GIS-based spatial modeling of COVID-19 incidence rate in the continental United States

During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 728; p. 138884
Main Authors Mollalo, Abolfazl, Vahedi, Behzad, Rivera, Kiara M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2020.138884

Cover

Abstract During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions. [Display omitted] •To explore relationship between 35 environmental, socioeconomic, and demographic variables and COVID-19 incidence in US•Multiscale geographically weighted regression could explain 68.1% of the total variations of COVID-19 incidence in US•Income inequality was an influential factor in explaining COVID-19 incidence particularly in the tri-state area
AbstractList During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R 2 : 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions. Unlabelled Image
During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.
During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R²: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.
During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R : 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.
During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions. [Display omitted] •To explore relationship between 35 environmental, socioeconomic, and demographic variables and COVID-19 incidence in US•Multiscale geographically weighted regression could explain 68.1% of the total variations of COVID-19 incidence in US•Income inequality was an influential factor in explaining COVID-19 incidence particularly in the tri-state area
ArticleNumber 138884
Author Mollalo, Abolfazl
Vahedi, Behzad
Rivera, Kiara M.
Author_xml – sequence: 1
  givenname: Abolfazl
  orcidid: 0000-0001-5092-0698
  surname: Mollalo
  fullname: Mollalo, Abolfazl
  email: amollalo@bw.edu
  organization: Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA
– sequence: 2
  givenname: Behzad
  surname: Vahedi
  fullname: Vahedi, Behzad
  email: behzad@ucsb.edu
  organization: Department of Geography, University of California Santa Barbara (UCSB), Santa Barbara, CA, USA
– sequence: 3
  givenname: Kiara M.
  surname: Rivera
  fullname: Rivera, Kiara M.
  email: krivera19@bw.edu
  organization: Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32335404$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvGyEUhVGVqHHS_oV2lt2My2sGZtFKkZuHpUhZpMkWMXAnwRqDC9hS_30YOYnabMwGAeccju53io588IDQV4LnBJP2-2qejMshg9_NKabllkkp-Qc0I1J0NcG0PUIzjLmsu7YTJ-g0pRUuS0jyEZ0wyljDMZ-hh6vlXd3rBLZKG52dHqt1sDA6_1iFoVrcPix_1aSrnDfOgjdQRZ2hHKv8BJUJPjsPPhfbvXe5pNzl8p4-oeNBjwk-v-xn6P7y4vfiur65vVouzm9q0wie645g0wrCSINtP3AtG9liS3tpGQVidUd5iyXIHmipDsxa6GEgbWOtFq0U7Az93Odutv0arClVoh7VJrq1jn9V0E79_-Ldk3oMOyWIaDo8BXx7CYjhzxZSVmuXDIyj9hC2SdHSk3HKGT4sZV1DG8nlJP3yb623Pq9zL4Ife4GJIaUIgyo4y_jD1NKNimA1cVYr9cZZTZzVnnPxi3f-1y8OO8_3TihYdg7ipJvAWhfBZGWDO5jxDMmux20
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_117864
crossref_primary_10_1016_j_cities_2022_103932
crossref_primary_10_1016_j_geosus_2024_01_002
crossref_primary_10_3390_ijerph182312595
crossref_primary_10_1016_j_ijmedinf_2020_104248
crossref_primary_10_3390_ijerph182413294
crossref_primary_10_3390_su15129770
crossref_primary_10_1016_j_scs_2021_103485
crossref_primary_10_36322_jksc_v1i66_10621
crossref_primary_10_1371_journal_pone_0247794
crossref_primary_10_1038_s41598_021_83166_4
crossref_primary_10_1016_j_spasta_2021_100558
crossref_primary_10_1029_2021GH000402
crossref_primary_10_1061_JTEPBS_0000752
crossref_primary_10_3390_ijgi10080571
crossref_primary_10_1002_hsr2_1372
crossref_primary_10_1038_s41598_021_95351_6
crossref_primary_10_1007_s41775_021_00111_y
crossref_primary_10_1007_s10237_021_01520_x
crossref_primary_10_1038_s41467_021_26742_6
crossref_primary_10_3389_fpubh_2024_1359167
crossref_primary_10_1016_j_scs_2022_103990
crossref_primary_10_1080_00167428_2021_1947139
crossref_primary_10_22201_fca_24488410e_2020_3127
crossref_primary_10_1016_j_spasta_2021_100542
crossref_primary_10_1007_s11356_021_17433_2
crossref_primary_10_1016_j_ijdrr_2022_103078
crossref_primary_10_1016_j_ejrs_2021_08_003
crossref_primary_10_21837_pm_v22i33_1566
crossref_primary_10_1080_02664763_2022_2069232
crossref_primary_10_1080_10095020_2022_2088303
crossref_primary_10_1111_jors_12533
crossref_primary_10_1016_j_envc_2021_100096
crossref_primary_10_1080_00330124_2021_2009888
crossref_primary_10_1080_23748834_2024_2417506
crossref_primary_10_52547_jgst_12_3_17
crossref_primary_10_1007_s43762_021_00028_5
crossref_primary_10_1016_j_scs_2021_103261
crossref_primary_10_3390_ijgi12030111
crossref_primary_10_1016_j_rser_2021_111239
crossref_primary_10_1016_j_spasta_2021_100526
crossref_primary_10_1186_s12939_022_01628_1
crossref_primary_10_1007_s41748_020_00194_2
crossref_primary_10_1177_04866134241300804
crossref_primary_10_3390_f12091209
crossref_primary_10_1007_s11356_021_13653_8
crossref_primary_10_5565_rev_dag_904
crossref_primary_10_1016_j_cities_2021_103549
crossref_primary_10_1029_2021GH000439
crossref_primary_10_1016_j_scs_2021_103034
crossref_primary_10_1016_j_indic_2024_100382
crossref_primary_10_1016_j_scitotenv_2020_140033
crossref_primary_10_3934_publichealth_2022009
crossref_primary_10_4081_gh_2023_1153
crossref_primary_10_1016_j_imu_2023_101193
crossref_primary_10_1016_j_scitotenv_2021_147495
crossref_primary_10_1371_journal_pone_0267001
crossref_primary_10_1007_s41324_022_00445_6
crossref_primary_10_1016_j_imu_2022_100929
crossref_primary_10_1016_j_jhydrol_2023_130367
crossref_primary_10_1016_j_ejrh_2024_101932
crossref_primary_10_3390_ijerph17249528
crossref_primary_10_1111_tgis_12927
crossref_primary_10_3389_fpubh_2024_1400629
crossref_primary_10_1016_j_scitotenv_2021_151503
crossref_primary_10_2196_23126
crossref_primary_10_2196_40821
crossref_primary_10_1016_j_jtrangeo_2023_103718
crossref_primary_10_1080_12265934_2022_2063160
crossref_primary_10_3390_ijerph18094429
crossref_primary_10_3390_ijgi11010067
crossref_primary_10_1016_j_engappai_2024_107929
crossref_primary_10_1016_j_ijid_2021_07_031
crossref_primary_10_3389_frsc_2021_668263
crossref_primary_10_3390_ijerph192215035
crossref_primary_10_1088_1755_1315_708_1_012061
crossref_primary_10_1016_j_buildenv_2022_109177
crossref_primary_10_1080_24694452_2022_2130143
crossref_primary_10_1371_journal_pone_0280323
crossref_primary_10_3389_fpubh_2020_593861
crossref_primary_10_1111_tgis_12800
crossref_primary_10_1016_j_econmod_2022_106165
crossref_primary_10_1126_science_abe3339
crossref_primary_10_1111_tbed_13902
crossref_primary_10_3390_ijgi10070440
crossref_primary_10_3390_axioms13030201
crossref_primary_10_1177_03091333241241458
crossref_primary_10_3390_urbansci7020062
crossref_primary_10_3390_ijgi11010057
crossref_primary_10_1016_j_trip_2023_100836
crossref_primary_10_61186_j_health_15_2_187
crossref_primary_10_1016_j_arr_2020_101149
crossref_primary_10_3390_ijerph18115541
crossref_primary_10_1186_s12889_023_15064_5
crossref_primary_10_1016_j_susoc_2021_12_001
crossref_primary_10_1016_j_imu_2020_100475
crossref_primary_10_1016_j_heliyon_2021_e06260
crossref_primary_10_2139_ssrn_3948832
crossref_primary_10_1080_00330124_2024_2398243
crossref_primary_10_1007_s10708_021_10449_8
crossref_primary_10_1186_s12889_022_14212_7
crossref_primary_10_1016_j_jclepro_2024_141262
crossref_primary_10_1038_s41598_021_92263_3
crossref_primary_10_3390_ijerph18178987
crossref_primary_10_1002_ldr_5409
crossref_primary_10_1080_13669877_2021_1881991
crossref_primary_10_1080_21681376_2023_2234433
crossref_primary_10_1515_ohe_2023_0014
crossref_primary_10_1515_openhe_2022_0007
crossref_primary_10_1016_j_jenvman_2022_116806
crossref_primary_10_1016_j_sciaf_2021_e00827
crossref_primary_10_59400_cai_v2i2_1427
crossref_primary_10_2139_ssrn_4067001
crossref_primary_10_3389_fpubh_2021_641253
crossref_primary_10_1007_s10708_021_10438_x
crossref_primary_10_1080_24694452_2020_1830024
crossref_primary_10_1016_j_sste_2021_100454
crossref_primary_10_1016_j_tust_2022_104912
crossref_primary_10_1016_j_energy_2025_135076
crossref_primary_10_1016_j_envres_2022_112818
crossref_primary_10_1016_j_scs_2021_103410
crossref_primary_10_3390_ijgi10040261
crossref_primary_10_2196_35840
crossref_primary_10_3390_healthcare10020324
crossref_primary_10_4236_jgis_2024_163011
crossref_primary_10_1038_s41598_024_60964_0
crossref_primary_10_1080_00330124_2023_2194363
crossref_primary_10_3390_ijerph17165911
crossref_primary_10_1038_s41370_021_00356_y
crossref_primary_10_1016_j_rse_2022_113072
crossref_primary_10_1002_puh2_111
crossref_primary_10_1016_j_cities_2024_105170
crossref_primary_10_2139_ssrn_3995296
crossref_primary_10_3390_ijgi11050283
crossref_primary_10_3390_ijgi12020045
crossref_primary_10_1111_1477_8947_12417
crossref_primary_10_1016_j_scitotenv_2021_150521
crossref_primary_10_3390_rs16101697
crossref_primary_10_1016_j_sste_2021_100433
crossref_primary_10_3390_ijerph17113903
crossref_primary_10_1016_j_cosust_2020_10_011
crossref_primary_10_2174_1381612826666201211121721
crossref_primary_10_3390_rs14225695
crossref_primary_10_1029_2021GH000395
crossref_primary_10_3390_ijgi10090627
crossref_primary_10_3389_fpubh_2023_1137489
crossref_primary_10_4081_gh_2022_1066
crossref_primary_10_1080_19475705_2021_1914197
crossref_primary_10_1080_09603123_2024_2362844
crossref_primary_10_1177_0733464821992611
crossref_primary_10_1016_j_scitotenv_2020_142723
crossref_primary_10_1590_1982_3533_2022v31n3art09
crossref_primary_10_3390_tropicalmed7080164
crossref_primary_10_1176_appi_ps_202000540
crossref_primary_10_1016_j_annepidem_2024_04_008
crossref_primary_10_1021_acs_est_2c04302
crossref_primary_10_1007_s11222_025_10590_1
crossref_primary_10_1007_s12061_021_09413_3
crossref_primary_10_4081_gh_2022_1132
crossref_primary_10_4081_gh_2022_1013
crossref_primary_10_3390_e25020320
crossref_primary_10_1016_j_jclepro_2024_142306
crossref_primary_10_1016_j_scitotenv_2020_141946
crossref_primary_10_1080_17457300_2020_1823996
crossref_primary_10_1016_j_arcmed_2020_06_010
crossref_primary_10_1016_j_sste_2021_100411
crossref_primary_10_2196_43250
crossref_primary_10_1029_2021GH000450
crossref_primary_10_1016_j_ssaho_2024_100948
crossref_primary_10_1155_2021_1099256
crossref_primary_10_1016_j_annepidem_2020_07_014
crossref_primary_10_1016_j_seps_2023_101732
crossref_primary_10_3390_land11112079
crossref_primary_10_1016_j_ijdrr_2021_102762
crossref_primary_10_3390_rs14133134
crossref_primary_10_1007_s40615_022_01265_y
crossref_primary_10_1016_j_jhydrol_2024_131348
crossref_primary_10_1080_13658816_2024_2410346
crossref_primary_10_3390_pollutants2020012
crossref_primary_10_1016_j_jenvman_2020_111381
crossref_primary_10_1029_2021GH000458
crossref_primary_10_1080_00330124_2021_1895851
crossref_primary_10_6339_23_JDS1111
crossref_primary_10_1080_1573062X_2021_2022720
crossref_primary_10_61186_payesh_23_2_271
crossref_primary_10_3390_rs15112759
crossref_primary_10_4236_jgis_2025_171005
crossref_primary_10_1016_j_scs_2022_103838
crossref_primary_10_1016_j_ijepes_2022_108084
crossref_primary_10_1177_00111287221116293
crossref_primary_10_1080_10095020_2022_2066576
crossref_primary_10_1080_19388160_2023_2301450
crossref_primary_10_24057_2071_9388_2021_054
crossref_primary_10_3389_fams_2022_872284
crossref_primary_10_4081_jphia_2023_2767
crossref_primary_10_1186_s12889_023_15484_3
crossref_primary_10_3390_ijerph20176643
crossref_primary_10_3390_ijerph18062803
crossref_primary_10_1080_13467581_2023_2270027
crossref_primary_10_3390_ijgi10080510
crossref_primary_10_1007_s41685_022_00257_4
crossref_primary_10_15304_rge_30_1_6984
crossref_primary_10_3390_ijgi12040163
crossref_primary_10_1016_j_ejrs_2021_12_010
crossref_primary_10_1111_tgis_12792
crossref_primary_10_1016_j_scs_2021_102897
crossref_primary_10_2196_22578
crossref_primary_10_5993_AJHB_47_4_5
crossref_primary_10_1007_s00103_021_03387_w
crossref_primary_10_3390_ijerph18189925
crossref_primary_10_1016_j_scs_2021_102784
crossref_primary_10_1186_s12889_023_16337_9
crossref_primary_10_1002_sd_2665
crossref_primary_10_1007_s00521_023_08749_w
crossref_primary_10_1016_j_heliyon_2021_e06650
crossref_primary_10_3934_mbe_2023655
crossref_primary_10_3390_su15021703
crossref_primary_10_1111_tgis_12784
crossref_primary_10_1186_s12942_023_00329_4
crossref_primary_10_1371_journal_pcbi_1009363
crossref_primary_10_3390_ijgi11030152
crossref_primary_10_1177_20552076231171969
crossref_primary_10_32604_cmc_2021_013327
crossref_primary_10_1177_23998083221107019
crossref_primary_10_1007_s41324_021_00421_6
crossref_primary_10_1016_j_heliyon_2024_e39330
crossref_primary_10_1093_ije_dyab267
crossref_primary_10_1111_gean_12335
crossref_primary_10_3390_ijerph18179227
crossref_primary_10_1111_gean_12336
crossref_primary_10_3390_ijerph182212182
crossref_primary_10_1038_s41598_023_46632_9
crossref_primary_10_1080_13658816_2023_2246154
crossref_primary_10_3390_ijerph19148267
crossref_primary_10_3390_ijgi11090470
crossref_primary_10_1007_s11356_022_18564_w
crossref_primary_10_14202_IJOH_2020_153_159
crossref_primary_10_3390_ijerph18063145
crossref_primary_10_3390_land13040480
crossref_primary_10_1371_journal_pone_0265673
crossref_primary_10_3390_tropicalmed7030045
crossref_primary_10_24057_2071_9388_2021_090
crossref_primary_10_3390_ijerph18041495
crossref_primary_10_1002_sd_3018
crossref_primary_10_1016_j_uclim_2024_101942
crossref_primary_10_15446_rsap_v22n2_88772
crossref_primary_10_3389_fpubh_2024_1517554
crossref_primary_10_3390_ijgi12070266
crossref_primary_10_1016_j_scitotenv_2023_163411
crossref_primary_10_1016_j_sste_2022_100561
crossref_primary_10_3390_ijerph17165634
crossref_primary_10_3390_ijerph19116404
crossref_primary_10_1016_j_healthplace_2021_102563
crossref_primary_10_1080_19475683_2022_2133167
crossref_primary_10_1016_j_eiar_2025_107919
crossref_primary_10_1007_s11356_021_13834_5
crossref_primary_10_1007_s12145_021_00739_7
crossref_primary_10_1111_geoj_12436
crossref_primary_10_12677_AAM_2022_115291
crossref_primary_10_4081_gh_2025_1295
crossref_primary_10_1177_03611981241274156
crossref_primary_10_3390_ijerph19159012
crossref_primary_10_3390_ijgi10060387
crossref_primary_10_1016_j_jag_2025_104396
crossref_primary_10_1088_1755_1315_884_1_012058
crossref_primary_10_3390_ijerph18136832
crossref_primary_10_3390_ijgi11100499
crossref_primary_10_1080_07352166_2023_2187301
crossref_primary_10_1080_24694452_2022_2161988
crossref_primary_10_3390_ijerph192113977
crossref_primary_10_1002_nur_22348
crossref_primary_10_1016_j_ijdrr_2023_103900
crossref_primary_10_1016_j_scs_2021_102738
crossref_primary_10_1016_j_healthplace_2021_102574
crossref_primary_10_2139_ssrn_4110946
crossref_primary_10_1016_j_ajic_2020_12_009
crossref_primary_10_1016_j_jsr_2023_11_007
crossref_primary_10_3389_fpubh_2023_1287999
crossref_primary_10_1287_ijoc_2023_1269
crossref_primary_10_3390_ijerph18094802
crossref_primary_10_1007_s10198_021_01280_6
crossref_primary_10_4000_12de1
crossref_primary_10_3389_fpubh_2022_938811
crossref_primary_10_1007_s41748_020_00179_1
crossref_primary_10_1016_j_scitotenv_2024_178062
crossref_primary_10_3390_ijerph182212170
crossref_primary_10_1016_j_buildenv_2024_112289
crossref_primary_10_3390_ijgi9120715
crossref_primary_10_1016_j_scitotenv_2021_150801
crossref_primary_10_1136_bmjgh_2023_012271
crossref_primary_10_1177_23998083241312953
crossref_primary_10_24057_2071_9388_2021_076
crossref_primary_10_3390_ijerph17207450
crossref_primary_10_4000_cybergeo_36057
crossref_primary_10_4103_jfmpc_jfmpc_903_21
crossref_primary_10_1016_j_jclepro_2023_139255
crossref_primary_10_1016_j_sste_2022_100534
crossref_primary_10_3390_ijerph182212024
crossref_primary_10_3390_ijerph18105085
crossref_primary_10_1016_j_scitotenv_2023_163105
crossref_primary_10_3390_ijerph17144988
crossref_primary_10_1016_j_jtbi_2021_110692
crossref_primary_10_3390_ijgi10090602
crossref_primary_10_1016_j_scs_2020_102511
crossref_primary_10_1080_23754931_2020_1807396
crossref_primary_10_1371_journal_pone_0245845
crossref_primary_10_1016_j_ecolind_2022_109333
crossref_primary_10_61186_jgst_14_1_51
crossref_primary_10_1016_j_geosus_2022_09_005
crossref_primary_10_1007_s10708_022_10780_8
crossref_primary_10_1016_j_ijdrr_2022_103311
crossref_primary_10_1371_journal_pntd_0011466
crossref_primary_10_1016_j_jnlssr_2023_12_005
crossref_primary_10_1016_j_healthplace_2022_102744
crossref_primary_10_1016_j_healthplace_2020_102460
crossref_primary_10_1371_journal_pone_0246808
crossref_primary_10_1371_journal_pone_0249037
crossref_primary_10_1007_s10661_024_12795_9
crossref_primary_10_1016_j_scs_2020_102627
crossref_primary_10_1111_gean_12370
crossref_primary_10_3390_su141912189
crossref_primary_10_1073_pnas_2023321118
crossref_primary_10_1029_2020GH000367
crossref_primary_10_1016_j_jclepro_2025_145354
crossref_primary_10_1016_j_catena_2023_107277
crossref_primary_10_1016_j_etdah_2024_100153
crossref_primary_10_1016_j_scs_2020_102418
crossref_primary_10_1016_j_procs_2020_10_029
crossref_primary_10_1016_j_asoc_2021_107611
crossref_primary_10_3390_ijerph182212018
crossref_primary_10_1016_j_catena_2021_105617
crossref_primary_10_1016_j_cities_2023_104519
crossref_primary_10_1016_j_sste_2023_100604
crossref_primary_10_3389_fendo_2022_905367
crossref_primary_10_3390_math9192454
crossref_primary_10_1080_10106049_2020_1844310
crossref_primary_10_7163_GPol_0209
crossref_primary_10_1016_j_seps_2022_101250
crossref_primary_10_7163_GPol_0207
crossref_primary_10_1186_s12889_024_20596_5
crossref_primary_10_3390_ijgi12020069
crossref_primary_10_1007_s41324_022_00483_0
crossref_primary_10_1016_j_ijdrr_2023_103761
crossref_primary_10_1016_j_scitotenv_2021_152126
crossref_primary_10_1038_s41598_024_62300_y
crossref_primary_10_1016_j_healthplace_2023_103000
crossref_primary_10_24057_2071_9388_2024_2917
crossref_primary_10_3390_ijerph18189673
crossref_primary_10_1007_s11356_020_10930_w
crossref_primary_10_4081_gh_2021_967
crossref_primary_10_1007_s41685_022_00261_8
crossref_primary_10_1080_10095020_2021_1977093
crossref_primary_10_4081_gh_2023_1227
crossref_primary_10_1088_1742_6596_1895_1_012004
crossref_primary_10_1080_15568318_2023_2299018
crossref_primary_10_1111_1745_5871_12669
crossref_primary_10_1038_s41598_021_93020_2
crossref_primary_10_1186_s12889_022_13566_2
crossref_primary_10_1016_j_rspp_2024_100027
crossref_primary_10_3390_ijerph17228468
crossref_primary_10_1038_s41598_021_82384_0
crossref_primary_10_3389_fpubh_2021_674847
crossref_primary_10_1016_j_biosystems_2023_105073
crossref_primary_10_4081_gh_2021_985
crossref_primary_10_3390_ijerph18189657
crossref_primary_10_1080_19376812_2022_2099916
crossref_primary_10_3390_ijerph18073583
crossref_primary_10_1007_s11356_023_31769_x
crossref_primary_10_1016_j_scitotenv_2020_142396
crossref_primary_10_1016_j_scitotenv_2020_144455
crossref_primary_10_1080_10106049_2022_2120637
crossref_primary_10_1016_j_ecolind_2023_111540
crossref_primary_10_3390_ijerph18020604
crossref_primary_10_1016_j_apgeog_2022_102671
crossref_primary_10_3390_ijgi9110639
crossref_primary_10_1016_j_apgeog_2021_102473
crossref_primary_10_1016_j_annepidem_2021_03_009
crossref_primary_10_1016_j_buildenv_2022_109581
crossref_primary_10_1007_s11356_020_10962_2
crossref_primary_10_1016_j_envpol_2020_115042
crossref_primary_10_1007_s12524_020_01286_2
crossref_primary_10_1038_s41598_023_37184_z
crossref_primary_10_1371_journal_pone_0264863
crossref_primary_10_1111_1745_5871_12521
crossref_primary_10_2196_59230
crossref_primary_10_4081_gh_2023_1200
crossref_primary_10_3390_ijerph18147563
crossref_primary_10_1108_K_07_2021_0548
crossref_primary_10_1016_j_ypmed_2021_106457
crossref_primary_10_1016_j_annepidem_2022_05_005
crossref_primary_10_1016_j_jclepro_2021_128321
crossref_primary_10_1007_s11356_023_25322_z
crossref_primary_10_1371_journal_pone_0249133
crossref_primary_10_1515_geo_2020_0156
crossref_primary_10_1371_journal_pone_0297772
crossref_primary_10_3390_ijgi13120465
crossref_primary_10_3389_fenvs_2023_1104679
crossref_primary_10_1016_j_jenvman_2024_121218
crossref_primary_10_1017_S0950268821000479
crossref_primary_10_1186_s12889_025_21513_0
crossref_primary_10_1016_j_socscimed_2020_113365
crossref_primary_10_1016_j_heliyon_2021_e05912
crossref_primary_10_3389_fpubh_2023_1249141
crossref_primary_10_3390_ijerph192013504
crossref_primary_10_1134_S2079970524600082
crossref_primary_10_1016_j_sste_2022_100498
crossref_primary_10_3390_ijerph18052336
crossref_primary_10_3390_ijgi10110791
crossref_primary_10_1016_j_sste_2022_100493
crossref_primary_10_1016_j_sste_2022_100494
crossref_primary_10_1061__ASCE_UP_1943_5444_0000848
crossref_primary_10_1590_1414_462x202331030512
crossref_primary_10_1186_s12872_024_03882_3
crossref_primary_10_3390_su15107891
crossref_primary_10_1007_s11356_020_11499_0
crossref_primary_10_1016_j_spasta_2021_100586
crossref_primary_10_1016_j_scitotenv_2021_150390
crossref_primary_10_1016_j_uclim_2024_101862
crossref_primary_10_3390_app14010142
crossref_primary_10_12688_f1000research_27544_2
crossref_primary_10_1016_j_cities_2022_104040
crossref_primary_10_12688_f1000research_27544_1
crossref_primary_10_2139_ssrn_3614877
crossref_primary_10_1093_geronb_gbaa227
crossref_primary_10_3390_ijerph18052222
crossref_primary_10_3390_ijerph17124204
crossref_primary_10_29252_jorjanibiomedj_8_1_24
crossref_primary_10_1007_s41324_022_00488_9
crossref_primary_10_3389_fpubh_2022_751768
crossref_primary_10_1007_s10708_022_10601_y
crossref_primary_10_1038_s41598_022_23697_6
crossref_primary_10_3390_ijgi11050309
crossref_primary_10_1016_j_landusepol_2022_106183
crossref_primary_10_1016_j_onehlt_2021_100225
crossref_primary_10_1007_s40314_021_01553_z
crossref_primary_10_1016_j_scitotenv_2022_158056
crossref_primary_10_31435_rsglobal_ijitss_30062024_8155
crossref_primary_10_1177_1403494820984026
crossref_primary_10_3390_ijerph18189488
crossref_primary_10_1016_j_scitotenv_2020_143595
crossref_primary_10_1007_s12205_022_1356_y
crossref_primary_10_1007_s11270_025_07824_3
crossref_primary_10_1007_s10462_021_09988_w
crossref_primary_10_1007_s00477_020_01965_z
crossref_primary_10_1016_j_heliyon_2024_e35039
crossref_primary_10_1016_j_puhe_2020_10_026
crossref_primary_10_1038_s41598_021_01257_8
crossref_primary_10_1080_13658816_2022_2100892
crossref_primary_10_1007_s41324_023_00519_z
crossref_primary_10_1029_2022GH000733
crossref_primary_10_1007_s11356_021_18442_x
crossref_primary_10_1177_0956247820963962
crossref_primary_10_1016_j_amepre_2022_06_006
crossref_primary_10_1007_s40808_023_01729_y
crossref_primary_10_1016_j_techsoc_2020_101516
crossref_primary_10_1097_MD_0000000000032607
crossref_primary_10_1007_s11042_023_15901_0
crossref_primary_10_1007_s10708_024_11264_7
crossref_primary_10_5888_pcd17_200246
crossref_primary_10_1007_s10668_022_02727_3
crossref_primary_10_1177_03611981241231797
crossref_primary_10_3390_ijgi13120421
crossref_primary_10_1186_s12942_021_00270_4
crossref_primary_10_1016_j_apgeog_2021_102558
Cites_doi 10.2139/ssrn.3562340
10.1007/s11135-006-9018-6
10.1016/S2468-2667(20)30085-2
10.1001/jama.2020.4978
10.1186/s12942-020-00204-6
10.1111/j.1435-5957.2012.00480.x
10.1016/j.scitotenv.2020.138226
10.1016/j.habitatint.2015.10.013
10.1111/1467-9884.00145
10.1017/S0950268816000224
10.3390/ijerph16010157
10.1177/0160017602250972
10.1111/j.1538-4632.1996.tb00936.x
10.3390/ijgi8060269
10.2196/18844
10.1068/b35137
10.1016/j.sste.2014.05.004
10.1016/j.dsx.2020.03.002
10.1016/j.actatropica.2018.09.004
10.1080/24694452.2017.1352480
10.1111/zph.12109
10.1111/gean.12189
10.3390/jcm9030841
10.1007/s10109-016-0239-5
10.1186/s12942-020-00202-8
10.1056/NEJMoa2001191
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.scitotenv.2020.138884
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 138884
ExternalDocumentID PMC7175907
32335404
10_1016_j_scitotenv_2020_138884
S0048969720324013
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c574t-910c6713150dbf4a85860d2b8d32e1da924608e8be2007e3ddebef165dda76873
IEDL.DBID AIKHN
ISSN 0048-9697
1879-1026
IngestDate Thu Aug 21 14:20:05 EDT 2025
Thu Sep 04 22:43:33 EDT 2025
Fri Sep 05 14:46:56 EDT 2025
Wed Feb 19 02:29:14 EST 2025
Tue Jul 01 03:35:40 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Fri Feb 23 02:44:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
GIS
Multiscale GWR
Spatial non-stationarity
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-910c6713150dbf4a85860d2b8d32e1da924608e8be2007e3ddebef165dda76873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5092-0698
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7175907
PMID 32335404
PQID 2395258480
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175907
proquest_miscellaneous_2574342430
proquest_miscellaneous_2395258480
pubmed_primary_32335404
crossref_citationtrail_10_1016_j_scitotenv_2020_138884
crossref_primary_10_1016_j_scitotenv_2020_138884
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_138884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brunsdon, Fotheringham, Charlton (bb0045) 1998; 47
Ahmed, Ahmed, Pissarides, Stiglitz (bb0010) 2020
Taghizadeh-Hesary, Akbari (bb0175) 2020; 2020
Lakhani (bb0125) 2020; S0885-3924
United Nations (bb0185) 2020
Holshue, DeBolt, Lindquist, Lofy, Wiesman, Bruce, Diaz (bb0110) 2020; 382
World Health Organization (WHO) (bb0210) 2020
Dowd, Rotondi, Andriano, Brazel, Block, Ding, Mills (bb0075) 2020
Kostov (bb0120) 2010; 37
Mollalo, Mao, Rashidi, Glass (bb0155) 2019; 16
Lovett, Poots, Clements, Green, Samarasundera, Bell (bb0130) 2014; 10
World Health Organization (WHO) (bb0205) 2020
Anselin, Arribas-Bel (bb0020) 2013; 92
Ma, Zhao, Liu, He, Wang, Fu, Luo (bb0135) 2020; 724
Bayne, Norris, Timmons (bb0025) 2020
Buja, Hastie, Tibshirani (bb0055) 1989
Wang, Tang, Feng, Lv (bb0190) 2020
World Health Organization (WHO) (bb0200) 2020
Oshan, Li, Kang, Wolf, Fotheringham (bb0165) 2019; 8
Brake, Barnsley, Lu, McAlinden, Eapen, Sohal (bb0035) 2020; 9
Buerhaus, Auerbach, Staiger (bb0050) 2020
O’brien (bb0160) 2007; 41
Oshan, Smith, Fotheringham (bb0170) 2020; 19
The COVID Tracking Project (bb0180) 2020
Mollalo, Khodabandehloo (bb0140) 2016; 144
Mollalo, Alimohammadi, Shirzadi, Malek (bb0145) 2015; 62
Yu, Fotheringham, Li, Oshan, Kang, Wolf (bb0220) 2019; 52
Anselin (bb0015) 2003; 26
Ward, Gleditsch (bb0195) 2018; 155
Congessional Research Service (bb0070) 2020
Abir, Nelson, Chan, Al-Ibrahim, Cutter, Patel, Bogart (bb0005) 2020
Fotheringham, Yang, Kang (bb0085) 2017; 107
Mollalo, Sadeghian, Israel, Rashidi, Sofizadeh, Glass (bb0150) 2018; 188
Brunsdon, Fotheringham, Charlton (bb0040) 1996; 28
Fotheringham, Oshan (bb0080) 2016; 18
Gupta, Ghosh, Singh, Misra (bb0100) 2020; 14
Hastie, Tibshirani (bb0105) 1986; 1
Gibson, Rush (bb0095) 2020; 6
Wu, Nethery, Sabath, Braun, Dominici (bb0215) 2020
Zheng, Ma, Zhang, Xie (bb0225) 2020; 1–2
Boulos, M. N. K., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics.
Johns Hopkins University Center for Systems Science and Engineering (bb0115) 2020
Center for Infectious Disease Research and Policy (bb0060) 2020
Chen, Chang, Han, Karacsonyi, Qian (bb0065) 2016; 51
Gangopadhyaya, Garrett (bb0090) 2020
Gangopadhyaya (10.1016/j.scitotenv.2020.138884_bb0090) 2020
Mollalo (10.1016/j.scitotenv.2020.138884_bb0150) 2018; 188
Kostov (10.1016/j.scitotenv.2020.138884_bb0120) 2010; 37
Bayne (10.1016/j.scitotenv.2020.138884_bb0025) 2020
Ward (10.1016/j.scitotenv.2020.138884_bb0195) 2018; 155
Brunsdon (10.1016/j.scitotenv.2020.138884_bb0040) 1996; 28
Mollalo (10.1016/j.scitotenv.2020.138884_bb0155) 2019; 16
Anselin (10.1016/j.scitotenv.2020.138884_bb0020) 2013; 92
Oshan (10.1016/j.scitotenv.2020.138884_bb0170) 2020; 19
Zheng (10.1016/j.scitotenv.2020.138884_bb0225) 2020; 1–2
Lovett (10.1016/j.scitotenv.2020.138884_bb0130) 2014; 10
Wu (10.1016/j.scitotenv.2020.138884_bb0215) 2020
10.1016/j.scitotenv.2020.138884_bb0030
Abir (10.1016/j.scitotenv.2020.138884_bb0005)
Gibson (10.1016/j.scitotenv.2020.138884_bb0095) 2020; 6
Lakhani (10.1016/j.scitotenv.2020.138884_bb0125) 2020; S0885-3924
Buerhaus (10.1016/j.scitotenv.2020.138884_bb0050) 2020
Oshan (10.1016/j.scitotenv.2020.138884_bb0165) 2019; 8
World Health Organization (WHO) (10.1016/j.scitotenv.2020.138884_bb0200)
Congessional Research Service (10.1016/j.scitotenv.2020.138884_bb0070)
World Health Organization (WHO) (10.1016/j.scitotenv.2020.138884_bb0210)
Center for Infectious Disease Research and Policy (10.1016/j.scitotenv.2020.138884_bb0060)
Johns Hopkins University Center for Systems Science and Engineering (10.1016/j.scitotenv.2020.138884_bb0115)
Ma (10.1016/j.scitotenv.2020.138884_bb0135) 2020; 724
Yu (10.1016/j.scitotenv.2020.138884_bb0220) 2019; 52
United Nations (10.1016/j.scitotenv.2020.138884_bb0185)
Anselin (10.1016/j.scitotenv.2020.138884_bb0015) 2003; 26
Hastie (10.1016/j.scitotenv.2020.138884_bb0105) 1986; 1
Holshue (10.1016/j.scitotenv.2020.138884_bb0110) 2020; 382
O’brien (10.1016/j.scitotenv.2020.138884_bb0160) 2007; 41
World Health Organization (WHO) (10.1016/j.scitotenv.2020.138884_bb0205)
Ahmed (10.1016/j.scitotenv.2020.138884_bb0010) 2020
Mollalo (10.1016/j.scitotenv.2020.138884_bb0145) 2015; 62
Taghizadeh-Hesary (10.1016/j.scitotenv.2020.138884_bb0175) 2020; 2020
The COVID Tracking Project (10.1016/j.scitotenv.2020.138884_bb0180)
Fotheringham (10.1016/j.scitotenv.2020.138884_bb0080) 2016; 18
Fotheringham (10.1016/j.scitotenv.2020.138884_bb0085) 2017; 107
Dowd (10.1016/j.scitotenv.2020.138884_bb0075) 2020
Mollalo (10.1016/j.scitotenv.2020.138884_bb0140) 2016; 144
Brake (10.1016/j.scitotenv.2020.138884_bb0035) 2020; 9
Gupta (10.1016/j.scitotenv.2020.138884_bb0100) 2020; 14
Brunsdon (10.1016/j.scitotenv.2020.138884_bb0045) 1998; 47
Buja (10.1016/j.scitotenv.2020.138884_bb0055) 1989
Chen (10.1016/j.scitotenv.2020.138884_bb0065) 2016; 51
Wang (10.1016/j.scitotenv.2020.138884_bb0190) 2020
References_xml – year: 2020
  ident: bb0070
  article-title: Global Econoic Effects of COVID-19
– volume: 16
  start-page: 157
  year: 2019
  ident: bb0155
  article-title: A GIS-based artificial neural network model for spatial distribution of tuberculosis across the continental United States
  publication-title: Int. J. Environ. Res. Public Health
– year: 2020
  ident: bb0205
  article-title: Coronavirus Disease 2019 (COVID-19) Situation Report – 83
– volume: 47
  start-page: 431
  year: 1998
  end-page: 443
  ident: bb0045
  article-title: Geographically weighted regression
  publication-title: Journal of the Royal Statistical Society: Series D (The Statistician)
– year: 2020
  ident: bb0075
  article-title: Demographic Science Aids in Understanding the Spread and Fatality Rates of COVID-19
– year: 2020
  ident: bb0005
  article-title: Critical Care Surge Response Strategies for the 2020 COVID-19 Outbreak in the United States
– volume: 41
  start-page: 673
  year: 2007
  end-page: 690
  ident: bb0160
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
– volume: 92
  start-page: 3
  year: 2013
  end-page: 17
  ident: bb0020
  article-title: Spatial fixed effects and spatial dependence in a single cross-section
  publication-title: Pap. Reg. Sci.
– volume: 2020
  year: 2020
  ident: bb0175
  article-title: The powerful immune system against powerful COVID-19: a hypothesis
  publication-title: Preprints
– volume: 28
  start-page: 281
  year: 1996
  end-page: 298
  ident: bb0040
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
– year: 2020
  ident: bb0115
  article-title: COVID-19 Dashboard
– volume: 1–2
  year: 2020
  ident: bb0225
  article-title: COVID-19 and the cardiovascular system
  publication-title: Nat. Rev. Cardiol.
– volume: 62
  start-page: 18
  year: 2015
  end-page: 28
  ident: bb0145
  article-title: Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran
  publication-title: Zoonoses Public Health
– volume: 18
  start-page: 303
  year: 2016
  end-page: 329
  ident: bb0080
  article-title: Geographically weighted regression and multi-collinearity: dispelling the myth
  publication-title: J. Geogr. Syst.
– volume: 724
  year: 2020
  ident: bb0135
  article-title: Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China
  publication-title: Science of The Total Environment
– volume: 144
  start-page: 2217
  year: 2016
  end-page: 2229
  ident: bb0140
  article-title: Zoonotic cutaneous leishmaniasis in northeastern Iran: a GIS-based spatio-temporal multi-criteria decision-making approach
  publication-title: Epidemiology & Infection
– year: 2020
  ident: bb0180
– start-page: 453
  year: 1989
  end-page: 510
  ident: bb0055
  article-title: Linear smoothers and additive models
  publication-title: Ann. Stat.
– volume: 51
  start-page: 59
  year: 2016
  end-page: 69
  ident: bb0065
  article-title: Investigating urbanization and its spatial determinants in the central districts of Guangzhou, China
  publication-title: Habitat International
– year: 2020
  ident: bb0050
  article-title: Older clinicians and the surge in novel coronavirus disease 2019 (COVID-19)
  publication-title: JAMA
– volume: 14
  start-page: 211
  year: 2020
  end-page: 212
  ident: bb0100
  article-title: Clinical considerations for patients with diabetes in times of COVID-19 epidemic
  publication-title: Diabetes & metabolic syndrome
– volume: 107
  start-page: 1247
  year: 2017
  end-page: 1265
  ident: bb0085
  article-title: Multiscale geographically weighted regression (MGWR)
  publication-title: Annals of the American Association of Geographers
– volume: 10
  start-page: 67
  year: 2014
  end-page: 74
  ident: bb0130
  article-title: Using geographical information systems and cartograms as a health service quality improvement tool
  publication-title: Spatial and Spatio-temporal Epidemiology
– volume: 52
  start-page: 87
  year: 2019
  end-page: 106
  ident: bb0220
  article-title: Inference in multiscale geographically weighted regression
  publication-title: Geogr. Anal.
– year: 2020
  ident: bb0010
  article-title: Why inequality could spread COVID-19
  publication-title: Lancet Public Health
– year: 2020
  ident: bb0060
  article-title: US COVID-19 cases surge past 82,000, highest total in world
– volume: 188
  start-page: 187
  year: 2018
  end-page: 194
  ident: bb0150
  article-title: Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran
  publication-title: Acta Trop.
– volume: 9
  start-page: 841
  year: 2020
  ident: bb0035
  article-title: Smoking Upregulates angiotensin-converting Enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19)
  publication-title: J. Clin. Med.
– year: 2020
  ident: bb0190
  article-title: High Temperature and High Humidity Reduce the Transmission of COVID-19
– reference: Boulos, M. N. K., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics.
– volume: 382
  start-page: 929
  year: 2020
  end-page: 936
  ident: bb0110
  article-title: First case of 2019 novel coronavirus in the United States
  publication-title: New England Journal of Medicine
– volume: 19
  start-page: 1
  year: 2020
  end-page: 17
  ident: bb0170
  article-title: Targeting the spatial context of obesity determinants via multiscale geographically weighted regression
  publication-title: Int. J. Health Geogr.
– year: 2020
  ident: bb0200
  article-title: Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19)
– year: 2020
  ident: bb0185
  article-title: The Social Impact of COVID-19
– volume: 37
  start-page: 533
  year: 2010
  end-page: 549
  ident: bb0120
  article-title: Model boosting for spatial weighting matrix selection in spatial lag models
  publication-title: Environment and Planning B: Planning and Design
– year: 2020
  ident: bb0025
  article-title: A primer on emergency occupational licensing reforms for combating COVID-19
  publication-title: SSRN Electron. J.
– volume: S0885-3924
  start-page: 30194
  year: 2020
  end-page: 30199
  ident: bb0125
  article-title: Which Melbourne metropolitan areas are vulnerable to COVID-19 based on age, disability and access to health services? Using spatial analysis to identify service gaps and inform delivery
  publication-title: J. Pain Symptom Manag.
– volume: 6
  year: 2020
  ident: bb0095
  article-title: Novel coronavirus in Cape Town informal settlements: feasibility of using informal dwelling outlines to identify high risk areas for COVID-19 transmission from a social distancing perspective
  publication-title: JMIR Public Health Surveill.
– year: 2020
  ident: bb0090
  article-title: Unemployment, Health Insurance, and the COVID-19 Recession
– year: 2020
  ident: bb0215
  article-title: Exposure to Air Pollution and COVID-19 Mortality in the United States
– year: 2020
  ident: bb0210
  article-title: Rolling Updates on Coronavirus Disease (COVID-19)
– volume: 8
  start-page: 269
  year: 2019
  ident: bb0165
  article-title: Mgwr: a Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale
  publication-title: ISPRS Int. J. Geo Inf.
– volume: 155
  year: 2018
  ident: bb0195
  article-title: Spatial regression models
– volume: 1
  start-page: 297
  year: 1986
  end-page: 310
  ident: bb0105
  article-title: Generalized additive models
  publication-title: Stat. Sci.
– volume: 26
  start-page: 153
  year: 2003
  end-page: 166
  ident: bb0015
  article-title: Spatial externalities, spatial multipliers and spatial econometrics
  publication-title: Int. Reg. Sci. Rev.
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0025
  article-title: A primer on emergency occupational licensing reforms for combating COVID-19
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.3562340
– volume: 41
  start-page: 673
  issue: 5
  year: 2007
  ident: 10.1016/j.scitotenv.2020.138884_bb0160
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-006-9018-6
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0090
– volume: 1
  start-page: 297
  issue: 3
  year: 1986
  ident: 10.1016/j.scitotenv.2020.138884_bb0105
  article-title: Generalized additive models
  publication-title: Stat. Sci.
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0010
  article-title: Why inequality could spread COVID-19
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(20)30085-2
– ident: 10.1016/j.scitotenv.2020.138884_bb0200
– ident: 10.1016/j.scitotenv.2020.138884_bb0180
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0050
  article-title: Older clinicians and the surge in novel coronavirus disease 2019 (COVID-19)
  publication-title: JAMA
  doi: 10.1001/jama.2020.4978
– start-page: 453
  year: 1989
  ident: 10.1016/j.scitotenv.2020.138884_bb0055
  article-title: Linear smoothers and additive models
  publication-title: Ann. Stat.
– volume: 19
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0170
  article-title: Targeting the spatial context of obesity determinants via multiscale geographically weighted regression
  publication-title: Int. J. Health Geogr.
  doi: 10.1186/s12942-020-00204-6
– volume: 2020
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0175
  article-title: The powerful immune system against powerful COVID-19: a hypothesis
  publication-title: Preprints
– volume: 92
  start-page: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2020.138884_bb0020
  article-title: Spatial fixed effects and spatial dependence in a single cross-section
  publication-title: Pap. Reg. Sci.
  doi: 10.1111/j.1435-5957.2012.00480.x
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0075
– volume: 724
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0135
  article-title: Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2020.138226
– volume: 51
  start-page: 59
  year: 2016
  ident: 10.1016/j.scitotenv.2020.138884_bb0065
  article-title: Investigating urbanization and its spatial determinants in the central districts of Guangzhou, China
  publication-title: Habitat International
  doi: 10.1016/j.habitatint.2015.10.013
– volume: 47
  start-page: 431
  issue: 3
  year: 1998
  ident: 10.1016/j.scitotenv.2020.138884_bb0045
  article-title: Geographically weighted regression
  publication-title: Journal of the Royal Statistical Society: Series D (The Statistician)
  doi: 10.1111/1467-9884.00145
– volume: 144
  start-page: 2217
  issue: 10
  year: 2016
  ident: 10.1016/j.scitotenv.2020.138884_bb0140
  article-title: Zoonotic cutaneous leishmaniasis in northeastern Iran: a GIS-based spatio-temporal multi-criteria decision-making approach
  publication-title: Epidemiology & Infection
  doi: 10.1017/S0950268816000224
– ident: 10.1016/j.scitotenv.2020.138884_bb0205
– volume: 16
  start-page: 157
  issue: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138884_bb0155
  article-title: A GIS-based artificial neural network model for spatial distribution of tuberculosis across the continental United States
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16010157
– volume: 26
  start-page: 153
  issue: 2
  year: 2003
  ident: 10.1016/j.scitotenv.2020.138884_bb0015
  article-title: Spatial externalities, spatial multipliers and spatial econometrics
  publication-title: Int. Reg. Sci. Rev.
  doi: 10.1177/0160017602250972
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0190
– volume: 28
  start-page: 281
  issue: 4
  year: 1996
  ident: 10.1016/j.scitotenv.2020.138884_bb0040
  article-title: Geographically weighted regression: a method for exploring spatial nonstationarity
  publication-title: Geogr. Anal.
  doi: 10.1111/j.1538-4632.1996.tb00936.x
– volume: 8
  start-page: 269
  issue: 6
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138884_bb0165
  article-title: Mgwr: a Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale
  publication-title: ISPRS Int. J. Geo Inf.
  doi: 10.3390/ijgi8060269
– volume: 6
  issue: 2
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0095
  article-title: Novel coronavirus in Cape Town informal settlements: feasibility of using informal dwelling outlines to identify high risk areas for COVID-19 transmission from a social distancing perspective
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/18844
– ident: 10.1016/j.scitotenv.2020.138884_bb0005
– volume: 1–2
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0225
  article-title: COVID-19 and the cardiovascular system
  publication-title: Nat. Rev. Cardiol.
– volume: 37
  start-page: 533
  issue: 3
  year: 2010
  ident: 10.1016/j.scitotenv.2020.138884_bb0120
  article-title: Model boosting for spatial weighting matrix selection in spatial lag models
  publication-title: Environment and Planning B: Planning and Design
  doi: 10.1068/b35137
– ident: 10.1016/j.scitotenv.2020.138884_bb0115
– volume: 10
  start-page: 67
  year: 2014
  ident: 10.1016/j.scitotenv.2020.138884_bb0130
  article-title: Using geographical information systems and cartograms as a health service quality improvement tool
  publication-title: Spatial and Spatio-temporal Epidemiology
  doi: 10.1016/j.sste.2014.05.004
– volume: 14
  start-page: 211
  issue: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0100
  article-title: Clinical considerations for patients with diabetes in times of COVID-19 epidemic
  publication-title: Diabetes & metabolic syndrome
  doi: 10.1016/j.dsx.2020.03.002
– volume: 188
  start-page: 187
  year: 2018
  ident: 10.1016/j.scitotenv.2020.138884_bb0150
  article-title: Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2018.09.004
– volume: 155
  year: 2018
  ident: 10.1016/j.scitotenv.2020.138884_bb0195
– ident: 10.1016/j.scitotenv.2020.138884_bb0210
– volume: 107
  start-page: 1247
  issue: 6
  year: 2017
  ident: 10.1016/j.scitotenv.2020.138884_bb0085
  article-title: Multiscale geographically weighted regression (MGWR)
  publication-title: Annals of the American Association of Geographers
  doi: 10.1080/24694452.2017.1352480
– ident: 10.1016/j.scitotenv.2020.138884_bb0070
– volume: 62
  start-page: 18
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2020.138884_bb0145
  article-title: Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran
  publication-title: Zoonoses Public Health
  doi: 10.1111/zph.12109
– volume: 52
  start-page: 87
  year: 2019
  ident: 10.1016/j.scitotenv.2020.138884_bb0220
  article-title: Inference in multiscale geographically weighted regression
  publication-title: Geogr. Anal.
  doi: 10.1111/gean.12189
– volume: 9
  start-page: 841
  issue: 3
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0035
  article-title: Smoking Upregulates angiotensin-converting Enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19)
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9030841
– volume: 18
  start-page: 303
  issue: 4
  year: 2016
  ident: 10.1016/j.scitotenv.2020.138884_bb0080
  article-title: Geographically weighted regression and multi-collinearity: dispelling the myth
  publication-title: J. Geogr. Syst.
  doi: 10.1007/s10109-016-0239-5
– volume: S0885-3924
  start-page: 30194
  issue: 20
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0125
  article-title: Which Melbourne metropolitan areas are vulnerable to COVID-19 based on age, disability and access to health services? Using spatial analysis to identify service gaps and inform delivery
  publication-title: J. Pain Symptom Manag.
– ident: 10.1016/j.scitotenv.2020.138884_bb0030
  doi: 10.1186/s12942-020-00202-8
– ident: 10.1016/j.scitotenv.2020.138884_bb0185
– year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0215
– volume: 382
  start-page: 929
  year: 2020
  ident: 10.1016/j.scitotenv.2020.138884_bb0110
  article-title: First case of 2019 novel coronavirus in the United States
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa2001191
– ident: 10.1016/j.scitotenv.2020.138884_bb0060
SSID ssj0000781
Score 2.7072196
Snippet During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented...
During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 138884
SubjectTerms autocorrelation
Betacoronavirus
Coronavirus Infections - epidemiology
COVID-19
COVID-19 infection
Demography
disease incidence
Environment
Geographic Information Systems
GIS
household income
Humans
Incidence
least squares
Multiscale GWR
Pandemics
Pneumonia, Viral - epidemiology
SARS-CoV-2
social inequality
Socioeconomic Factors
Spatial Analysis
spatial data
Spatial non-stationarity
Spatial Regression
topography
United States - epidemiology
Title GIS-based spatial modeling of COVID-19 incidence rate in the continental United States
URI https://dx.doi.org/10.1016/j.scitotenv.2020.138884
https://www.ncbi.nlm.nih.gov/pubmed/32335404
https://www.proquest.com/docview/2395258480
https://www.proquest.com/docview/2574342430
https://pubmed.ncbi.nlm.nih.gov/PMC7175907
Volume 728
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_AERMTY_AURISsia-VtvvRXd_ICdx5ERMV5G3TdrfxjOkR7zDxxb-dmW57cBDhgadLrzP92Nmd-c12PgDe6swJjkg8KhBbRKLCJVWYWESqzH2lXOKVpNzhT8dqeCI-nsmzFRh0uTAUVtnq_qDTG23d_rPXjube-WRCOb5CG2XoO2JKXsIqrKXcKNmDtf3ReHh8pZAzHRrnCVzbyLAU5oWXnk8Rnv5BXzGlNhDoEor_GanbIPRmLOU143S4Dk9bVMn2w4M_gxVf9-FR6DP5tw8bB1fpbEjWrudZH56EXTsWkpGew-nR6GtEhs2xGYVaI3HTKgftG5tWbPD5dPQhSgyjDfqmGSmjShN4yBBHMgp7R9Da3CNgWRaw7As4OTz4NhhGbeeFqJSZmKMGjEuF7iuiRVdUItdSq9ilhXY89YnL0WlTsfa68LTV6TnqyMJXiZLO5ei_ZHwDevW09i8pJzzXhPmMSkqRGFOQS1Yin6RKiAnfAtUNtS3bsuTUHeOX7eLPftqFjCzJyAYZbUG8YDwPlTnuZ3nfydIuTTKL9uN-5jed9C0uQfquktd-ejGzOOtkikBOx3fQ4LhykQqONJthxiyemqecdt_wDtnSXFoQUAnw5TP15EdTChydcWni7NVDXmwbHtNRiGp8Db357wu_g0hrXuzC6rt_yW67nuh3_OX7-BJ_bioe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8AhmBCjJwgIOqS-Fpoux_d5c2c4J18-CAQ3jZtdxvPkB7hDhNf_Nud6bYHp1EefOx1tu3t7Mz8Znc-AN7pzAmOSDwqEFtEokKRKkwsIlXmvlIu8UpS7vDpmRpciE9X8moB-l0uDIVVtro_6PRGW7e_7LezuX8zGlGOr9BGGTpHTMlLWIQnQvKM4vr2ft7HeVA1m3DMjJKN5HNBXvjg6RjB6Xf0FFNqAoEOofibifoTgv4eSfnANB09h2ctpmTvw2evwYKve7Acukz-6MHG4X0yG5K10jzpwWrYs2MhFekFXH4cfonIrDk2oUBrJG4a5aB1Y-OK9T9fDj9EiWG0Pd-0ImVUZwIvGaJIRkHvCFmbdwQkywKSXYeLo8Pz_iBq-y5EpczEFPVfXCp0XhEruqISuZZaxS4ttOOpT1yOLpuKtdeFp41Oz1FDFr5KlHQuR-8l4xuwVI9rv0kZ4bkmxGdUUorEmIIcshLHSaqDmPAtUN1U27ItSk69Ma5tF332zc54ZIlHNvBoC-LZwJtQl-PxIQcdL-3cErNoPR4fvNtx36IA0qlKXvvx3cSm3MgUYZyO_0GD88pFKjjSvAwrZvbVPOW094ZvyObW0oyACoDP36lHX5tC4OiKSxNn2__zx97CyuD89MSeDM-OX8FTuhPiG3dgaXp7518j5poWbxqZ-gXAEClG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIS-based+spatial+modeling+of+COVID-19+incidence+rate+in+the+continental+United+States&rft.jtitle=The+Science+of+the+total+environment&rft.au=Mollalo%2C+Abolfazl&rft.au=Vahedi%2C+Behzad&rft.au=Rivera%2C+Kiara+M.&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=728&rft.spage=138884&rft.epage=138884&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.138884&rft_id=info%3Apmid%2F32335404&rft.externalDocID=PMC7175907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon