Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign
pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (Cal...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 17; no. 9; pp. 5703 - 5719 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
08.05.2017
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1680-7324 1680-7316 1680-7324 |
DOI | 10.5194/acp-17-5703-2017 |
Cover
Loading…
Abstract | pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas–particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42−–NO3−–NH4+–HNO3–NH3 system. For PM2. 5, internal mixing of sea salt components (SO42−–NO3−–NH4+–Na+–Cl−–K+–HNO3–NH3–HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3. |
---|---|
AbstractList | pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas–particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42−–NO3−–NH4+–HNO3–NH3 system. For PM2. 5, internal mixing of sea salt components (SO42−–NO3−–NH4+–Na+–Cl−–K+–HNO3–NH3–HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3. pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM.sub.1 and PM.sub.2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM.sub.1 pH was 1.9 ± 0.5 for the SO.sub.4 .sup.2- -NO.sub.3 .sup.- -NH.sub.4 .sup.+ -HNO.sub.3 -NH.sub.3 system. For PM.sub.2. 5, internal mixing of sea salt components (SO.sub.4 .sup.2- -NO.sub.3 .sup.- -NH.sub.4 .sup.+ -Na.sup.+ -Cl.sup.- -K.sup.+ -HNO.sub.3 -NH.sub.3 -HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM.sub.2. 5 components. The results show little effect of sea salt on PM.sub.1 pH, but significant effects on PM.sub.2. 5 pH. A mean PM.sub.1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM.sub.1 with pH generally below 3. pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2.5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas–particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42-–NO3-–NH4+–HNO3–NH3 system. For PM2.5, internal mixing of sea salt components (SO42-–NO3-–NH4+–Na+–Cl-–K+–HNO3–NH3–HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2.5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2.5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3. pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas–particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42−–NO3−–NH4+–HNO3–NH3 system. For PM2. 5, internal mixing of sea salt components (SO42−–NO3−–NH4+–Na+–Cl−–K+–HNO3–NH3–HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3. |
Audience | Academic |
Author | Jimenez, Jose L. Veres, Patrick R. Roberts, James M. Guo, Hongyu Nenes, Athanasios Weber, Rodney J. Liu, Jiumeng Froyd, Karl D. Hayes, Patrick L. |
Author_xml | – sequence: 1 givenname: Hongyu orcidid: 0000-0003-0487-3610 surname: Guo fullname: Guo, Hongyu – sequence: 2 givenname: Jiumeng orcidid: 0000-0001-7238-593X surname: Liu fullname: Liu, Jiumeng – sequence: 3 givenname: Karl D. orcidid: 0000-0002-0797-6028 surname: Froyd fullname: Froyd, Karl D. – sequence: 4 givenname: James M. orcidid: 0000-0002-8485-8172 surname: Roberts fullname: Roberts, James M. – sequence: 5 givenname: Patrick R. orcidid: 0000-0001-7539-353X surname: Veres fullname: Veres, Patrick R. – sequence: 6 givenname: Patrick L. orcidid: 0000-0002-6985-9601 surname: Hayes fullname: Hayes, Patrick L. – sequence: 7 givenname: Jose L. orcidid: 0000-0001-6203-1847 surname: Jimenez fullname: Jimenez, Jose L. – sequence: 8 givenname: Athanasios orcidid: 0000-0003-3873-9970 surname: Nenes fullname: Nenes, Athanasios – sequence: 9 givenname: Rodney J. orcidid: 0000-0003-0765-8035 surname: Weber fullname: Weber, Rodney J. |
BookMark | eNp9Ustu1DAUjVCRaAt7lpFYIZHiaztxsqxGlI5UAeKxtm78SD2asYOdkdodC_6AP-yX1GEGlUGAvPDV8Tn35XNSHPngTVE8B3JWQ8dfoxorEFUtCKsoAfGoOIamJZVglB_9Fj8pTlJaEUJrAvy4-H7hvClHjJNT6xxcluh1OWC6-_bjAb3GtCdNLnjnhzLY0vkQB_ROlWk0ypmUkfIDJtTG46tygWtnQ_Qux3obZ9F0bcrcG5nf3pmbUuFmRDf4p8Vji-tknu3v0-LLxZvPi8vq6v3b5eL8qlK14FMl2l63ptFobW8ZCp0HZ41tbNf3rAXV257UmlhNtTA9tbyhhDEQvCUaGlKz02K5y6sDruQY3QbjrQzo5E8gjyP3I0vD0AiFwDvFeV5WB6A6Ci3TrWqQ9DnXi12uMYavW5MmuQrb6HP7knLgUNcNof9jQUe4qFsg7QNrwFzaeRumiGrjkpLnvAPaMQo8s87-wspHm41T2Q3WZfxA8PJAkDmTuZkG3KYkl58-HnKbHVfFkFI0Vio34fzbuYhbSyBytpnMNpMg5GwzOdssC8kfwl97_afkHnfC1NY |
CitedBy_id | crossref_primary_10_1021_acs_est_2c00410 crossref_primary_10_5194_acp_18_17307_2018 crossref_primary_10_5194_acp_21_8341_2021 crossref_primary_10_1017_S0016756819001080 crossref_primary_10_1175_JAS_D_18_0157_1 crossref_primary_10_1016_j_scitotenv_2019_05_137 crossref_primary_10_1029_2018JD028786 crossref_primary_10_3390_atmos14020259 crossref_primary_10_5194_acp_22_12675_2022 crossref_primary_10_1016_j_envpol_2018_09_069 crossref_primary_10_1080_02786826_2018_1511046 crossref_primary_10_1016_j_envpol_2023_122079 crossref_primary_10_1016_j_envpol_2025_125740 crossref_primary_10_1029_2018JD030183 crossref_primary_10_3390_atmos12121681 crossref_primary_10_5194_acp_21_18271_2021 crossref_primary_10_1016_j_atmosenv_2022_119321 crossref_primary_10_1016_j_scitotenv_2020_138228 crossref_primary_10_5194_acp_18_10123_2018 crossref_primary_10_5194_acp_20_7259_2020 crossref_primary_10_5194_acp_23_6431_2023 crossref_primary_10_1016_j_atmosenv_2023_119725 crossref_primary_10_5194_acp_18_17769_2018 crossref_primary_10_1029_2019EA000799 crossref_primary_10_1016_j_atmosres_2022_106075 crossref_primary_10_1016_j_envpol_2024_125596 crossref_primary_10_1029_2021JD034689 crossref_primary_10_5194_gmd_15_6143_2022 crossref_primary_10_1016_j_ese_2023_100333 crossref_primary_10_5194_acp_20_7575_2020 crossref_primary_10_5194_acp_22_15603_2022 crossref_primary_10_5194_acp_21_15199_2021 crossref_primary_10_1016_j_aeaoa_2020_100062 crossref_primary_10_1021_acs_est_9b02005 crossref_primary_10_3390_atmos13020218 crossref_primary_10_5194_acp_20_4809_2020 crossref_primary_10_1029_2021JD036255 crossref_primary_10_1016_j_scitotenv_2024_170512 crossref_primary_10_1021_acsenvironau_2c00018 crossref_primary_10_3390_ijerph16132352 crossref_primary_10_1016_j_chemosphere_2024_142497 crossref_primary_10_1016_j_scitotenv_2023_166192 crossref_primary_10_1080_02786826_2023_2294944 crossref_primary_10_5194_acp_19_9309_2019 crossref_primary_10_5194_acp_18_12241_2018 crossref_primary_10_3390_atmos12081040 crossref_primary_10_5194_acp_21_14983_2021 crossref_primary_10_5194_acp_23_5119_2023 crossref_primary_10_1029_2023JD038565 crossref_primary_10_5194_gmd_11_3369_2018 crossref_primary_10_1021_acs_est_8b06524 crossref_primary_10_1029_2021JD036062 crossref_primary_10_5194_acp_23_2365_2023 crossref_primary_10_5194_acp_24_14177_2024 crossref_primary_10_5194_acp_25_1569_2025 crossref_primary_10_1021_acs_jpca_9b05434 crossref_primary_10_3390_atmos15081004 crossref_primary_10_1016_j_scitotenv_2022_153708 crossref_primary_10_1016_j_jhazmat_2023_131655 crossref_primary_10_1016_j_atmosenv_2020_118138 crossref_primary_10_1021_acs_est_9b07302 crossref_primary_10_5194_acp_23_13555_2023 crossref_primary_10_1073_pnas_2017442117 crossref_primary_10_1021_acs_est_1c03103 crossref_primary_10_1016_j_atmosenv_2021_118607 crossref_primary_10_1021_acs_jpca_7b09427 crossref_primary_10_1039_D2EA00156J crossref_primary_10_1016_j_jclepro_2024_143401 crossref_primary_10_1016_j_jes_2023_07_001 crossref_primary_10_1016_j_jes_2024_03_044 crossref_primary_10_5194_acp_24_7815_2024 crossref_primary_10_5194_acp_22_1251_2022 crossref_primary_10_1021_acs_jpclett_7b01665 crossref_primary_10_1021_acs_est_9b00884 crossref_primary_10_1088_1748_9326_ab83aa crossref_primary_10_1021_acs_jpca_7b10411 crossref_primary_10_5194_acp_19_1357_2019 crossref_primary_10_1016_j_jes_2021_02_022 crossref_primary_10_5194_acp_18_5293_2018 crossref_primary_10_5194_acp_18_7423_2018 crossref_primary_10_1016_j_scitotenv_2024_176839 crossref_primary_10_1016_j_atmosenv_2021_118605 crossref_primary_10_5194_acp_23_10255_2023 crossref_primary_10_1038_s43247_021_00164_0 crossref_primary_10_1016_j_atmosenv_2025_121056 crossref_primary_10_1016_j_apr_2024_102304 crossref_primary_10_1021_acs_jpca_8b00399 crossref_primary_10_1111_ina_12549 crossref_primary_10_5194_acp_19_14607_2019 crossref_primary_10_1088_1748_9326_abd973 crossref_primary_10_5194_acp_22_13833_2022 crossref_primary_10_1021_acs_estlett_2c00527 crossref_primary_10_1016_j_envpol_2019_113428 crossref_primary_10_5194_acp_22_7933_2022 crossref_primary_10_1039_D3EA00070B crossref_primary_10_1021_acs_est_4c05816 crossref_primary_10_5194_acp_21_5101_2021 crossref_primary_10_1073_pnas_1803295115 crossref_primary_10_1016_j_atmosenv_2019_116918 crossref_primary_10_1016_j_atmosenv_2022_118959 crossref_primary_10_5572_KOSAE_2022_38_3_323 crossref_primary_10_1088_1748_9326_adb9fd crossref_primary_10_1016_j_jes_2021_03_004 crossref_primary_10_1007_s11356_020_09810_0 crossref_primary_10_1021_acs_est_1c00651 crossref_primary_10_3390_atmos10090505 crossref_primary_10_5194_acp_20_11181_2020 crossref_primary_10_5194_amt_14_2237_2021 crossref_primary_10_1525_elementa_424 crossref_primary_10_1021_acs_estlett_2c00894 crossref_primary_10_1021_acs_est_4c00220 crossref_primary_10_1038_s41561_024_01455_9 crossref_primary_10_5194_acp_18_11471_2018 crossref_primary_10_5194_acp_18_357_2018 crossref_primary_10_1016_j_atmosenv_2021_118387 crossref_primary_10_1126_science_aba3719 crossref_primary_10_1126_sciadv_ado4373 crossref_primary_10_1016_j_jclepro_2022_133272 crossref_primary_10_1016_j_atmosenv_2023_119879 crossref_primary_10_1016_j_scitotenv_2025_178979 crossref_primary_10_1021_acs_est_8b00711 crossref_primary_10_1029_2019GL084351 crossref_primary_10_1016_j_envpol_2022_119951 crossref_primary_10_1029_2019JD030627 crossref_primary_10_3390_atmos11080820 crossref_primary_10_1016_j_atmosres_2024_107579 crossref_primary_10_5194_acp_19_11485_2019 crossref_primary_10_1016_j_chemosphere_2019_124960 crossref_primary_10_1016_j_scitotenv_2022_160768 crossref_primary_10_1088_2515_7620_ac0e0b crossref_primary_10_5194_acp_21_6023_2021 crossref_primary_10_1021_acs_est_3c10851 crossref_primary_10_5194_acp_20_3249_2020 crossref_primary_10_1016_j_scitotenv_2020_141210 crossref_primary_10_1016_j_apr_2021_101141 crossref_primary_10_1016_j_envpol_2021_117625 crossref_primary_10_1038_s41598_017_11704_0 crossref_primary_10_1021_acsearthspacechem_4c00215 crossref_primary_10_1029_2023GH000789 crossref_primary_10_1021_acs_jpca_7b05261 crossref_primary_10_1016_j_chemosphere_2018_03_127 crossref_primary_10_5194_acp_21_799_2021 crossref_primary_10_1016_j_scitotenv_2024_176002 crossref_primary_10_1016_j_atmosres_2024_107868 crossref_primary_10_1016_j_scitotenv_2019_135362 crossref_primary_10_1021_acs_est_4c06850 crossref_primary_10_16993_tellusb_33 crossref_primary_10_1021_acs_est_8b01780 crossref_primary_10_1021_acs_est_0c03438 crossref_primary_10_5194_acp_18_12765_2018 crossref_primary_10_5194_gmd_17_5009_2024 crossref_primary_10_1016_j_atmosenv_2020_117650 crossref_primary_10_1021_acs_est_1c04635 |
Cites_doi | 10.1029/2011GL048420 10.5194/acp-16-4579-2016 10.1002/jgrd.50285 10.1073/pnas.1604536113 10.1289/ehp.96104500 10.1175/1520-0469(1959)016<0053:TCOSCT>2.0.CO;2 10.1016/S1352-2310(99)00242-3 10.1023/A:1009604003981 10.5194/acp-13-4681-2013 10.5194/acp-16-13929-2016 10.1002/jgrd.50331 10.1016/S1352-2310(02)01015-4 10.1016/S1352-2310(99)00079-5 10.1080/02786826.2011.620041 10.1038/nature15371 10.1029/2011JD017122 10.5194/acp-15-11667-2015 10.1029/2003GL018035 10.1029/94JD01210 10.1029/2004JD004627 10.1029/2012JD017912 10.5194/acp-14-12915-2014 10.5194/acp-11-10995-2011 10.1002/2016JD025311 10.1073/pnas.0710791105 10.1021/jp047466e 10.1029/2011JD016314 10.5194/acp-15-5773-2015 10.1038/ngeo2717 10.5194/acp-12-2691-2012 10.1029/2006JD007340 10.5194/acp-11-6265-2011 10.1002/jgrd.50530 10.5194/acp-14-3441-2014 10.1016/j.ijms.2008.04.032 10.1029/2007GL029979 10.1016/j.atmosenv.2005.05.031 10.5194/acp-10-209-2010 10.1016/S0140-6736(12)61766-8 10.5194/acp-7-3231-2007 10.4319/lo.1991.36.8.1715 10.1021/es0704176 10.1002/2016JD025156 10.1016/0004-6981(88)90308-3 10.1080/10937404.2012.632359 10.1029/2001JD000451 10.5194/acp-15-5211-2015 10.5194/acp-9-2141-2009 10.1029/JD090iD01p02085 10.1021/acs.est.6b06151 10.1126/science.1075798 10.1021/jp973042r 10.1073/pnas.0911114107 10.1021/es300701c 10.1080/0144235X.2014.890786 10.5194/acp-13-11723-2013 10.1126/sciadv.1601749 10.5194/bg-12-3973-2015 10.1006/enrs.1994.1037 10.1021/jp103907c 10.1007/s11270-014-2114-7 10.5194/acp-15-1351-2015 10.1021/acs.est.6b02605 10.5194/amt-3-397-2010 10.1038/ngeo2665 10.1289/ehp.9196151 10.1289/ehp.96104506 10.1016/j.atmosenv.2009.11.022 10.1289/ehp.00108125 10.1021/ac061249n 10.5194/acp-9-7161-2009 10.1016/S1352-2310(01)00077-2 10.1029/2006JD007072 10.1016/S0021-8502(03)00019-3 10.5194/acp-7-4639-2007 10.5194/acp-8-3761-2008 10.1029/2006JD007282 10.5194/acp-15-2775-2015 10.1021/jp962122c |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Copernicus GmbH Copyright Copernicus GmbH 2017 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2017 Copernicus GmbH – notice: Copyright Copernicus GmbH 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY PRINS DOA |
DOI | 10.5194/acp-17-5703-2017 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 5719 |
ExternalDocumentID | oai_doaj_org_article_e3ae7ca149c44025911c92183d8c6a0b A491293214 10_5194_acp_17_5703_2017 |
GeographicLocations | United States United States--US California |
GeographicLocations_xml | – name: United States – name: United States--US – name: California |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c574t-78bd8e6daffbf3a7d51936f6f9bb381cbfb05d0fd2d7eb2f46203317480d16053 |
IEDL.DBID | BENPR |
ISSN | 1680-7324 1680-7316 |
IngestDate | Wed Aug 27 01:29:14 EDT 2025 Mon Jul 14 08:24:54 EDT 2025 Sat Jul 26 00:19:49 EDT 2025 Tue Jun 17 21:05:50 EDT 2025 Tue Jun 10 20:41:49 EDT 2025 Fri Jun 27 05:04:23 EDT 2025 Tue Jul 01 02:28:25 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-78bd8e6daffbf3a7d51936f6f9bb381cbfb05d0fd2d7eb2f46203317480d16053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0765-8035 0000-0003-0487-3610 0000-0002-0797-6028 0000-0002-8485-8172 0000-0003-3873-9970 0000-0001-6203-1847 0000-0001-7238-593X 0000-0001-7539-353X 0000-0002-6985-9601 |
OpenAccessLink | https://www.proquest.com/docview/1904758108?pq-origsite=%requestingapplication% |
PQID | 1904758108 |
PQPubID | 105744 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e3ae7ca149c44025911c92183d8c6a0b proquest_journals_2414155602 proquest_journals_1904758108 gale_infotracmisc_A491293214 gale_infotracacademiconefile_A491293214 gale_incontextgauss_ISR_A491293214 crossref_citationtrail_10_5194_acp_17_5703_2017 crossref_primary_10_5194_acp_17_5703_2017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-08 |
PublicationDateYYYYMMDD | 2017-05-08 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2017 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref81 ref40 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref71 doi: 10.1029/2011GL048420 – ident: ref3 doi: 10.5194/acp-16-4579-2016 – ident: ref47 doi: 10.1002/jgrd.50285 – ident: ref77 doi: 10.1073/pnas.1604536113 – ident: ref8 doi: 10.1289/ehp.96104500 – ident: ref60 doi: 10.1175/1520-0469(1959)016<0053:TCOSCT>2.0.CO;2 – ident: ref1 doi: 10.1016/S1352-2310(99)00242-3 – ident: ref52 doi: 10.1023/A:1009604003981 – ident: ref63 doi: 10.5194/acp-13-4681-2013 – ident: ref25 doi: 10.5194/acp-16-13929-2016 – ident: ref61 doi: 10.1002/jgrd.50331 – ident: ref56 doi: 10.1016/S1352-2310(02)01015-4 – ident: ref34 – ident: ref6 doi: 10.1016/S1352-2310(99)00079-5 – ident: ref49 doi: 10.1080/02786826.2011.620041 – ident: ref41 doi: 10.1038/nature15371 – ident: ref26 doi: 10.1029/2011JD017122 – ident: ref15 doi: 10.5194/acp-15-11667-2015 – ident: ref48 doi: 10.1029/2003GL018035 – ident: ref10 doi: 10.1029/94JD01210 – ident: ref62 doi: 10.1029/2004JD004627 – ident: ref44 doi: 10.1029/2012JD017912 – ident: ref72 doi: 10.5194/acp-14-12915-2014 – ident: ref2 doi: 10.5194/acp-11-10995-2011 – ident: ref23 doi: 10.1002/2016JD025311 – ident: ref14 doi: 10.1073/pnas.0710791105 – ident: ref20 doi: 10.1021/jp047466e – ident: ref73 doi: 10.1029/2011JD016314 – ident: ref28 doi: 10.5194/acp-15-5773-2015 – ident: ref54 – ident: ref36 doi: 10.1038/ngeo2717 – ident: ref65 doi: 10.5194/acp-12-2691-2012 – ident: ref50 doi: 10.1029/2006JD007340 – ident: ref53 doi: 10.5194/acp-11-6265-2011 – ident: ref27 doi: 10.1002/jgrd.50530 – ident: ref35 doi: 10.5194/acp-14-3441-2014 – ident: ref70 doi: 10.1016/j.ijms.2008.04.032 – ident: ref81 doi: 10.1029/2007GL029979 – ident: ref12 doi: 10.1016/j.atmosenv.2005.05.031 – ident: ref19 doi: 10.5194/acp-10-209-2010 – ident: ref43 doi: 10.1016/S0140-6736(12)61766-8 – ident: ref57 doi: 10.5194/acp-7-3231-2007 – ident: ref9 doi: 10.4319/lo.1991.36.8.1715 – ident: ref67 doi: 10.1021/es0704176 – ident: ref76 doi: 10.1002/2016JD025156 – ident: ref38 doi: 10.1016/0004-6981(88)90308-3 – ident: ref21 doi: 10.1080/10937404.2012.632359 – ident: ref75 doi: 10.1029/2001JD000451 – ident: ref22 doi: 10.5194/acp-15-5211-2015 – ident: ref18 doi: 10.5194/acp-9-2141-2009 – ident: ref32 doi: 10.1029/JD090iD01p02085 – ident: ref16 doi: 10.1021/acs.est.6b06151 – ident: ref37 doi: 10.1126/science.1075798 – ident: ref4 doi: 10.1021/jp973042r – ident: ref68 doi: 10.1073/pnas.0911114107 – ident: ref55 doi: 10.1021/es300701c – ident: ref79 doi: 10.1080/0144235X.2014.890786 – ident: ref78 doi: 10.5194/acp-13-11723-2013 – ident: ref42 doi: 10.1126/sciadv.1601749 – ident: ref51 doi: 10.5194/bg-12-3973-2015 – ident: ref69 doi: 10.1006/enrs.1994.1037 – ident: ref11 doi: 10.1021/jp103907c – ident: ref64 doi: 10.1007/s11270-014-2114-7 – ident: ref80 doi: 10.5194/acp-15-1351-2015 – ident: ref45 doi: 10.1021/acs.est.6b02605 – ident: ref13 doi: 10.5194/amt-3-397-2010 – ident: ref74 doi: 10.1038/ngeo2665 – ident: ref40 doi: 10.1289/ehp.9196151 – ident: ref58 doi: 10.1289/ehp.96104506 – ident: ref59 doi: 10.1016/j.atmosenv.2009.11.022 – ident: ref24 doi: 10.1289/ehp.00108125 – ident: ref7 doi: 10.1021/ac061249n – ident: ref33 doi: 10.5194/acp-9-7161-2009 – ident: ref46 doi: 10.1016/S1352-2310(01)00077-2 – ident: ref66 doi: 10.1029/2006JD007072 – ident: ref5 doi: 10.1016/S0021-8502(03)00019-3 – ident: ref17 doi: 10.5194/acp-7-4639-2007 – ident: ref30 doi: 10.5194/acp-8-3761-2008 – ident: ref29 doi: 10.1029/2006JD007282 – ident: ref31 doi: 10.5194/acp-15-2775-2015 – ident: ref39 doi: 10.1021/jp962122c |
SSID | ssj0025014 |
Score | 2.5846312 |
Snippet | pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1... pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5703 |
SubjectTerms | Aerosol effects Aerosols Air quality Ammonium Ammonium compounds Chemical partition Chemical properties Chlorides Climate Climate change Coastal environments Coastal zone Coastal zones Components Concentration (composition) Dilution Environmental aspects Environmental impact Gases Humidity Interactions Lasers Mathematical models Measurement Measurement techniques Mercury cadmium telluride Nitrates Nitric acid Nitric acids Particle concentration Particulate matter Partitioning pH effects Relative humidity Standard deviation Sulfates Summer Temperature effects Thermodynamic models Winter |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlp1xKf6nbJIhSWgoRK9uyrD2mIcu20FDaBnITI8naLgTvEm-gxxzyBnnDPklnbG22C_259LjSLNgzo5nvs6QZxl6RT_hxBKG8kkKVoRIGilKEEOo6AnoE9KctTvX0TH04r85_afVFZ8KG8sCD4kZNCU3tAYG8V8h1Klycfkx5PRivQTqKvpjz1mQqUS3aLSOqpY0U1Jtp2KBEtKJG4JcCIzNVnkIX6RuVbRJSX7f_T9G5TzmTB-x-wor8aHjGh-xe0z5i2UeEuYvL_ms4f82PL-aIOftfj9nNBDEjX6aX4ssphzbwGXQ_rm83o98wcQ1C6WMsX0Q-b4f-Tp7T3UukzzjCP0EHGJfgkG-ucB3y4WYjR-TIaZOb5k6b79xT6cb5rH3CziYnX4-nIrVZEL6q1UrUxgXT6AAxulhCHQjU6ajj2DnM595FJ6sgYyhCjTw8Kl3IEmGHMjLkyIbKp2ynXbTNM8ZNkMEjYURMkKvcaYhIdj00eVAaoXyVsdFa19anGuTUCuPCIhch61i0js1rS9axZJ2Mvb37x3Kov_EX2Xdkvjs5qpzdD6ACbVKy_Zc_ZewlGd9SbYyWDt_M4Krr7Psvn-2RGhM6KnKVsTdJKC7w-T2kuwyoBSqntSW5tyWJi9dvT699zKbg0VnEaAppXC7Nb6cRcxEK1LJ4_j9e-AXbJeX1hzjNHttZXV41-wi0Vu6gX1M_AXViIjo priority: 102 providerName: Directory of Open Access Journals |
Title | Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign |
URI | https://www.proquest.com/docview/1904758108 https://www.proquest.com/docview/2414155602 https://doaj.org/article/e3ae7ca149c44025911c92183d8c6a0b |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1faxQxEA-2ffFF_Iur9QgiitBw-yebzT1JW7qeQo9aLfYtZJPNeVB21-4VfPTBb-A39JM4k83dcaB9OjaZhWNmdvL7TZIZQl6hT5iJ04wbHjOe2ZxJnWbMWlsUToNHaH_aYiamF_zjZX4ZEm59OFa5iok-UNvWYI58DAsXB2ybxPJd951h1yjcXQ0tNHbIHoRgCR6-d3QyOztfUy7cNUPKJWTMsEfTsFEJqIWPtekYRGisQAWu4huWbRYmX7__f1HaLz3lfXIvYEZ6OBj5AblTNw9JdApwt732WXH6mh5fLQB7-qdH5FcJ2JF2wStoN6W6sXSu-z8_f29Gv8ECNgiFpCxtHV00Q58nQ_EOJtBoGKFnutcQn_QB3VzlOqDDDUcKCJLiZjfOzeof1GAJx8W8eUwuypMvx1MW2i0wkxd8yQpZWVkLq52rXKYLi-BOOOEmVQXruqlcFec2dja1BfBxx0UaZwA_uIxtAqwoe0J2m7apnxIqbWwNEEfABglPKqEdkF6j68RyAZA-j8h4pWtlQi1ybIlxpYCToHUUWEclhULrKLRORN6u3-iGOhy3yB6h-dZyWEHbD4ACVVCyqjNdF0YDQTQcOHQOQd9MEC9aaYSOq4i8ROMrrJHR4CGcub7pe_Xh87k65BNESWnCI_ImCLkW_r_R4U4DaAHLam1J7m9JwkdstqdXPqZCEOnVxuX_OQ3YC9GgiNNnt7_9nNxFtfhjmnKf7C6vb-oXAKWW1YjsyPL9KHw1-Fuefvo68omJv7aTHvs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6V9AAX3ghDgRXiIaS68WP9yIFDW4gS2kQ8WtHbst71hojKiepEPE4c-Acc-Sv8Gn4JM_Y6URD0VoljdseONf525hvv7AzAA8KE6hjpcsU9l4c6clMZhK7WOkmMRETIKttiGPcO-Yuj6GgNfjRnYSitsrGJlaHWE0XfyNvouDhyW99LbQblXv75I8Zn5dP-M3yZD4Og-_xgt-faFgKuihI-c5M002kea2lMZkKZaCIssYlNJ8vQV6nMZF6kPaMDnWCMaXgceCG6VJ562kemH-J9z8F6Sn64Bes73cGrt4t4jrbkKJ6LU8-lBlD1Lij-A29LNXXR_FN5K8Rh1Q1t6fWq5gD_cgGVX-tegp-NRup0lg9b81m2pb78USzyP1XZZbho-TTbrhfAFVjLi6vgDDAUmJxUOwbsEds9HiMvr35dg29d5NVsalcMm_aYLDQbyfLX1-_L0ffo3Gsh-8GaTQwbF3UPLMXofOo4L3GEvZSlRNstN9nymNsmq09_MmTXjBIBaG6Yf2KKyluOR8V1ODwTpdyAVjEp8pvAUu1phUE18iaf-1ksjR8GSua-5jGGO5ED7QYqQtk67dQu5FhgvEbgEggu4SeCwCUIXA48WVwxrWuUnCK7Q-hbyFF18WoAFSiskkUeyjxREoNnxTniHB2i6hCX1qmKpZc5cJ-wK6h-SEEJSiM5L0vRf_NabPMOMcjA5w48tkJmgs-vpD3vgVqgkmMrkhsrkmjg1Op0A29hDWwpltj-6zTyUmLKsRfcOv3qe3C-dzDYF_v94d5tuEAqqtJZ0w1ozU7m-R2knLPsrl36DN6d9dL5DX_vjbU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkRAXxK8IFLAQP0JqtE7iON4DQqUl7FJYVUCl3oxjx8tKVRKarYAbB96At-FxeBJmEu-uVoLeeow9iaKZsef7_DNDyCP0CTN0OuSGs5AnNg2ljpPQWptlToNH6O60xUSMDvmbo_Rog_xe3IXBY5WLObGbqG1tcI18AIGLA7bFqjXOH4s42MtfNF9CrCCFO62Lchq9i-yX378CfWufj_fA1o_jOH_1cXcU-goDoUkzPg8zWVhZCqudK1yiM4t4RjjhhkUBocwUrmCpZc7GNgMK6riIWQIRl0tmIyACCXz3ArmYJZJh9QSZv16SPdyvQ7InJAuxOlS_RQrf5wNtmhBiA-a-AiftSqWtQmJXOeB_8aELevlVcsWjVbrTu9c1slFW10nwDoB2fdKtx9MndPd4Bqi3e7pBfuaAWmnj_ZE2I6orS6e6_fPj16r1M4TOXsgvB9Pa0VnVV5gyFG9_AoGHFnqgWw0zo96mq0tk27S_W0kBu1LcZse-SfmNGkweOZtWN8nhuZjhFtms6qq8Tai0zBqgrIBKIh4VQjug20aXkeUCyEQakMFC18r4LOhYjONYARtC6yiwjooyhdZRaJ2APFu-0fQZQM6QfYnmW8ph7u6uARSovJJVmegyMxqoqeHA3lMIN2aISNVKIzQrAvIQja8wO0eFfj7Vp22rxh_eqx0-RHwWRzwgT72Qq-H_jfa3KUALmNBrTXJrTRKmD7PevfAx5aevVq0G2z-7AfUhDhUsvnP22w_IJRik6u14sn-XXEYNdWdF5RbZnJ-clvcAz82L-93AoeTTeY_Uv-byXBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+particle+pH+and+gas%E2%80%93particle+phase+partitioning+of+inorganic+species+in+Pasadena%2C+California%2C+during+the+2010+CalNex+campaign&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Guo%2C+Hongyu&rft.au=Liu%2C+Jiumeng&rft.au=Froyd%2C+Karl+D&rft.au=Roberts%2C+James+M&rft.date=2017-05-08&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=17&rft.issue=9&rft.spage=5703&rft_id=info:doi/10.5194%2Facp-17-5703-2017&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |