Effect of restricted emissions during COVID-19 on air quality in India
The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing expe...
Saved in:
Published in | The Science of the total environment Vol. 728; p. 138878 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.
[Display omitted]
•The effect of restricted human activities due to the COVID-19 pandemic in India on air quality in 22 cities was estimated.•PM2.5 had maximum reduction in most regions.•Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years.•The substantial reduction in concentrations resulted in a 4 times reduction in total ER.•PM2.5 could increase due to unfavourable meteorology but the average concentration would still be under CPCB limits. |
---|---|
AbstractList | The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.
[Display omitted]
•The effect of restricted human activities due to the COVID-19 pandemic in India on air quality in 22 cities was estimated.•PM2.5 had maximum reduction in most regions.•Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years.•The substantial reduction in concentrations resulted in a 4 times reduction in total ER.•PM2.5 could increase due to unfavourable meteorology but the average concentration would still be under CPCB limits. The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM 10 , PM 2.5 , CO, NO 2 , ozone and SO 2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM 2.5 , PM 10 , CO, and NO 2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O 3 and negligible changes in SO 2 . The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM 2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented. Unlabelled Image • The effect of restricted human activities due to the COVID-19 pandemic in India on air quality in 22 cities was estimated. • PM 2.5 had maximum reduction in most regions. • Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years. • The substantial reduction in concentrations resulted in a 4 times reduction in total ER. • PM 2.5 could increase due to unfavourable meteorology but the average concentration would still be under CPCB limits. The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM₁₀, PM₂.₅, CO, NO₂, ozone and SO₂ during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM₂.₅, PM₁₀, CO, and NO₂ in India were observed during lockdown period compared to previous years. While, there were 17% increase in O₃ and negligible changes in SO₂. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM₂.₅ could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented. The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM , PM , CO, NO , ozone and SO during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM , PM , CO, and NO in India were observed during lockdown period compared to previous years. While, there were 17% increase in O and negligible changes in SO . The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented. The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented.The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to the COVID-19 pandemic, human activities are largely restricted in many regions in India since mid-March of 2020, and it is a progressing experiment to testify effectiveness of restricted emissions. In this study, concentrations of six criteria pollutants, PM10, PM2.5, CO, NO2, ozone and SO2 during March 16th to April 14th from 2017 to 2020 in 22 cities covering different regions of India were analysed. Overall, around 43, 31, 10, and 18% decreases in PM2.5, PM10, CO, and NO2 in India were observed during lockdown period compared to previous years. While, there were 17% increase in O3 and negligible changes in SO2. The air quality index (AQI) reduced by 44, 33, 29, 15 and 32% in north, south, east, central and western India, respectively. Correlation between cities especially in northern and eastern regions improved in 2020 compared to previous years, indicating more significant regional transport than previous years. The mean excessive risks of PM reduced by ~52% nationwide due to restricted activities in lockdown period. To eliminate the effects of possible favourable meteorology, the WRF-AERMOD model system was also applied in Delhi-NCR with actual meteorology during the lockdown period and an un-favourable event in early November of 2019 and results show that predicted PM2.5 could increase by only 33% in unfavourable meteorology. This study gives confidence to the regulatory bodies that even during unfavourable meteorology, a significant improvement in air quality could be expected if strict execution of air quality control plans is implemented. |
ArticleNumber | 138878 |
Author | Zhang, Hongliang Zhang, Mengyuan Kota, Sri Harsha Anshika Sharma, Shubham Gao, Jingsi |
Author_xml | – sequence: 1 givenname: Shubham surname: Sharma fullname: Sharma, Shubham organization: Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India – sequence: 2 givenname: Mengyuan surname: Zhang fullname: Zhang, Mengyuan organization: Department of Environmental Science and Engineering, Fudan University, Shanghai, China – sequence: 3 surname: Anshika fullname: Anshika organization: Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India – sequence: 4 givenname: Jingsi surname: Gao fullname: Gao, Jingsi organization: Engineering Technology Development Center of Urban Water Recycling, Shenzhen Polytechnic, Shenzhen, China – sequence: 5 givenname: Hongliang orcidid: 0000-0002-1797-2311 surname: Zhang fullname: Zhang, Hongliang email: zhanghl@fudan.edu.cn organization: Department of Environmental Science and Engineering, Fudan University, Shanghai, China – sequence: 6 givenname: Sri Harsha orcidid: 0000-0002-1977-2954 surname: Kota fullname: Kota, Sri Harsha email: harshakota@iitd.ac.in organization: Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32335409$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFPHCEYxUmj0dX6L7Qce5kVmGGBQ5uYrdZNTLyYXgkD31g2s6DAbOJ_XzZrN20vyoUAv_fyPd4ZOgoxAEKfKZlTQheX63m2vsQCYTtnhNXbVkohP6AZlUI1lLDFEZoR0slGLZQ4RWc5r0ldQtITdNqytuUdUTN0cz0MYAuOA06QS_K2gMOw8Tn7GDJ2U_LhES_vf66-N1ThGLDxCT9PZvTlBfuAV8F58xEdD2bMcPG6n6OHm-uH5W1zd_9jtby6aywXXWmUMXZoDQdrFDGKKzvYhTPCqN4aYL3ouBUD8HqWbS9kx_rOcSNp10rnWHuOvu1tn6Z-A85CKMmM-in5jUkvOhqv_30J_pd-jFstqOBS7gy-vBqk-DzVwLomtTCOJkCcsmZKct4JSuXbaKs4q6ZEVPTT32Md5vnzzRUQe8CmmHOC4YBQoneF6rU-FKp3hep9oVX59T9lxUyp3dR8fnyH_mqvh9rK1kPacRAsOJ9q79pF_6bHb21nwyc |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2021_130406 crossref_primary_10_3390_ijerph192013540 crossref_primary_10_1186_s12302_021_00575_y crossref_primary_10_1108_AJEB_12_2020_0109 crossref_primary_10_3390_atmos13071115 crossref_primary_10_1007_s40808_021_01210_8 crossref_primary_10_1016_j_scitotenv_2020_141105 crossref_primary_10_1007_s40899_022_00763_5 crossref_primary_10_1016_j_ecoinf_2022_101674 crossref_primary_10_1016_j_trip_2022_100660 crossref_primary_10_46281_ijfb_v10i1_1738 crossref_primary_10_1038_s41598_021_87877_6 crossref_primary_10_3390_ijerph21091153 crossref_primary_10_1007_s10668_021_01328_w crossref_primary_10_3390_ijerph17155279 crossref_primary_10_1002_pa_2729 crossref_primary_10_1016_j_jiph_2021_12_001 crossref_primary_10_1007_s40710_020_00490_z crossref_primary_10_1039_D0EM00358A crossref_primary_10_1007_s11356_021_12668_5 crossref_primary_10_1016_j_scitotenv_2020_140496 crossref_primary_10_3390_app11031212 crossref_primary_10_3390_su13052873 crossref_primary_10_1007_s10661_020_08810_4 crossref_primary_10_1007_s11356_021_16874_z crossref_primary_10_1515_noise_2020_0022 crossref_primary_10_1007_s10653_023_01810_6 crossref_primary_10_3390_atmos12020131 crossref_primary_10_1016_j_marpolbul_2021_112739 crossref_primary_10_3390_su12218984 crossref_primary_10_1007_s13280_021_01574_2 crossref_primary_10_1016_j_envpol_2021_117664 crossref_primary_10_1515_noise_2020_0010 crossref_primary_10_1007_s10640_021_00628_z crossref_primary_10_3390_encyclopedia1030043 crossref_primary_10_1007_s11356_021_13098_z crossref_primary_10_1016_j_scitotenv_2020_139281 crossref_primary_10_1016_j_jes_2021_02_022 crossref_primary_10_1007_s11676_020_01287_4 crossref_primary_10_3390_rs13010005 crossref_primary_10_1007_s41324_021_00427_0 crossref_primary_10_36953_ECJ_021905_2162 crossref_primary_10_1007_s11356_021_14462_9 crossref_primary_10_5194_acp_22_9987_2022 crossref_primary_10_21467_ajgr_12_1_36_47 crossref_primary_10_3390_ijerph19063168 crossref_primary_10_3390_ijgi10060401 crossref_primary_10_1080_09613218_2023_2191923 crossref_primary_10_1007_s11869_021_01000_2 crossref_primary_10_1007_s11869_021_01046_2 crossref_primary_10_1007_s12647_021_00506_5 crossref_primary_10_5194_acp_23_9837_2023 crossref_primary_10_1007_s10668_021_01324_0 crossref_primary_10_1016_j_hazl_2020_100010 crossref_primary_10_61512_emobd_1498119 crossref_primary_10_1007_s40030_022_00702_9 crossref_primary_10_5572_ajae_2022_016 crossref_primary_10_1016_j_atmosenv_2023_120191 crossref_primary_10_1007_s11356_023_29501_w crossref_primary_10_1016_j_envres_2021_111648 crossref_primary_10_1016_j_grets_2024_100074 crossref_primary_10_1016_j_scs_2021_103336 crossref_primary_10_1007_s11270_023_06278_9 crossref_primary_10_1080_15567036_2022_2079773 crossref_primary_10_1007_s11869_020_00892_w crossref_primary_10_1016_j_uclim_2021_100888 crossref_primary_10_1016_j_uclim_2021_100882 crossref_primary_10_3197_096327122X16611552268645 crossref_primary_10_1007_s10668_020_01002_7 crossref_primary_10_1007_s40030_021_00546_9 crossref_primary_10_1016_j_envres_2024_119141 crossref_primary_10_1016_j_scitotenv_2020_141325 crossref_primary_10_1016_j_scitotenv_2020_140000 crossref_primary_10_1007_s40710_022_00603_w crossref_primary_10_52586_4931 crossref_primary_10_1016_j_chemosphere_2020_128297 crossref_primary_10_4236_jep_2020_119042 crossref_primary_10_3390_atmos12020160 crossref_primary_10_1016_j_scitotenv_2020_141321 crossref_primary_10_1016_j_envpol_2021_117451 crossref_primary_10_3390_land10040373 crossref_primary_10_3389_fmars_2021_659686 crossref_primary_10_1016_j_scitotenv_2020_141320 crossref_primary_10_35940_ijeat_E3590_0611522 crossref_primary_10_3390_ijerph18073528 crossref_primary_10_1016_j_envpol_2021_118544 crossref_primary_10_1038_s41598_020_80429_4 crossref_primary_10_1007_s41810_023_00173_w crossref_primary_10_5194_acp_23_3311_2023 crossref_primary_10_1016_j_rser_2021_111294 crossref_primary_10_3390_atmos13020161 crossref_primary_10_1002_jeq2_20192 crossref_primary_10_1016_j_cities_2022_103770 crossref_primary_10_1016_j_envpol_2022_120961 crossref_primary_10_1007_s11356_021_18071_4 crossref_primary_10_3390_rs13030488 crossref_primary_10_5194_acp_21_13931_2021 crossref_primary_10_5194_essd_12_2411_2020 crossref_primary_10_1016_j_scs_2024_105549 crossref_primary_10_3390_atmos12060659 crossref_primary_10_1007_s11356_021_12461_4 crossref_primary_10_1016_j_scs_2020_102382 crossref_primary_10_1016_j_scitotenv_2020_141978 crossref_primary_10_1038_s42949_023_00095_z crossref_primary_10_1007_s13198_024_02572_9 crossref_primary_10_1007_s10874_021_09428_7 crossref_primary_10_1016_j_atmosenv_2024_120836 crossref_primary_10_1080_00207233_2021_1941662 crossref_primary_10_1016_j_envres_2021_110927 crossref_primary_10_1007_s10668_020_01004_5 crossref_primary_10_3390_ijerph182413347 crossref_primary_10_5194_acp_23_10751_2023 crossref_primary_10_1080_15275922_2021_1907818 crossref_primary_10_1016_j_apenergy_2021_117247 crossref_primary_10_1007_s41207_020_00189_5 crossref_primary_10_3390_pollutants1030011 crossref_primary_10_5696_2156_9614_10_28_201201 crossref_primary_10_1007_s12524_021_01343_4 crossref_primary_10_3390_rs15051262 crossref_primary_10_1007_s00477_021_02019_8 crossref_primary_10_1007_s42081_022_00165_z crossref_primary_10_1016_j_heliyon_2022_e12239 crossref_primary_10_3390_atmos14060973 crossref_primary_10_1007_s10661_021_09342_1 crossref_primary_10_1016_j_sintl_2020_100021 crossref_primary_10_1007_s11270_024_07062_z crossref_primary_10_1007_s10661_022_09855_3 crossref_primary_10_1007_s11356_023_25370_5 crossref_primary_10_1021_acs_est_2c04303 crossref_primary_10_1016_j_scitotenv_2021_145187 crossref_primary_10_1016_j_atmosres_2020_105362 crossref_primary_10_36548_jscp_2021_4_002 crossref_primary_10_1016_j_scitotenv_2020_140426 crossref_primary_10_1016_j_scitotenv_2020_141757 crossref_primary_10_1016_j_sjbs_2020_11_065 crossref_primary_10_1007_s42979_024_03500_1 crossref_primary_10_1016_j_atmosres_2021_105659 crossref_primary_10_1039_D0FD00082E crossref_primary_10_1080_10106049_2021_1993351 crossref_primary_10_1007_s11356_021_17049_6 crossref_primary_10_5812_jhealthscope_122412 crossref_primary_10_1007_s41324_022_00481_2 crossref_primary_10_5572_ajae_2021_045 crossref_primary_10_1007_s13762_022_04580_3 crossref_primary_10_1007_s43546_025_00792_0 crossref_primary_10_1016_j_hazadv_2022_100078 crossref_primary_10_1016_j_scitotenv_2021_146681 crossref_primary_10_1016_j_jclepro_2021_127705 crossref_primary_10_1016_j_scitotenv_2021_145115 crossref_primary_10_1007_s12648_022_02380_6 crossref_primary_10_5696_2156_9614_11_30_210602 crossref_primary_10_1007_s11869_021_01039_1 crossref_primary_10_1088_1748_9326_abb6a2 crossref_primary_10_1016_j_atmosres_2023_106940 crossref_primary_10_1007_s11869_020_00944_1 crossref_primary_10_3390_su12135464 crossref_primary_10_1007_s13762_021_03641_3 crossref_primary_10_1016_j_atmosenv_2024_120649 crossref_primary_10_1080_19475705_2021_1949396 crossref_primary_10_1016_j_rinp_2021_104454 crossref_primary_10_1007_s00477_020_01905_x crossref_primary_10_1016_j_rsase_2021_100546 crossref_primary_10_1007_s42488_024_00128_x crossref_primary_10_17714_gumusfenbil_1162562 crossref_primary_10_1016_j_scitotenv_2021_148877 crossref_primary_10_3390_atmos13111928 crossref_primary_10_1016_j_jclepro_2021_125992 crossref_primary_10_3390_app11041458 crossref_primary_10_1016_j_envres_2020_110665 crossref_primary_10_1016_j_scitotenv_2020_140851 crossref_primary_10_2478_jengeo_2020_0009 crossref_primary_10_1016_j_rsase_2021_100551 crossref_primary_10_1680_jmuen_22_00030 crossref_primary_10_3748_wjg_v27_i35_5822 crossref_primary_10_1016_j_scitotenv_2020_140879 crossref_primary_10_1016_j_glt_2020_10_002 crossref_primary_10_1016_j_envres_2020_110692 crossref_primary_10_1002_sd_2554 crossref_primary_10_1016_j_scitotenv_2025_179078 crossref_primary_10_1109_ACCESS_2023_3236414 crossref_primary_10_1016_j_envres_2020_110454 crossref_primary_10_1016_j_scitotenv_2020_139658 crossref_primary_10_1007_s11869_020_00968_7 crossref_primary_10_1016_j_glt_2025_03_002 crossref_primary_10_2166_wst_2021_146 crossref_primary_10_1016_j_envres_2020_110443 crossref_primary_10_1029_2020GL089623 crossref_primary_10_1007_s10668_022_02228_3 crossref_primary_10_1007_s10661_021_09693_9 crossref_primary_10_1002_ep_13672 crossref_primary_10_3390_su12177216 crossref_primary_10_1080_15275922_2021_1940377 crossref_primary_10_3390_ijerph18020544 crossref_primary_10_1017_dmp_2020_372 crossref_primary_10_1016_j_envres_2021_111160 crossref_primary_10_1016_j_scitotenv_2020_140931 crossref_primary_10_1007_s10661_023_11582_2 crossref_primary_10_1016_j_scitotenv_2021_147607 crossref_primary_10_1007_s11356_022_19484_5 crossref_primary_10_1029_2020GH000351 crossref_primary_10_3390_atmos14081257 crossref_primary_10_5194_acp_21_5235_2021 crossref_primary_10_1088_1755_1315_1032_1_012029 crossref_primary_10_26453_otjhs_933314 crossref_primary_10_3390_toxics10110653 crossref_primary_10_1016_j_ancene_2020_100270 crossref_primary_10_3390_atmos11101118 crossref_primary_10_1016_j_uclim_2023_101446 crossref_primary_10_1016_j_envres_2020_109807 crossref_primary_10_1007_s43538_021_00052_3 crossref_primary_10_1016_j_apr_2022_101476 crossref_primary_10_1016_j_cartre_2021_100131 crossref_primary_10_1007_s10668_020_00898_5 crossref_primary_10_1021_acs_estlett_0c00764 crossref_primary_10_1007_s40726_022_00236_5 crossref_primary_10_1016_j_rsase_2021_100557 crossref_primary_10_1016_j_chemosphere_2020_127978 crossref_primary_10_1016_j_apacoust_2021_108582 crossref_primary_10_1007_s10668_020_00994_6 crossref_primary_10_1029_2021JD035440 crossref_primary_10_1016_j_uclim_2020_100758 crossref_primary_10_1016_j_envres_2021_111186 crossref_primary_10_1016_j_uclim_2023_101412 crossref_primary_10_1016_j_uclim_2020_100754 crossref_primary_10_1016_j_atmosres_2021_105823 crossref_primary_10_1080_15567036_2021_1902431 crossref_primary_10_1007_s12040_022_01883_4 crossref_primary_10_3390_en14113264 crossref_primary_10_1016_j_uclim_2021_101082 crossref_primary_10_1016_j_envpol_2020_115682 crossref_primary_10_1016_j_ancene_2020_100256 crossref_primary_10_3389_frsc_2021_705051 crossref_primary_10_1007_s11869_020_00879_7 crossref_primary_10_1007_s13762_022_04464_6 crossref_primary_10_1016_j_scitotenv_2020_140946 crossref_primary_10_1007_s42976_023_00375_5 crossref_primary_10_25259_JCH_9_2023 crossref_primary_10_3390_land11101635 crossref_primary_10_1016_j_scitotenv_2023_163872 crossref_primary_10_3390_atmos14010147 crossref_primary_10_3390_rs14184650 crossref_primary_10_33396_1728_0869_2021_4_15_24 crossref_primary_10_36953_ECJ_15502485 crossref_primary_10_1007_s11869_020_00842_6 crossref_primary_10_1007_s11869_020_00888_6 crossref_primary_10_1016_j_envpol_2020_115859 crossref_primary_10_1016_j_envres_2023_115288 crossref_primary_10_1007_s11869_020_00866_y crossref_primary_10_1016_j_envres_2020_109835 crossref_primary_10_3390_atmos14040739 crossref_primary_10_1007_s11869_020_00940_5 crossref_primary_10_5194_gmd_14_7459_2021 crossref_primary_10_1007_s10668_021_01241_2 crossref_primary_10_1016_j_scitotenv_2024_171117 crossref_primary_10_1016_j_chemosphere_2022_134650 crossref_primary_10_5194_acp_22_12153_2022 crossref_primary_10_1007_s00477_021_02071_4 crossref_primary_10_3390_su13010118 crossref_primary_10_1007_s00128_020_02907_9 crossref_primary_10_1016_j_matpr_2021_07_296 crossref_primary_10_7759_cureus_12240 crossref_primary_10_1021_acs_est_1c05383 crossref_primary_10_1016_j_apr_2022_101438 crossref_primary_10_3390_su12239956 crossref_primary_10_1016_j_jclepro_2021_126561 crossref_primary_10_3390_recycling5040027 crossref_primary_10_1016_j_scitotenv_2020_144009 crossref_primary_10_3390_geographies1030021 crossref_primary_10_1016_j_uclim_2021_101059 crossref_primary_10_1007_s11270_023_06534_y crossref_primary_10_1016_j_scitotenv_2020_143161 crossref_primary_10_1007_s11356_021_13813_w crossref_primary_10_1007_s00128_020_02895_w crossref_primary_10_3390_ijerph17176208 crossref_primary_10_1016_j_atmosres_2021_105876 crossref_primary_10_1016_j_scitotenv_2023_164527 crossref_primary_10_1080_09603123_2022_2105310 crossref_primary_10_3390_atmos12091097 crossref_primary_10_1016_j_scitotenv_2023_163443 crossref_primary_10_1038_s42949_021_00037_7 crossref_primary_10_20473_jkl_v12i1si_2020_11_20 crossref_primary_10_1016_j_resconrec_2022_106223 crossref_primary_10_1021_acs_estlett_0c00511 crossref_primary_10_1088_1755_1315_1032_1_012007 crossref_primary_10_1007_s11869_020_00877_9 crossref_primary_10_1007_s13143_023_00348_y crossref_primary_10_1093_jtm_taab055 crossref_primary_10_1007_s12040_021_01722_y crossref_primary_10_3390_ijerph17239055 crossref_primary_10_1016_j_apr_2022_101452 crossref_primary_10_1108_JEIM_01_2021_0040 crossref_primary_10_1007_s40899_022_00682_5 crossref_primary_10_1038_s41598_021_87673_2 crossref_primary_10_1186_s42269_023_01007_y crossref_primary_10_3390_air1020010 crossref_primary_10_1126_sciadv_adq1071 crossref_primary_10_1016_j_ipm_2021_102810 crossref_primary_10_1007_s11600_023_01208_z crossref_primary_10_3390_environments8040033 crossref_primary_10_1007_s11869_021_00990_3 crossref_primary_10_1007_s10708_024_11132_4 crossref_primary_10_3389_frsc_2022_792507 crossref_primary_10_1016_j_atmosenv_2024_121013 crossref_primary_10_1016_j_scitotenv_2021_146918 crossref_primary_10_1029_2020GL091591 crossref_primary_10_1177_14750902211028421 crossref_primary_10_3390_ijerph191912868 crossref_primary_10_1016_j_csr_2021_104511 crossref_primary_10_1016_j_envc_2021_100155 crossref_primary_10_1016_j_envpol_2020_116354 crossref_primary_10_1016_j_plaphy_2024_108876 crossref_primary_10_1007_s10661_024_12321_x crossref_primary_10_1016_j_impact_2021_100295 crossref_primary_10_3390_app10238720 crossref_primary_10_1016_j_clce_2022_100001 crossref_primary_10_3390_su14095508 crossref_primary_10_1029_2023GL104854 crossref_primary_10_1016_j_scs_2021_103096 crossref_primary_10_1016_j_cmpb_2021_106468 crossref_primary_10_1007_s13762_020_03122_z crossref_primary_10_1016_j_scitotenv_2020_144693 crossref_primary_10_3390_su14159386 crossref_primary_10_1016_j_uclim_2021_100838 crossref_primary_10_1016_j_uclim_2021_100839 crossref_primary_10_1007_s13198_021_01153_4 crossref_primary_10_51847_mhLv0Gijx5 crossref_primary_10_26634_jfet_16_2_17620 crossref_primary_10_34248_bsengineering_958063 crossref_primary_10_1016_j_envc_2021_100376 crossref_primary_10_3390_su12187440 crossref_primary_10_1021_acsearthspacechem_2c00397 crossref_primary_10_1016_j_apr_2022_101419 crossref_primary_10_1016_j_apr_2021_101119 crossref_primary_10_1029_2022RG000773 crossref_primary_10_1016_j_uclim_2021_100821 crossref_primary_10_3390_atmos13122064 crossref_primary_10_1088_1755_1315_1180_1_012006 crossref_primary_10_1007_s12648_023_02802_z crossref_primary_10_1007_s11356_021_16078_5 crossref_primary_10_1007_s11356_020_11808_7 crossref_primary_10_1016_j_scitotenv_2020_143382 crossref_primary_10_20473_jkl_v12i1si_2020_70_78 crossref_primary_10_3389_fenvs_2023_1104679 crossref_primary_10_3390_atmos12030352 crossref_primary_10_1016_j_uclim_2021_100818 crossref_primary_10_1007_s10661_022_09808_w crossref_primary_10_1016_j_uclim_2021_100813 crossref_primary_10_1007_s10661_024_13282_x crossref_primary_10_1080_10962247_2021_1905104 crossref_primary_10_3390_rs12152420 crossref_primary_10_1007_s41810_020_00077_z crossref_primary_10_3390_ijerph19020727 crossref_primary_10_1080_09720510_2021_1872691 crossref_primary_10_1016_j_uclim_2021_100803 crossref_primary_10_1016_j_jenvman_2021_114079 crossref_primary_10_1088_1748_9326_ac9703 crossref_primary_10_1016_j_uclim_2021_100802 crossref_primary_10_1007_s10661_023_11885_4 crossref_primary_10_35232_estudamhsd_759421 crossref_primary_10_1007_s12040_021_01666_3 crossref_primary_10_1016_j_envpol_2020_115471 crossref_primary_10_1080_00167223_2022_2053999 crossref_primary_10_3390_pathogens10081003 crossref_primary_10_32604_cmc_2021_014991 crossref_primary_10_3390_en13226044 crossref_primary_10_1007_s41324_022_00442_9 crossref_primary_10_1038_s41598_021_83393_9 crossref_primary_10_1016_j_uclim_2020_100719 crossref_primary_10_1007_s12524_020_01157_w crossref_primary_10_1007_s42398_021_00213_6 crossref_primary_10_1016_j_atmosenv_2025_121115 crossref_primary_10_1016_j_cities_2023_104246 crossref_primary_10_3390_atmos11111174 crossref_primary_10_1016_j_apgeog_2022_102869 crossref_primary_10_1007_s00477_022_02362_4 crossref_primary_10_1021_acsearthspacechem_4c00332 crossref_primary_10_1016_j_envpol_2021_117988 crossref_primary_10_1525_elementa_2021_00176 crossref_primary_10_1007_s00248_021_01781_0 crossref_primary_10_1080_10807039_2022_2093155 crossref_primary_10_1007_s41324_021_00410_9 crossref_primary_10_1016_j_uclim_2020_100729 crossref_primary_10_3390_atmos11101137 crossref_primary_10_3390_en15062020 crossref_primary_10_1016_j_chaos_2023_114255 crossref_primary_10_1016_j_fuel_2021_121544 crossref_primary_10_1007_s41324_022_00499_6 crossref_primary_10_1016_j_scitotenv_2020_139086 crossref_primary_10_3390_atmos16030314 crossref_primary_10_1016_j_envpol_2020_115250 crossref_primary_10_1016_j_scitotenv_2020_142014 crossref_primary_10_3389_fenvs_2021_764294 crossref_primary_10_1016_j_scitotenv_2020_139087 crossref_primary_10_1016_j_heliyon_2022_e10402 crossref_primary_10_1016_j_envres_2021_112246 crossref_primary_10_3390_environments8040029 crossref_primary_10_3390_atmos14101578 crossref_primary_10_1007_s11356_024_33174_4 crossref_primary_10_1111_1462_2920_16023 crossref_primary_10_1002_bse_4065 crossref_primary_10_1007_s11356_023_27236_2 crossref_primary_10_3389_fenvs_2021_784959 crossref_primary_10_1016_j_biteb_2020_100491 crossref_primary_10_3390_atmos11090914 crossref_primary_10_3390_atmos15050607 crossref_primary_10_1007_s10668_024_05631_0 crossref_primary_10_1007_s12524_023_01770_5 crossref_primary_10_1007_s10668_020_00837_4 crossref_primary_10_1016_j_jenvman_2022_116907 crossref_primary_10_1007_s12040_023_02181_3 crossref_primary_10_1016_j_biocon_2022_109597 crossref_primary_10_1007_s11356_023_26919_0 crossref_primary_10_1016_j_nexres_2025_100243 crossref_primary_10_1080_15275922_2020_1836082 crossref_primary_10_7717_peerj_14489 crossref_primary_10_1016_j_energy_2020_118701 crossref_primary_10_1029_2021EF002061 crossref_primary_10_1016_j_jth_2021_101257 crossref_primary_10_1016_j_atmosenv_2024_120343 crossref_primary_10_1007_s10668_020_00933_5 crossref_primary_10_1007_s11769_022_1303_3 crossref_primary_10_1088_2515_7620_acb5e5 crossref_primary_10_3390_su132111803 crossref_primary_10_1016_j_uclim_2021_100791 crossref_primary_10_1016_j_atmosenv_2020_118132 crossref_primary_10_1109_LGRS_2021_3049887 crossref_primary_10_1007_s12647_022_00548_3 crossref_primary_10_1007_s10668_020_01034_z crossref_primary_10_1016_j_gsf_2022_101368 crossref_primary_10_1007_s40201_022_00786_2 crossref_primary_10_1016_j_chemosphere_2024_142147 crossref_primary_10_1016_j_cities_2021_103308 crossref_primary_10_1016_j_rse_2023_113514 crossref_primary_10_1016_j_envres_2021_111990 crossref_primary_10_14233_ajchem_2021_23102 crossref_primary_10_1016_j_envres_2021_111754 crossref_primary_10_1016_j_pce_2023_103439 crossref_primary_10_1016_j_envres_2020_110121 crossref_primary_10_1016_j_iatssr_2022_05_001 crossref_primary_10_1007_s41748_021_00278_7 crossref_primary_10_1016_j_atmosenv_2023_120285 crossref_primary_10_1016_j_atmosenv_2021_118844 crossref_primary_10_3390_su14031438 crossref_primary_10_1007_s11869_020_00916_5 crossref_primary_10_1016_j_scitotenv_2021_150248 crossref_primary_10_1016_j_apr_2020_11_013 crossref_primary_10_1007_s40095_020_00379_5 crossref_primary_10_1142_S1793557122502473 crossref_primary_10_15415_jce_2020_71001 crossref_primary_10_3846_jeelm_2023_19472 crossref_primary_10_1016_j_envint_2024_108979 crossref_primary_10_3389_fenvs_2021_654651 crossref_primary_10_3390_ijerph17145167 crossref_primary_10_1088_2053_1591_ac35d0 crossref_primary_10_1007_s41885_020_00072_1 crossref_primary_10_1007_s42398_021_00207_4 crossref_primary_10_1016_j_seares_2024_102504 crossref_primary_10_1088_1748_9326_ac1012 crossref_primary_10_1007_s11116_021_10246_9 crossref_primary_10_1007_s10668_021_01434_9 crossref_primary_10_1016_j_eap_2021_07_012 crossref_primary_10_3390_atmos12060735 crossref_primary_10_1007_s41324_022_00456_3 crossref_primary_10_1016_j_apr_2020_11_005 crossref_primary_10_1016_j_envpol_2022_118984 crossref_primary_10_1080_10807039_2022_2157242 crossref_primary_10_3390_su142215258 crossref_primary_10_1016_j_atmosenv_2021_118423 crossref_primary_10_1007_s11356_022_21586_z crossref_primary_10_1007_s12647_022_00615_9 crossref_primary_10_1007_s41324_021_00426_1 crossref_primary_10_1080_10962247_2023_2290710 crossref_primary_10_1080_00207233_2021_1929412 crossref_primary_10_1016_j_cegh_2020_08_017 crossref_primary_10_1093_aje_kwae171 crossref_primary_10_1590_0102_311x00242320 crossref_primary_10_1007_s10661_022_10362_8 crossref_primary_10_1016_j_jenvman_2021_112277 crossref_primary_10_1515_reveh_2021_0021 crossref_primary_10_1016_j_envpol_2021_116498 crossref_primary_10_1007_s00477_021_02033_w crossref_primary_10_1016_j_trip_2020_100165 crossref_primary_10_1016_j_scitotenv_2020_142526 crossref_primary_10_1016_j_scitotenv_2020_140353 crossref_primary_10_1016_j_envres_2021_111314 crossref_primary_10_1016_j_scitotenv_2020_142533 crossref_primary_10_1007_s10874_024_09458_x crossref_primary_10_3390_ijerph18073404 crossref_primary_10_1007_s11356_022_20997_2 crossref_primary_10_1007_s40710_022_00585_9 crossref_primary_10_1088_1755_1315_1013_1_012006 crossref_primary_10_1126_sciadv_abd6696 crossref_primary_10_1016_j_envsci_2023_04_009 crossref_primary_10_1038_s41612_023_00367_6 crossref_primary_10_17721_1728_2667_2021_216_3_5 crossref_primary_10_1016_j_envres_2020_110514 crossref_primary_10_1016_j_envres_2020_110515 crossref_primary_10_1177_09754253221122752 crossref_primary_10_2174_26669587_v2_e2203030 crossref_primary_10_1016_j_heliyon_2025_e41762 crossref_primary_10_3390_app14188169 crossref_primary_10_1016_j_envpol_2021_117153 crossref_primary_10_1016_j_scitotenv_2020_141621 crossref_primary_10_1016_j_uclim_2021_101013 crossref_primary_10_7189_jogh_12_05043 crossref_primary_10_1016_j_chemosphere_2023_139056 crossref_primary_10_24057_2071_9388_2021_012 crossref_primary_10_1016_j_eti_2021_101578 crossref_primary_10_3390_atmos13111871 crossref_primary_10_1038_s41598_021_94373_4 crossref_primary_10_3390_su12208661 crossref_primary_10_2478_acee_2023_0057 crossref_primary_10_3390_su16145969 crossref_primary_10_1007_s10640_020_00474_5 crossref_primary_10_1016_j_jeem_2022_102749 crossref_primary_10_1007_s10661_023_11949_5 crossref_primary_10_1007_s12524_022_01520_z crossref_primary_10_1007_s11356_021_15508_8 crossref_primary_10_1108_MEQ_12_2021_0290 crossref_primary_10_1039_D1EM00187F crossref_primary_10_15406_jabb_2021_08_00250 crossref_primary_10_1007_s11869_020_00958_9 crossref_primary_10_1080_19475705_2021_1914197 crossref_primary_10_1016_j_scitotenv_2020_142723 crossref_primary_10_3389_fenvs_2024_1519984 crossref_primary_10_20473_jkl_v12i1si_2020_51_59 crossref_primary_10_1016_j_envint_2022_107481 crossref_primary_10_3390_su131810212 crossref_primary_10_1007_s40899_022_00784_0 crossref_primary_10_1007_s00382_022_06247_8 crossref_primary_10_7717_peerj_9642 crossref_primary_10_1016_j_envadv_2021_100149 crossref_primary_10_1016_j_envres_2021_110839 crossref_primary_10_1016_j_rsase_2020_100382 crossref_primary_10_1007_s13143_021_00232_7 crossref_primary_10_1108_TQM_12_2021_0374 crossref_primary_10_1080_01919512_2021_2009332 crossref_primary_10_1007_s11869_020_00921_8 crossref_primary_10_1186_s42269_022_00706_2 crossref_primary_10_1016_j_scitotenv_2022_154299 crossref_primary_10_1007_s11069_024_06568_3 crossref_primary_10_1016_j_pce_2025_103863 crossref_primary_10_1016_j_jth_2021_101061 crossref_primary_10_1016_j_jenvman_2020_111496 crossref_primary_10_1007_s42398_021_00166_w crossref_primary_10_1080_10095020_2022_2066575 crossref_primary_10_1007_s00500_021_06012_9 crossref_primary_10_1007_s10661_022_09932_7 crossref_primary_10_1016_j_jclepro_2021_126514 crossref_primary_10_1155_2021_6697707 crossref_primary_10_1016_j_pce_2022_103197 crossref_primary_10_1080_17597269_2021_2002648 crossref_primary_10_1002_bsd2_390 crossref_primary_10_1002_jnm_2993 crossref_primary_10_1016_j_envres_2021_110854 crossref_primary_10_1016_j_envpol_2020_115920 crossref_primary_10_1080_10807039_2021_1962242 crossref_primary_10_1080_09603123_2021_1917526 crossref_primary_10_3390_rs13214395 crossref_primary_10_1016_j_envpol_2020_115927 crossref_primary_10_3390_su16188229 crossref_primary_10_1007_s12040_020_01475_0 crossref_primary_10_1007_s10668_023_03495_4 crossref_primary_10_1039_D2VA00114D crossref_primary_10_1016_j_esr_2022_100924 crossref_primary_10_1021_acs_estlett_1c00211 crossref_primary_10_1016_j_scitotenv_2020_139765 crossref_primary_10_1007_s00128_020_02877_y crossref_primary_10_1038_s41598_022_16105_6 crossref_primary_10_1016_j_ijid_2020_11_187 crossref_primary_10_1016_j_jastp_2020_105491 crossref_primary_10_3390_ijerph17207375 crossref_primary_10_1016_j_envres_2021_111280 crossref_primary_10_1007_s10874_023_09456_5 crossref_primary_10_1016_j_atmosres_2021_105924 crossref_primary_10_1016_j_envpol_2022_119468 crossref_primary_10_1007_s13762_021_03505_w crossref_primary_10_1016_j_apr_2021_02_002 crossref_primary_10_1016_j_glt_2024_06_003 crossref_primary_10_1007_s11869_023_01381_6 crossref_primary_10_1016_j_isci_2022_105297 crossref_primary_10_1016_j_envc_2021_100431 crossref_primary_10_1016_j_heliyon_2024_e39578 crossref_primary_10_1109_TEM_2022_3209786 crossref_primary_10_3390_ijerph191912904 crossref_primary_10_1016_j_scs_2020_102660 crossref_primary_10_3389_fpubh_2021_642630 crossref_primary_10_3390_ijerph19159022 crossref_primary_10_1007_s42452_020_03831_7 crossref_primary_10_1016_j_envres_2021_111051 crossref_primary_10_3390_ijerph191711111 crossref_primary_10_5327_Z2176_94781270 crossref_primary_10_1016_j_scitotenv_2021_147739 crossref_primary_10_1016_j_jece_2020_104144 crossref_primary_10_1016_j_apr_2022_101594 crossref_primary_10_1038_s41598_022_15664_y crossref_primary_10_1007_s00484_020_02019_3 crossref_primary_10_1016_j_rsase_2021_100473 crossref_primary_10_1016_j_rsase_2021_100476 crossref_primary_10_1016_j_atmosenv_2020_117835 crossref_primary_10_3390_su15010642 crossref_primary_10_1007_s11869_020_00845_3 crossref_primary_10_3390_atmos14091390 crossref_primary_10_1007_s13201_022_01625_3 crossref_primary_10_3390_su15020892 crossref_primary_10_51800_ecd_1109104 crossref_primary_10_1016_j_uclim_2023_101533 crossref_primary_10_1016_j_envres_2020_109938 crossref_primary_10_1016_j_jclepro_2021_126674 crossref_primary_10_1007_s10661_021_09120_z crossref_primary_10_3390_healthcare11142112 crossref_primary_10_3390_ijerph20010390 crossref_primary_10_1007_s10661_023_11922_2 crossref_primary_10_1515_noise_2022_0161 crossref_primary_10_1016_j_ijepes_2021_107757 crossref_primary_10_1080_03067319_2021_1902997 crossref_primary_10_3390_rs12233939 crossref_primary_10_1016_j_scitotenv_2021_145586 crossref_primary_10_1080_19475705_2021_1885503 crossref_primary_10_1016_j_apr_2023_101662 crossref_primary_10_15864_ajps_1304 crossref_primary_10_1007_s44274_024_00082_w crossref_primary_10_3390_rs16193618 crossref_primary_10_12944_CWE_15_3_20 crossref_primary_10_5194_acp_21_13609_2021 crossref_primary_10_1016_j_scs_2021_102989 crossref_primary_10_1016_j_scs_2020_102688 crossref_primary_10_1007_s11356_021_13812_x crossref_primary_10_1029_2020GL089788 crossref_primary_10_1016_j_atmosenv_2022_119559 crossref_primary_10_3390_atmos11121279 crossref_primary_10_3390_pr8091152 crossref_primary_10_1016_j_tfp_2021_100119 crossref_primary_10_3390_atmos12091190 crossref_primary_10_1016_j_procs_2023_01_077 crossref_primary_10_3390_su12198232 crossref_primary_10_1016_j_atmosres_2021_105730 crossref_primary_10_5194_acp_21_15431_2021 crossref_primary_10_1080_15567036_2020_1853854 crossref_primary_10_3389_fenvs_2022_910579 crossref_primary_10_3390_ijerph18052296 crossref_primary_10_1016_j_atmosres_2021_105729 crossref_primary_10_1016_j_envc_2021_100239 crossref_primary_10_1007_s00477_022_02308_w crossref_primary_10_1002_cnl2_46 crossref_primary_10_3390_toxics10050225 crossref_primary_10_1051_bioconf_20237305021 crossref_primary_10_1016_j_scs_2020_102629 crossref_primary_10_1016_j_envint_2023_107805 crossref_primary_10_1007_s40726_020_00155_3 crossref_primary_10_1007_s10661_021_09177_w crossref_primary_10_3390_su13169030 crossref_primary_10_1007_s11869_020_00974_9 crossref_primary_10_1007_s11356_021_12934_6 crossref_primary_10_3390_atmos15040410 crossref_primary_10_3390_ijerph19041950 crossref_primary_10_1080_02642069_2023_2172165 crossref_primary_10_1016_j_jclepro_2021_126475 crossref_primary_10_1016_j_apr_2022_101587 crossref_primary_10_3390_su12187367 crossref_primary_10_1007_s12517_021_07777_x crossref_primary_10_2139_ssrn_3698595 crossref_primary_10_1007_s11356_021_16697_y crossref_primary_10_1007_s41810_025_00294_4 crossref_primary_10_3390_su15032682 crossref_primary_10_1007_s10668_021_01240_3 crossref_primary_10_1007_s11869_020_00965_w crossref_primary_10_1016_j_rsase_2021_100489 crossref_primary_10_1007_s11356_021_17955_9 crossref_primary_10_1177_0734242X211045208 crossref_primary_10_3389_fenvs_2023_1132159 crossref_primary_10_5194_acp_21_8693_2021 crossref_primary_10_3389_frsc_2021_705131 crossref_primary_10_3390_atmos12030407 crossref_primary_10_3390_rs16162932 crossref_primary_10_1016_j_uclim_2023_101747 crossref_primary_10_1088_1748_9326_adac7d crossref_primary_10_1016_j_atmosres_2025_108053 crossref_primary_10_1016_j_atmosres_2021_105738 crossref_primary_10_1007_s11356_023_30631_4 crossref_primary_10_1021_acs_estlett_0c00815 crossref_primary_10_1038_s41598_022_20885_2 crossref_primary_10_1007_s11869_020_00863_1 crossref_primary_10_11609_jott_9379_17_2_26494_26503 crossref_primary_10_5194_acp_21_4025_2021 crossref_primary_10_1016_j_apr_2021_101247 crossref_primary_10_1016_j_apr_2022_101523 crossref_primary_10_1016_j_uclim_2021_100972 crossref_primary_10_3390_w13101363 crossref_primary_10_1080_15567036_2021_1889077 crossref_primary_10_1177_09711023241264679 crossref_primary_10_1016_j_heliyon_2022_e10757 crossref_primary_10_1007_s10661_022_10761_x crossref_primary_10_1016_j_envpol_2021_116512 crossref_primary_10_3390_rs13173492 crossref_primary_10_3390_rs13050877 crossref_primary_10_1007_s11356_020_12141_9 crossref_primary_10_1016_j_envres_2021_111208 crossref_primary_10_3390_su12229397 crossref_primary_10_1007_s10453_020_09673_5 crossref_primary_10_7717_peerj_11387 crossref_primary_10_3390_atmos14040671 crossref_primary_10_1016_j_scitotenv_2020_142391 crossref_primary_10_1016_j_scitotenv_2020_144330 crossref_primary_10_3390_su141710880 crossref_primary_10_7163_GPol_0235 crossref_primary_10_1016_j_heliyon_2020_e04764 crossref_primary_10_1061_JOEEDU_EEENG_7463 crossref_primary_10_1016_j_uclim_2021_100954 crossref_primary_10_1029_2020GL091699 crossref_primary_10_1016_j_uclim_2021_100952 crossref_primary_10_3390_app14104007 crossref_primary_10_3390_atmos12101298 crossref_primary_10_1108_BIJ_09_2021_0514 crossref_primary_10_1016_j_envpol_2020_116011 crossref_primary_10_3390_atmos11101045 crossref_primary_10_1016_j_envpol_2021_116975 crossref_primary_10_1007_s40822_024_00295_7 crossref_primary_10_1016_j_uclim_2021_100946 crossref_primary_10_1016_j_envres_2021_111471 crossref_primary_10_1016_j_uclim_2021_100944 crossref_primary_10_1029_2021JD035392 crossref_primary_10_1111_ina_12778 crossref_primary_10_1016_j_apr_2021_101231 crossref_primary_10_1016_j_atmosenv_2021_118322 crossref_primary_10_1016_j_envres_2021_111236 crossref_primary_10_1111_sjtg_12517 crossref_primary_10_1039_D0FD00123F crossref_primary_10_5327_Z217694781300 crossref_primary_10_3390_rs12183042 crossref_primary_10_1021_acs_est_1c01970 crossref_primary_10_1007_s00703_022_00932_3 crossref_primary_10_1016_j_chemosphere_2020_126980 crossref_primary_10_1016_j_uclim_2021_100930 crossref_primary_10_1002_env_2673 crossref_primary_10_1016_j_envpol_2021_118716 crossref_primary_10_1088_1748_9326_ac7889 crossref_primary_10_1016_j_scs_2021_103173 crossref_primary_10_1051_e3sconf_202131701084 crossref_primary_10_3389_fenvs_2024_1344194 crossref_primary_10_1016_j_scitotenv_2020_141024 crossref_primary_10_1016_j_envres_2021_112107 crossref_primary_10_3390_toxics10090520 crossref_primary_10_1016_j_envres_2021_111255 crossref_primary_10_1007_s10661_022_09916_7 crossref_primary_10_1016_j_atmosenv_2021_118386 crossref_primary_10_1016_j_chemosphere_2020_126969 crossref_primary_10_15377_2410_3624_2023_10_4 crossref_primary_10_1016_j_gsf_2021_101291 crossref_primary_10_1016_j_apr_2022_101508 crossref_primary_10_1038_s41598_020_70179_8 crossref_primary_10_1007_s12524_024_01807_3 crossref_primary_10_1016_j_scitotenv_2022_159383 crossref_primary_10_1007_s12040_022_01916_y crossref_primary_10_1088_1755_1315_1040_1_012015 crossref_primary_10_1016_j_envres_2021_112597 crossref_primary_10_1016_j_gsf_2021_101284 crossref_primary_10_1016_j_envpol_2020_115368 crossref_primary_10_1007_s11270_025_07824_3 crossref_primary_10_1557_s43581_024_00100_7 crossref_primary_10_1016_j_uclim_2021_100908 crossref_primary_10_3389_fenvs_2021_674432 crossref_primary_10_1016_j_uclim_2021_100900 crossref_primary_10_1007_s13762_021_03142_3 crossref_primary_10_3390_risks11120212 crossref_primary_10_1016_j_atmosenv_2020_118072 crossref_primary_10_1080_15567036_2021_1896611 crossref_primary_10_1186_s12544_021_00473_7 crossref_primary_10_1016_j_uclim_2022_101290 |
Cites_doi | 10.1016/j.envint.2015.06.014 10.1016/j.atmosenv.2016.01.036 10.1016/j.scitotenv.2014.04.064 10.1073/pnas.1812168116 10.1007/s10311-018-0706-y 10.1016/j.scitotenv.2019.01.227 10.1007/s40726-018-0081-0 10.1016/j.envpol.2017.08.016 10.4209/aaqr.2016.06.0262 10.1016/j.atmosenv.2019.116867 10.5194/acp-17-8681-2017 10.1016/j.envint.2020.105556 10.1016/j.atmosenv.2018.03.003 10.1016/j.envpol.2019.01.124 10.1016/j.resconrec.2020.104814 10.1029/2019GL084605 10.1016/j.scitotenv.2019.136126 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.scitotenv.2020.138878 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 138878 |
ExternalDocumentID | PMC7175882 32335409 10_1016_j_scitotenv_2020_138878 S0048969720323950 |
Genre | Journal Article |
GeographicLocations | Cities India |
GeographicLocations_xml | – name: India – name: Cities |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c574t-9aacf3a5eca90a959cfc6da7a9bcae2b745c7fe5a9b83b7842b4d5a81438dd23 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Aug 21 18:08:18 EDT 2025 Tue Aug 05 11:20:55 EDT 2025 Sun Aug 24 04:11:53 EDT 2025 Wed Feb 19 02:29:14 EST 2025 Thu Apr 24 23:12:36 EDT 2025 Tue Jul 01 03:35:40 EDT 2025 Fri Feb 23 02:44:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 AQI AERMOD PM2.5 India PM(2.5) |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-9aacf3a5eca90a959cfc6da7a9bcae2b745c7fe5a9b83b7842b4d5a81438dd23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1797-2311 0000-0002-1977-2954 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7175882 |
PMID | 32335409 |
PQID | 2395258807 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175882 proquest_miscellaneous_2985547118 proquest_miscellaneous_2395258807 pubmed_primary_32335409 crossref_primary_10_1016_j_scitotenv_2020_138878 crossref_citationtrail_10_1016_j_scitotenv_2020_138878 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_138878 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | CPCB (bb0015) 2014 Guo, Kota, Sahu, Hu, Ying, Gao (bb0035) 2017; 231 Beig, Sahu (bb0005) 2018 Hu, Ying, Wang, Zhang (bb0045) 2015; 84 Li, Jacob, Liao, Shen, Zhang, Bates (bb0065) 2019; 116 Zhang, Hu, Kleeman, Ying (bb0110) 2014; 490 Wang, Guo, Hu, Kota, Ying, Zhang (bb0095) 2019; 662 Shen, Zhang, Jiang, Tang, Gai, Chen (bb0090) 2020; 137 Mukherjee, Agrawal (bb0075) 2018; 16 Sahu, Kota (bb0080) 2017; 17 Beig, Sahu, Singh, Tikle, Sobhana, Gargeva (bb0010) 2020; 709 Dang, Liao (bb0020) 2019; 46 Li, Liao, Hu, Li (bb0060) 2019; 248 WHO (bb0105) 2005 Garaga, Sahu, Kota (bb0030) 2018; 4 Wang, Chen, Zhu, Wang, Zhang (bb0100) 2020; 158 Klimont, Kupiainen, Heyes, Purohit, Cofala, Rafaj (bb0050) 2017; 17 EPA U (bb0025) 2007 Sharma, Chatani, Mahtta, Goel, Kumar (bb0085) 2016; 131 Guo, Kota, Sahu, Zhang (bb0040) 2019; 214 Kota, Guo, Myllyvirta, Hu, Sahu, Garaga (bb0055) 2018; 180 MoEFC. Ministry of Environmenta, Forest and Climate Change (bb0070) 2019 Li (10.1016/j.scitotenv.2020.138878_bb0060) 2019; 248 Shen (10.1016/j.scitotenv.2020.138878_bb0090) 2020; 137 Beig (10.1016/j.scitotenv.2020.138878_bb0010) 2020; 709 Li (10.1016/j.scitotenv.2020.138878_bb0065) 2019; 116 EPA U (10.1016/j.scitotenv.2020.138878_bb0025) 2007 Mukherjee (10.1016/j.scitotenv.2020.138878_bb0075) 2018; 16 Sahu (10.1016/j.scitotenv.2020.138878_bb0080) 2017; 17 Wang (10.1016/j.scitotenv.2020.138878_bb0095) 2019; 662 CPCB (10.1016/j.scitotenv.2020.138878_bb0015) 2014 Garaga (10.1016/j.scitotenv.2020.138878_bb0030) 2018; 4 Wang (10.1016/j.scitotenv.2020.138878_bb0100) 2020; 158 WHO (10.1016/j.scitotenv.2020.138878_bb0105) 2005 Dang (10.1016/j.scitotenv.2020.138878_bb0020) 2019; 46 MoEFC. Ministry of Environmenta, Forest and Climate Change (10.1016/j.scitotenv.2020.138878_bb0070) 2019 Guo (10.1016/j.scitotenv.2020.138878_bb0035) 2017; 231 Kota (10.1016/j.scitotenv.2020.138878_bb0055) 2018; 180 Klimont (10.1016/j.scitotenv.2020.138878_bb0050) 2017; 17 Beig (10.1016/j.scitotenv.2020.138878_bb0005) 2018 Guo (10.1016/j.scitotenv.2020.138878_bb0040) 2019; 214 Hu (10.1016/j.scitotenv.2020.138878_bb0045) 2015; 84 Sharma (10.1016/j.scitotenv.2020.138878_bb0085) 2016; 131 Zhang (10.1016/j.scitotenv.2020.138878_bb0110) 2014; 490 |
References_xml | – volume: 231 start-page: 426 year: 2017 end-page: 436 ident: bb0035 article-title: Source apportionment of PM2. 5 in North India using source-oriented air quality models publication-title: Environ. Pollut. – year: 2014 ident: bb0015 article-title: National Air Quality Index Report – volume: 214 year: 2019 ident: bb0040 article-title: Contributions of local and regional sources to PM2. 5 and its health effects in north India publication-title: Atmos. Environ. – volume: 17 start-page: 588 year: 2017 end-page: 597 ident: bb0080 article-title: Significance of PM2. 5 air quality at the Indian capital publication-title: Aerosol Air Qual. Res. – year: 2019 ident: bb0070 publication-title: National Clean Air Programme – volume: 158 year: 2020 ident: bb0100 article-title: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak publication-title: Resour. Conserv. Recycl. – volume: 180 start-page: 244 year: 2018 end-page: 255 ident: bb0055 article-title: Year-long simulation of gaseous and particulate air pollutants in India publication-title: Atmos. Environ. – volume: 662 start-page: 297 year: 2019 end-page: 306 ident: bb0095 article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China publication-title: Sci. Total Environ. – volume: 709 year: 2020 ident: bb0010 article-title: Objective evaluation of stubble emission of North India and quantifying its impact on air quality of Delhi publication-title: Sci. Total Environ. – volume: 84 start-page: 17 year: 2015 end-page: 25 ident: bb0045 article-title: Characterizing multi-pollutant air pollution in China: comparison of three air quality indices publication-title: Environ. Int. – volume: 16 start-page: 1009 year: 2018 end-page: 1016 ident: bb0075 article-title: Air pollutant levels are 12 times higher than guidelines in Varanasi, India. Sources and transfer publication-title: Environ. Chem. Lett. – volume: 4 start-page: 59 year: 2018 end-page: 73 ident: bb0030 article-title: A review of air quality modeling studies in India: local and regional scale publication-title: Curr. Pollut. Rep. – volume: 490 start-page: 171 year: 2014 end-page: 181 ident: bb0110 article-title: Source apportionment of sulfate and nitrate particulate matter in the eastern United States and effectiveness of emission control programs publication-title: Sci. Total Environ. – year: 2018 ident: bb0005 publication-title: SAFAR-High Resolution Emission Inventory of Mega City Delhi -2018 – volume: 116 start-page: 422 year: 2019 end-page: 427 ident: bb0065 article-title: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China publication-title: Proc. Natl. Acad. Sci. – year: 2007 ident: bb0025 article-title: Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2. 5, and Regional Haze – volume: 46 start-page: 12511 year: 2019 end-page: 12519 ident: bb0020 article-title: Radiative forcing and health impact of aerosols and ozone in China as the consequence of clean air actions over 2012–2017 publication-title: Geophys. Res. Lett. – volume: 131 start-page: 29 year: 2016 end-page: 40 ident: bb0085 article-title: Sensitivity analysis of ground level ozone in India using WRF-CMAQ models publication-title: Atmos. Environ. – volume: 17 start-page: 8681 year: 2017 end-page: 8723 ident: bb0050 article-title: Global anthropogenic emissions of particulate matter including black carbon publication-title: Atmos. Chem. Phys. – volume: 137 year: 2020 ident: bb0090 article-title: Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China publication-title: Environ. Int. – volume: 248 start-page: 74 year: 2019 end-page: 81 ident: bb0060 article-title: Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions publication-title: Environ. Pollut. – year: 2005 ident: bb0105 article-title: Air Quality Guidelines publication-title: Global update 2005, Europe – year: 2007 ident: 10.1016/j.scitotenv.2020.138878_bb0025 – volume: 84 start-page: 17 year: 2015 ident: 10.1016/j.scitotenv.2020.138878_bb0045 article-title: Characterizing multi-pollutant air pollution in China: comparison of three air quality indices publication-title: Environ. Int. doi: 10.1016/j.envint.2015.06.014 – volume: 131 start-page: 29 year: 2016 ident: 10.1016/j.scitotenv.2020.138878_bb0085 article-title: Sensitivity analysis of ground level ozone in India using WRF-CMAQ models publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.01.036 – volume: 490 start-page: 171 year: 2014 ident: 10.1016/j.scitotenv.2020.138878_bb0110 article-title: Source apportionment of sulfate and nitrate particulate matter in the eastern United States and effectiveness of emission control programs publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.04.064 – year: 2018 ident: 10.1016/j.scitotenv.2020.138878_bb0005 – volume: 116 start-page: 422 year: 2019 ident: 10.1016/j.scitotenv.2020.138878_bb0065 article-title: Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1812168116 – year: 2019 ident: 10.1016/j.scitotenv.2020.138878_bb0070 – volume: 16 start-page: 1009 year: 2018 ident: 10.1016/j.scitotenv.2020.138878_bb0075 article-title: Air pollutant levels are 12 times higher than guidelines in Varanasi, India. Sources and transfer publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-018-0706-y – year: 2014 ident: 10.1016/j.scitotenv.2020.138878_bb0015 – volume: 662 start-page: 297 year: 2019 ident: 10.1016/j.scitotenv.2020.138878_bb0095 article-title: Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.227 – volume: 4 start-page: 59 year: 2018 ident: 10.1016/j.scitotenv.2020.138878_bb0030 article-title: A review of air quality modeling studies in India: local and regional scale publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-018-0081-0 – volume: 231 start-page: 426 year: 2017 ident: 10.1016/j.scitotenv.2020.138878_bb0035 article-title: Source apportionment of PM2. 5 in North India using source-oriented air quality models publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.016 – volume: 17 start-page: 588 year: 2017 ident: 10.1016/j.scitotenv.2020.138878_bb0080 article-title: Significance of PM2. 5 air quality at the Indian capital publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2016.06.0262 – volume: 214 year: 2019 ident: 10.1016/j.scitotenv.2020.138878_bb0040 article-title: Contributions of local and regional sources to PM2. 5 and its health effects in north India publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.116867 – volume: 17 start-page: 8681 year: 2017 ident: 10.1016/j.scitotenv.2020.138878_bb0050 article-title: Global anthropogenic emissions of particulate matter including black carbon publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-8681-2017 – volume: 137 year: 2020 ident: 10.1016/j.scitotenv.2020.138878_bb0090 article-title: Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105556 – volume: 180 start-page: 244 year: 2018 ident: 10.1016/j.scitotenv.2020.138878_bb0055 article-title: Year-long simulation of gaseous and particulate air pollutants in India publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.03.003 – year: 2005 ident: 10.1016/j.scitotenv.2020.138878_bb0105 article-title: Air Quality Guidelines – volume: 248 start-page: 74 year: 2019 ident: 10.1016/j.scitotenv.2020.138878_bb0060 article-title: Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.01.124 – volume: 158 year: 2020 ident: 10.1016/j.scitotenv.2020.138878_bb0100 article-title: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.104814 – volume: 46 start-page: 12511 year: 2019 ident: 10.1016/j.scitotenv.2020.138878_bb0020 article-title: Radiative forcing and health impact of aerosols and ozone in China as the consequence of clean air actions over 2012–2017 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL084605 – volume: 709 year: 2020 ident: 10.1016/j.scitotenv.2020.138878_bb0010 article-title: Objective evaluation of stubble emission of North India and quantifying its impact on air quality of Delhi publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136126 |
SSID | ssj0000781 |
Score | 2.7217665 |
Snippet | The effectiveness and cost are always top factors for policy-makers to decide control measures and most measures had no pre-test before implementation. Due to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 138878 |
SubjectTerms | AERMOD Air Pollution - analysis air quality AQI Betacoronavirus Cities Coronavirus Infections COVID-19 COVID-19 infection environment Environmental Monitoring Human Activities Humans India meteorology ozone Pandemics Particulate Matter - analysis PM2.5 Pneumonia, Viral quality control SARS-CoV-2 |
Title | Effect of restricted emissions during COVID-19 on air quality in India |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.138878 https://www.ncbi.nlm.nih.gov/pubmed/32335409 https://www.proquest.com/docview/2395258807 https://www.proquest.com/docview/2985547118 https://pubmed.ncbi.nlm.nih.gov/PMC7175882 |
Volume | 728 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISYkCZNaHRjKwPkSXvNCIkd23tDhaqlGpMmtvFmOY4jMqEE0YLEC7-duzoplGnjYU_5OieO78N39n0AfCoym6IWIiKPsj_iEs90oXiklNWujG3hUop3_nqSjX7w4zNxtgKDLhaG3Cpb2R9k-lxat3f22tHcu6wqivHlSmea9hGTVM_tds4lUfnnuwc3D0pmE3aZkbEResnHC987a1A3vUFDMaEaEMhy6m8z1J8a6FNHykcz0_A1rLcqJTsIvd6AFV_3YC0UmbztwebRQywbgrXMPO3Bq7Bkx0Ik0hsYhkzGrCkZFexAAYnaKKN6cLSiNmUhopENvv0cH0b7mjU1s9UVC2GZt6yq2bhGansLp8Oj08EoasssRE5IPou0ta5MrfDO6thqgThyWWGl1bmzPsklF06WXuC1SnOpeJLzQlhFhdOLIkk3YbVuav8emJZexd57VAFyXqpSuUIoFyMsqiH7qetD1o2scW0KcqqEcWE6X7PfZoESQygxASV9iBcNL0MWjuebfOlQZ5YIyuBc8Xzjjx2yDY4y7aHY2jfXU0OUlggUevIfMJp8_ySabn14Fwhk0WskVVpp032QS6SzAKB038tP6up8nvYbDW_8cLL1Pz_2AV7SVfBg3IbV2dW130GtapbvztlmF14cjCejEzpOvv-a3APCHCYx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1dT9sw8ISYJpDQxDrYurHNSHsNhMSO7b1NhaodH3spiDfLcRyRaUoQLUi87Lfvrk7KyrTxsLckPieO78N39n0AfCoym6IWIiKPsj_iEq90oXiklNWujG3hUop3Pj3LRuf866W4XIFBFwtDbpWt7A8yfS6t2yf77WzuX1cVxfhypTNN54hJqsluf8aRfamMwd7PBz8PymYTjpmRsxF8yckLXzxrUDm9Q0sxoSIQyHPqb0vUnyroY0_K35am4Sa8aHVK9iUM-yWs-LoHz0OVyfsebB89BLMhWMvN0x5shD07FkKRXsEwpDJmTcmoYgdKSFRHGRWEoy21KQshjWzw7WJ8GB1o1tTMVjcsxGXes6pm4xrJbQsmw6PJYBS1dRYiJySfRdpaV6ZWeGd1bLVAJLmssNLq3Fmf5JILJ0sv8F6luVQ8yXkhrKLK6UWRpNuwWje1fwNMS69i7z3qADkvValcIZSLERb1kIPU9SHrZta4Ngc5lcL4YTpns-9mgRJDKDEBJX2IFx2vQxqOp7t87lBnlijK4GLxdOfdDtkGZ5kOUWztm9upIVJLBEo9-Q8YTc5_Em23PrwOBLIYNdIqbbXpPsgl0lkAUL7v5Za6uprn_UbLGz-cvP2fH_sIa6PJ6Yk5GZ8dv4N1agnujDuwOru59e9RxZrlH-Ys9AsITyYc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+restricted+emissions+during+COVID-19+on+air+quality+in+India&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sharma%2C+Shubham&rft.au=Zhang%2C+Mengyuan&rft.au=Gao%2C+Jingsi&rft.au=Zhang%2C+Hongliang&rft.date=2020-08-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=728&rft.spage=138878&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.138878&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |