Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing
Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulat...
Saved in:
Published in | Journal of nanobiotechnology Vol. 20; no. 1; pp. 1 - 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
26.07.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1[alpha] signaling pathway and promoting diabetic wound healing both in vitro and in vivo. Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing. |
---|---|
AbstractList | Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form.BACKGROUNDPromoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form.In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo.RESULTSIn this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo.Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing.CONCLUSIONSTogether, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing. Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1[alpha] signaling pathway and promoting diabetic wound healing both in vitro and in vivo. Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing. Abstract Background Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. Results In this study, we present a versatile organic–inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. Conclusions Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing. Graphical Abstract Background Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. Results In this study, we present a versatile organic–inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. Conclusions Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing. Background Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. Results In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1[alpha] signaling pathway and promoting diabetic wound healing both in vitro and in vivo. Conclusions Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing. Graphical Keywords: Electrospun fibers, Vermiculite nanosheets, Diabetic wound healing, Angiogenesis, Composite scaffolds |
ArticleNumber | 343 |
Audience | Academic |
Author | Shen, Steve G.F. Mao, Runyi Mou, Juan Wang, Qirui Dai, Jiewen Huang, Xingtai Wang, Zeying |
Author_xml | – sequence: 1 givenname: Xingtai surname: Huang fullname: Huang, Xingtai – sequence: 2 givenname: Qirui surname: Wang fullname: Wang, Qirui – sequence: 3 givenname: Runyi surname: Mao fullname: Mao, Runyi – sequence: 4 givenname: Zeying surname: Wang fullname: Wang, Zeying – sequence: 5 givenname: Steve G.F. surname: Shen fullname: Shen, Steve G.F. – sequence: 6 givenname: Juan surname: Mou fullname: Mou, Juan – sequence: 7 givenname: Jiewen surname: Dai fullname: Dai, Jiewen |
BookMark | eNp9kktv1DAUhSNURB_wB1hFYgOLFD_jZINUVTxGqoQEZW05tjP1yLGD7XSoxI_nTqcIpkIoC8c353y-zj2n1VGIwVbVS4zOMe7atxmTnuMGEdIgzHnbbJ9UJ5gJ0VDYHv31flyd5rxBoGSEPauOKe86ill7Uv283sbGuMmG7GJQvg4qxFubJqcX74qtVTD1HP2dVnOKXukCPdTWW11SzPMS6tENNuVax2mOeefIWo1j9CbX4JhicWFdG6cGW5yut3EB4I1VHsrPq6ej8tm-eFjPqm8f3l9ffmquPn9cXV5cNZoLVpqutS02rYL20diZQSPKNVLaDlobLXrVC0Y70nbEGjJoQwUXeKSEmnFU3WDoWbXac01UGzknN6l0J6Ny8r4Q01qqBN15K_dEwgXihA3KDIIgywfWa9Yz1ilgvduz5mWYrNE2lKT8AfTwS3A3ch1vZU-JYKgFwOsHQIrfF5uLnFzW1nsVbFyyJG3PSU8Z60H66pF0E5cEUwKVQAwhxCn-o1oruIALY4Rz9Q4qLwTGLdD6Hev8Hyp4jIVZw1BHB_UDw5sDA2iK_VHWaslZrr5-OdR2e62GUORkR6ldUQUSBYc4LzGSu8TKfWIlDFLeJ1ZuwUoeWX__yv-YfgEhVfGh |
CitedBy_id | crossref_primary_10_1080_00914037_2024_2439813 crossref_primary_10_1016_j_ntm_2024_100055 crossref_primary_10_1080_17425247_2024_2329641 crossref_primary_10_1002_smll_202305100 crossref_primary_10_1016_j_biopha_2023_116035 crossref_primary_10_1002_mame_202300388 crossref_primary_10_1016_j_heliyon_2024_e24656 crossref_primary_10_1021_acsanm_4c03690 crossref_primary_10_1016_j_jconrel_2024_10_046 crossref_primary_10_3390_polym15051205 crossref_primary_10_1016_j_carbpol_2024_122900 crossref_primary_10_3389_fbioe_2022_1060026 crossref_primary_10_3389_fbioe_2025_1550553 crossref_primary_10_1016_j_ijbiomac_2024_134362 crossref_primary_10_1016_j_actbio_2023_07_025 crossref_primary_10_1016_j_ijbiomac_2024_134185 crossref_primary_10_3389_fbioe_2024_1354286 crossref_primary_10_3390_mi14071477 crossref_primary_10_1016_j_nanoen_2023_109225 crossref_primary_10_1016_j_ijpharm_2024_124073 crossref_primary_10_1093_rb_rbad071 crossref_primary_10_1039_D4BM01088D |
Cites_doi | 10.1016/j.biomaterials.2014.01.039 10.1074/jbc.M110.112904 10.1016/j.msec.2019.110521 10.1016/j.biomaterials.2021.121041 10.1007/s10653-010-9327-5 10.3390/pharmaceutics12020179 10.7150/thno.34126 10.1177/0885328215586907 10.1097/PRS.0000000000001748 10.1016/j.engreg.2021.11.003 10.1016/j.biomaterials.2021.121225 10.1016/j.bbadis.2004.02.004 10.1016/j.actbio.2021.10.045 10.1126/sciadv.abj0153 10.1038/s41598-017-18523-3 10.1038/s41467-021-23448-7 10.1073/pnas.041359198 10.1038/s41467-019-09849-9 10.1016/j.actbio.2019.09.023 10.1002/smll.201805526 10.1021/acs.accounts.9b00437 10.1038/s41565-021-00976-3 10.1039/C8NR08364A 10.1002/mabi.202100313 10.4155/fmc.14.17 10.1016/j.actbio.2018.02.010 10.1016/j.chemosphere.2022.133846 10.1080/09537104.2019.1663805 10.1016/j.matbio.2022.03.004 10.1111/j.1524-475X.2007.00278.x 10.1007/s00395-007-0639-2 10.1016/j.biomaterials.2019.119398 10.1046/j.1365-2133.2002.04871.x 10.1021/acs.accounts.7b00218 10.1002/smll.202004133 10.1038/ncomms8602 10.1016/j.biomaterials.2016.11.053 10.1016/j.watres.2020.115804 10.1016/j.biomaterials.2007.10.012 10.1002/adma.202103593 10.1007/s13770-021-00344-1 10.2174/092986712803413944 10.1038/s41467-021-21436-5 10.1021/acsami.9b20221 10.1016/j.biomaterials.2017.06.028 10.1016/j.biomaterials.2013.09.092 10.1080/17425247.2019.1665020 10.1016/j.msec.2021.112215 10.1021/acsnano.0c09814 10.1021/acsnano.1c04206 10.1038/s41467-018-05355-6 10.1097/01.prs.0000225430.42531.c2 10.1021/bm0500805 10.1002/smll.202101384 10.1016/j.ijbiomac.2020.03.207 10.1016/j.bioactmat.2021.02.022 10.1126/sciadv.abf0787 10.1073/pnas.0805230105 10.7150/thno.39471 10.1016/j.msec.2020.111680 10.1002/smll.202104747 10.1016/j.biomaterials.2021.120746 10.1038/nature07039 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). The Author(s) 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). – notice: The Author(s) 2022 |
DBID | AAYXX CITATION ISR 3V. 7QO 7TB 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12951-022-01556-w |
DatabaseName | CrossRef In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1477-3155 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_ccdc792570524badb720e5b49c49448a PMC9327406 A711652999 10_1186_s12951_022_01556_w |
GeographicLocations | China United States--US |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: 81771036; 82071097 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M PMFND 3V. 7QO 7TB 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c574t-86e61d6a0220f8dbc035c0acebccdc79a974382682ed2bcd37571f323dffa8bd3 |
IEDL.DBID | M48 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:21:48 EDT 2025 Thu Aug 21 14:18:19 EDT 2025 Fri Jul 11 01:29:54 EDT 2025 Fri Jul 25 19:04:00 EDT 2025 Tue Jun 17 21:34:20 EDT 2025 Tue Jun 10 20:38:30 EDT 2025 Fri Jun 27 05:03:00 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Tue Jul 01 01:26:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-86e61d6a0220f8dbc035c0acebccdc79a974382682ed2bcd37571f323dffa8bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/ccdc792570524badb720e5b49c49448a |
PMID | 35883146 |
PQID | 2704000531 |
PQPubID | 44676 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ccdc792570524badb720e5b49c49448a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9327406 proquest_miscellaneous_2695293449 proquest_journals_2704000531 gale_infotracmisc_A711652999 gale_infotracacademiconefile_A711652999 gale_incontextgauss_ISR_A711652999 crossref_citationtrail_10_1186_s12951_022_01556_w crossref_primary_10_1186_s12951_022_01556_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-26 |
PublicationDateYYYYMMDD | 2022-07-26 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of nanobiotechnology |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | W Ma (1556_CR42) 2021; 279 MC Cakin (1556_CR43) 2020; 31 Z Wang (1556_CR24) 2016; 30 G Li (1556_CR37) 2021; 12 J Wu (1556_CR44) 2019; 222 IR Botusan (1556_CR59) 2008; 105 TT Nyame (1556_CR51) 2015; 136 K Ma (1556_CR30) 2021; 17 JJ Shao (1556_CR13) 2015; 6 X Ji (1556_CR9) 2021; 12 M Doostmohammadi (1556_CR45) 2020; 109 L Yu (1556_CR16) 2019; 10 Y Zheng (1556_CR21) 2020; 12 X Zhang (1556_CR10) 2019; 52 T Alekseeva (1556_CR15) 2011; 33 G Ciardelli (1556_CR40) 2005; 6 JJ Wu (1556_CR57) 2010; 285 M Hosseini (1556_CR1) 2021; 17 X Jiang (1556_CR36) 2014; 35 Y Hou (1556_CR52) 2022 FFF Garrudo (1556_CR26) 2021; 120 R Xiong (1556_CR29) 2021; 16 C Cui (1556_CR20) 2021; 2 R Feiner (1556_CR28) 2019; 15 DJ Page (1556_CR49) 2019; 100 X Ren (1556_CR66) 2018; 70 J Fu (1556_CR27) 2020; 16 H Li (1556_CR41) 2014; 35 EE Gaskell (1556_CR7) 2014; 6 Y Guan (1556_CR4) 2021; 7 N Latifi (1556_CR56) 2018; 8 Y Xiao (1556_CR19) 2020; 10 T Shen (1556_CR38) 2022; 295 XF Pan (1556_CR14) 2018; 9 A Ahluwalia (1556_CR34) 2012; 19 M Qing (1556_CR35) 2007; 102 V Tallapaneni (1556_CR6) 2021; 18 A el-Ghalbzouri (1556_CR53) 2002; 147 JS Choi (1556_CR25) 2008; 29 N Su (1556_CR31) 2017; 141 D Fukumura (1556_CR61) 2001; 98 G Broughton (1556_CR62) 2006; 117 BK Brisson (1556_CR58) 2022; 109 DJ Ceradini (1556_CR60) 2004; 10 Y Peng (1556_CR63) 2020; 10 GC Gurtner (1556_CR2) 2008; 453 C Hu (1556_CR65) 2021; 7 W Zhang (1556_CR17) 2021; 127 FS Abadehie (1556_CR23) 2021; 2 JR Bardill (1556_CR3) 2022; 138 X Yin (1556_CR11) 2020; 177 I Janica (1556_CR12) 2018; 10 L Chen (1556_CR22) 2021; 6 JA Maier (1556_CR55) 2004; 1689 M Fadaie (1556_CR39) 2018; 5 R Augustine (1556_CR46) 2020; 156 Y Zhai (1556_CR64) 2021; 276 AC Santos (1556_CR8) 2019; 16 Y Yang (1556_CR54) 2021; 33 BO Okesola (1556_CR67) 2021; 15 M Rafique (1556_CR47) 2021; 271 J Xue (1556_CR18) 2017; 50 Y Liang (1556_CR5) 2021; 15 KA Mace (1556_CR33) 2007; 15 M Delyanee (1556_CR50) 2021; 22 K Dashnyam (1556_CR32) 2017; 116 G Sandri (1556_CR48) 2020; 12 |
References_xml | – volume: 2 start-page: 82 year: 2021 ident: 1556_CR20 publication-title: Eng Regen – volume: 35 start-page: 3803 year: 2014 ident: 1556_CR41 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.039 – volume: 285 start-page: 18537 year: 2010 ident: 1556_CR57 publication-title: J Biol Chem doi: 10.1074/jbc.M110.112904 – volume: 5 start-page: 77 year: 2018 ident: 1556_CR39 publication-title: Nanomed J – volume: 109 start-page: 110521 year: 2020 ident: 1556_CR45 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2019.110521 – volume: 276 start-page: 121041 year: 2021 ident: 1556_CR64 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121041 – volume: 33 start-page: 137 year: 2011 ident: 1556_CR15 publication-title: Environ Geochem Health doi: 10.1007/s10653-010-9327-5 – volume: 12 start-page: 179 year: 2020 ident: 1556_CR48 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12020179 – volume: 10 start-page: 426 year: 2020 ident: 1556_CR63 publication-title: Theranostics doi: 10.7150/thno.34126 – volume: 30 start-page: 686 year: 2016 ident: 1556_CR24 publication-title: J Biomater Appl doi: 10.1177/0885328215586907 – volume: 136 start-page: 1379 year: 2015 ident: 1556_CR51 publication-title: Plast Reconstr Surg doi: 10.1097/PRS.0000000000001748 – year: 2022 ident: 1556_CR52 publication-title: Eng Regen doi: 10.1016/j.engreg.2021.11.003 – volume: 279 start-page: 121225 year: 2021 ident: 1556_CR42 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121225 – volume: 1689 start-page: 6 year: 2004 ident: 1556_CR55 publication-title: Biochim Biophys Acta Mol Basis Dis doi: 10.1016/j.bbadis.2004.02.004 – volume: 138 start-page: 73 year: 2022 ident: 1556_CR3 publication-title: Acta Biomater doi: 10.1016/j.actbio.2021.10.045 – volume: 7 start-page: eabj0153 year: 2021 ident: 1556_CR4 publication-title: Sci Adv doi: 10.1126/sciadv.abj0153 – volume: 8 start-page: 1047 year: 2018 ident: 1556_CR56 publication-title: Sci Rep doi: 10.1038/s41598-017-18523-3 – volume: 12 start-page: 3363 year: 2021 ident: 1556_CR37 publication-title: Nat Commun doi: 10.1038/s41467-021-23448-7 – volume: 98 start-page: 2604 year: 2001 ident: 1556_CR61 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.041359198 – volume: 10 start-page: 1932 year: 2019 ident: 1556_CR16 publication-title: Nat Commun doi: 10.1038/s41467-019-09849-9 – volume: 100 start-page: 378 year: 2019 ident: 1556_CR49 publication-title: Acta Biomater doi: 10.1016/j.actbio.2019.09.023 – volume: 15 start-page: e1805526 year: 2019 ident: 1556_CR28 publication-title: Small doi: 10.1002/smll.201805526 – volume: 10 start-page: 858 year: 2004 ident: 1556_CR60 publication-title: Nat Med – volume: 52 start-page: 3223 year: 2019 ident: 1556_CR10 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.9b00437 – volume: 16 start-page: 1281 year: 2021 ident: 1556_CR29 publication-title: Nat Nanotechnol doi: 10.1038/s41565-021-00976-3 – volume: 10 start-page: 23182 year: 2018 ident: 1556_CR12 publication-title: Nanoscale doi: 10.1039/C8NR08364A – volume: 22 start-page: 2100313 year: 2021 ident: 1556_CR50 publication-title: Macromol Biosci doi: 10.1002/mabi.202100313 – volume: 6 start-page: 641 year: 2014 ident: 1556_CR7 publication-title: Future Med Chem doi: 10.4155/fmc.14.17 – volume: 70 start-page: 140 year: 2018 ident: 1556_CR66 publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.02.010 – volume: 295 start-page: 133846 year: 2022 ident: 1556_CR38 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.133846 – volume: 31 start-page: 513 year: 2020 ident: 1556_CR43 publication-title: Platelets doi: 10.1080/09537104.2019.1663805 – volume: 109 start-page: 19 year: 2022 ident: 1556_CR58 publication-title: Matrix Biol doi: 10.1016/j.matbio.2022.03.004 – volume: 15 start-page: 636 year: 2007 ident: 1556_CR33 publication-title: Wound Repair Regen doi: 10.1111/j.1524-475X.2007.00278.x – volume: 102 start-page: 224 year: 2007 ident: 1556_CR35 publication-title: Basic Res Cardiol doi: 10.1007/s00395-007-0639-2 – volume: 222 start-page: 119398 year: 2019 ident: 1556_CR44 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119398 – volume: 147 start-page: 230 year: 2002 ident: 1556_CR53 publication-title: Br J Dermatol doi: 10.1046/j.1365-2133.2002.04871.x – volume: 50 start-page: 1976 year: 2017 ident: 1556_CR18 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.7b00218 – volume: 16 start-page: e2004133 year: 2020 ident: 1556_CR27 publication-title: Small doi: 10.1002/smll.202004133 – volume: 6 start-page: 7602 year: 2015 ident: 1556_CR13 publication-title: Nat Commun doi: 10.1038/ncomms8602 – volume: 116 start-page: 145 year: 2017 ident: 1556_CR32 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.11.053 – volume: 177 start-page: 115804 year: 2020 ident: 1556_CR11 publication-title: Water Res doi: 10.1016/j.watres.2020.115804 – volume: 29 start-page: 587 year: 2008 ident: 1556_CR25 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.10.012 – volume: 33 start-page: e2103593 year: 2021 ident: 1556_CR54 publication-title: Adv Mater doi: 10.1002/adma.202103593 – volume: 18 start-page: 713 year: 2021 ident: 1556_CR6 publication-title: Tissue Eng Regen Med doi: 10.1007/s13770-021-00344-1 – volume: 19 start-page: 90 year: 2012 ident: 1556_CR34 publication-title: Curr Med Chem doi: 10.2174/092986712803413944 – volume: 12 start-page: 1124 year: 2021 ident: 1556_CR9 publication-title: Nat Commun doi: 10.1038/s41467-021-21436-5 – volume: 12 start-page: 7905 year: 2020 ident: 1556_CR21 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b20221 – volume: 141 start-page: 74 year: 2017 ident: 1556_CR31 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.028 – volume: 35 start-page: 803 year: 2014 ident: 1556_CR36 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.09.092 – volume: 16 start-page: 1169 year: 2019 ident: 1556_CR8 publication-title: Expert Opin Drug Deliv doi: 10.1080/17425247.2019.1665020 – volume: 127 start-page: 112215 year: 2021 ident: 1556_CR17 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2021.112215 – volume: 15 start-page: 11202 year: 2021 ident: 1556_CR67 publication-title: ACS Nano doi: 10.1021/acsnano.0c09814 – volume: 15 start-page: 12687 year: 2021 ident: 1556_CR5 publication-title: ACS Nano doi: 10.1021/acsnano.1c04206 – volume: 2 start-page: 219 year: 2021 ident: 1556_CR23 publication-title: Eng Regen – volume: 9 start-page: 2974 year: 2018 ident: 1556_CR14 publication-title: Nat Commun doi: 10.1038/s41467-018-05355-6 – volume: 117 start-page: 12S year: 2006 ident: 1556_CR62 publication-title: Plast Reconstr Surg doi: 10.1097/01.prs.0000225430.42531.c2 – volume: 6 start-page: 1961 year: 2005 ident: 1556_CR40 publication-title: Biomacromolecules doi: 10.1021/bm0500805 – volume: 17 start-page: e2101384 year: 2021 ident: 1556_CR1 publication-title: Small doi: 10.1002/smll.202101384 – volume: 156 start-page: 153 year: 2020 ident: 1556_CR46 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.03.207 – volume: 6 start-page: 3218 year: 2021 ident: 1556_CR22 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.02.022 – volume: 7 start-page: eabf0787 year: 2021 ident: 1556_CR65 publication-title: Sci Adv doi: 10.1126/sciadv.abf0787 – volume: 105 start-page: 19426 year: 2008 ident: 1556_CR59 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0805230105 – volume: 10 start-page: 1500 year: 2020 ident: 1556_CR19 publication-title: Theranostics doi: 10.7150/thno.39471 – volume: 120 start-page: 111680 year: 2021 ident: 1556_CR26 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2020.111680 – volume: 17 start-page: e2104747 year: 2021 ident: 1556_CR30 publication-title: Small doi: 10.1002/smll.202104747 – volume: 271 start-page: 120746 year: 2021 ident: 1556_CR47 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120746 – volume: 453 start-page: 314 year: 2008 ident: 1556_CR2 publication-title: Nature doi: 10.1038/nature07039 |
SSID | ssj0022424 |
Score | 2.411137 |
Snippet | Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay... Background Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a... Abstract Background Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Angiogenesis Biocompatibility Biological activity Biomedical materials Collagen Composite scaffolds Contact angle Diabetes Diabetes mellitus Diabetes therapy Diabetic wound healing Electrospun fibers Embedding Fibers Fourier transforms Health aspects Hypoxia-inducible factor 1a Insulation Laboratory animals Methods Nanostructure Polycaprolactone Polymers Scaffolds Scanning electron microscopy Signal transduction Skin Spectrum analysis Tissue engineering Vascular endothelial growth factor Vascularization Vermiculite Vermiculite nanosheets Wound healing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJz2IT1yNoRXBgwzZ7enpxzEJCVHQgyaQW9PPGFh7FmeXJZAfb9X07LKjoBev0zUz3VX9qGq--oqQd4E7VcekqwTOcMURR6Ux2d1Jy7yFiMQ6zHf-_EWcX_JPV83VTqkvxIQVeuCiuEPvg5caa601jDsbnGTT2DiuPdcQWvSuEZx5m2BqCLUw6WGTIqPEYQenWgNhM0MYQtOIaj06hnq2_j_35N9xkjsHz9kj8nDwGOlR6eljci_mJ-TBDo_gU3J3sW6rgDz9hWODZpsRmvkDL_fAp6Q2B7po57fewl_nWGInRzpUwOkWq0wTAkc6igBzRHFF2nmbUjsPHV0UwF6-puWe9sbTNdZiouhjwuNn5PLs9OLkvBrKKlS-kXxZKRHFLAiLObZJBeendeOn1kdXdG0hxKgh6lAsBuZ8qGUjZ6lmdUjJKhfq52QvQzdfEFqDLTG-9rOoeVDKSqGVs-gHpjCVekJmGy0bP3COY-mLueljDyVMsYyBvpjeMmY9IR-27ywK48ZfpY_ReFtJZMvuH8AcMsMcMv-aQxPyFk1vkA8jI-Dm2q66znz89tUcSeQngjMbxvJ-EEotjMHbIX8BNIEUWiPJ_ZEkLFg_bt7MMDNsGJ1hEndT3BEn5M22Gd9EEFyO7QpkhIYP1JzDJ-RoZo6GP27JN9970nDw0yU4by__h75ekfusX0uyYmKf7C1_ruJr8M2W7qBfhr8A9Wc6gQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8RRLCzIIiQOKuus4tnNCBVEVJDhAK-3N8nOptDih2dUKiR_PTOLdNiD1Gk8e9oztGeebbwh57blVZYh1EcEZLjjiqGpMdrfSMGcgIjEW852_fBWn5_zzvJrnA7cuwyq3a2K_UPvG4Rn5EZNobmgy79pfBVaNwr-ruYTGbXIHqcsQ0iXnVwEXpj5sE2WUOOpgb6sgeGYIRqgqUWxGm1HP2f__yvwvWvLa9nNyn-xnv5EeD4p-QG6F9JDcu8Ym-Ij8Ods0hUe2_oFpgyaTEKD5E4_4oBfUJE_bZvnbGXjrEgvtpEBzHZyuXScaET7SUYSZI5Yr0M6ZGJul72g7wPbSgg6ntReObrAiE0VPEy4_JucnH88-nBa5uELhKslXhRJBzLwwmGkblbduWlZualywznknawOBRgmxh2LBM-t8KSs5iyUrfYxGWV8-IXsJPvMpoSVoFKNsNws190oZKWplDXqD0U9lPSGz7Shrl5nHsQDGUvcRiBJ60IyGb9G9ZvRmQt7u7mkH3o0bpd-j8naSyJndX2guFzpPQT30C6v2VYxb461k01BZXjteQ5BqJuQVql4jK0ZC2M3CrLtOf_r-TR9LZCmCnRv68iYLxQb64EzOYoCRQCKtkeThSBKmrRs3by1M52Wj01dGPiEvd814J0LhUmjWICNqeEDJOTxCjixz1P1xS7r40VOHg7cuwYV7dvPLD8hd1s8SWTBxSPZWl-vwHHyvlX3RT7C_fAYxxA priority: 102 providerName: ProQuest |
Title | Two-dimensional nanovermiculite and polycaprolactone electrospun fibers composite scaffolds promoting diabetic wound healing |
URI | https://www.proquest.com/docview/2704000531 https://www.proquest.com/docview/2695293449 https://pubmed.ncbi.nlm.nih.gov/PMC9327406 https://doaj.org/article/ccdc792570524badb720e5b49c49448a |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QIPiE9RGJVBSDygQJvYsfOA0IZWBtImNFapb5Y_y6TilKZVmcQfz12SVgtMiJc8xBcn9vl8d87d7wh56ZiRmQ9FEsAYThjGURWY7G6ETq0Gj0QbzHc-PctPxuzzhE92yKbcUTuB1Y2uHdaTGi9mb37-uHoPAv-uFniZv61AZ3FwilMMMuA8T9a7ZB80k0BBPWXbvwoppkLU2UYCz-Y43yTR3NhHR1HVeP5_79p_RlJeU02ju-ROa1PSw2YR3CM7Pt4nt68hDT4gvy7WZeIQyb9B4aBRRwze_I7Hf2B1Uh0dnZezK6vhrTMswhM9bWvkVPNVpAFDSyqKIegY5-VpZXUI5cxVdN6E9MUpbU5yLy1dY7UmilYo3H5IxqPjiw8nSVt4IbFcsGUic58PXa4xCzdIZ-wg43agrTfWOisKDU5IBn6JTL1LjXWZ4GIYsjRzIWhpXPaI7EX4zMeEZsBt9MDt0BfMSalFXkij0VIMbiCKHhluZlnZFpUci2PMVO2dyFw1nFHwLarmjFr3yOvtM_MGk-Of1EfIvC0l4mnXN8rFVLXiqZpxYUU_njKjnRHpwHPDCssKcGB1j7xA1itEzIgYkjPVq6pSn76eq0OBCEag1WEsr1qiUMIYrG4zHGAmEGSrQ3nQoQSRtt3mzQpTG4lQqcD9FvfMHnm-bcYnMUwu-nIFNHkBHWSMQReiszI7w--2xMtvNaw4WPICzLsn_9H7U3IrrUVFJGl-QPaWi5V_BsbZ0vTJrpgIuMrRxz7ZPzo--3Lerw86-rUs_ga2cT2j |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNsKWAQiAOKmnUeTg4IlUe1Sx8H2Ep7M34ulbbO0uwqqsRv4jcyk8e2Aam3XuOxE3tm7BnnmxlCXptYZZF1eeDAGA5ixFHlGOyuuGRagkciFcY7Hx6lo-P46zSZbpA_XSwMwiq7PbHeqE2h8Y58h3EUNxSZD4tfAVaNwr-rXQmNRiz27XkFLlv5fvwZ-PuGsb0vk0-joK0qEOiEx8sgS206NKnEEFOXGaXDKNGh1FZpbTTPJVjYERjdGbOGKW0invChi1hknJOZMhGMe4PchIM3RI3i0wsHD0MtusCcLN0p4SxNwFlnCH5IkjSoeodfXSPg_5PgX3TmpeNu7x6529qpdLcRrPtkw_oH5M6l7IUPye9JVQQGqwM0mT2olx4Boad4pQirRqU3dFHMz7WEt86xsI-3tK27Uy5WnjqEq5QUYe2IHbO01NK5Ym5Kumhggn5Gm9vhE00rrABF0bKFx4_I8bUs-2Oy6eEznxAagQShV6-HNo9Nlkme5pmSaH06E_J8QIbdKgvdZjrHghtzUXs8WSoazgj4FlFzRlQD8m7dZ9Hk-biS-iMyb02JObrrB8XZTLQqL5p5YZXAhMVKGsVZaBMV5zrOwSmWA_IKWS8wC4dHmM9MrspSjL9_E7scsyKBpQBzedsSuQLmoGUbNQErgYm7epTbPUrYJnS_uZMw0W5TpbhQqgF5uW7Gngi987ZYAU2awwBRHMMQvCeZven3W_zJzzpVOXgHHEzGratf_oLcGk0OD8TB-Gj_KbnNao3hAUu3yebybGWfgd23VM9rZaPkx3Vr919NkHA7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-dimensional+nanovermiculite+and+polycaprolactone+electrospun+fibers+composite+scaffolds+promoting+diabetic+wound+healing&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Huang%2C+Xingtai&rft.au=Wang%2C+Qirui&rft.au=Mao%2C+Runyi&rft.au=Wang%2C+Zeying&rft.date=2022-07-26&rft.issn=1477-3155&rft.eissn=1477-3155&rft.volume=20&rft.issue=1&rft.spage=343&rft_id=info:doi/10.1186%2Fs12951-022-01556-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |