016_j_apr_2023_101662
crossref_primary_10_15864_ajps_1304
crossref_primary_10_1007_s44274_024_00082_w
crossref_primary_10_3390_rs16193618
crossref_primary_10_12944_CWE_15_3_20
crossref_primary_10_5194_acp_21_13609_2021
crossref_primary_10_1016_j_scs_2021_102989
crossref_primary_10_1016_j_scs_2020_102688
crossref_primary_10_1007_s11356_021_13812_x
crossref_primary_10_1029_2020GL089788
crossref_primary_10_1016_j_atmosenv_2022_119559
crossref_primary_10_3390_atmos11121279
crossref_primary_10_3390_pr8091152
crossref_primary_10_1016_j_tfp_2021_100119
crossref_primary_10_3390_atmos12091190
crossref_primary_10_1016_j_procs_2023_01_077
crossref_primary_10_3390_su12198232
crossref_primary_10_1016_j_atmosres_2021_105730
crossref_primary_10_5194_acp_21_15431_2021
crossref_primary_10_1080_15567036_2020_1853854
crossref_primary_10_3389_fenvs_2022_910579
crossref_primary_10_3390_ijerph18052296
crossref_primary_10_1016_j_atmosres_2021_105729
crossref_primary_10_1016_j_envc_2021_100239
crossref_primary_10_1007_s00477_022_02308_w
crossref_primary_10_1002_cnl2_46
crossref_primary_10_3390_toxics10050225
crossref_primary_10_1051_bioconf_20237305021
crossref_primary_10_1016_j_scs_2020_102629
crossref_primary_10_1016_j_envint_2023_107805
crossref_primary_10_1007_s40726_020_00155_3
crossref_primary_10_1007_s10661_021_09177_w
crossref_primary_10_3390_su13169030
crossref_primary_10_1007_s11869_020_00974_9
crossref_primary_10_1007_s11356_021_12934_6
crossref_primary_10_3390_atmos15040410
crossref_primary_10_3390_ijerph19041950
crossref_primary_10_1080_02642069_2023_2172165
crossref_primary_10_1016_j_jclepro_2021_126475
crossref_primary_10_1016_j_apr_2022_101587
crossref_primary_10_3390_su12187367
crossref_primary_10_1007_s12517_021_07777_x
crossref_primary_10_2139_ssrn_3698595
crossref_primary_10_1007_s11356_021_16697_y
crossref_primary_10_1007_s41810_025_00294_4
crossref_primary_10_3390_su15032682
crossref_primary_10_1007_s10668_021_01240_3
crossref_primary_10_1007_s11869_020_00965_w
crossref_primary_10_1016_j_rsase_2021_100489
crossref_primary_10_1007_s11356_021_17955_9
crossref_primary_10_1177_0734242X211045208
crossref_primary_10_3389_fenvs_2023_1132159
crossref_primary_10_5194_acp_21_8693_2021
crossref_primary_10_3389_frsc_2021_705131
crossref_primary_10_3390_atmos12030407
crossref_primary_10_3390_rs16162932
crossref_primary_10_1016_j_uclim_2023_101747
crossref_primary_10_1088_1748_9326_adac7d
crossref_primary_10_1016_j_atmosres_2025_108053
crossref_primary_10_1016_j_atmosres_2021_105738
crossref_primary_10_1007_s11356_023_30631_4
crossref_primary_10_1021_acs_estlett_0c00815
crossref_primary_10_1038_s41598_022_20885_2
crossref_primary_10_1007_s11869_020_00863_1
crossref_primary_10_11609_jott_9379_17_2_26494_26503
crossref_primary_10_5194_acp_21_4025_2021
crossref_primary_10_1016_j_apr_2021_101247
crossref_primary_10_1016_j_apr_2022_101523
crossref_primary_10_1016_j_uclim_2021_100972
crossref_primary_10_3390_w13101363
crossref_primary_10_1080_15567036_2021_1889077
crossref_primary_10_1177_09711023241264679
crossref_primary_10_1016_j_heliyon_2022_e10757
crossref_primary_10_1007_s10661_022_10761_x
crossref_primary_10_1016_j_envpol_2021_116512
crossref_primary_10_3390_rs13173492
crossref_primary_10_3390_rs13050877
crossref_primary_10_1007_s11356_020_12141_9
crossref_primary_10_1016_j_envres_2021_111208
crossref_primary_10_3390_su12229397
crossref_primary_10_1007_s10453_020_09673_5
crossref_primary_10_7717_peerj_11387
crossref_primary_10_3390_atmos14040671
crossref_primary_10_1016_j_scitotenv_2020_142391
crossref_primary_10_1016_j_scitotenv_2020_144330
crossref_primary_10_3390_su141710880
crossref_primary_10_7163_GPol_0235
crossref_primary_10_1016_j_heliyon_2020_e04764
crossref_primary_10_1061_JOEEDU_EEENG_7463
crossref_primary_10_1016_j_uclim_2021_100954
crossref_primary_10_1029_2020GL091699
crossref_primary_10_1016_j_uclim_2021_100952
crossref_primary_10_3390_app14104007
crossref_primary_10_3390_atmos12101298
crossref_primary_10_1108_BIJ_09_2021_0514
crossref_primary_10_1016_j_envpol_2020_116011
crossref_primary_10_3390_atmos11101045
crossref_primary_10_1016_j_envpol_2021_116975
crossref_primary_10_1007_s40822_024_00295_7
crossref_primary_10_1016_j_uclim_2021_100946
crossref_primary_10_1016_j_envres_2021_111471
crossref_primary_10_1016_j_uclim_2021_100944
crossref_primary_10_1029_2021JD035392
crossref_primary_10_1111_ina_12778
crossref_primary_10_1016_j_apr_2021_101231
crossref_primary_10_1016_j_atmosenv_2021_118322
crossref_primary_10_1016_j_envres_2021_111236
crossref_primary_10_1111_sjtg_12517
crossref_primary_10_1039_D0FD00123F
crossref_primary_10_5327_Z217694781300
crossref_primary_10_3390_rs12183042
crossref_primary_10_1021_acs_est_1c01970
crossref_primary_10_1007_s00703_022_00932_3
crossref_primary_10_1016_j_chemosphere_2020_126980
crossref_primary_10_1016_j_uclim_2021_100930
crossref_primary_10_1002_env_2673
crossref_primary_10_1016_j_envpol_2021_118716
crossref_primary_10_1088_1748_9326_ac7889
crossref_primary_10_1016_j_scs_2021_103173
crossref_primary_10_1051_e3sconf_202131701084
crossref_primary_10_3389_fenvs_2024_1344194
crossref_primary_10_1016_j_scitotenv_2020_141024
crossref_primary_10_1016_j_envres_2021_112107
crossref_primary_10_3390_toxics10090520
crossref_primary_10_1016_j_envres_2021_111255
crossref_primary_10_1007_s10661_022_09916_7
crossref_primary_10_1016_j_atmosenv_2021_118386
crossref_primary_10_1016_j_chemosphere_2020_126969
crossref_primary_10_15377_2410_3624_2023_10_4
crossref_primary_10_1016_j_gsf_2021_101291
crossref_primary_10_1016_j_apr_2022_101508
crossref_primary_10_1038_s41598_020_70179_8
crossref_primary_10_1007_s12524_024_01807_3
crossref_primary_10_1016_j_scitotenv_2022_159383
crossref_primary_10_1007_s12040_022_01916_y
crossref_primary_10_1088_1755_1315_1040_1_012015
crossref_primary_10_1016_j_envres_2021_112597
crossref_primary_10_1016_j_gsf_2021_101284
crossref_primary_10_1016_j_envpol_2020_115368
crossref_primary_10_1007_s11270_025_07824_3
crossref_primary_10_1557_s43581_024_00100_7
crossref_primary_10_1016_j_uclim_2021_100908
crossref_primary_10_3389_fenvs_2021_674432
crossref_primary_10_1016_j_uclim_2021_100900
crossref_primary_10_1007_s13762_021_03142_3
crossref_primary_10_3390_risks11120212
crossref_primary_10_1016_j_atmosenv_2020_118072
crossref_primary_10_1080_15567036_2021_1896611
crossref_primary_10_1186_s12544_021_00473_7
crossref_primary_10_1016_j_uclim_2022_101290
Cites_doi 10.1016/j.envint.2015.06.014
10.1016/j.atmosenv.2016.01.036
10.1016/j.scitotenv.2014.04.064
10.1073/pnas.1812168116
10.1007/s10311-018-0706-y
10.1016/j.scitotenv.2019.01.227
10.1007/s40726-018-0081-0
10.1016/j.envpol.2017.08.016
10.4209/aaqr.2016.06.0262
10.1016/j.atmosenv.2019.116867
10.5194/acp-17-8681-2017
10.1016/j.envint.2020.105556
10.1016/j.atmosenv.2018.03.003
10.1016/j.envpol.2019.01.124
10.1016/j.resconrec.2020.104814
10.1029/2019GL084605
10.1016/j.scitotenv.2019.136126
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.scitotenv.2020.138878
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 138878
ExternalDocumentID PMC7175882
32335409
10_1016_j_scitotenv_2020_138878
S0048969720323950
Genre Journal Article
GeographicLocations Cities
India
GeographicLocations_xml – name: India
– name: Cities
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c574t-9aacf3a5eca90a959cfc6da7a9bcae2b745c7fe5a9b83b7842b4d5a81438dd23
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Aug 21 18:08:18 EDT 2025
Tue Aug 05 11:20:55 EDT 2025
Sun Aug 24 04:11:53 EDT 2025
Wed Feb 19 02:29:14 EST 2025
Thu Apr 24 23:12:36 EDT 2025
Tue Jul 01 03:35:40 EDT 2025
Fri Feb 23 02:44:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
AQI
AERMOD
PM2.5
India
PM(2.5)
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-9aacf3a5eca90a959cfc6da7a9bcae2b745c7fe5a9b83b7842b4d5a81438dd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1797-2311
0000-0002-1977-2954
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7175882
PMID 32335409
PQID 2395258807
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175882
proquest_miscellaneous_2985547118
proquest_miscellaneous_2395258807
pubmed_primary_32335409
crossref_primary_10_1016_j_scitotenv_2020_138878
crossref_citationtrail_10_1016_j_scitotenv_2020_138878
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_138878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References CPCB (bb0015) 2014
Guo, Kota, Sahu, Hu, Ying, Gao (bb0035) 2017; 231
Beig, Sahu (bb0005) 2018
Hu, Ying, Wang, Zhang (bb0045) 2015; 84
Li, Jacob, Liao, Shen, Zhang, Bates (bb0065) 2019; 116
Zhang, Hu, Kleeman, Ying (bb0110) 2014; 490
Wang, Guo, Hu, Kota, Ying, Zhang (bb0095) 2019; 662
Shen, Zhang, Jiang, Tang, Gai, Chen (bb0090) 2020; 137
Mukherjee, Agrawal (bb0075) 2018; 16
Sahu, Kota (bb0080) 2017; 17
Beig, Sahu, Singh, Tikle, Sobhana, Gargeva (bb0010) 2020; 709
Dang, Liao (bb0020) 2019; 46
Li, Liao, Hu, Li (bb0060) 2019; 248
WHO (bb0105) 2005
Garaga, Sahu, Kota (bb0030) 2018; 4
Wang, Chen, Zhu, Wang, Zhang (bb0100) 2020; 158
Klimont, Kupiainen, Heyes, Purohit, Cofala, Rafaj (bb0050) 2017; 17
EPA U (bb0025) 2007
Sharma, Chatani, Mahtta, Goel, Kumar (bb0085) 2016; 131
Guo, Kota, Sahu, Zhang (bb0040) 2019; 214
Kota, Guo, Myllyvirta, Hu, Sahu, Garaga (bb0055) 2018; 180
MoEFC. Ministry of Environmenta, Forest and Climate Change (bb0070) 2019
Li (10.1016/j.scitotenv.2020.138878_bb0060) 2019; 248
Shen (10.1016/j.scitotenv.2020.138878_bb0090) 2020; 137
Beig (10.1016/j.scitotenv.2020.138878_bb0010) 2020; 709
Li (10.1016/j.scitotenv.2020.138878_bb0065) 2019; 116
EPA U (10.1016/j.scitotenv.2020.138878_bb0025) 2007
Mukherjee (10.1016/j.scitotenv.2020.138878_bb0075) 2018; 16
Sahu (10.1016/j.scitotenv.2020.138878_bb0080) 2017; 17
Wang (10.1016/j.scitotenv.2020.138878_bb0095) 2019; 662
CPCB (10.1016/j.scitotenv.2020.138878_bb0015) 2014
Garaga (10.1016/j.scitotenv.2020.138878_bb0030) 2018; 4
Wang (10.1016/j.scitotenv.2020.138878_bb0100) 2020; 158
WHO (10.1016/j.scitotenv.2020.138878_bb0105) 2005
Dang (10.1016/j.scitotenv.2020.138878_bb0020) 2019; 46
MoEFC. Ministry of Environmenta, Forest and Climate Change (10.1016/j.scitotenv.2020.138878_bb0070) 2019
Guo (10.1016/j.scitotenv.2020.138878_bb0035) 2017; 231
Kota (10.1016/j.scitotenv.2020.138878_bb0055) 2018; 180
Klimont (10.1016/j.scitotenv.2020.138878_bb0050) 2017; 17
Beig (10.1016/j.scitotenv.2020.138878_bb0005) 2018
Guo (10.1016/j.scitotenv.2020.138878_bb0040) 2019; 214
Hu (10.1016/j.scitotenv.2020.138878_bb0045) 2015; 84
Sharma (10.1016/j.scitotenv.2020.138878_bb0085) 2016; 131
Zhang (10.1016/j.scitotenv.2020.138878_bb0110) 2014; 490
References_xml – volume: 231
  start-page: 426
  year: 2017
  end-page: 436
  ident: bb0035
  article-title: Source apportionment of PM2. 5 in North India using source-oriented air quality models
  publication-title: Environ. Pollut.
– year: 2014
  ident: bb0015
  article-title: National Air Quality Index Report
– volume: 214
  year: 2019
  ident: bb0040
  article-title: Contributions of local and regional sources to PM2. 5 and its health effects in north India
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 588
  year: 2017
  end-page: 597
  ident: bb0080
  article-title: Significance of PM2. 5 air quality at the Indian capital
  publication-title: Aerosol Air Qual. Res.
– year: 2019
  ident: bb0070
  publication-title: National Clean Air Programme
– volume: 158
  year: 2020
  ident: bb0100
  article-title: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak
  publication-title: Resour. Conserv. Recycl.
– volume: 180
  start-page: 244
  year: 2018
  end-page: 255
  ident: bb0055
  article-title: Year-long simulation of gaseous and particulate air pollutants in India
  publication-title: Atmos. Environ.
– volume: 662
  start-page: 297
  year: 2019
  end-page: 306
  ident: bb0095
  article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China
  publication-title: Sci. Total Environ.
– volume: 709
  year: 2020
  ident: bb0010
  article-title: Objective evaluation of stubble emission of North India and quantifying its impact on air quality of Delhi
  publication-title: Sci. Total Environ.
– volume: 84
  start-page: 17
  year: 2015
  end-page: 25
  ident: bb0045
  article-title: Characterizing multi-pollutant air pollution in China: comparison of three air quality indices
  publication-title: Environ. Int.
– volume: 16
  start-page: 1009
  year: 2018
  end-page: 1016
  ident: bb0075
  article-title: Air pollutant levels are 12 times higher than guidelines in Varanasi, India. Sources and transfer
  publication-title: Environ. Chem. Lett.
– volume: 4
  start-page: 59
  year: 2018
  end-page: 73
  ident: bb0030
  article-title: A review of air quality modeling studies in India: local and regional scale
  publication-title: Curr. Pollut. Rep.
– volume: 490
  start-page: 171
  year: 2014
  end-page: 181
  ident: bb0110
  article-title: Source apportionment of sulfate and nitrate particulate matter in the eastern United States and effectiveness of emission control programs
  publication-title: Sci. Total Environ.
– year: 2018
  ident: bb0005
  publication-title: SAFAR-High Resolution Emission Inventory of Mega City Delhi -2018
– volume: 116
  start-page: 422
  year: 2019
  end-page: 427
  ident: bb0065
  article-title: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China
  publication-title: Proc. Natl. Acad. Sci.
– year: 2007
  ident: bb0025
  article-title: Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2. 5, and Regional Haze
– volume: 46
  start-page: 12511
  year: 2019
  end-page: 12519
  ident: bb0020
  article-title: Radiative forcing and health impact of aerosols and ozone in China as the consequence of clean air actions over 2012–2017
  publication-title: Geophys. Res. Lett.
– volume: 131
  start-page: 29
  year: 2016
  end-page: 40
  ident: bb0085
  article-title: Sensitivity analysis of ground level ozone in India using WRF-CMAQ models
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 8681
  year: 2017
  end-page: 8723
  ident: bb0050
  article-title: Global anthropogenic emissions of particulate matter including black carbon
  publication-title: Atmos. Chem. Phys.
– volume: 137
  year: 2020
  ident: bb0090
  article-title: Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China
  publication-title: Environ. Int.
– volume: 248
  start-page: 74
  year: 2019
  end-page: 81
  ident: bb0060
  article-title: Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions
  publication-title: Environ. Pollut.
– year: 2005
  ident: bb0105
  article-title: Air Quality Guidelines
  publication-title: Global update 2005, Europe
– year: 2007
  ident: 10.1016/j.scitotenv.2020.138878_bb0025
– volume: 84
  start-page: 17
  year: 2015
  ident: 10.1016/j.scitotenv.2020.138878_bb0045
  article-title: Characterizing multi-pollutant air pollution in China: comparison of three air quality indices
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.06.014
– volume: 131
  start-page: 29
  year: 2016
  ident: 10.1016/j.scitotenv.2020.138878_bb0085
  article-title: Sensitivity analysis of ground level ozone in India using WRF-CMAQ models
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.01.036
– volume: 490
  start-page: 171
  year: 2014
  ident: 10.1016/j.scitotenv.2020.138878_bb0110
  article-title: Source apportionment of sulfate and nitrate particulate matter in the eastern United States and effectiveness of emission control programs
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.04.064
– year: 2018
  ident: 10.1016/j.scitotenv.2020.138878_bb0005
– volume: 116
  start-page: 422
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138878_bb0065
  article-title: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1812168116
– year: 2019
  ident: 10.1016/j.scitotenv.2020.138878_bb0070
– volume: 16
  start-page: 1009
  year: 2018
  ident: 10.1016/j.scitotenv.2020.138878_bb0075
  article-title: Air pollutant levels are 12 times higher than guidelines in Varanasi, India. Sources and transfer
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-018-0706-y
– year: 2014
  ident: 10.1016/j.scitotenv.2020.138878_bb0015
– volume: 662
  start-page: 297
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138878_bb0095
  article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.227
– volume: 4
  start-page: 59
  year: 2018
  ident: 10.1016/j.scitotenv.2020.138878_bb0030
  article-title: A review of air quality modeling studies in India: local and regional scale
  publication-title: Curr. Pollut. Rep.
  doi: 10.1007/s40726-018-0081-0
– volume: 231
  start-page: 426
  year: 2017
  ident: 10.1016/j.scitotenv.2020.138878_bb0035
  article-title: Source apportionment of PM2. 5 in North India using source-oriented air quality models
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.016
– volume: 17
  start-page: 588
  year: 2017
  ident: 10.1016/j.scitotenv.2020.138878_bb0080
  article-title: Significance of PM2. 5 air quality at the Indian capital
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2016.06.0262
– volume: 214
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138878_bb0040
  article-title: Contributions of local and regional sources to PM2. 5 and its health effects in north India
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.116867
– volume: 17
  start-page: 8681
  year: 2017
  ident: 10.1016/j.scitotenv.2020.138878_bb0050
  article-title: Global anthropogenic emissions of particulate matter including black carbon
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-8681-2017
– volume: 137
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138878_bb0090
  article-title: Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105556
– volume: 180
  start-page: 244
  year: 2018
  ident: 10.1016/j.scitotenv.2020.138878_bb0055
  article-title: Year-long simulation of gaseous and particulate air pollutants in India
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.03.003
– year: 2005
  ident: 10.1016/j.scitotenv.2020.138878_bb0105
  article-title: Air Quality Guidelines
– volume: 248
  start-page: 74
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138878_bb0060
  article-title: Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.01.124
– volume: 158
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138878_bb0100
  article-title: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.104814
– volume: 46
  start-page: 12511
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138878_bb0020
  article-title: Radiative forcing and health impact of aerosols and ozone in China as the consequence of clean air actions over 2012–2017
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL084605
– volume: 709
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138878_bb0010
  article-title: Objective evaluation of stubble emission of North India and quantifying its impact on air quality of Delhi
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136126
SSID ssj0000781
Score 2.7217665
Snippet The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 138878
SubjectTerms AERMOD
Air Pollution - analysis
air quality
AQI
Betacoronavirus
Cities
Coronavirus Infections
COVID-19
COVID-19 infection
environment
Environmental Monitoring
Human Activities
Humans
India
meteorology
ozone
Pandemics
Particulate Matter - analysis
PM2.5
Pneumonia, Viral
quality control
SARS-CoV-2
Title Effect of restricted emissions during COVID-19 on air quality in India
URI https://dx.doi.org/10.1016/j.scitotenv.2020.138878
https://www.ncbi.nlm.nih.gov/pubmed/32335409
https://www.proquest.com/docview/2395258807
https://www.proquest.com/docview/2985547118
https://pubmed.ncbi.nlm.nih.gov/PMC7175882
Volume 728
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISYkCZNaHRjKwPkSXvNCIkd23tDhaqlGpMmtvFmOY4jMqEE0YLEC7-duzoplGnjYU_5OieO78N39n0AfCoym6IWIiKPsj_iEs90oXiklNWujG3hUop3_nqSjX7w4zNxtgKDLhaG3Cpb2R9k-lxat3f22tHcu6wqivHlSmea9hGTVM_tds4lUfnnuwc3D0pmE3aZkbEResnHC987a1A3vUFDMaEaEMhy6m8z1J8a6FNHykcz0_A1rLcqJTsIvd6AFV_3YC0UmbztwebRQywbgrXMPO3Bq7Bkx0Ik0hsYhkzGrCkZFexAAYnaKKN6cLSiNmUhopENvv0cH0b7mjU1s9UVC2GZt6yq2bhGansLp8Oj08EoasssRE5IPou0ta5MrfDO6thqgThyWWGl1bmzPsklF06WXuC1SnOpeJLzQlhFhdOLIkk3YbVuav8emJZexd57VAFyXqpSuUIoFyMsqiH7qetD1o2scW0KcqqEcWE6X7PfZoESQygxASV9iBcNL0MWjuebfOlQZ5YIyuBc8Xzjjx2yDY4y7aHY2jfXU0OUlggUevIfMJp8_ySabn14Fwhk0WskVVpp032QS6SzAKB038tP6up8nvYbDW_8cLL1Pz_2AV7SVfBg3IbV2dW130GtapbvztlmF14cjCejEzpOvv-a3APCHCYx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISYJpDQxDrYurHNSHsNhMSO7b1NhaodH3spiDfLcRyRaUoQLUi87Lfvrk7KyrTxsLckPieO78N39n0AfCoym6IWIiKPsj_iEq90oXiklNWujG3hUop3Pj3LRuf866W4XIFBFwtDbpWt7A8yfS6t2yf77WzuX1cVxfhypTNN54hJqsluf8aRfamMwd7PBz8PymYTjpmRsxF8yckLXzxrUDm9Q0sxoSIQyHPqb0vUnyroY0_K35am4Sa8aHVK9iUM-yWs-LoHz0OVyfsebB89BLMhWMvN0x5shD07FkKRXsEwpDJmTcmoYgdKSFRHGRWEoy21KQshjWzw7WJ8GB1o1tTMVjcsxGXes6pm4xrJbQsmw6PJYBS1dRYiJySfRdpaV6ZWeGd1bLVAJLmssNLq3Fmf5JILJ0sv8F6luVQ8yXkhrKLK6UWRpNuwWje1fwNMS69i7z3qADkvValcIZSLERb1kIPU9SHrZta4Ngc5lcL4YTpns-9mgRJDKDEBJX2IFx2vQxqOp7t87lBnlijK4GLxdOfdDtkGZ5kOUWztm9upIVJLBEo9-Q8YTc5_Em23PrwOBLIYNdIqbbXpPsgl0lkAUL7v5Za6uprn_UbLGz-cvP2fH_sIa6PJ6Yk5GZ8dv4N1agnujDuwOru59e9RxZrlH-Ys9AsITyYc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+restricted+emissions+during+COVID-19+on+air+quality+in+India&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sharma%2C+Shubham&rft.au=Zhang%2C+Mengyuan&rft.au=Gao%2C+Jingsi&rft.au=Zhang%2C+Hongliang&rft.date=2020-08-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=728&rft.spage=138878&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.138878&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon