GIS-based spatial modeling of COVID-19 incidence rate in the continental United States
During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of...
Saved in:
Published in | The Science of the total environment Vol. 728; p. 138884 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2020.138884 |
Cover
Abstract | During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.
[Display omitted]
•To explore relationship between 35 environmental, socioeconomic, and demographic variables and COVID-19 incidence in US•Multiscale geographically weighted regression could explain 68.1% of the total variations of COVID-19 incidence in US•Income inequality was an influential factor in explaining COVID-19 incidence particularly in the tri-state area |
---|---|
AbstractList | During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R
2
: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.
Unlabelled Image During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions.During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions. During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R²: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions. During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R : 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions. During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented socioeconomic burden to the country. Due to inadequate research on geographic modeling of COVID-19, we investigated county-level variations of disease incidence across the continental United States. We compiled a geodatabase of 35 environmental, socioeconomic, topographic, and demographic variables that could explain the spatial variability of disease incidence. Further, we employed spatial lag and spatial error models to investigate spatial dependence and geographically weighted regression (GWR) and multiscale GWR (MGWR) models to locally examine spatial non-stationarity. The results suggested that even though incorporating spatial autocorrelation could significantly improve the performance of the global ordinary least square model, these models still represent a significantly poor performance compared to the local models. Moreover, MGWR could explain the highest variations (adj. R2: 68.1%) with the lowest AICc compared to the others. Mapping the effects of significant explanatory variables (i.e., income inequality, median household income, the proportion of black females, and the proportion of nurse practitioners) on spatial variability of COVID-19 incidence rates using MGWR could provide useful insights to policymakers for targeted interventions. [Display omitted] •To explore relationship between 35 environmental, socioeconomic, and demographic variables and COVID-19 incidence in US•Multiscale geographically weighted regression could explain 68.1% of the total variations of COVID-19 incidence in US•Income inequality was an influential factor in explaining COVID-19 incidence particularly in the tri-state area |
ArticleNumber | 138884 |
Author | Mollalo, Abolfazl Vahedi, Behzad Rivera, Kiara M. |
Author_xml | – sequence: 1 givenname: Abolfazl orcidid: 0000-0001-5092-0698 surname: Mollalo fullname: Mollalo, Abolfazl email: amollalo@bw.edu organization: Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA – sequence: 2 givenname: Behzad surname: Vahedi fullname: Vahedi, Behzad email: behzad@ucsb.edu organization: Department of Geography, University of California Santa Barbara (UCSB), Santa Barbara, CA, USA – sequence: 3 givenname: Kiara M. surname: Rivera fullname: Rivera, Kiara M. email: krivera19@bw.edu organization: Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32335404$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvGyEUhVGVqHHS_oV2lt2My2sGZtFKkZuHpUhZpMkWMXAnwRqDC9hS_30YOYnabMwGAeccju53io588IDQV4LnBJP2-2qejMshg9_NKabllkkp-Qc0I1J0NcG0PUIzjLmsu7YTJ-g0pRUuS0jyEZ0wyljDMZ-hh6vlXd3rBLZKG52dHqt1sDA6_1iFoVrcPix_1aSrnDfOgjdQRZ2hHKv8BJUJPjsPPhfbvXe5pNzl8p4-oeNBjwk-v-xn6P7y4vfiur65vVouzm9q0wie645g0wrCSINtP3AtG9liS3tpGQVidUd5iyXIHmipDsxa6GEgbWOtFq0U7Az93Odutv0arClVoh7VJrq1jn9V0E79_-Ldk3oMOyWIaDo8BXx7CYjhzxZSVmuXDIyj9hC2SdHSk3HKGT4sZV1DG8nlJP3yb623Pq9zL4Ife4GJIaUIgyo4y_jD1NKNimA1cVYr9cZZTZzVnnPxi3f-1y8OO8_3TihYdg7ipJvAWhfBZGWDO5jxDMmux20 |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_117864 crossref_primary_10_1016_j_cities_2022_103932 crossref_primary_10_1016_j_geosus_2024_01_002 crossref_primary_10_3390_ijerph182312595 crossref_primary_10_1016_j_ijmedinf_2020_104248 crossref_primary_10_3390_ijerph182413294 crossref_primary_10_3390_su15129770 crossref_primary_10_1016_j_scs_2021_103485 crossref_primary_10_36322_jksc_v1i66_10621 crossref_primary_10_1371_journal_pone_0247794 crossref_primary_10_1038_s41598_021_83166_4 crossref_primary_10_1016_j_spasta_2021_100558 crossref_primary_10_1029_2021GH000402 crossref_primary_10_1061_JTEPBS_0000752 crossref_primary_10_3390_ijgi10080571 crossref_primary_10_1002_hsr2_1372 crossref_primary_10_1038_s41598_021_95351_6 crossref_primary_10_1007_s41775_021_00111_y crossref_primary_10_1007_s10237_021_01520_x crossref_primary_10_1038_s41467_021_26742_6 crossref_primary_10_3389_fpubh_2024_1359167 crossref_primary_10_1016_j_scs_2022_103990 crossref_primary_10_1080_00167428_2021_1947139 crossref_primary_10_22201_fca_24488410e_2020_3127 crossref_primary_10_1016_j_spasta_2021_100542 crossref_primary_10_1007_s11356_021_17433_2 crossref_primary_10_1016_j_ijdrr_2022_103078 crossref_primary_10_1016_j_ejrs_2021_08_003 crossref_primary_10_21837_pm_v22i33_1566 crossref_primary_10_1080_02664763_2022_2069232 crossref_primary_10_1080_10095020_2022_2088303 crossref_primary_10_1111_jors_12533 crossref_primary_10_1016_j_envc_2021_100096 crossref_primary_10_1080_00330124_2021_2009888 crossref_primary_10_1080_23748834_2024_2417506 crossref_primary_10_52547_jgst_12_3_17 crossref_primary_10_1007_s43762_021_00028_5 crossref_primary_10_1016_j_scs_2021_103261 crossref_primary_10_3390_ijgi12030111 crossref_primary_10_1016_j_rser_2021_111239 crossref_primary_10_1016_j_spasta_2021_100526 crossref_primary_10_1186_s12939_022_01628_1 crossref_primary_10_1007_s41748_020_00194_2 crossref_primary_10_1177_04866134241300804 crossref_primary_10_3390_f12091209 crossref_primary_10_1007_s11356_021_13653_8 crossref_primary_10_5565_rev_dag_904 crossref_primary_10_1016_j_cities_2021_103549 crossref_primary_10_1029_2021GH000439 crossref_primary_10_1016_j_scs_2021_103034 crossref_primary_10_1016_j_indic_2024_100382 crossref_primary_10_1016_j_scitotenv_2020_140033 crossref_primary_10_3934_publichealth_2022009 crossref_primary_10_4081_gh_2023_1153 crossref_primary_10_1016_j_imu_2023_101193 crossref_primary_10_1016_j_scitotenv_2021_147495 crossref_primary_10_1371_journal_pone_0267001 crossref_primary_10_1007_s41324_022_00445_6 crossref_primary_10_1016_j_imu_2022_100929 crossref_primary_10_1016_j_jhydrol_2023_130367 crossref_primary_10_1016_j_ejrh_2024_101932 crossref_primary_10_3390_ijerph17249528 crossref_primary_10_1111_tgis_12927 crossref_primary_10_3389_fpubh_2024_1400629 crossref_primary_10_1016_j_scitotenv_2021_151503 crossref_primary_10_2196_23126 crossref_primary_10_2196_40821 crossref_primary_10_1016_j_jtrangeo_2023_103718 crossref_primary_10_1080_12265934_2022_2063160 crossref_primary_10_3390_ijerph18094429 crossref_primary_10_3390_ijgi11010067 crossref_primary_10_1016_j_engappai_2024_107929 crossref_primary_10_1016_j_ijid_2021_07_031 crossref_primary_10_3389_frsc_2021_668263 crossref_primary_10_3390_ijerph192215035 crossref_primary_10_1088_1755_1315_708_1_012061 crossref_primary_10_1016_j_buildenv_2022_109177 crossref_primary_10_1080_24694452_2022_2130143 crossref_primary_10_1371_journal_pone_0280323 crossref_primary_10_3389_fpubh_2020_593861 crossref_primary_10_1111_tgis_12800 crossref_primary_10_1016_j_econmod_2022_106165 crossref_primary_10_1126_science_abe3339 crossref_primary_10_1111_tbed_13902 crossref_primary_10_3390_ijgi10070440 crossref_primary_10_3390_axioms13030201 crossref_primary_10_1177_03091333241241458 crossref_primary_10_3390_urbansci7020062 crossref_primary_10_3390_ijgi11010057 crossref_primary_10_1016_j_trip_2023_100836 crossref_primary_10_61186_j_health_15_2_187 crossref_primary_10_1016_j_arr_2020_101149 crossref_primary_10_3390_ijerph18115541 crossref_primary_10_1186_s12889_023_15064_5 crossref_primary_10_1016_j_susoc_2021_12_001 crossref_primary_10_1016_j_imu_2020_100475 crossref_primary_10_1016_j_heliyon_2021_e06260 crossref_primary_10_2139_ssrn_3948832 crossref_primary_10_1080_00330124_2024_2398243 crossref_primary_10_1007_s10708_021_10449_8 crossref_primary_10_1186_s12889_022_14212_7 crossref_primary_10_1016_j_jclepro_2024_141262 crossref_primary_10_1038_s41598_021_92263_3 crossref_primary_10_3390_ijerph18178987 crossref_primary_10_1002_ldr_5409 crossref_primary_10_1080_13669877_2021_1881991 crossref_primary_10_1080_21681376_2023_2234433 crossref_primary_10_1515_ohe_2023_0014 crossref_primary_10_1515_openhe_2022_0007 crossref_primary_10_1016_j_jenvman_2022_116806 crossref_primary_10_1016_j_sciaf_2021_e00827 crossref_primary_10_59400_cai_v2i2_1427 crossref_primary_10_2139_ssrn_4067001 crossref_primary_10_3389_fpubh_2021_641253 crossref_primary_10_1007_s10708_021_10438_x crossref_primary_10_1080_24694452_2020_1830024 crossref_primary_10_1016_j_sste_2021_100454 crossref_primary_10_1016_j_tust_2022_104912 crossref_primary_10_1016_j_energy_2025_135076 crossref_primary_10_1016_j_envres_2022_112818 crossref_primary_10_1016_j_scs_2021_103410 crossref_primary_10_3390_ijgi10040261 crossref_primary_10_2196_35840 crossref_primary_10_3390_healthcare10020324 crossref_primary_10_4236_jgis_2024_163011 crossref_primary_10_1038_s41598_024_60964_0 crossref_primary_10_1080_00330124_2023_2194363 crossref_primary_10_3390_ijerph17165911 crossref_primary_10_1038_s41370_021_00356_y crossref_primary_10_1016_j_rse_2022_113072 crossref_primary_10_1002_puh2_111 crossref_primary_10_1016_j_cities_2024_105170 crossref_primary_10_2139_ssrn_3995296 crossref_primary_10_3390_ijgi11050283 crossref_primary_10_3390_ijgi12020045 crossref_primary_10_1111_1477_8947_12417 crossref_primary_10_1016_j_scitotenv_2021_150521 crossref_primary_10_3390_rs16101697 crossref_primary_10_1016_j_sste_2021_100433 crossref_primary_10_3390_ijerph17113903 crossref_primary_10_1016_j_cosust_2020_10_011 crossref_primary_10_2174_1381612826666201211121721 crossref_primary_10_3390_rs14225695 crossref_primary_10_1029_2021GH000395 crossref_primary_10_3390_ijgi10090627 crossref_primary_10_3389_fpubh_2023_1137489 crossref_primary_10_4081_gh_2022_1066 crossref_primary_10_1080_19475705_2021_1914197 crossref_primary_10_1080_09603123_2024_2362844 crossref_primary_10_1177_0733464821992611 crossref_primary_10_1016_j_scitotenv_2020_142723 crossref_primary_10_1590_1982_3533_2022v31n3art09 crossref_primary_10_3390_tropicalmed7080164 crossref_primary_10_1176_appi_ps_202000540 crossref_primary_10_1016_j_annepidem_2024_04_008 crossref_primary_10_1021_acs_est_2c04302 crossref_primary_10_1007_s11222_025_10590_1 crossref_primary_10_1007_s12061_021_09413_3 crossref_primary_10_4081_gh_2022_1132 crossref_primary_10_4081_gh_2022_1013 crossref_primary_10_3390_e25020320 crossref_primary_10_1016_j_jclepro_2024_142306 crossref_primary_10_1016_j_scitotenv_2020_141946 crossref_primary_10_1080_17457300_2020_1823996 crossref_primary_10_1016_j_arcmed_2020_06_010 crossref_primary_10_1016_j_sste_2021_100411 crossref_primary_10_2196_43250 crossref_primary_10_1029_2021GH000450 crossref_primary_10_1016_j_ssaho_2024_100948 crossref_primary_10_1155_2021_1099256 crossref_primary_10_1016_j_annepidem_2020_07_014 crossref_primary_10_1016_j_seps_2023_101732 crossref_primary_10_3390_land11112079 crossref_primary_10_1016_j_ijdrr_2021_102762 crossref_primary_10_3390_rs14133134 crossref_primary_10_1007_s40615_022_01265_y crossref_primary_10_1016_j_jhydrol_2024_131348 crossref_primary_10_1080_13658816_2024_2410346 crossref_primary_10_3390_pollutants2020012 crossref_primary_10_1016_j_jenvman_2020_111381 crossref_primary_10_1029_2021GH000458 crossref_primary_10_1080_00330124_2021_1895851 crossref_primary_10_6339_23_JDS1111 crossref_primary_10_1080_1573062X_2021_2022720 crossref_primary_10_61186_payesh_23_2_271 crossref_primary_10_3390_rs15112759 crossref_primary_10_4236_jgis_2025_171005 crossref_primary_10_1016_j_scs_2022_103838 crossref_primary_10_1016_j_ijepes_2022_108084 crossref_primary_10_1177_00111287221116293 crossref_primary_10_1080_10095020_2022_2066576 crossref_primary_10_1080_19388160_2023_2301450 crossref_primary_10_24057_2071_9388_2021_054 crossref_primary_10_3389_fams_2022_872284 crossref_primary_10_4081_jphia_2023_2767 crossref_primary_10_1186_s12889_023_15484_3 crossref_primary_10_3390_ijerph20176643 crossref_primary_10_3390_ijerph18062803 crossref_primary_10_1080_13467581_2023_2270027 crossref_primary_10_3390_ijgi10080510 crossref_primary_10_1007_s41685_022_00257_4 crossref_primary_10_15304_rge_30_1_6984 crossref_primary_10_3390_ijgi12040163 crossref_primary_10_1016_j_ejrs_2021_12_010 crossref_primary_10_1111_tgis_12792 crossref_primary_10_1016_j_scs_2021_102897 crossref_primary_10_2196_22578 crossref_primary_10_5993_AJHB_47_4_5 crossref_primary_10_1007_s00103_021_03387_w crossref_primary_10_3390_ijerph18189925 crossref_primary_10_1016_j_scs_2021_102784 crossref_primary_10_1186_s12889_023_16337_9 crossref_primary_10_1002_sd_2665 crossref_primary_10_1007_s00521_023_08749_w crossref_primary_10_1016_j_heliyon_2021_e06650 crossref_primary_10_3934_mbe_2023655 crossref_primary_10_3390_su15021703 crossref_primary_10_1111_tgis_12784 crossref_primary_10_1186_s12942_023_00329_4 crossref_primary_10_1371_journal_pcbi_1009363 crossref_primary_10_3390_ijgi11030152 crossref_primary_10_1177_20552076231171969 crossref_primary_10_32604_cmc_2021_013327 crossref_primary_10_1177_23998083221107019 crossref_primary_10_1007_s41324_021_00421_6 crossref_primary_10_1016_j_heliyon_2024_e39330 crossref_primary_10_1093_ije_dyab267 crossref_primary_10_1111_gean_12335 crossref_primary_10_3390_ijerph18179227 crossref_primary_10_1111_gean_12336 crossref_primary_10_3390_ijerph182212182 crossref_primary_10_1038_s41598_023_46632_9 crossref_primary_10_1080_13658816_2023_2246154 crossref_primary_10_3390_ijerph19148267 crossref_primary_10_3390_ijgi11090470 crossref_primary_10_1007_s11356_022_18564_w crossref_primary_10_14202_IJOH_2020_153_159 crossref_primary_10_3390_ijerph18063145 crossref_primary_10_3390_land13040480 crossref_primary_10_1371_journal_pone_0265673 crossref_primary_10_3390_tropicalmed7030045 crossref_primary_10_24057_2071_9388_2021_090 crossref_primary_10_3390_ijerph18041495 crossref_primary_10_1002_sd_3018 crossref_primary_10_1016_j_uclim_2024_101942 crossref_primary_10_15446_rsap_v22n2_88772 crossref_primary_10_3389_fpubh_2024_1517554 crossref_primary_10_3390_ijgi12070266 crossref_primary_10_1016_j_scitotenv_2023_163411 crossref_primary_10_1016_j_sste_2022_100561 crossref_primary_10_3390_ijerph17165634 crossref_primary_10_3390_ijerph19116404 crossref_primary_10_1016_j_healthplace_2021_102563 crossref_primary_10_1080_19475683_2022_2133167 crossref_primary_10_1016_j_eiar_2025_107919 crossref_primary_10_1007_s11356_021_13834_5 crossref_primary_10_1007_s12145_021_00739_7 crossref_primary_10_1111_geoj_12436 crossref_primary_10_12677_AAM_2022_115291 crossref_primary_10_4081_gh_2025_1295 crossref_primary_10_1177_03611981241274156 crossref_primary_10_3390_ijerph19159012 crossref_primary_10_3390_ijgi10060387 crossref_primary_10_1016_j_jag_2025_104396 crossref_primary_10_1088_1755_1315_884_1_012058 crossref_primary_10_3390_ijerph18136832 crossref_primary_10_3390_ijgi11100499 crossref_primary_10_1080_07352166_2023_2187301 crossref_primary_10_1080_24694452_2022_2161988 crossref_primary_10_3390_ijerph192113977 crossref_primary_10_1002_nur_22348 crossref_primary_10_1016_j_ijdrr_2023_103900 crossref_primary_10_1016_j_scs_2021_102738 crossref_primary_10_1016_j_healthplace_2021_102574 crossref_primary_10_2139_ssrn_4110946 crossref_primary_10_1016_j_ajic_2020_12_009 crossref_primary_10_1016_j_jsr_2023_11_007 crossref_primary_10_3389_fpubh_2023_1287999 crossref_primary_10_1287_ijoc_2023_1269 crossref_primary_10_3390_ijerph18094802 crossref_primary_10_1007_s10198_021_01280_6 crossref_primary_10_4000_12de1 crossref_primary_10_3389_fpubh_2022_938811 crossref_primary_10_1007_s41748_020_00179_1 crossref_primary_10_1016_j_scitotenv_2024_178062 crossref_primary_10_3390_ijerph182212170 crossref_primary_10_1016_j_buildenv_2024_112289 crossref_primary_10_3390_ijgi9120715 crossref_primary_10_1016_j_scitotenv_2021_150801 crossref_primary_10_1136_bmjgh_2023_012271 crossref_primary_10_1177_23998083241312953 crossref_primary_10_24057_2071_9388_2021_076 crossref_primary_10_3390_ijerph17207450 crossref_primary_10_4000_cybergeo_36057 crossref_primary_10_4103_jfmpc_jfmpc_903_21 crossref_primary_10_1016_j_jclepro_2023_139255 crossref_primary_10_1016_j_sste_2022_100534 crossref_primary_10_3390_ijerph182212024 crossref_primary_10_3390_ijerph18105085 crossref_primary_10_1016_j_scitotenv_2023_163105 crossref_primary_10_3390_ijerph17144988 crossref_primary_10_1016_j_jtbi_2021_110692 crossref_primary_10_3390_ijgi10090602 crossref_primary_10_1016_j_scs_2020_102511 crossref_primary_10_1080_23754931_2020_1807396 crossref_primary_10_1371_journal_pone_0245845 crossref_primary_10_1016_j_ecolind_2022_109333 crossref_primary_10_61186_jgst_14_1_51 crossref_primary_10_1016_j_geosus_2022_09_005 crossref_primary_10_1007_s10708_022_10780_8 crossref_primary_10_1016_j_ijdrr_2022_103311 crossref_primary_10_1371_journal_pntd_0011466 crossref_primary_10_1016_j_jnlssr_2023_12_005 crossref_primary_10_1016_j_healthplace_2022_102744 crossref_primary_10_1016_j_healthplace_2020_102460 crossref_primary_10_1371_journal_pone_0246808 crossref_primary_10_1371_journal_pone_0249037 crossref_primary_10_1007_s10661_024_12795_9 crossref_primary_10_1016_j_scs_2020_102627 crossref_primary_10_1111_gean_12370 crossref_primary_10_3390_su141912189 crossref_primary_10_1073_pnas_2023321118 crossref_primary_10_1029_2020GH000367 crossref_primary_10_1016_j_jclepro_2025_145354 crossref_primary_10_1016_j_catena_2023_107277 crossref_primary_10_1016_j_etdah_2024_100153 crossref_primary_10_1016_j_scs_2020_102418 crossref_primary_10_1016_j_procs_2020_10_029 crossref_primary_10_1016_j_asoc_2021_107611 crossref_primary_10_3390_ijerph182212018 crossref_primary_10_1016_j_catena_2021_105617 crossref_primary_10_1016_j_cities_2023_104519 crossref_primary_10_1016_j_sste_2023_100604 crossref_primary_10_3389_fendo_2022_905367 crossref_primary_10_3390_math9192454 crossref_primary_10_1080_10106049_2020_1844310 crossref_primary_10_7163_GPol_0209 crossref_primary_10_1016_j_seps_2022_101250 crossref_primary_10_7163_GPol_0207 crossref_primary_10_1186_s12889_024_20596_5 crossref_primary_10_3390_ijgi12020069 crossref_primary_10_1007_s41324_022_00483_0 crossref_primary_10_1016_j_ijdrr_2023_103761 crossref_primary_10_1016_j_scitotenv_2021_152126 crossref_primary_10_1038_s41598_024_62300_y crossref_primary_10_1016_j_healthplace_2023_103000 crossref_primary_10_24057_2071_9388_2024_2917 crossref_primary_10_3390_ijerph18189673 crossref_primary_10_1007_s11356_020_10930_w crossref_primary_10_4081_gh_2021_967 crossref_primary_10_1007_s41685_022_00261_8 crossref_primary_10_1080_10095020_2021_1977093 crossref_primary_10_4081_gh_2023_1227 crossref_primary_10_1088_1742_6596_1895_1_012004 crossref_primary_10_1080_15568318_2023_2299018 crossref_primary_10_1111_1745_5871_12669 crossref_primary_10_1038_s41598_021_93020_2 crossref_primary_10_1186_s12889_022_13566_2 crossref_primary_10_1016_j_rspp_2024_100027 crossref_primary_10_3390_ijerph17228468 crossref_primary_10_1038_s41598_021_82384_0 crossref_primary_10_3389_fpubh_2021_674847 crossref_primary_10_1016_j_biosystems_2023_105073 crossref_primary_10_4081_gh_2021_985 crossref_primary_10_3390_ijerph18189657 crossref_primary_10_1080_19376812_2022_2099916 crossref_primary_10_3390_ijerph18073583 crossref_primary_10_1007_s11356_023_31769_x crossref_primary_10_1016_j_scitotenv_2020_142396 crossref_primary_10_1016_j_scitotenv_2020_144455 crossref_primary_10_1080_10106049_2022_2120637 crossref_primary_10_1016_j_ecolind_2023_111540 crossref_primary_10_3390_ijerph18020604 crossref_primary_10_1016_j_apgeog_2022_102671 crossref_primary_10_3390_ijgi9110639 crossref_primary_10_1016_j_apgeog_2021_102473 crossref_primary_10_1016_j_annepidem_2021_03_009 crossref_primary_10_1016_j_buildenv_2022_109581 crossref_primary_10_1007_s11356_020_10962_2 crossref_primary_10_1016_j_envpol_2020_115042 crossref_primary_10_1007_s12524_020_01286_2 crossref_primary_10_1038_s41598_023_37184_z crossref_primary_10_1371_journal_pone_0264863 crossref_primary_10_1111_1745_5871_12521 crossref_primary_10_2196_59230 crossref_primary_10_4081_gh_2023_1200 crossref_primary_10_3390_ijerph18147563 crossref_primary_10_1108_K_07_2021_0548 crossref_primary_10_1016_j_ypmed_2021_106457 crossref_primary_10_1016_j_annepidem_2022_05_005 crossref_primary_10_1016_j_jclepro_2021_128321 crossref_primary_10_1007_s11356_023_25322_z crossref_primary_10_1371_journal_pone_0249133 crossref_primary_10_1515_geo_2020_0156 crossref_primary_10_1371_journal_pone_0297772 crossref_primary_10_3390_ijgi13120465 crossref_primary_10_3389_fenvs_2023_1104679 crossref_primary_10_1016_j_jenvman_2024_121218 crossref_primary_10_1017_S0950268821000479 crossref_primary_10_1186_s12889_025_21513_0 crossref_primary_10_1016_j_socscimed_2020_113365 crossref_primary_10_1016_j_heliyon_2021_e05912 crossref_primary_10_3389_fpubh_2023_1249141 crossref_primary_10_3390_ijerph192013504 crossref_primary_10_1134_S2079970524600082 crossref_primary_10_1016_j_sste_2022_100498 crossref_primary_10_3390_ijerph18052336 crossref_primary_10_3390_ijgi10110791 crossref_primary_10_1016_j_sste_2022_100493 crossref_primary_10_1016_j_sste_2022_100494 crossref_primary_10_1061__ASCE_UP_1943_5444_0000848 crossref_primary_10_1590_1414_462x202331030512 crossref_primary_10_1186_s12872_024_03882_3 crossref_primary_10_3390_su15107891 crossref_primary_10_1007_s11356_020_11499_0 crossref_primary_10_1016_j_spasta_2021_100586 crossref_primary_10_1016_j_scitotenv_2021_150390 crossref_primary_10_1016_j_uclim_2024_101862 crossref_primary_10_3390_app14010142 crossref_primary_10_12688_f1000research_27544_2 crossref_primary_10_1016_j_cities_2022_104040 crossref_primary_10_12688_f1000research_27544_1 crossref_primary_10_2139_ssrn_3614877 crossref_primary_10_1093_geronb_gbaa227 crossref_primary_10_3390_ijerph18052222 crossref_primary_10_3390_ijerph17124204 crossref_primary_10_29252_jorjanibiomedj_8_1_24 crossref_primary_10_1007_s41324_022_00488_9 crossref_primary_10_3389_fpubh_2022_751768 crossref_primary_10_1007_s10708_022_10601_y crossref_primary_10_1038_s41598_022_23697_6 crossref_primary_10_3390_ijgi11050309 crossref_primary_10_1016_j_landusepol_2022_106183 crossref_primary_10_1016_j_onehlt_2021_100225 crossref_primary_10_1007_s40314_021_01553_z crossref_primary_10_1016_j_scitotenv_2022_158056 crossref_primary_10_31435_rsglobal_ijitss_30062024_8155 crossref_primary_10_1177_1403494820984026 crossref_primary_10_3390_ijerph18189488 crossref_primary_10_1016_j_scitotenv_2020_143595 crossref_primary_10_1007_s12205_022_1356_y crossref_primary_10_1007_s11270_025_07824_3 crossref_primary_10_1007_s10462_021_09988_w crossref_primary_10_1007_s00477_020_01965_z crossref_primary_10_1016_j_heliyon_2024_e35039 crossref_primary_10_1016_j_puhe_2020_10_026 crossref_primary_10_1038_s41598_021_01257_8 crossref_primary_10_1080_13658816_2022_2100892 crossref_primary_10_1007_s41324_023_00519_z crossref_primary_10_1029_2022GH000733 crossref_primary_10_1007_s11356_021_18442_x crossref_primary_10_1177_0956247820963962 crossref_primary_10_1016_j_amepre_2022_06_006 crossref_primary_10_1007_s40808_023_01729_y crossref_primary_10_1016_j_techsoc_2020_101516 crossref_primary_10_1097_MD_0000000000032607 crossref_primary_10_1007_s11042_023_15901_0 crossref_primary_10_1007_s10708_024_11264_7 crossref_primary_10_5888_pcd17_200246 crossref_primary_10_1007_s10668_022_02727_3 crossref_primary_10_1177_03611981241231797 crossref_primary_10_3390_ijgi13120421 crossref_primary_10_1186_s12942_021_00270_4 crossref_primary_10_1016_j_apgeog_2021_102558 |
Cites_doi | 10.2139/ssrn.3562340 10.1007/s11135-006-9018-6 10.1016/S2468-2667(20)30085-2 10.1001/jama.2020.4978 10.1186/s12942-020-00204-6 10.1111/j.1435-5957.2012.00480.x 10.1016/j.scitotenv.2020.138226 10.1016/j.habitatint.2015.10.013 10.1111/1467-9884.00145 10.1017/S0950268816000224 10.3390/ijerph16010157 10.1177/0160017602250972 10.1111/j.1538-4632.1996.tb00936.x 10.3390/ijgi8060269 10.2196/18844 10.1068/b35137 10.1016/j.sste.2014.05.004 10.1016/j.dsx.2020.03.002 10.1016/j.actatropica.2018.09.004 10.1080/24694452.2017.1352480 10.1111/zph.12109 10.1111/gean.12189 10.3390/jcm9030841 10.1007/s10109-016-0239-5 10.1186/s12942-020-00202-8 10.1056/NEJMoa2001191 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.scitotenv.2020.138884 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 138884 |
ExternalDocumentID | PMC7175907 32335404 10_1016_j_scitotenv_2020_138884 S0048969720324013 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c574t-910c6713150dbf4a85860d2b8d32e1da924608e8be2007e3ddebef165dda76873 |
IEDL.DBID | AIKHN |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Aug 21 14:20:05 EDT 2025 Thu Sep 04 22:43:33 EDT 2025 Fri Sep 05 14:46:56 EDT 2025 Wed Feb 19 02:29:14 EST 2025 Tue Jul 01 03:35:40 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Fri Feb 23 02:44:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 GIS Multiscale GWR Spatial non-stationarity |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-910c6713150dbf4a85860d2b8d32e1da924608e8be2007e3ddebef165dda76873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5092-0698 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7175907 |
PMID | 32335404 |
PQID | 2395258480 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7175907 proquest_miscellaneous_2574342430 proquest_miscellaneous_2395258480 pubmed_primary_32335404 crossref_citationtrail_10_1016_j_scitotenv_2020_138884 crossref_primary_10_1016_j_scitotenv_2020_138884 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_138884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Brunsdon, Fotheringham, Charlton (bb0045) 1998; 47 Ahmed, Ahmed, Pissarides, Stiglitz (bb0010) 2020 Taghizadeh-Hesary, Akbari (bb0175) 2020; 2020 Lakhani (bb0125) 2020; S0885-3924 United Nations (bb0185) 2020 Holshue, DeBolt, Lindquist, Lofy, Wiesman, Bruce, Diaz (bb0110) 2020; 382 World Health Organization (WHO) (bb0210) 2020 Dowd, Rotondi, Andriano, Brazel, Block, Ding, Mills (bb0075) 2020 Kostov (bb0120) 2010; 37 Mollalo, Mao, Rashidi, Glass (bb0155) 2019; 16 Lovett, Poots, Clements, Green, Samarasundera, Bell (bb0130) 2014; 10 World Health Organization (WHO) (bb0205) 2020 Anselin, Arribas-Bel (bb0020) 2013; 92 Ma, Zhao, Liu, He, Wang, Fu, Luo (bb0135) 2020; 724 Bayne, Norris, Timmons (bb0025) 2020 Buja, Hastie, Tibshirani (bb0055) 1989 Wang, Tang, Feng, Lv (bb0190) 2020 World Health Organization (WHO) (bb0200) 2020 Oshan, Li, Kang, Wolf, Fotheringham (bb0165) 2019; 8 Brake, Barnsley, Lu, McAlinden, Eapen, Sohal (bb0035) 2020; 9 Buerhaus, Auerbach, Staiger (bb0050) 2020 O’brien (bb0160) 2007; 41 Oshan, Smith, Fotheringham (bb0170) 2020; 19 The COVID Tracking Project (bb0180) 2020 Mollalo, Khodabandehloo (bb0140) 2016; 144 Mollalo, Alimohammadi, Shirzadi, Malek (bb0145) 2015; 62 Yu, Fotheringham, Li, Oshan, Kang, Wolf (bb0220) 2019; 52 Anselin (bb0015) 2003; 26 Ward, Gleditsch (bb0195) 2018; 155 Congessional Research Service (bb0070) 2020 Abir, Nelson, Chan, Al-Ibrahim, Cutter, Patel, Bogart (bb0005) 2020 Fotheringham, Yang, Kang (bb0085) 2017; 107 Mollalo, Sadeghian, Israel, Rashidi, Sofizadeh, Glass (bb0150) 2018; 188 Brunsdon, Fotheringham, Charlton (bb0040) 1996; 28 Fotheringham, Oshan (bb0080) 2016; 18 Gupta, Ghosh, Singh, Misra (bb0100) 2020; 14 Hastie, Tibshirani (bb0105) 1986; 1 Gibson, Rush (bb0095) 2020; 6 Wu, Nethery, Sabath, Braun, Dominici (bb0215) 2020 Zheng, Ma, Zhang, Xie (bb0225) 2020; 1–2 Boulos, M. N. K., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. Johns Hopkins University Center for Systems Science and Engineering (bb0115) 2020 Center for Infectious Disease Research and Policy (bb0060) 2020 Chen, Chang, Han, Karacsonyi, Qian (bb0065) 2016; 51 Gangopadhyaya, Garrett (bb0090) 2020 Gangopadhyaya (10.1016/j.scitotenv.2020.138884_bb0090) 2020 Mollalo (10.1016/j.scitotenv.2020.138884_bb0150) 2018; 188 Kostov (10.1016/j.scitotenv.2020.138884_bb0120) 2010; 37 Bayne (10.1016/j.scitotenv.2020.138884_bb0025) 2020 Ward (10.1016/j.scitotenv.2020.138884_bb0195) 2018; 155 Brunsdon (10.1016/j.scitotenv.2020.138884_bb0040) 1996; 28 Mollalo (10.1016/j.scitotenv.2020.138884_bb0155) 2019; 16 Anselin (10.1016/j.scitotenv.2020.138884_bb0020) 2013; 92 Oshan (10.1016/j.scitotenv.2020.138884_bb0170) 2020; 19 Zheng (10.1016/j.scitotenv.2020.138884_bb0225) 2020; 1–2 Lovett (10.1016/j.scitotenv.2020.138884_bb0130) 2014; 10 Wu (10.1016/j.scitotenv.2020.138884_bb0215) 2020 10.1016/j.scitotenv.2020.138884_bb0030 Abir (10.1016/j.scitotenv.2020.138884_bb0005) Gibson (10.1016/j.scitotenv.2020.138884_bb0095) 2020; 6 Lakhani (10.1016/j.scitotenv.2020.138884_bb0125) 2020; S0885-3924 Buerhaus (10.1016/j.scitotenv.2020.138884_bb0050) 2020 Oshan (10.1016/j.scitotenv.2020.138884_bb0165) 2019; 8 World Health Organization (WHO) (10.1016/j.scitotenv.2020.138884_bb0200) Congessional Research Service (10.1016/j.scitotenv.2020.138884_bb0070) World Health Organization (WHO) (10.1016/j.scitotenv.2020.138884_bb0210) Center for Infectious Disease Research and Policy (10.1016/j.scitotenv.2020.138884_bb0060) Johns Hopkins University Center for Systems Science and Engineering (10.1016/j.scitotenv.2020.138884_bb0115) Ma (10.1016/j.scitotenv.2020.138884_bb0135) 2020; 724 Yu (10.1016/j.scitotenv.2020.138884_bb0220) 2019; 52 United Nations (10.1016/j.scitotenv.2020.138884_bb0185) Anselin (10.1016/j.scitotenv.2020.138884_bb0015) 2003; 26 Hastie (10.1016/j.scitotenv.2020.138884_bb0105) 1986; 1 Holshue (10.1016/j.scitotenv.2020.138884_bb0110) 2020; 382 O’brien (10.1016/j.scitotenv.2020.138884_bb0160) 2007; 41 World Health Organization (WHO) (10.1016/j.scitotenv.2020.138884_bb0205) Ahmed (10.1016/j.scitotenv.2020.138884_bb0010) 2020 Mollalo (10.1016/j.scitotenv.2020.138884_bb0145) 2015; 62 Taghizadeh-Hesary (10.1016/j.scitotenv.2020.138884_bb0175) 2020; 2020 The COVID Tracking Project (10.1016/j.scitotenv.2020.138884_bb0180) Fotheringham (10.1016/j.scitotenv.2020.138884_bb0080) 2016; 18 Fotheringham (10.1016/j.scitotenv.2020.138884_bb0085) 2017; 107 Dowd (10.1016/j.scitotenv.2020.138884_bb0075) 2020 Mollalo (10.1016/j.scitotenv.2020.138884_bb0140) 2016; 144 Brake (10.1016/j.scitotenv.2020.138884_bb0035) 2020; 9 Gupta (10.1016/j.scitotenv.2020.138884_bb0100) 2020; 14 Brunsdon (10.1016/j.scitotenv.2020.138884_bb0045) 1998; 47 Buja (10.1016/j.scitotenv.2020.138884_bb0055) 1989 Chen (10.1016/j.scitotenv.2020.138884_bb0065) 2016; 51 Wang (10.1016/j.scitotenv.2020.138884_bb0190) 2020 |
References_xml | – year: 2020 ident: bb0070 article-title: Global Econoic Effects of COVID-19 – volume: 16 start-page: 157 year: 2019 ident: bb0155 article-title: A GIS-based artificial neural network model for spatial distribution of tuberculosis across the continental United States publication-title: Int. J. Environ. Res. Public Health – year: 2020 ident: bb0205 article-title: Coronavirus Disease 2019 (COVID-19) Situation Report – 83 – volume: 47 start-page: 431 year: 1998 end-page: 443 ident: bb0045 article-title: Geographically weighted regression publication-title: Journal of the Royal Statistical Society: Series D (The Statistician) – year: 2020 ident: bb0075 article-title: Demographic Science Aids in Understanding the Spread and Fatality Rates of COVID-19 – year: 2020 ident: bb0005 article-title: Critical Care Surge Response Strategies for the 2020 COVID-19 Outbreak in the United States – volume: 41 start-page: 673 year: 2007 end-page: 690 ident: bb0160 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quant. – volume: 92 start-page: 3 year: 2013 end-page: 17 ident: bb0020 article-title: Spatial fixed effects and spatial dependence in a single cross-section publication-title: Pap. Reg. Sci. – volume: 2020 year: 2020 ident: bb0175 article-title: The powerful immune system against powerful COVID-19: a hypothesis publication-title: Preprints – volume: 28 start-page: 281 year: 1996 end-page: 298 ident: bb0040 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geogr. Anal. – year: 2020 ident: bb0115 article-title: COVID-19 Dashboard – volume: 1–2 year: 2020 ident: bb0225 article-title: COVID-19 and the cardiovascular system publication-title: Nat. Rev. Cardiol. – volume: 62 start-page: 18 year: 2015 end-page: 28 ident: bb0145 article-title: Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran publication-title: Zoonoses Public Health – volume: 18 start-page: 303 year: 2016 end-page: 329 ident: bb0080 article-title: Geographically weighted regression and multi-collinearity: dispelling the myth publication-title: J. Geogr. Syst. – volume: 724 year: 2020 ident: bb0135 article-title: Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China publication-title: Science of The Total Environment – volume: 144 start-page: 2217 year: 2016 end-page: 2229 ident: bb0140 article-title: Zoonotic cutaneous leishmaniasis in northeastern Iran: a GIS-based spatio-temporal multi-criteria decision-making approach publication-title: Epidemiology & Infection – year: 2020 ident: bb0180 – start-page: 453 year: 1989 end-page: 510 ident: bb0055 article-title: Linear smoothers and additive models publication-title: Ann. Stat. – volume: 51 start-page: 59 year: 2016 end-page: 69 ident: bb0065 article-title: Investigating urbanization and its spatial determinants in the central districts of Guangzhou, China publication-title: Habitat International – year: 2020 ident: bb0050 article-title: Older clinicians and the surge in novel coronavirus disease 2019 (COVID-19) publication-title: JAMA – volume: 14 start-page: 211 year: 2020 end-page: 212 ident: bb0100 article-title: Clinical considerations for patients with diabetes in times of COVID-19 epidemic publication-title: Diabetes & metabolic syndrome – volume: 107 start-page: 1247 year: 2017 end-page: 1265 ident: bb0085 article-title: Multiscale geographically weighted regression (MGWR) publication-title: Annals of the American Association of Geographers – volume: 10 start-page: 67 year: 2014 end-page: 74 ident: bb0130 article-title: Using geographical information systems and cartograms as a health service quality improvement tool publication-title: Spatial and Spatio-temporal Epidemiology – volume: 52 start-page: 87 year: 2019 end-page: 106 ident: bb0220 article-title: Inference in multiscale geographically weighted regression publication-title: Geogr. Anal. – year: 2020 ident: bb0010 article-title: Why inequality could spread COVID-19 publication-title: Lancet Public Health – year: 2020 ident: bb0060 article-title: US COVID-19 cases surge past 82,000, highest total in world – volume: 188 start-page: 187 year: 2018 end-page: 194 ident: bb0150 article-title: Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran publication-title: Acta Trop. – volume: 9 start-page: 841 year: 2020 ident: bb0035 article-title: Smoking Upregulates angiotensin-converting Enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19) publication-title: J. Clin. Med. – year: 2020 ident: bb0190 article-title: High Temperature and High Humidity Reduce the Transmission of COVID-19 – reference: Boulos, M. N. K., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. – volume: 382 start-page: 929 year: 2020 end-page: 936 ident: bb0110 article-title: First case of 2019 novel coronavirus in the United States publication-title: New England Journal of Medicine – volume: 19 start-page: 1 year: 2020 end-page: 17 ident: bb0170 article-title: Targeting the spatial context of obesity determinants via multiscale geographically weighted regression publication-title: Int. J. Health Geogr. – year: 2020 ident: bb0200 article-title: Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) – year: 2020 ident: bb0185 article-title: The Social Impact of COVID-19 – volume: 37 start-page: 533 year: 2010 end-page: 549 ident: bb0120 article-title: Model boosting for spatial weighting matrix selection in spatial lag models publication-title: Environment and Planning B: Planning and Design – year: 2020 ident: bb0025 article-title: A primer on emergency occupational licensing reforms for combating COVID-19 publication-title: SSRN Electron. J. – volume: S0885-3924 start-page: 30194 year: 2020 end-page: 30199 ident: bb0125 article-title: Which Melbourne metropolitan areas are vulnerable to COVID-19 based on age, disability and access to health services? Using spatial analysis to identify service gaps and inform delivery publication-title: J. Pain Symptom Manag. – volume: 6 year: 2020 ident: bb0095 article-title: Novel coronavirus in Cape Town informal settlements: feasibility of using informal dwelling outlines to identify high risk areas for COVID-19 transmission from a social distancing perspective publication-title: JMIR Public Health Surveill. – year: 2020 ident: bb0090 article-title: Unemployment, Health Insurance, and the COVID-19 Recession – year: 2020 ident: bb0215 article-title: Exposure to Air Pollution and COVID-19 Mortality in the United States – year: 2020 ident: bb0210 article-title: Rolling Updates on Coronavirus Disease (COVID-19) – volume: 8 start-page: 269 year: 2019 ident: bb0165 article-title: Mgwr: a Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale publication-title: ISPRS Int. J. Geo Inf. – volume: 155 year: 2018 ident: bb0195 article-title: Spatial regression models – volume: 1 start-page: 297 year: 1986 end-page: 310 ident: bb0105 article-title: Generalized additive models publication-title: Stat. Sci. – volume: 26 start-page: 153 year: 2003 end-page: 166 ident: bb0015 article-title: Spatial externalities, spatial multipliers and spatial econometrics publication-title: Int. Reg. Sci. Rev. – year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0025 article-title: A primer on emergency occupational licensing reforms for combating COVID-19 publication-title: SSRN Electron. J. doi: 10.2139/ssrn.3562340 – volume: 41 start-page: 673 issue: 5 year: 2007 ident: 10.1016/j.scitotenv.2020.138884_bb0160 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quant. doi: 10.1007/s11135-006-9018-6 – year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0090 – volume: 1 start-page: 297 issue: 3 year: 1986 ident: 10.1016/j.scitotenv.2020.138884_bb0105 article-title: Generalized additive models publication-title: Stat. Sci. – year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0010 article-title: Why inequality could spread COVID-19 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(20)30085-2 – ident: 10.1016/j.scitotenv.2020.138884_bb0200 – ident: 10.1016/j.scitotenv.2020.138884_bb0180 – year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0050 article-title: Older clinicians and the surge in novel coronavirus disease 2019 (COVID-19) publication-title: JAMA doi: 10.1001/jama.2020.4978 – start-page: 453 year: 1989 ident: 10.1016/j.scitotenv.2020.138884_bb0055 article-title: Linear smoothers and additive models publication-title: Ann. Stat. – volume: 19 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0170 article-title: Targeting the spatial context of obesity determinants via multiscale geographically weighted regression publication-title: Int. J. Health Geogr. doi: 10.1186/s12942-020-00204-6 – volume: 2020 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0175 article-title: The powerful immune system against powerful COVID-19: a hypothesis publication-title: Preprints – volume: 92 start-page: 3 issue: 1 year: 2013 ident: 10.1016/j.scitotenv.2020.138884_bb0020 article-title: Spatial fixed effects and spatial dependence in a single cross-section publication-title: Pap. Reg. Sci. doi: 10.1111/j.1435-5957.2012.00480.x – year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0075 – volume: 724 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0135 article-title: Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.138226 – volume: 51 start-page: 59 year: 2016 ident: 10.1016/j.scitotenv.2020.138884_bb0065 article-title: Investigating urbanization and its spatial determinants in the central districts of Guangzhou, China publication-title: Habitat International doi: 10.1016/j.habitatint.2015.10.013 – volume: 47 start-page: 431 issue: 3 year: 1998 ident: 10.1016/j.scitotenv.2020.138884_bb0045 article-title: Geographically weighted regression publication-title: Journal of the Royal Statistical Society: Series D (The Statistician) doi: 10.1111/1467-9884.00145 – volume: 144 start-page: 2217 issue: 10 year: 2016 ident: 10.1016/j.scitotenv.2020.138884_bb0140 article-title: Zoonotic cutaneous leishmaniasis in northeastern Iran: a GIS-based spatio-temporal multi-criteria decision-making approach publication-title: Epidemiology & Infection doi: 10.1017/S0950268816000224 – ident: 10.1016/j.scitotenv.2020.138884_bb0205 – volume: 16 start-page: 157 issue: 1 year: 2019 ident: 10.1016/j.scitotenv.2020.138884_bb0155 article-title: A GIS-based artificial neural network model for spatial distribution of tuberculosis across the continental United States publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16010157 – volume: 26 start-page: 153 issue: 2 year: 2003 ident: 10.1016/j.scitotenv.2020.138884_bb0015 article-title: Spatial externalities, spatial multipliers and spatial econometrics publication-title: Int. Reg. Sci. Rev. doi: 10.1177/0160017602250972 – year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0190 – volume: 28 start-page: 281 issue: 4 year: 1996 ident: 10.1016/j.scitotenv.2020.138884_bb0040 article-title: Geographically weighted regression: a method for exploring spatial nonstationarity publication-title: Geogr. Anal. doi: 10.1111/j.1538-4632.1996.tb00936.x – volume: 8 start-page: 269 issue: 6 year: 2019 ident: 10.1016/j.scitotenv.2020.138884_bb0165 article-title: Mgwr: a Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale publication-title: ISPRS Int. J. Geo Inf. doi: 10.3390/ijgi8060269 – volume: 6 issue: 2 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0095 article-title: Novel coronavirus in Cape Town informal settlements: feasibility of using informal dwelling outlines to identify high risk areas for COVID-19 transmission from a social distancing perspective publication-title: JMIR Public Health Surveill. doi: 10.2196/18844 – ident: 10.1016/j.scitotenv.2020.138884_bb0005 – volume: 1–2 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0225 article-title: COVID-19 and the cardiovascular system publication-title: Nat. Rev. Cardiol. – volume: 37 start-page: 533 issue: 3 year: 2010 ident: 10.1016/j.scitotenv.2020.138884_bb0120 article-title: Model boosting for spatial weighting matrix selection in spatial lag models publication-title: Environment and Planning B: Planning and Design doi: 10.1068/b35137 – ident: 10.1016/j.scitotenv.2020.138884_bb0115 – volume: 10 start-page: 67 year: 2014 ident: 10.1016/j.scitotenv.2020.138884_bb0130 article-title: Using geographical information systems and cartograms as a health service quality improvement tool publication-title: Spatial and Spatio-temporal Epidemiology doi: 10.1016/j.sste.2014.05.004 – volume: 14 start-page: 211 issue: 3 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0100 article-title: Clinical considerations for patients with diabetes in times of COVID-19 epidemic publication-title: Diabetes & metabolic syndrome doi: 10.1016/j.dsx.2020.03.002 – volume: 188 start-page: 187 year: 2018 ident: 10.1016/j.scitotenv.2020.138884_bb0150 article-title: Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran publication-title: Acta Trop. doi: 10.1016/j.actatropica.2018.09.004 – volume: 155 year: 2018 ident: 10.1016/j.scitotenv.2020.138884_bb0195 – ident: 10.1016/j.scitotenv.2020.138884_bb0210 – volume: 107 start-page: 1247 issue: 6 year: 2017 ident: 10.1016/j.scitotenv.2020.138884_bb0085 article-title: Multiscale geographically weighted regression (MGWR) publication-title: Annals of the American Association of Geographers doi: 10.1080/24694452.2017.1352480 – ident: 10.1016/j.scitotenv.2020.138884_bb0070 – volume: 62 start-page: 18 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2020.138884_bb0145 article-title: Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran publication-title: Zoonoses Public Health doi: 10.1111/zph.12109 – volume: 52 start-page: 87 year: 2019 ident: 10.1016/j.scitotenv.2020.138884_bb0220 article-title: Inference in multiscale geographically weighted regression publication-title: Geogr. Anal. doi: 10.1111/gean.12189 – volume: 9 start-page: 841 issue: 3 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0035 article-title: Smoking Upregulates angiotensin-converting Enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19) publication-title: J. Clin. Med. doi: 10.3390/jcm9030841 – volume: 18 start-page: 303 issue: 4 year: 2016 ident: 10.1016/j.scitotenv.2020.138884_bb0080 article-title: Geographically weighted regression and multi-collinearity: dispelling the myth publication-title: J. Geogr. Syst. doi: 10.1007/s10109-016-0239-5 – volume: S0885-3924 start-page: 30194 issue: 20 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0125 article-title: Which Melbourne metropolitan areas are vulnerable to COVID-19 based on age, disability and access to health services? Using spatial analysis to identify service gaps and inform delivery publication-title: J. Pain Symptom Manag. – ident: 10.1016/j.scitotenv.2020.138884_bb0030 doi: 10.1186/s12942-020-00202-8 – ident: 10.1016/j.scitotenv.2020.138884_bb0185 – year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0215 – volume: 382 start-page: 929 year: 2020 ident: 10.1016/j.scitotenv.2020.138884_bb0110 article-title: First case of 2019 novel coronavirus in the United States publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa2001191 – ident: 10.1016/j.scitotenv.2020.138884_bb0060 |
SSID | ssj0000781 |
Score | 2.7072196 |
Snippet | During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented... During the first 90 days of the COVID-19 outbreak in the United States, over 675,000 confirmed cases of the disease have been reported, posing unprecedented... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 138884 |
SubjectTerms | autocorrelation Betacoronavirus Coronavirus Infections - epidemiology COVID-19 COVID-19 infection Demography disease incidence Environment Geographic Information Systems GIS household income Humans Incidence least squares Multiscale GWR Pandemics Pneumonia, Viral - epidemiology SARS-CoV-2 social inequality Socioeconomic Factors Spatial Analysis spatial data Spatial non-stationarity Spatial Regression topography United States - epidemiology |
Title | GIS-based spatial modeling of COVID-19 incidence rate in the continental United States |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.138884 https://www.ncbi.nlm.nih.gov/pubmed/32335404 https://www.proquest.com/docview/2395258480 https://www.proquest.com/docview/2574342430 https://pubmed.ncbi.nlm.nih.gov/PMC7175907 |
Volume | 728 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_AERMTY_AURISsia-VtvvRXd_ICdx5ERMV5G3TdrfxjOkR7zDxxb-dmW57cBDhgadLrzP92Nmd-c12PgDe6swJjkg8KhBbRKLCJVWYWESqzH2lXOKVpNzhT8dqeCI-nsmzFRh0uTAUVtnq_qDTG23d_rPXjube-WRCOb5CG2XoO2JKXsIqrKXcKNmDtf3ReHh8pZAzHRrnCVzbyLAU5oWXnk8Rnv5BXzGlNhDoEor_GanbIPRmLOU143S4Dk9bVMn2w4M_gxVf9-FR6DP5tw8bB1fpbEjWrudZH56EXTsWkpGew-nR6GtEhs2xGYVaI3HTKgftG5tWbPD5dPQhSgyjDfqmGSmjShN4yBBHMgp7R9Da3CNgWRaw7As4OTz4NhhGbeeFqJSZmKMGjEuF7iuiRVdUItdSq9ilhXY89YnL0WlTsfa68LTV6TnqyMJXiZLO5ei_ZHwDevW09i8pJzzXhPmMSkqRGFOQS1Yin6RKiAnfAtUNtS3bsuTUHeOX7eLPftqFjCzJyAYZbUG8YDwPlTnuZ3nfydIuTTKL9uN-5jed9C0uQfquktd-ejGzOOtkikBOx3fQ4LhykQqONJthxiyemqecdt_wDtnSXFoQUAnw5TP15EdTChydcWni7NVDXmwbHtNRiGp8Db357wu_g0hrXuzC6rt_yW67nuh3_OX7-BJ_bioe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8AhmBCjJwgIOqS-Fpoux_d5c2c4J18-CAQ3jZtdxvPkB7hDhNf_Nud6bYHp1EefOx1tu3t7Mz8Znc-AN7pzAmOSDwqEFtEokKRKkwsIlXmvlIu8UpS7vDpmRpciE9X8moB-l0uDIVVtro_6PRGW7e_7LezuX8zGlGOr9BGGTpHTMlLWIQnQvKM4vr2ft7HeVA1m3DMjJKN5HNBXvjg6RjB6Xf0FFNqAoEOofibifoTgv4eSfnANB09h2ctpmTvw2evwYKve7Acukz-6MHG4X0yG5K10jzpwWrYs2MhFekFXH4cfonIrDk2oUBrJG4a5aB1Y-OK9T9fDj9EiWG0Pd-0ImVUZwIvGaJIRkHvCFmbdwQkywKSXYeLo8Pz_iBq-y5EpczEFPVfXCp0XhEruqISuZZaxS4ttOOpT1yOLpuKtdeFp41Oz1FDFr5KlHQuR-8l4xuwVI9rv0kZ4bkmxGdUUorEmIIcshLHSaqDmPAtUN1U27ItSk69Ma5tF332zc54ZIlHNvBoC-LZwJtQl-PxIQcdL-3cErNoPR4fvNtx36IA0qlKXvvx3cSm3MgUYZyO_0GD88pFKjjSvAwrZvbVPOW094ZvyObW0oyACoDP36lHX5tC4OiKSxNn2__zx97CyuD89MSeDM-OX8FTuhPiG3dgaXp7518j5poWbxqZ-gXAEClG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIS-based+spatial+modeling+of+COVID-19+incidence+rate+in+the+continental+United+States&rft.jtitle=The+Science+of+the+total+environment&rft.au=Mollalo%2C+Abolfazl&rft.au=Vahedi%2C+Behzad&rft.au=Rivera%2C+Kiara+M.&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=728&rft.spage=138884&rft.epage=138884&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.138884&rft_id=info%3Apmid%2F32335404&rft.externalDocID=PMC7175907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |