Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases

In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abn...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 7; no. C; pp. 142 - 154
Main Authors Figini, Matteo, Alexander, Daniel C., Redaelli, Veronica, Fasano, Fabrizio, Grisoli, Marina, Baselli, Giuseppe, Gambetti, Pierluigi, Tagliavini, Fabrizio, Bizzi, Alberto
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2015
Elsevier
Subjects
ADC
CNR
EEG
GSS
RPE
FOV
ROI
TE
TI
DWI
CJD
BIC
TR
EPI
Online AccessGet full text
ISSN2213-1582
2213-1582
DOI10.1016/j.nicl.2014.11.017

Cover

Loading…
Abstract In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm2 and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD. •An advanced DWI acquisition scheme was applied to 15 patients with suspected sCJD.•Data fitting with two bi-compartment models outperformed the classic ADC model.•In affected GM T2 values were increased, diffusion was more hindered or restricted.•For the first time an estimate of the restricted compartment radius was provided.•The radius may reflect vacuole size, which is a key discriminator of sCJD subtypes. [Display omitted]
AbstractList In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T 2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm 2 and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD. • An advanced DWI acquisition scheme was applied to 15 patients with suspected sCJD. • Data fitting with two bi-compartment models outperformed the classic ADC model. • In affected GM T 2 values were increased, diffusion was more hindered or restricted. • For the first time an estimate of the restricted compartment radius was provided. • The radius may reflect vacuole size, which is a key discriminator of sCJD subtypes.
AbstractIn clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T 2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm 2 and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD.
In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm2 and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD. •An advanced DWI acquisition scheme was applied to 15 patients with suspected sCJD.•Data fitting with two bi-compartment models outperformed the classic ADC model.•In affected GM T2 values were increased, diffusion was more hindered or restricted.•For the first time an estimate of the restricted compartment radius was provided.•The radius may reflect vacuole size, which is a key discriminator of sCJD subtypes. [Display omitted]
In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt-Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann-Sträussler-Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm(2) and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD.In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt-Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann-Sträussler-Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm(2) and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD.
In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt-Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann-Sträussler-Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm(2) and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD.
In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm2 and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD.
Author Figini, Matteo
Grisoli, Marina
Bizzi, Alberto
Tagliavini, Fabrizio
Alexander, Daniel C.
Fasano, Fabrizio
Gambetti, Pierluigi
Baselli, Giuseppe
Redaelli, Veronica
AuthorAffiliation b Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
c Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
d Neuropathology, Fondazione IRCCS Istituto Neurologico, Parma, Italy
g Neuroradiology, Humanitas Research Hospital IRCCS, Rozzano, Milano, Italy
e Department of Neuroscience, Università degli Studi di Parma, Parma, Italy
a Neuroradiology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
f National Prion Disease Pathology Surveillance Center, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
AuthorAffiliation_xml – name: d Neuropathology, Fondazione IRCCS Istituto Neurologico, Parma, Italy
– name: f National Prion Disease Pathology Surveillance Center, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
– name: b Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
– name: c Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
– name: e Department of Neuroscience, Università degli Studi di Parma, Parma, Italy
– name: a Neuroradiology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
– name: g Neuroradiology, Humanitas Research Hospital IRCCS, Rozzano, Milano, Italy
Author_xml – sequence: 1
  givenname: Matteo
  surname: Figini
  fullname: Figini, Matteo
  organization: Neuroradiology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
– sequence: 2
  givenname: Daniel C.
  surname: Alexander
  fullname: Alexander, Daniel C.
  organization: Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
– sequence: 3
  givenname: Veronica
  surname: Redaelli
  fullname: Redaelli, Veronica
  organization: Neuropathology, Fondazione IRCCS Istituto Neurologico, Parma, Italy
– sequence: 4
  givenname: Fabrizio
  surname: Fasano
  fullname: Fasano, Fabrizio
  organization: Department of Neuroscience, Università degli Studi di Parma, Parma, Italy
– sequence: 5
  givenname: Marina
  surname: Grisoli
  fullname: Grisoli, Marina
  organization: Neuroradiology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
– sequence: 6
  givenname: Giuseppe
  surname: Baselli
  fullname: Baselli, Giuseppe
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
– sequence: 7
  givenname: Pierluigi
  surname: Gambetti
  fullname: Gambetti, Pierluigi
  organization: National Prion Disease Pathology Surveillance Center, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
– sequence: 8
  givenname: Fabrizio
  surname: Tagliavini
  fullname: Tagliavini, Fabrizio
  organization: Neuropathology, Fondazione IRCCS Istituto Neurologico, Parma, Italy
– sequence: 9
  givenname: Alberto
  surname: Bizzi
  fullname: Bizzi, Alberto
  email: alberto.bizzi@humanitas.it
  organization: Neuroradiology, Humanitas Research Hospital IRCCS, Rozzano, Milano, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25610776$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAPKkcsuHiexHQ5IqOKjUhEH4GxNnMmut4692Nmi_fc47FK1SNQXW-P33vh53vPixAdPRfES2BIYiDebpbfGLTmDegmwZCCfFGecQ7WARvGTe-fT4iKlDctLMSaFeFac8kYAk1KcFTdfcFrTiJM16Mox9ORSOYRY5mrZ22HYJRt8OeLKU8aUkVLw6A2Vya58pmDnQxzR2WlfWl9usxL5KZW_7LQut3Em9zYRJkoviqcDukQXx_28-PHxw_fLz4vrr5-uLt9fL0wj62mhKgSQLUCFxkio5aCaoeWsq7HvBDGoWtFAjSiVaQAZ8bbvOWsGNVRQMVGdF1cH3T7gRuc3jBj3OqDVfwohrjTGbMaRRmxraA0p2Xc1GaUG0Ukw3CgEEjRrvTtobXfdSL3J3iK6B6IPb7xd61W41XU1_3iTBV4fBWL4uaM06dEmQ86hp7BLGkTDsyFoeYa-ut_rrsnfaWUAPwBMDClFGu4gwPScCr3Rcyr0nAoNoHMqMkn9QzJ2ylMK83ute5x6NJ9DQbeWojbO-jkpN7SntAm7mCOQPejENdPf5sjNiYOaMVCgssDb_wvkadjHuv8Ga0XoWQ
CitedBy_id crossref_primary_10_1001_jamaneurol_2020_1319
crossref_primary_10_1002_ana_25983
crossref_primary_10_1016_j_expneurol_2017_03_018
crossref_primary_10_1111_jon_12359
crossref_primary_10_1371_journal_pone_0161646
crossref_primary_10_1016_j_neuroimage_2021_118303
crossref_primary_10_1097_WCO_0000000000000197
crossref_primary_10_1007_s11547_017_0725_y
crossref_primary_10_1007_s00401_020_02168_0
crossref_primary_10_1007_s10072_020_04321_9
crossref_primary_10_1002_hbm_25945
Cites_doi 10.1002/mrm.10308
10.3174/ajnr.A1075
10.1097/WAD.0b013e31818323ef
10.1212/WNL.0b013e3181d0cc47
10.1002/mrm.20274
10.1016/S2173-5808(11)70078-5
10.1016/j.nicl.2014.01.011
10.3174/ajnr.A2069
10.1016/j.neuroimage.2011.09.081
10.1159/000107082
10.1212/01.WNL.0000134555.59460.5D
10.1002/mrm.1910360607
10.1002/mrm.24501
10.1007/s00415-005-0648-8
10.1007/s00401-012-1002-8
10.1001/archneur.63.6.876
10.1093/bmb/66.1.213
10.1016/S1474-4422(12)70063-7
10.1002/mrm.21164
10.1006/nimg.2002.1132
10.1093/brain/awp210
10.1002/mrm.21646
10.1214/aos/1176344136
10.1002/(SICI)1098-1098(1999)10:2<109::AID-IMA2>3.0.CO;2-R
10.1016/S0730-725X(01)00383-6
10.1212/WNL.52.9.1757
10.1212/WNL.0b013e3181a18846
10.1212/WNL.51.1.271
10.1007/978-3-642-02498-6_22
10.1002/(SICI)1097-0185(19990615)257:3<102::AID-AR7>3.0.CO;2-6
10.1016/j.neuroimage.2012.03.072
10.3174/ajnr.A1860
10.1002/mrm.22782
10.1093/brain/awp191
10.1212/WNL.0b013e31821a4439
10.1007/s00415-003-0983-6
10.1137/0111030
10.1007/s00401-010-0761-3
10.1016/j.jmr.2010.05.017
10.1093/brain/awp042
10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
10.1063/1.1668160
10.2353/ajpath.2008.070442
10.1111/j.1365-2990.2008.01004a.x
ContentType Journal Article
Copyright 2014
2014 The Authors. Published by Elsevier Inc. 2014
Copyright_xml – notice: 2014
– notice: 2014 The Authors. Published by Elsevier Inc. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2014.11.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 154
ExternalDocumentID oai_doaj_org_article_aa9419ce87db4ec88f6b71c2c8a1e6e6
PMC4300005
25610776
10_1016_j_nicl_2014_11_017
1_s2_0_S2213158214001818
S2213158214001818
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c574t-83a1179113acc7147f85f920b4adb6e01396514aa78c51a0e29dd205f8f313063
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Aug 21 14:00:03 EDT 2025
Thu Sep 04 15:48:25 EDT 2025
Mon Jul 21 06:02:09 EDT 2025
Tue Jul 01 01:09:13 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Sun Feb 23 10:19:28 EST 2025
Tue Aug 26 17:37:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords ADC
Prion disease
MPRAGE
PrPSc
Biophysical models
CNR
EEG
GSS
RPE
SS-SE
FOV
ROI
TE
PrPC
TI
Spongiform degeneration
DWI
Diffusion MRI
CJD
BIC
Creutzfeldt–Jakob disease
TR
EPI
sCJD
inversion time
diffusion weighted imaging
PrP C
PrP Sc
contrast to noise ratio
sporadic Creutzfeldt–Jakob disease
apparent diffusion coefficient
magnetization-prepared rapid acquisition gradient-echo
prion protein scrapie
echo time
rapidly progressive encephalopathy
Gerstmann–Sträussler–Scheinker syndrome
single shot spin-echo
repetition time
field of view
electroencephalogram
region of interest
echo-planar imaging
prion protein cellular
Bayesian information criterion
PrPC, prion protein cellular
FOV, field of view
TR, repetition time
DWI, diffusion weighted imaging
EEG, electroencephalogram
CJD, Creutzfeldt–Jakob disease
RPE, rapidly progressive encephalopathy
ADC, apparent diffusion coefficient
ROI, region of interest
CNR, contrast to noise ratio
sCJD, sporadic Creutzfeldt–Jakob disease
TE, echo time
GSS, Gerstmann–Sträussler–Scheinker syndrome
SS-SE, single shot spin-echo
BIC, Bayesian information criterion
EPI, echo-planar imaging
PrPSc, prion protein scrapie
MPRAGE, magnetization-prepared rapid acquisition gradient-echo
TI, inversion time
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-83a1179113acc7147f85f920b4adb6e01396514aa78c51a0e29dd205f8f313063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2014.11.017
PMID 25610776
PQID 1652396192
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_aa9419ce87db4ec88f6b71c2c8a1e6e6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4300005
proquest_miscellaneous_1652396192
pubmed_primary_25610776
crossref_primary_10_1016_j_nicl_2014_11_017
crossref_citationtrail_10_1016_j_nicl_2014_11_017
elsevier_clinicalkeyesjournals_1_s2_0_S2213158214001818
elsevier_clinicalkey_doi_10_1016_j_nicl_2014_11_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2015
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Puoti, Bizzi, Forloni, Safar, Tagliavini, Gambetti (bb0037) 2012; 11
Krasnianski, Meissner, Schulz-Schaeffer, Kallenberg, Bartl, Heinemann (bb0024) 2006; 63
Demaerel, Sciot, Robberecht, Dom, Vandermeulen, Maes (bb008) 2003; 250
Satoh, Shirabe, Tsujino, Eguchi, Motomura, Honda (bb0041) 2007; 24
Drobnjak, Siow, Alexander (bb009) 2010; 206
Clark, Le Bihan (bb006) 2000; 44
Barazany, Basser, Assaf (bb003) 2009; 132
Bizzi, Grisoli, Blevins, Giaccone, Port, Phillips (bb004) 2009
Jansen, Head, Rozemuller, Ironside (bb0019) 2009; 35
Gambetti, Kong, Zou, Parchi, Chen (bb0013) 2003; 66
Young, Geschwind, Fischbein, Martindale, Henry, Liu (bb0047) 2005; 26
Zerr, Kallenberg, Summers, Romero, Taratuto, Heinemann (bb0048) 2009; 132
Kallenberg, Schulz-Schaeffer, Jastrow, Poser, Meissner, Tschampa (bb0021) 2006; 27
Murday, Cotts (bb0032) 1968; 48
Schwarz (bb0042) 1978; 6
Vitali, Maccagnano, Caverzasi, Henry, Haman, Torres-Chae (bb0046) 2011; 76
Jenkinson, Bannister, Brady, Smith (bb0020) 2002; 17
Hyare, Wroe, Siddique, Webb, Fox, Stevens (bb0018) 2010; 74
Zhang, Schneider, Wheeler-Kingshott, Alexander (bb0049) 2012; 61
Lodi, Parchi, Tonon, Manners, Capellari, Strammiello (bb0027) 2009; 132
Galanaud, Haïk, Linguraru, Ranjeva, Faucheux, Kaphan (bb0012) 2010; 31
Geschwind, Potter, Sattavat, Garcia, Rosen, Miller (bb0015) 2009; 23
Hyare, Thornton, Stevens, Mead, Rudge, Collinge (bb0017) 2010; 31
Sijbers, den Dekker, Raman, Van Dyck (bb0044) 1999; 10
Riva-Amarante, Jiménez-Huete, Toledano, Calero, Alvarez-Linera, Escribano (bb0039) 2011; 26
Mori, Barker (bb0030) 1999; 257
Russmann, Vingerhoets, Miklossy, Maeder, Glatzel, Aguzzi (bb0040) 2005; 252
Mulkern, Vajapeyam, Robertson, Caruso, Rivkin, Maier (bb0031) 2001; 19
Ghorayeb, Series, Parchi, Sawan, Guez, Laplanche (bb0016) 1998; 51
Gambetti, Cali, Notari, Kong, Zou, Surewicz (bb0014) 2011; 121
Galanaud, Dormont, Haïk, Chiras, Brandel, Ranjeva (bb0011) 2008; 29
Lin, Young, Chen, Dillon, Wong (bb0026) 2006; 27
Parchi, Capellari, Chin, Schwarz, Schecter, Butts (bb0035) 1999; 52
Alexander (bb001) 2008; 60
Niendorf, Dijkhuizen, Norris, van Lookeren Campagne, Nicolay (bb0033) 1996; 36
Tschampa, Mürtz, Flacke, Paus, Schild, Urbach (bb0045) 2003; 24
Kiselev, Il'yasov (bb0022) 2007; 57
Assaf, Freidlin, Rohde, Basser (bb002) 2004; 52
Panagiotaki, Schneider, Siow, Hall, Lythgoe, Alexander (bb0034) 2012; 59
Lasič, Nilsson, Lätt, Ståhlberg, Topgaard (bb0025) 2011; 66
Parchi, de Boni, Saverioni, Cohen, Ferrer, Gambetti (bb0036) 2012; 124
Reese, Heid, Weisskoff, Wedeen (bb0038) 2003; 49
Clayden, Nagy, Hall, Clark, Alexander (bb007) 2009; 21
Caverzasi, Henry, Vitali, Lobach, Kornak, Bastianello (bb005) 2014; 4
Kovacs, Budka (bb0023) 2008; 172
Dyrby, Søgaard, Hall, Ptito, Alexander (bb0010) 2013; 70
Shiga, Miyazawa, Sato, Fukushima, Shibuya, Sato (bb0043) 2004; 63
Manners, Parchi, Tonon, Capellari, Strammiello, Testa (bb0028) 2009; 72
Marquardt (bb0029) 1963; 11
Galanaud (10.1016/j.nicl.2014.11.017_bb0012) 2010; 31
Hyare (10.1016/j.nicl.2014.11.017_bb0018) 2010; 74
Ghorayeb (10.1016/j.nicl.2014.11.017_bb0016) 1998; 51
Caverzasi (10.1016/j.nicl.2014.11.017_bb005) 2014; 4
Alexander (10.1016/j.nicl.2014.11.017_bb001) 2008; 60
Geschwind (10.1016/j.nicl.2014.11.017_bb0015) 2009; 23
Marquardt (10.1016/j.nicl.2014.11.017_bb0029) 1963; 11
Panagiotaki (10.1016/j.nicl.2014.11.017_bb0034) 2012; 59
Drobnjak (10.1016/j.nicl.2014.11.017_bb009) 2010; 206
Jenkinson (10.1016/j.nicl.2014.11.017_bb0020) 2002; 17
Zerr (10.1016/j.nicl.2014.11.017_bb0048) 2009; 132
Lin (10.1016/j.nicl.2014.11.017_bb0026) 2006; 27
Clark (10.1016/j.nicl.2014.11.017_bb006) 2000; 44
Riva-Amarante (10.1016/j.nicl.2014.11.017_bb0039) 2011; 26
Russmann (10.1016/j.nicl.2014.11.017_bb0040) 2005; 252
Murday (10.1016/j.nicl.2014.11.017_bb0032) 1968; 48
Shiga (10.1016/j.nicl.2014.11.017_bb0043) 2004; 63
Lodi (10.1016/j.nicl.2014.11.017_bb0027) 2009; 132
Niendorf (10.1016/j.nicl.2014.11.017_bb0033) 1996; 36
Parchi (10.1016/j.nicl.2014.11.017_bb0035) 1999; 52
Vitali (10.1016/j.nicl.2014.11.017_bb0046) 2011; 76
Dyrby (10.1016/j.nicl.2014.11.017_bb0010) 2013; 70
Parchi (10.1016/j.nicl.2014.11.017_bb0036) 2012; 124
Mulkern (10.1016/j.nicl.2014.11.017_bb0031) 2001; 19
Jansen (10.1016/j.nicl.2014.11.017_bb0019) 2009; 35
Schwarz (10.1016/j.nicl.2014.11.017_bb0042) 1978; 6
Kallenberg (10.1016/j.nicl.2014.11.017_bb0021) 2006; 27
Tschampa (10.1016/j.nicl.2014.11.017_bb0045) 2003; 24
Kiselev (10.1016/j.nicl.2014.11.017_bb0022) 2007; 57
Bizzi (10.1016/j.nicl.2014.11.017_bb004) 2009
Puoti (10.1016/j.nicl.2014.11.017_bb0037) 2012; 11
Barazany (10.1016/j.nicl.2014.11.017_bb003) 2009; 132
Reese (10.1016/j.nicl.2014.11.017_bb0038) 2003; 49
Galanaud (10.1016/j.nicl.2014.11.017_bb0011) 2008; 29
Demaerel (10.1016/j.nicl.2014.11.017_bb008) 2003; 250
Clayden (10.1016/j.nicl.2014.11.017_bb007) 2009; 21
Gambetti (10.1016/j.nicl.2014.11.017_bb0014) 2011; 121
Young (10.1016/j.nicl.2014.11.017_bb0047) 2005; 26
Mori (10.1016/j.nicl.2014.11.017_bb0030) 1999; 257
Satoh (10.1016/j.nicl.2014.11.017_bb0041) 2007; 24
Lasič (10.1016/j.nicl.2014.11.017_bb0025) 2011; 66
Manners (10.1016/j.nicl.2014.11.017_bb0028) 2009; 72
Assaf (10.1016/j.nicl.2014.11.017_bb002) 2004; 52
Hyare (10.1016/j.nicl.2014.11.017_bb0017) 2010; 31
Gambetti (10.1016/j.nicl.2014.11.017_bb0013) 2003; 66
Kovacs (10.1016/j.nicl.2014.11.017_bb0023) 2008; 172
Krasnianski (10.1016/j.nicl.2014.11.017_bb0024) 2006; 63
Zhang (10.1016/j.nicl.2014.11.017_bb0049) 2012; 61
Sijbers (10.1016/j.nicl.2014.11.017_bb0044) 1999; 10
22744790 - Acta Neuropathol. 2012 Oct;124(4):517-29
15304574 - Neurology. 2004 Aug 10;63(3):443-9
16769870 - Arch Neurol. 2006 Jun;63(6):876-80
19755520 - Brain. 2009 Oct;132(Pt 10):2669-79
10397783 - Anat Rec. 1999 Jun 15;257(3):102-9
22484410 - Neuroimage. 2012 Jul 16;61(4):1000-16
18666109 - Magn Reson Med. 2008 Aug;60(2):439-48
15956529 - AJNR Am J Neuroradiol. 2005 Jun-Jul;26(6):1551-62
21446037 - Magn Reson Med. 2011 Aug;66(2):356-65
19403788 - Brain. 2009 May;132(Pt 5):1210-20
20177119 - Neurology. 2010 Feb 23;74(8):658-65
22001791 - Neuroimage. 2012 Feb 1;59(3):2241-54
19380702 - Neurology. 2009 Apr 21;72(16):1425-31
12509835 - Magn Reson Med. 2003 Jan;49(1):177-82
10371520 - Neurology. 1999 Jun 10;52(9):1757-63
17326171 - Magn Reson Med. 2007 Mar;57(3):464-9
21345540 - Neurologia. 2011 Jul-Aug;26(6):331-6
20580294 - J Magn Reson. 2010 Sep;206(1):41-51
19773352 - Brain. 2009 Oct;132(Pt 10):2659-68
11672624 - Magn Reson Imaging. 2001 Jun;19(5):659-68
16971630 - AJNR Am J Neuroradiol. 2006 Sep;27(8):1755-9
21471469 - Neurology. 2011 May 17;76(20):1711-9
15508168 - Magn Reson Med. 2004 Nov;52(5):965-78
19473294 - Neuropathol Appl Neurobiol. 2009 Jun;35(3):272-82
12574955 - J Neurol. 2003 Feb;250(2):222-5
19266702 - Alzheimer Dis Assoc Disord. 2009 Jan-Mar;23(1):82-87
12377157 - Neuroimage. 2002 Oct;17(2):825-41
22710755 - Lancet Neurol. 2012 Jul;11(7):618-28
18372408 - AJNR Am J Neuroradiol. 2008 Aug;29(7):E57; author reply E58
18245809 - Am J Pathol. 2008 Mar;172(3):555-65
12748093 - AJNR Am J Neuroradiol. 2003 May;24(5):908-15
23023798 - Magn Reson Med. 2013 Sep;70(3):711-21
24624328 - Neuroimage Clin. 2014;4:426-35
20430851 - AJNR Am J Neuroradiol. 2010 Aug;31(7):1311-8
14522861 - Br Med Bull. 2003;66:213-39
9674819 - Neurology. 1998 Jul;51(1):271-4
15739045 - J Neurol. 2005 Mar;252(3):338-42
17690553 - Dement Geriatr Cogn Disord. 2007;24(3):207-12
19694269 - Inf Process Med Imaging. 2009;21:264-75
8946350 - Magn Reson Med. 1996 Dec;36(6):847-57
16908558 - AJNR Am J Neuroradiol. 2006 Aug;27(7):1459-62
20007724 - AJNR Am J Neuroradiol. 2010 Mar;31(3):521-6
21058033 - Acta Neuropathol. 2011 Jan;121(1):79-90
11108621 - Magn Reson Med. 2000 Dec;44(6):852-9
References_xml – volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: bb0029
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 121
  start-page: 79
  year: 2011
  end-page: 90
  ident: bb0014
  article-title: Molecular biology and pathology of prion strains in sporadic human prion diseases
  publication-title: Acta Neuropathol.
– volume: 252
  start-page: 338
  year: 2005
  end-page: 342
  ident: bb0040
  article-title: Sporadic Creutzfeldt–Jakob disease
  publication-title: J. Neurol.
– volume: 31
  start-page: 1311
  year: 2010
  end-page: 1318
  ident: bb0012
  article-title: Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0020
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 44
  start-page: 852
  year: 2000
  end-page: 859
  ident: bb006
  article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain
  publication-title: Magn. Reson. Med.
– volume: 4
  start-page: 426
  year: 2014
  end-page: 435
  ident: bb005
  article-title: Application of quantitative DTI metrics in sporadic CJD
  publication-title: Neuroimage Clin.
– volume: 24
  start-page: 207
  year: 2007
  end-page: 212
  ident: bb0041
  article-title: Total Tau protein in cerebrospinal fluid and diffusion-weighted MRI as an early diagnostic marker for Creutzfeldt–Jakob disease
  publication-title: Dement. Geriatr. Cogn. Disord.
– volume: 36
  start-page: 847
  year: 1996
  end-page: 857
  ident: bb0033
  article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
– volume: 11
  start-page: 618
  year: 2012
  end-page: 628
  ident: bb0037
  article-title: Sporadic human prion diseases: molecular insights and diagnosis
  publication-title: Lancet Neurol.
– volume: 29
  start-page: e57
  year: 2008
  ident: bb0011
  article-title: Differences of apparent diffusion coefficient values in patients with Creutzfeldt–Jakob disease according to the codon 129 genotype
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 52
  start-page: 965
  year: 2004
  end-page: 978
  ident: bb002
  article-title: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter
  publication-title: Magn. Reson. Med.
– volume: 27
  start-page: 1459
  year: 2006
  end-page: 1462
  ident: bb0021
  article-title: Creutzfeldt–Jakob disease: comparative analysis of MR imaging sequences
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 26
  start-page: 1551
  year: 2005
  end-page: 1562
  ident: bb0047
  article-title: Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt–Jakob disease: high sensitivity and specificity for diagnosis
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 24
  start-page: 908
  year: 2003
  end-page: 915
  ident: bb0045
  article-title: Thalamic involvement in sporadic Creutzfeldt–Jakob disease: a diffusion-weighted MR imaging study
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 52
  start-page: 1757
  year: 1999
  end-page: 1763
  ident: bb0035
  article-title: A subtype of sporadic prion disease mimicking fatal familial insomnia
  publication-title: Neurol.
– volume: 10
  start-page: 109
  year: 1999
  end-page: 114
  ident: bb0044
  article-title: Parameter estimation from magnitude MR images
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 19
  start-page: 659
  year: 2001
  end-page: 668
  ident: bb0031
  article-title: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain
  publication-title: Magn. Reson. Imaging
– volume: 172
  start-page: 555
  year: 2008
  end-page: 565
  ident: bb0023
  article-title: Prion diseases: from protein to cell pathology
  publication-title: Am. J. Pathol.
– volume: 66
  start-page: 213
  year: 2003
  end-page: 239
  ident: bb0013
  article-title: Sporadic and familial CJD: classification and characterisation
  publication-title: Br. Med. Bull.
– volume: 206
  start-page: 41
  year: 2010
  end-page: 51
  ident: bb009
  article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR
  publication-title: J. Magn. Reson.
– volume: 35
  start-page: 272
  year: 2009
  end-page: 282
  ident: bb0019
  article-title: Panencephalopathic Creutzfeldt–Jakob disease in the Netherlands and the UK: clinical and pathological characteristics of nine patients
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 66
  start-page: 356
  year: 2011
  end-page: 365
  ident: bb0025
  article-title: Apparent exchange rate mapping with diffusion MRI
  publication-title: Magn. Reson. Med.
– volume: 51
  start-page: 271
  year: 1998
  end-page: 274
  ident: bb0016
  article-title: Creutzfeldt–Jakob disease with long duration and panencephalopathic lesions: molecular analysis of one case
  publication-title: Neurol.
– volume: 76
  start-page: 1711
  year: 2011
  end-page: 1719
  ident: bb0046
  article-title: Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias
  publication-title: Neurology
– volume: 26
  start-page: 331
  year: 2011
  end-page: 336
  ident: bb0039
  article-title: Usefulness of high b-value diffusion-weighted MRI in the diagnosis of Creutzfeldt–Jakob disease
  publication-title: Neurología (English Edition)
– volume: 250
  start-page: 222
  year: 2003
  end-page: 225
  ident: bb008
  article-title: Accuracy of diffusion-weighted MR imaging in the diagnosis of sporadic Creutzfeldt–Jakob disease
  publication-title: J. Neurol.
– volume: 27
  start-page: 1755
  year: 2006
  end-page: 1759
  ident: bb0026
  article-title: Creutzfeldt–Jakob disease involvement of rolandic cortex: a quantitative apparent diffusion coefficient evaluation
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 48
  start-page: 4938
  year: 1968
  end-page: 4945
  ident: bb0032
  article-title: Self-diffusion coefficient of liquid lithium
  publication-title: J. Chem. Phys.
– volume: 63
  start-page: 876
  year: 2006
  end-page: 880
  ident: bb0024
  article-title: Clinical features and diagnosis of the MM2 cortical subtype of sporadic Creutzfeldt–Jakob disease
  publication-title: Arch. Neurol.
– volume: 74
  start-page: 658
  year: 2010
  end-page: 665
  ident: bb0018
  article-title: Brain-water diffusion coefficients reflect the severity of inherited prion disease
  publication-title: Neurology
– volume: 57
  start-page: 464
  year: 2007
  end-page: 469
  ident: bb0022
  article-title: Is the “biexponential diffusion” biexponential?
  publication-title: Magn. Reson. Med.
– volume: 124
  start-page: 517
  year: 2012
  end-page: 529
  ident: bb0036
  article-title: Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA
  publication-title: Acta Neuropathol.
– volume: 72
  start-page: 1425
  year: 2009
  end-page: 1431
  ident: bb0028
  article-title: Pathologic correlates of diffusion MRI changes in Creutzfeldt–Jakob disease
  publication-title: Neurology
– volume: 132
  start-page: 2659
  year: 2009
  end-page: 2968
  ident: bb0048
  article-title: Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease
  publication-title: Brain
– start-page: 85
  year: 2009
  ident: bb004
  article-title: MRI diagnostic accuracy in Creutzfeldt–Jakob disease: results of a multicenter study
  publication-title: Prion 2009: Book of Abstracts
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  ident: bb0049
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
– volume: 23
  start-page: 82
  year: 2009
  end-page: 87
  ident: bb0015
  article-title: Correlating DWI MRI with pathologic and other features of Jakob–Creutzfeldt disease
  publication-title: Alzheimer Dis. Assoc. Disord.
– volume: 59
  start-page: 2241
  year: 2012
  end-page: 2254
  ident: bb0034
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: Neuroimage
– volume: 63
  start-page: 443
  year: 2004
  end-page: 449
  ident: bb0043
  article-title: Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt–Jakob disease
  publication-title: Neurol.
– volume: 257
  start-page: 102
  year: 1999
  end-page: 109
  ident: bb0030
  article-title: Diffusion magnetic resonance imaging: its principle and applications
  publication-title: Anat. Rec.
– volume: 70
  start-page: 711
  year: 2013
  end-page: 721
  ident: bb0010
  article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI
  publication-title: Magn. Reson. Med.
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bb0042
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– volume: 132
  start-page: 2669
  year: 2009
  end-page: 2679
  ident: bb0027
  article-title: Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study
  publication-title: Brain
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  ident: bb0038
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
– volume: 132
  start-page: 1210
  year: 2009
  end-page: 1220
  ident: bb003
  article-title: In vivo measurement of axon diameter distribution in the corpus callosum of rat brain
  publication-title: Brain
– volume: 60
  start-page: 439
  year: 2008
  end-page: 448
  ident: bb001
  article-title: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features
  publication-title: Magn. Reson. Med.
– volume: 21
  start-page: 264
  year: 2009
  end-page: 275
  ident: bb007
  article-title: Active imaging with dual spin-echo diffusion MRI
  publication-title: Inf Process Med Imaging
– volume: 31
  start-page: 521
  year: 2010
  end-page: 526
  ident: bb0017
  article-title: High-b-value diffusion MR imaging and basal nuclei apparent diffusion coefficient measurements in variant and sporadic Creutzfeldt–Jakob disease
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 49
  start-page: 177
  issue: 1
  year: 2003
  ident: 10.1016/j.nicl.2014.11.017_bb0038
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10308
– volume: 29
  start-page: e57
  issue: 7
  year: 2008
  ident: 10.1016/j.nicl.2014.11.017_bb0011
  article-title: Differences of apparent diffusion coefficient values in patients with Creutzfeldt–Jakob disease according to the codon 129 genotype
  publication-title: A.J.N.R. Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1075
– volume: 23
  start-page: 82
  issue: 1
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb0015
  article-title: Correlating DWI MRI with pathologic and other features of Jakob–Creutzfeldt disease
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/WAD.0b013e31818323ef
– volume: 74
  start-page: 658
  issue: 8
  year: 2010
  ident: 10.1016/j.nicl.2014.11.017_bb0018
  article-title: Brain-water diffusion coefficients reflect the severity of inherited prion disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181d0cc47
– volume: 52
  start-page: 965
  issue: 5
  year: 2004
  ident: 10.1016/j.nicl.2014.11.017_bb002
  article-title: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20274
– volume: 26
  start-page: 331
  issue: 6
  year: 2011
  ident: 10.1016/j.nicl.2014.11.017_bb0039
  article-title: Usefulness of high b-value diffusion-weighted MRI in the diagnosis of Creutzfeldt–Jakob disease
  publication-title: Neurología (English Edition)
  doi: 10.1016/S2173-5808(11)70078-5
– volume: 4
  start-page: 426
  year: 2014
  ident: 10.1016/j.nicl.2014.11.017_bb005
  article-title: Application of quantitative DTI metrics in sporadic CJD
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.01.011
– volume: 31
  start-page: 1311
  issue: 7
  year: 2010
  ident: 10.1016/j.nicl.2014.11.017_bb0012
  article-title: Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases
  publication-title: A.J.N.R. Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2069
– volume: 59
  start-page: 2241
  issue: 3
  year: 2012
  ident: 10.1016/j.nicl.2014.11.017_bb0034
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.081
– volume: 24
  start-page: 207
  issue: 3
  year: 2007
  ident: 10.1016/j.nicl.2014.11.017_bb0041
  article-title: Total Tau protein in cerebrospinal fluid and diffusion-weighted MRI as an early diagnostic marker for Creutzfeldt–Jakob disease
  publication-title: Dement. Geriatr. Cogn. Disord.
  doi: 10.1159/000107082
– volume: 63
  start-page: 443
  issue: 3
  year: 2004
  ident: 10.1016/j.nicl.2014.11.017_bb0043
  article-title: Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt–Jakob disease
  publication-title: Neurol.
  doi: 10.1212/01.WNL.0000134555.59460.5D
– start-page: 85
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb004
  article-title: MRI diagnostic accuracy in Creutzfeldt–Jakob disease: results of a multicenter study
– volume: 36
  start-page: 847
  issue: 6
  year: 1996
  ident: 10.1016/j.nicl.2014.11.017_bb0033
  article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360607
– volume: 70
  start-page: 711
  issue: 3
  year: 2013
  ident: 10.1016/j.nicl.2014.11.017_bb0010
  article-title: Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24501
– volume: 252
  start-page: 338
  issue: 3
  year: 2005
  ident: 10.1016/j.nicl.2014.11.017_bb0040
  article-title: Sporadic Creutzfeldt–Jakob disease
  publication-title: J. Neurol.
  doi: 10.1007/s00415-005-0648-8
– volume: 124
  start-page: 517
  issue: 4
  year: 2012
  ident: 10.1016/j.nicl.2014.11.017_bb0036
  article-title: Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-012-1002-8
– volume: 26
  start-page: 1551
  issue: 6
  year: 2005
  ident: 10.1016/j.nicl.2014.11.017_bb0047
  article-title: Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt–Jakob disease: high sensitivity and specificity for diagnosis
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 63
  start-page: 876
  issue: 6
  year: 2006
  ident: 10.1016/j.nicl.2014.11.017_bb0024
  article-title: Clinical features and diagnosis of the MM2 cortical subtype of sporadic Creutzfeldt–Jakob disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.63.6.876
– volume: 66
  start-page: 213
  year: 2003
  ident: 10.1016/j.nicl.2014.11.017_bb0013
  article-title: Sporadic and familial CJD: classification and characterisation
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/66.1.213
– volume: 11
  start-page: 618
  issue: 7
  year: 2012
  ident: 10.1016/j.nicl.2014.11.017_bb0037
  article-title: Sporadic human prion diseases: molecular insights and diagnosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70063-7
– volume: 27
  start-page: 1459
  issue: 7
  year: 2006
  ident: 10.1016/j.nicl.2014.11.017_bb0021
  article-title: Creutzfeldt–Jakob disease: comparative analysis of MR imaging sequences
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 57
  start-page: 464
  issue: 3
  year: 2007
  ident: 10.1016/j.nicl.2014.11.017_bb0022
  article-title: Is the “biexponential diffusion” biexponential?
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21164
– volume: 24
  start-page: 908
  issue: 5
  year: 2003
  ident: 10.1016/j.nicl.2014.11.017_bb0045
  article-title: Thalamic involvement in sporadic Creutzfeldt–Jakob disease: a diffusion-weighted MR imaging study
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.nicl.2014.11.017_bb0020
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 132
  start-page: 2669
  issue: 10
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb0027
  article-title: Magnetic resonance diagnostic markers in clinically sporadic prion disease: a combined brain magnetic resonance imaging and spectroscopy study
  publication-title: Brain
  doi: 10.1093/brain/awp210
– volume: 60
  start-page: 439
  issue: 2
  year: 2008
  ident: 10.1016/j.nicl.2014.11.017_bb001
  article-title: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21646
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.nicl.2014.11.017_bb0042
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 10
  start-page: 109
  issue: 2
  year: 1999
  ident: 10.1016/j.nicl.2014.11.017_bb0044
  article-title: Parameter estimation from magnitude MR images
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/(SICI)1098-1098(1999)10:2<109::AID-IMA2>3.0.CO;2-R
– volume: 19
  start-page: 659
  issue: 5
  year: 2001
  ident: 10.1016/j.nicl.2014.11.017_bb0031
  article-title: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(01)00383-6
– volume: 52
  start-page: 1757
  issue: 9
  year: 1999
  ident: 10.1016/j.nicl.2014.11.017_bb0035
  article-title: A subtype of sporadic prion disease mimicking fatal familial insomnia
  publication-title: Neurol.
  doi: 10.1212/WNL.52.9.1757
– volume: 72
  start-page: 1425
  issue: 16
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb0028
  article-title: Pathologic correlates of diffusion MRI changes in Creutzfeldt–Jakob disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181a18846
– volume: 51
  start-page: 271
  issue: 1
  year: 1998
  ident: 10.1016/j.nicl.2014.11.017_bb0016
  article-title: Creutzfeldt–Jakob disease with long duration and panencephalopathic lesions: molecular analysis of one case
  publication-title: Neurol.
  doi: 10.1212/WNL.51.1.271
– volume: 21
  start-page: 264
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb007
  article-title: Active imaging with dual spin-echo diffusion MRI
  publication-title: Inf Process Med Imaging
  doi: 10.1007/978-3-642-02498-6_22
– volume: 257
  start-page: 102
  issue: 3
  year: 1999
  ident: 10.1016/j.nicl.2014.11.017_bb0030
  article-title: Diffusion magnetic resonance imaging: its principle and applications
  publication-title: Anat. Rec.
  doi: 10.1002/(SICI)1097-0185(19990615)257:3<102::AID-AR7>3.0.CO;2-6
– volume: 61
  start-page: 1000
  issue: 4
  year: 2012
  ident: 10.1016/j.nicl.2014.11.017_bb0049
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 31
  start-page: 521
  issue: 3
  year: 2010
  ident: 10.1016/j.nicl.2014.11.017_bb0017
  article-title: High-b-value diffusion MR imaging and basal nuclei apparent diffusion coefficient measurements in variant and sporadic Creutzfeldt–Jakob disease
  publication-title: A.J.N.R. Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A1860
– volume: 66
  start-page: 356
  issue: 2
  year: 2011
  ident: 10.1016/j.nicl.2014.11.017_bb0025
  article-title: Apparent exchange rate mapping with diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22782
– volume: 132
  start-page: 2659
  issue: 10
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb0048
  article-title: Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease
  publication-title: Brain
  doi: 10.1093/brain/awp191
– volume: 76
  start-page: 1711
  issue: 20
  year: 2011
  ident: 10.1016/j.nicl.2014.11.017_bb0046
  article-title: Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821a4439
– volume: 250
  start-page: 222
  issue: 2
  year: 2003
  ident: 10.1016/j.nicl.2014.11.017_bb008
  article-title: Accuracy of diffusion-weighted MR imaging in the diagnosis of sporadic Creutzfeldt–Jakob disease
  publication-title: J. Neurol.
  doi: 10.1007/s00415-003-0983-6
– volume: 11
  start-page: 431
  issue: 2
  year: 1963
  ident: 10.1016/j.nicl.2014.11.017_bb0029
  article-title: An algorithm for least-squares estimation of nonlinear parameters
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111030
– volume: 121
  start-page: 79
  issue: 1
  year: 2011
  ident: 10.1016/j.nicl.2014.11.017_bb0014
  article-title: Molecular biology and pathology of prion strains in sporadic human prion diseases
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-010-0761-3
– volume: 206
  start-page: 41
  issue: 1
  year: 2010
  ident: 10.1016/j.nicl.2014.11.017_bb009
  article-title: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2010.05.017
– volume: 132
  start-page: 1210
  issue: 5
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb003
  article-title: In vivo measurement of axon diameter distribution in the corpus callosum of rat brain
  publication-title: Brain
  doi: 10.1093/brain/awp042
– volume: 44
  start-page: 852
  issue: 6
  year: 2000
  ident: 10.1016/j.nicl.2014.11.017_bb006
  article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
– volume: 27
  start-page: 1755
  issue: 8
  year: 2006
  ident: 10.1016/j.nicl.2014.11.017_bb0026
  article-title: Creutzfeldt–Jakob disease involvement of rolandic cortex: a quantitative apparent diffusion coefficient evaluation
  publication-title: A.J.N.R. Am. J. Neuroradiol.
– volume: 48
  start-page: 4938
  issue: 11
  year: 1968
  ident: 10.1016/j.nicl.2014.11.017_bb0032
  article-title: Self-diffusion coefficient of liquid lithium
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1668160
– volume: 172
  start-page: 555
  issue: 3
  year: 2008
  ident: 10.1016/j.nicl.2014.11.017_bb0023
  article-title: Prion diseases: from protein to cell pathology
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2008.070442
– volume: 35
  start-page: 272
  issue: 3
  year: 2009
  ident: 10.1016/j.nicl.2014.11.017_bb0019
  article-title: Panencephalopathic Creutzfeldt–Jakob disease in the Netherlands and the UK: clinical and pathological characteristics of nine patients
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.2008.01004a.x
– reference: 8946350 - Magn Reson Med. 1996 Dec;36(6):847-57
– reference: 16908558 - AJNR Am J Neuroradiol. 2006 Aug;27(7):1459-62
– reference: 18245809 - Am J Pathol. 2008 Mar;172(3):555-65
– reference: 22710755 - Lancet Neurol. 2012 Jul;11(7):618-28
– reference: 19473294 - Neuropathol Appl Neurobiol. 2009 Jun;35(3):272-82
– reference: 16769870 - Arch Neurol. 2006 Jun;63(6):876-80
– reference: 10371520 - Neurology. 1999 Jun 10;52(9):1757-63
– reference: 20580294 - J Magn Reson. 2010 Sep;206(1):41-51
– reference: 10397783 - Anat Rec. 1999 Jun 15;257(3):102-9
– reference: 14522861 - Br Med Bull. 2003;66:213-39
– reference: 19380702 - Neurology. 2009 Apr 21;72(16):1425-31
– reference: 21058033 - Acta Neuropathol. 2011 Jan;121(1):79-90
– reference: 9674819 - Neurology. 1998 Jul;51(1):271-4
– reference: 23023798 - Magn Reson Med. 2013 Sep;70(3):711-21
– reference: 19755520 - Brain. 2009 Oct;132(Pt 10):2669-79
– reference: 15739045 - J Neurol. 2005 Mar;252(3):338-42
– reference: 22001791 - Neuroimage. 2012 Feb 1;59(3):2241-54
– reference: 20177119 - Neurology. 2010 Feb 23;74(8):658-65
– reference: 11108621 - Magn Reson Med. 2000 Dec;44(6):852-9
– reference: 18372408 - AJNR Am J Neuroradiol. 2008 Aug;29(7):E57; author reply E58
– reference: 24624328 - Neuroimage Clin. 2014;4:426-35
– reference: 12574955 - J Neurol. 2003 Feb;250(2):222-5
– reference: 18666109 - Magn Reson Med. 2008 Aug;60(2):439-48
– reference: 21446037 - Magn Reson Med. 2011 Aug;66(2):356-65
– reference: 12509835 - Magn Reson Med. 2003 Jan;49(1):177-82
– reference: 15956529 - AJNR Am J Neuroradiol. 2005 Jun-Jul;26(6):1551-62
– reference: 19694269 - Inf Process Med Imaging. 2009;21:264-75
– reference: 12377157 - Neuroimage. 2002 Oct;17(2):825-41
– reference: 11672624 - Magn Reson Imaging. 2001 Jun;19(5):659-68
– reference: 15304574 - Neurology. 2004 Aug 10;63(3):443-9
– reference: 16971630 - AJNR Am J Neuroradiol. 2006 Sep;27(8):1755-9
– reference: 22744790 - Acta Neuropathol. 2012 Oct;124(4):517-29
– reference: 20007724 - AJNR Am J Neuroradiol. 2010 Mar;31(3):521-6
– reference: 19403788 - Brain. 2009 May;132(Pt 5):1210-20
– reference: 19266702 - Alzheimer Dis Assoc Disord. 2009 Jan-Mar;23(1):82-87
– reference: 21471469 - Neurology. 2011 May 17;76(20):1711-9
– reference: 20430851 - AJNR Am J Neuroradiol. 2010 Aug;31(7):1311-8
– reference: 22484410 - Neuroimage. 2012 Jul 16;61(4):1000-16
– reference: 21345540 - Neurologia. 2011 Jul-Aug;26(6):331-6
– reference: 17326171 - Magn Reson Med. 2007 Mar;57(3):464-9
– reference: 19773352 - Brain. 2009 Oct;132(Pt 10):2659-68
– reference: 15508168 - Magn Reson Med. 2004 Nov;52(5):965-78
– reference: 12748093 - AJNR Am J Neuroradiol. 2003 May;24(5):908-15
– reference: 17690553 - Dement Geriatr Cogn Disord. 2007;24(3):207-12
SSID ssj0000800766
Score 2.077176
Snippet In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of...
AbstractIn clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Adult
Aged
Aged, 80 and over
Biophysical models
Brain - pathology
Brain Mapping - methods
Creutzfeldt–Jakob disease
Diffusion Magnetic Resonance Imaging
Diffusion MRI
Female
Humans
Image Interpretation, Computer-Assisted - methods
Male
Middle Aged
Models, Theoretical
Prion disease
Prion Diseases - pathology
Radiology
Regular
Spongiform degeneration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXxJvwqIzEDQXit3OEqlWFtFygUm-W7TiwBbJVs_v_mXGcZRdQuXBNPEk8M858tsffEPIqJglBrg21ssHWMkpfByH6OhOxQLjWXaZdXHzUZ-fyw4W62Cn1hTlhEz3wpLi33reStTFZ0wWZorW9DoZFHq1nSadMtg0xb2cydVlwkMkblZwzUTNleTkxMyV3Iess5nXJN0jhmauV_YpKmbx_Lzj9CT5_z6HcCUqnd8mdgibpu6kX98itNNwnh4uyX_6AfFtsWVmhWa56M1KAqRSuUqyNssHFMvrDfxnwMCOFufcKGTgSxbwOEPFhQFCLWJ0uB1pYWEeKy7f06hqFyxbP-JCcn558Pj6rS3mFOioj17UVHvngGBM-RsOk6a3qW94E6bugE2JDDXDKe2OjYr5JvO063qje9gIinxaPyMGwGtITQhvZBRt5im3rZc_bwG1krFdN7Lpggq4Im9XrYuEexxIY392cZHbp0CQOTQKTEgcmqcjrrczVxLxxY-v3aLVtS2TNzhfAl1zxJfcvX6qImG3u5oOp8CuFBy1vfLX5m1Qay99gdMyN3DXuE_oiuiJMapEnzVbk5exYDkY1btX4Ia02IKEVB_UD_K7I48nRtl3jCHmNga81ey641_f9O8Pya2YOlwLHhnr6P5T1jNwGJahpOeo5OVhfb9ILAGjrcJTH4k87djmj
  priority: 102
  providerName: Directory of Open Access Journals
Title Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158214001818
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158214001818
https://www.ncbi.nlm.nih.gov/pubmed/25610776
https://www.proquest.com/docview/1652396192
https://pubmed.ncbi.nlm.nih.gov/PMC4300005
https://doaj.org/article/aa9419ce87db4ec88f6b71c2c8a1e6e6
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkRAXxJvlURmJG0oVv50DQoCoKqTlAiv1ZtmOU7aUbNnsSu2_ZybrLARWPXFNPNlkHjuf7fE3hLyKSUKSq0KhbLCFjNIXQYim6IlYIF3ruqddnH7WxzP56USd7JGh3VFWYLdzaof9pGbL88PLn1dvIeDf_K7VQhJZLNOSh8jIycwNchMyk0Yvn2a4f5bRkem3LzlnomDK8nyOZvdjRrmqp_Qfpax_IenflZV_pKqju-ROxpj03cYp7pG91N4nt6Z5F_0B-T7dcrXCsL4XTkcBvFK4SrFjyhqX0OgPf9riEUcKM_IF8nIkitUeIOJDi1AXETydtzRzs3YUF3XpxRKF88ZP95DMjj5-_XBc5KYLRVRGrgorPLLEMSZ8jIZJ01jVVLwM0tdBJ0SMGkCW98ZGxXyZeFXXvFSNbQTkQy0ekf120aYnhJayDjbyFKvKy4ZXgdvIWKPKWNfBBD0hbFCvi5mRHBtjnLuh9OzMoUkcmgSmKg5MMiGvtzIXGz6Oa0e_R6ttRyKXdn9hsTx1OTSd95VkVUzW1EGmaG2jg2GRR-tZ0gleUww2d8NxVfiDhQfNr_1ps0sqdYOLO-Y67kr3BX0RXRGmusieZifk5eBYDmIdN3B8mxZrkNCKg_oBlE_I442jbT-NIxA2Bt7WjFxw9O3jO-38W88nLgXGhnr6P5T1jNwGJajNItVzsr9artMLgG2rcNAvdxz0EfkLgjNCWw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+models+for+the+diffusion+magnetic+resonance+signal+abnormality+in+patients+with+prion+diseases&rft.jtitle=NeuroImage+clinical&rft.au=Matteo+Figini&rft.au=Daniel+C.+Alexander&rft.au=Veronica+Redaelli&rft.au=Fabrizio+Fasano&rft.date=2015-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=7&rft.issue=C&rft.spage=142&rft.epage=154&rft_id=info:doi/10.1016%2Fj.nicl.2014.11.017&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aa9419ce87db4ec88f6b71c2c8a1e6e6
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158214X00045%2Fcov150h.gif