Predictive simulation of post-stroke gait with functional electrical stimulation

Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical stimulation (FES) improves drop foot gait although the mechanistic basis for this effect is not well understood. To answer this question, we evaluated the...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 21351 - 12
Main Authors Santos, Gilmar F., Jakubowitz, Eike, Pronost, Nicolas, Bonis, Thomas, Hurschler, Christof
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-00658-z

Cover

Loading…
Abstract Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical stimulation (FES) improves drop foot gait although the mechanistic basis for this effect is not well understood. To answer this question, we evaluated the gait of a post-stroke patient walking with and without FES by inverse dynamics analysis and compared the results to an optimal control framework. The effect of FES and cause-effect relationship of changes in knee and ankle muscle strength were investigated; personalized muscle–tendon parameters allowed the prediction of pathologic gait. We also predicted healthy gait patterns at different speeds to simulate the subject walking without impairment. The passive moment of the knee played an important role in the estimation of muscle force with knee hyperextension, which was decreased during FES and knee extensor strengthening. Weakening the knee extensors and strengthening the flexors improved SKG. During FES, weak ankle plantarflexors and strong ankle dorsiflexors resulted in increased ankle dorsiflexion, which reduced drop foot. FES also improved gait speed and reduced circumduction. These findings provide insight into compensatory strategies adopted by post-stroke patients that can guide the design of individualized rehabilitation and treatment programs.
AbstractList Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical stimulation (FES) improves drop foot gait although the mechanistic basis for this effect is not well understood. To answer this question, we evaluated the gait of a post-stroke patient walking with and without FES by inverse dynamics analysis and compared the results to an optimal control framework. The effect of FES and cause-effect relationship of changes in knee and ankle muscle strength were investigated; personalized muscle–tendon parameters allowed the prediction of pathologic gait. We also predicted healthy gait patterns at different speeds to simulate the subject walking without impairment. The passive moment of the knee played an important role in the estimation of muscle force with knee hyperextension, which was decreased during FES and knee extensor strengthening. Weakening the knee extensors and strengthening the flexors improved SKG. During FES, weak ankle plantarflexors and strong ankle dorsiflexors resulted in increased ankle dorsiflexion, which reduced drop foot. FES also improved gait speed and reduced circumduction. These findings provide insight into compensatory strategies adopted by post-stroke patients that can guide the design of individualized rehabilitation and treatment programs.
Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical stimulation (FES) improves drop foot gait although the mechanistic basis for this effect is not well understood. To answer this question, we evaluated the gait of a post-stroke patient walking with and without FES by inverse dynamics analysis and compared the results to an optimal control framework. The effect of FES and cause-effect relationship of changes in knee and ankle muscle strength were investigated; personalized muscle-tendon parameters allowed the prediction of pathologic gait. We also predicted healthy gait patterns at different speeds to simulate the subject walking without impairment. The passive moment of the knee played an important role in the estimation of muscle force with knee hyperextension, which was decreased during FES and knee extensor strengthening. Weakening the knee extensors and strengthening the flexors improved SKG. During FES, weak ankle plantarflexors and strong ankle dorsiflexors resulted in increased ankle dorsiflexion, which reduced drop foot. FES also improved gait speed and reduced circumduction. These findings provide insight into compensatory strategies adopted by post-stroke patients that can guide the design of individualized rehabilitation and treatment programs.Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical stimulation (FES) improves drop foot gait although the mechanistic basis for this effect is not well understood. To answer this question, we evaluated the gait of a post-stroke patient walking with and without FES by inverse dynamics analysis and compared the results to an optimal control framework. The effect of FES and cause-effect relationship of changes in knee and ankle muscle strength were investigated; personalized muscle-tendon parameters allowed the prediction of pathologic gait. We also predicted healthy gait patterns at different speeds to simulate the subject walking without impairment. The passive moment of the knee played an important role in the estimation of muscle force with knee hyperextension, which was decreased during FES and knee extensor strengthening. Weakening the knee extensors and strengthening the flexors improved SKG. During FES, weak ankle plantarflexors and strong ankle dorsiflexors resulted in increased ankle dorsiflexion, which reduced drop foot. FES also improved gait speed and reduced circumduction. These findings provide insight into compensatory strategies adopted by post-stroke patients that can guide the design of individualized rehabilitation and treatment programs.
Abstract Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical stimulation (FES) improves drop foot gait although the mechanistic basis for this effect is not well understood. To answer this question, we evaluated the gait of a post-stroke patient walking with and without FES by inverse dynamics analysis and compared the results to an optimal control framework. The effect of FES and cause-effect relationship of changes in knee and ankle muscle strength were investigated; personalized muscle–tendon parameters allowed the prediction of pathologic gait. We also predicted healthy gait patterns at different speeds to simulate the subject walking without impairment. The passive moment of the knee played an important role in the estimation of muscle force with knee hyperextension, which was decreased during FES and knee extensor strengthening. Weakening the knee extensors and strengthening the flexors improved SKG. During FES, weak ankle plantarflexors and strong ankle dorsiflexors resulted in increased ankle dorsiflexion, which reduced drop foot. FES also improved gait speed and reduced circumduction. These findings provide insight into compensatory strategies adopted by post-stroke patients that can guide the design of individualized rehabilitation and treatment programs.
ArticleNumber 21351
Author Hurschler, Christof
Pronost, Nicolas
Santos, Gilmar F.
Bonis, Thomas
Jakubowitz, Eike
Author_xml – sequence: 1
  givenname: Gilmar F.
  surname: Santos
  fullname: Santos, Gilmar F.
  email: FernandesdosSantos.Gilmar@mh-hannover.de
  organization: Laboratory for Biomechanics and Biomaterials, Department of Orthopedics, Hannover Medical School
– sequence: 2
  givenname: Eike
  surname: Jakubowitz
  fullname: Jakubowitz, Eike
  organization: Laboratory for Biomechanics and Biomaterials, Department of Orthopedics, Hannover Medical School
– sequence: 3
  givenname: Nicolas
  surname: Pronost
  fullname: Pronost, Nicolas
  organization: CNRS LIRIS, Université Claude Bernard Lyon 1, Université de Lyon
– sequence: 4
  givenname: Thomas
  surname: Bonis
  fullname: Bonis, Thomas
  organization: CNRS LIRIS, Université Claude Bernard Lyon 1, Université de Lyon
– sequence: 5
  givenname: Christof
  surname: Hurschler
  fullname: Hurschler, Christof
  organization: Laboratory for Biomechanics and Biomaterials, Department of Orthopedics, Hannover Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34725376$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03542660$$DView record in HAL
BookMark eNp9kk1vEzEQhleoiJbSP8ABrcQFDgv-XNsXpKoCWikSPcDZcrzjxGGzDrY3Ff31ONm2tDnUF1vj531n7JnX1dEQBqiqtxh9wojKz4lhrmSDCG4Qarlsbl9UJwQx3hBKyNGj83F1ltIKlcWJYli9qo4pE4RT0Z5U19cROm-z30Kd_HrsTfZhqIOrNyHlJuUYfkO9MD7XNz4vazcOdkeYvoYebI7elmPKD9I31Utn-gRnd_tp9evb158Xl83sx_eri_NZY7lguWmNQnMmWyx3dSE3l0Y5SjEg2gnlCtRxRh1iEomOKGssdEw5zMAAUUjQ0-pq8u2CWelN9GsT_-pgvN4HQlxoE7O3PWiEjKXWEhCuY2zulBIGLBDBCLXS0OL1ZfLajPM1dBaGHE3_xPTpzeCXehG2WvIWCd4Wg4-TwfJAdnk-07sYopyRtkVbXNgPd8li-DNCynrtk4W-NwOEMWnCFaFIcikL-v4AXYUxlr_fU0hIIjgv1LvH1T_kv29yAeQE2BhSiuC09XnfrPIY32uM9G6k9DRSuoyU3o-Uvi1SciC9d39WRCdRKvCwgPi_7GdU_wCmJd60
CitedBy_id crossref_primary_10_70813_ssd_1437036
crossref_primary_10_3390_biomed2040032
crossref_primary_10_3724_SP_J_1329_2024_04006
crossref_primary_10_1371_journal_pone_0314758
crossref_primary_10_3389_fbioe_2024_1389031
crossref_primary_10_1371_journal_pone_0286918
crossref_primary_10_1007_s12648_024_03351_9
Cites_doi 10.1016/0021-9290(95)00144-1
10.1109/TBME.2007.901024
10.1007/s10439-016-1591-9
10.1016/j.apmr.2006.10.004
10.1016/j.apmr.2007.05.027
10.1016/0021-9290(86)90013-8
10.1016/j.gaitpost.2018.10.027
10.3390/app11052037
10.1002/pri.528
10.1016/j.piutam.2011.04.023
10.1016/j.neucli.2015.09.005
10.3171/2016.4.JNS1660
10.1016/j.clinbiomech.2019.11.024
10.1016/S0004-9514(14)60486-4
10.1016/S0966-6362(02)00165-0
10.2519/jospt.2011.3660
10.1016/j.gaitpost.2003.07.002
10.1016/j.neucli.2008.02.002
10.1016/S0966-6362(02)00122-4
10.1186/s12984-020-00724-z
10.3389/fnhum.2020.00040
10.1016/j.gaitpost.2013.05.003
10.1098/rspb.2020.2432
10.2340/16501977-0039
10.1016/S0021-9290(96)00188-1
10.1016/j.jbiomech.2003.12.005
10.1080/16501970600694859
10.1016/j.clinbiomech.2013.09.007
10.1098/rsif.2019.0402
10.3389/fbioe.2016.00077
10.1007/s11517-013-1076-z
10.1016/j.apmr.2007.08.131
10.1016/j.pmrj.2013.12.017
10.1016/j.jbiomech.2009.12.012
10.1007/s10107-004-0559-y
10.1016/j.gaitpost.2017.07.124
10.1007/s12306-016-0423-2
10.1016/0966-6362(96)01063-6
10.1007/s11044-020-09751-z
10.1109/TNSRE.2010.2047592
10.1038/s41598-019-54271-2
10.1002/jor.1100070611
10.1016/j.clinbiomech.2010.06.013
10.1007/s00402-017-2652-8
10.1016/j.apmr.2010.10.038
10.1007/s12532-018-0139-4
10.3390/app9132627
10.1016/S0268-0033(98)00062-X
10.1097/NPT.0000000000000137
10.1080/10255840902788587
10.1016/S0021-9290(03)00106-4
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41598-021-00658-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_00ac3cc2e7fd44bf997aece27423c8a3
PMC8560756
oai_HAL_hal_03542660v1
34725376
10_1038_s41598_021_00658_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: 16-CE92-0042
  funderid: http://dx.doi.org/10.13039/501100001665
– fundername: Medizinische Hochschule Hannover (MHH) (3118)
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 316739714
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Agence Nationale de la Recherche
  grantid: 16-CE92-0042
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 316739714
– fundername: ;
– fundername: ;
  grantid: 316739714
– fundername: ;
  grantid: 16-CE92-0042
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
EJD
IPNFZ
RIG
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c574t-6a90b4861800050fb8a9f331e03d79fc57d543f04807d29caced49f14eae29073
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:18:28 EDT 2025
Thu Aug 21 13:58:31 EDT 2025
Fri May 09 12:20:24 EDT 2025
Mon Jul 21 10:01:43 EDT 2025
Wed Aug 13 09:51:34 EDT 2025
Mon Jul 21 05:29:10 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Fri Feb 21 02:38:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-6a90b4861800050fb8a9f331e03d79fc57d543f04807d29caced49f14eae29073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC8560756
ORCID 0000-0003-4499-509X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-00658-z
PMID 34725376
PQID 2590782755
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_00ac3cc2e7fd44bf997aece27423c8a3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8560756
hal_primary_oai_HAL_hal_03542660v1
proquest_miscellaneous_2592308588
proquest_journals_2590782755
pubmed_primary_34725376
crossref_citationtrail_10_1038_s41598_021_00658_z
crossref_primary_10_1038_s41598_021_00658_z
springer_journals_10_1038_s41598_021_00658_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chisholm, Perry, McIlroy (CR1) 2013; 28
Wu, Simpson, van Asseldonk, van der Kooij, Ijspeert (CR25) 2019; 9
Roelker, Bowden, Kautz, Neptune (CR8) 2019; 68
Balasubramanian, Bowden, Neptune, Kautz (CR6) 2007; 88
Balaban, Tok (CR10) 2014; 6
Turns, Neptune, Kautz (CR51) 2007; 88
Meyer (CR31) 2016; 4
Geyer, Herr (CR26) 2010; 18
van den Bogert, Geijtenbeek, Even-Zohar, Steenbrink, Hardin (CR43) 2013; 51
Simonsen (CR48) 2014; 61
Kim, Eng (CR7) 2003; 18
De Groote, Falisse (CR34) 2021; 288
Moseley, Wales, Herbert, Schurr, Moore (CR13) 1993; 39
Falisse (CR29) 2019; 16
Simonsen, Moesby, Hansen, Comins, Alkjaer (CR16) 2010; 25
Dean, Bowden, Kelly, Kautz (CR45) 2020; 72
Olney, Richards (CR5) 1996; 4
Falisse (CR30) 2020; 14
Kim, Eng (CR12) 2004; 20
Martin (CR23) 2017; 126
De Groote, Kinney, Rao, Fregly (CR40) 2016; 44
Stoquart, Detrembleur, Lejeune (CR24) 2008; 38
Teran-Yengle (CR50) 2011; 41
Chantraine, Schreiber, Kolanowski, Moissenet (CR19) 2016; 40
Delp (CR36) 2007; 54
Mulroy, Gronley, Weiss, Newsam, Perry (CR49) 2003; 18
Daniilidis (CR21) 2017; 137
Bensoussan, Mesure, Viton, Delarque (CR56) 2006; 38
Piazza, Delp (CR55) 1996; 29
Goldberg, Anderson, Pandy, Delp (CR54) 2004; 37
van Swigchem (CR52) 2011; 92
Kadaba (CR35) 1989; 7
Febrer-Nafría, Pallarès-López, Fregly, Font-Llagunes (CR32) 2021; 51
Goldberg, Õunpuu, Delp (CR15) 2003; 36
Yao (CR22) 2016; 100
Raasch, Zajac, Ma, Levine (CR42) 1997; 30
Lee, Park, Lee, Lee (CR27) 2019; 38
Campanini, Merlo, Damiano (CR2) 2013; 38
Fregly (CR33) 2021; 11
Wächter, Biegler (CR38) 2006; 106
Cooper, Alghamdi, Alghamdi, Altowaijri, Richardson (CR3) 2012; 17
Burridge (CR20) 2007; 39
Santos, Gomes, Sacco, Ackermann (CR47) 2017; 58
Zajac (CR39) 1989; 17
Mansour, Audu (CR46) 1986; 19
Nadeau, Gravel, Arsenault, Bourbonnais (CR53) 1999; 14
Beyaert, Vasa, Frykberg (CR11) 2015; 45
Akbas (CR14) 2020; 17
Guzik (CR9) 2017; 19
Stoquart, Detrembleur, Palumbo, Deltombe, Lejeune (CR18) 2008; 89
Sherman, Seth, Delp (CR44) 2011; 2
Andersson, Gillis, Horn, Rawlings, Diehl (CR37) 2019; 11
De Groote (CR41) 2009; 12
Lauzière, Betschart, Aissaoui, Nadeau (CR4) 2014; 2
Goffredo (CR17) 2019; 9
Ackermann, van den Bogert (CR28) 2010; 43
A Cooper (658_CR3) 2012; 17
R van Swigchem (658_CR52) 2011; 92
AJ van den Bogert (658_CR43) 2013; 51
JH Burridge (658_CR20) 2007; 39
I Campanini (658_CR2) 2013; 38
L Bensoussan (658_CR56) 2006; 38
M Goffredo (658_CR17) 2019; 9
CM Kim (658_CR7) 2003; 18
B Balaban (658_CR10) 2014; 6
GG Stoquart (658_CR18) 2008; 89
MP Kadaba (658_CR35) 1989; 7
A Falisse (658_CR30) 2020; 14
JM Mansour (658_CR46) 1986; 19
AE Chisholm (658_CR1) 2013; 28
CK Balasubramanian (658_CR6) 2007; 88
D Yao (658_CR22) 2016; 100
SR Goldberg (658_CR15) 2003; 36
BJ Fregly (658_CR33) 2021; 11
F De Groote (658_CR41) 2009; 12
S Nadeau (658_CR53) 1999; 14
JC Dean (658_CR45) 2020; 72
C Beyaert (658_CR11) 2015; 45
MA Sherman (658_CR44) 2011; 2
EB Simonsen (658_CR48) 2014; 61
AJ Meyer (658_CR31) 2016; 4
F Chantraine (658_CR19) 2016; 40
M Ackermann (658_CR28) 2010; 43
LJ Turns (658_CR51) 2007; 88
F De Groote (658_CR40) 2016; 44
EB Simonsen (658_CR16) 2010; 25
SA Roelker (658_CR8) 2019; 68
S Mulroy (658_CR49) 2003; 18
SJ Olney (658_CR5) 1996; 4
F De Groote (658_CR34) 2021; 288
F Zajac (658_CR39) 1989; 17
KD Martin (658_CR23) 2017; 126
CM Kim (658_CR12) 2004; 20
A Moseley (658_CR13) 1993; 39
T Akbas (658_CR14) 2020; 17
AR Wu (658_CR25) 2019; 9
S Lee (658_CR27) 2019; 38
S Lauzière (658_CR4) 2014; 2
CC Raasch (658_CR42) 1997; 30
A Falisse (658_CR29) 2019; 16
GF Santos (658_CR47) 2017; 58
H Geyer (658_CR26) 2010; 18
SL Delp (658_CR36) 2007; 54
SJ Piazza (658_CR55) 1996; 29
P Teran-Yengle (658_CR50) 2011; 41
M Febrer-Nafría (658_CR32) 2021; 51
A Wächter (658_CR38) 2006; 106
G Stoquart (658_CR24) 2008; 38
JAE Andersson (658_CR37) 2019; 11
A Guzik (658_CR9) 2017; 19
K Daniilidis (658_CR21) 2017; 137
SR Goldberg (658_CR54) 2004; 37
References_xml – volume: 29
  start-page: 723
  year: 1996
  end-page: 733
  ident: CR55
  article-title: The influence of muscles on knee flexion during the swing phase of gait
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00144-1
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: CR36
  article-title: OpenSim: Open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 44
  start-page: 2922
  year: 2016
  end-page: 2936
  ident: CR40
  article-title: Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1591-9
– volume: 88
  start-page: 43
  year: 2007
  end-page: 49
  ident: CR6
  article-title: Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2006.10.004
– volume: 19
  start-page: 147
  year: 2017
  end-page: 154
  ident: CR9
  article-title: Relationships between walking velocity and distance and the symmetry of temporospatial parameters in chronic post-stroke subjects
  publication-title: Acta Bioeng. Biomech.
– volume: 88
  start-page: 1127
  year: 2007
  end-page: 1135
  ident: CR51
  article-title: Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.05.027
– volume: 19
  start-page: 369
  year: 1986
  end-page: 373
  ident: CR46
  article-title: The passive elastic moment at the knee and its influence on human gait
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(86)90013-8
– volume: 68
  start-page: 6
  year: 2019
  end-page: 14
  ident: CR8
  article-title: Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.10.027
– volume: 11
  start-page: 2037
  year: 2021
  ident: CR33
  article-title: A conceptual blueprint for making neuromusculoskeletal models clinically useful
  publication-title: Appl. Sci.
  doi: 10.3390/app11052037
– volume: 38
  start-page: 1
  year: 2019
  end-page: 13
  ident: CR27
  article-title: Scalable muscle-actuated human simulation and control
  publication-title: ACM Trans. Graph.
– volume: 17
  start-page: 150
  year: 2012
  end-page: 156
  ident: CR3
  article-title: The relationship of lower limb muscle strength and knee joint hyperextension during the stance phase of gait in hemiparetic stroke patients
  publication-title: Physiother. Res. Int.
  doi: 10.1002/pri.528
– volume: 2
  start-page: 241
  year: 2011
  end-page: 261
  ident: CR44
  article-title: Simbody: Multibody dynamics for biomedical research
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2011.04.023
– volume: 45
  start-page: 335
  year: 2015
  end-page: 355
  ident: CR11
  article-title: Gait post-stroke: Pathophysiology and rehabilitation strategies
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2015.09.005
– volume: 61
  start-page: B4823
  year: 2014
  ident: CR48
  article-title: Contributions to the understanding of gait control
  publication-title: Dan. Med. J.
– volume: 126
  start-page: 1685
  year: 2017
  end-page: 1690
  ident: CR23
  article-title: ActiGait implantable drop foot stimulator in multiple sclerosis: A new indication
  publication-title: J. Neurosurg.
  doi: 10.3171/2016.4.JNS1660
– volume: 72
  start-page: 24
  year: 2020
  end-page: 30
  ident: CR45
  article-title: Altered post-stroke propulsion is related to paretic swing phase kinematics
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2019.11.024
– volume: 39
  start-page: 259
  year: 1993
  end-page: 267
  ident: CR13
  article-title: Observation and analysis of hemiplegic gait: Stance phase
  publication-title: Aust. J. Physiother.
  doi: 10.1016/S0004-9514(14)60486-4
– volume: 18
  start-page: 114
  year: 2003
  end-page: 125
  ident: CR49
  article-title: Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00165-0
– volume: 41
  start-page: 948
  year: 2011
  end-page: 952
  ident: CR50
  article-title: Efficacy of gait training with real-time biofeedback in correcting knee hyperextension patterns in young women
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.2011.3660
– volume: 17
  start-page: 359
  year: 1989
  end-page: 411
  ident: CR39
  article-title: Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 20
  start-page: 140
  year: 2004
  end-page: 146
  ident: CR12
  article-title: Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: Relationship to walking speed
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.07.002
– volume: 38
  start-page: 105
  year: 2008
  end-page: 116
  ident: CR24
  article-title: Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2008.02.002
– volume: 18
  start-page: 23
  year: 2003
  end-page: 28
  ident: CR7
  article-title: Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00122-4
– volume: 17
  start-page: 117
  year: 2020
  ident: CR14
  article-title: Rectus femoris hyperreflexia contributes to Stiff-Knee gait after stroke
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-020-00724-z
– volume: 14
  start-page: 40
  year: 2020
  ident: CR30
  article-title: Physics-based simulations to predict the differential effects of motor control and musculoskeletal deficits on gait dysfunction in cerebral palsy: A retrospective case study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00040
– volume: 38
  start-page: 165
  year: 2013
  end-page: 169
  ident: CR2
  article-title: A method to differentiate the causes of stiff-knee gait in stroke patients
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.05.003
– volume: 288
  start-page: 20202432
  year: 2021
  ident: CR34
  article-title: Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2020.2432
– volume: 39
  start-page: 212
  year: 2007
  end-page: 218
  ident: CR20
  article-title: Phase II trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia
  publication-title: J. Rehabil. Med.
  doi: 10.2340/16501977-0039
– volume: 2
  start-page: 201
  year: 2014
  ident: CR4
  article-title: Understanding spatial and temporal gait asymmetries in individuals post stroke
  publication-title: Int. J. Phys. Med. Rehabil.
– volume: 30
  start-page: 595
  year: 1997
  end-page: 602
  ident: CR42
  article-title: Muscle coordination of maximum-speed pedaling
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(96)00188-1
– volume: 37
  start-page: 1189
  year: 2004
  end-page: 1196
  ident: CR54
  article-title: Muscles that influence knee flexion velocity in double support: Implications for stiff-knee gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.12.005
– volume: 38
  start-page: 287
  year: 2006
  end-page: 294
  ident: CR56
  article-title: Kinematic and kinetic asymmetries in hemiplegic patients’ gait initiation patterns
  publication-title: J. Rehabil. Med.
  doi: 10.1080/16501970600694859
– volume: 28
  start-page: 1049
  year: 2013
  end-page: 1054
  ident: CR1
  article-title: Correlations between ankle-foot impairments and dropped foot gait deviations among stroke survivors
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2013.09.007
– volume: 16
  start-page: 20190402
  year: 2019
  ident: CR29
  article-title: Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0402
– volume: 4
  start-page: 77
  year: 2016
  ident: CR31
  article-title: Muscle synergies facilitate computational prediction of subject-specific walking motions
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00077
– volume: 51
  start-page: 1069
  year: 2013
  end-page: 1077
  ident: CR43
  article-title: A real-time system for biomechanical analysis of human movement and muscle function
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-013-1076-z
– volume: 89
  start-page: 56
  year: 2008
  end-page: 61
  ident: CR18
  article-title: Effect of botulinum toxin injection in the rectus femoris on stiff-knee gait in people with stroke: A prospective observational study
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.08.131
– volume: 6
  start-page: 635
  year: 2014
  end-page: 642
  ident: CR10
  article-title: Gait disturbances in patients with stroke
  publication-title: PM R
  doi: 10.1016/j.pmrj.2013.12.017
– volume: 43
  start-page: 1055
  year: 2010
  end-page: 1060
  ident: CR28
  article-title: Optimality principles for model-based prediction of human gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.12.012
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  ident: CR38
  article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– volume: 58
  start-page: 208
  year: 2017
  end-page: 213
  ident: CR47
  article-title: Predictive simulation of diabetic gait: Individual contribution of ankle stiffness and muscle weakening
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.07.124
– volume: 100
  start-page: 223
  year: 2016
  end-page: 229
  ident: CR22
  article-title: Restoring mobility after stroke: First kinematic results from a pilot study with a hybrid drop foot stimulator
  publication-title: Musculoskelet. Surg.
  doi: 10.1007/s12306-016-0423-2
– volume: 4
  start-page: 136
  year: 1996
  end-page: 148
  ident: CR5
  article-title: Hemiparetic gait following stroke. Part I: Characteristics
  publication-title: Gait Posture
  doi: 10.1016/0966-6362(96)01063-6
– volume: 51
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR32
  article-title: Prediction of three-dimensional crutch walking patterns using a torque-driven model
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-020-09751-z
– volume: 18
  start-page: 263
  year: 2010
  end-page: 273
  ident: CR26
  article-title: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2047592
– volume: 9
  start-page: 18079
  year: 2019
  ident: CR25
  article-title: Mechanics of very slow human walking
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54271-2
– volume: 7
  start-page: 849
  year: 1989
  end-page: 860
  ident: CR35
  article-title: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100070611
– volume: 25
  start-page: 949
  year: 2010
  end-page: 952
  ident: CR16
  article-title: Redistribution of joint moments during walking in patients with drop-foot
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2010.06.013
– volume: 137
  start-page: 499
  year: 2017
  end-page: 506
  ident: CR21
  article-title: Does a foot-drop implant improve kinetic and kinematic parameters in the foot and ankle?
  publication-title: Arch. Orthop. Trauma Surg.
  doi: 10.1007/s00402-017-2652-8
– volume: 92
  start-page: 320
  year: 2011
  end-page: 324
  ident: CR52
  article-title: Near-normal gait pattern with peroneal electrical stimulation as a neuroprosthesis in the chronic phase of stroke: A case report
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2010.10.038
– volume: 11
  start-page: 1
  year: 2019
  end-page: 36
  ident: CR37
  article-title: CasADi: A software framework for nonlinear optimization and optimal control
  publication-title: Math. Prog. Comp.
  doi: 10.1007/s12532-018-0139-4
– volume: 9
  start-page: 2627
  year: 2019
  ident: CR17
  article-title: Stroke gait rehabilitation: A comparison of end-effector, overground exoskeleton, and conventional gait training
  publication-title: Appl. Sci.
  doi: 10.3390/app9132627
– volume: 14
  start-page: 125
  year: 1999
  end-page: 135
  ident: CR53
  article-title: Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00062-X
– volume: 40
  start-page: 209
  year: 2016
  end-page: 215
  ident: CR19
  article-title: Control of stroke-related genu recurvatum with prolonged timing of dorsiflexor functional electrical stimulation: A case study
  publication-title: J. Neurol. Phys. Ther.
  doi: 10.1097/NPT.0000000000000137
– volume: 12
  start-page: 563
  year: 2009
  end-page: 574
  ident: CR41
  article-title: A physiology based inverse dynamic analysis of human gait: Potential and perspectives
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840902788587
– volume: 36
  start-page: 1111
  year: 2003
  end-page: 1116
  ident: CR15
  article-title: The importance of swing-phase initial conditions in stiff-knee gait
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00106-4
– volume: 126
  start-page: 1685
  year: 2017
  ident: 658_CR23
  publication-title: J. Neurosurg.
  doi: 10.3171/2016.4.JNS1660
– volume: 37
  start-page: 1189
  year: 2004
  ident: 658_CR54
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.12.005
– volume: 36
  start-page: 1111
  year: 2003
  ident: 658_CR15
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00106-4
– volume: 54
  start-page: 1940
  year: 2007
  ident: 658_CR36
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 39
  start-page: 212
  year: 2007
  ident: 658_CR20
  publication-title: J. Rehabil. Med.
  doi: 10.2340/16501977-0039
– volume: 68
  start-page: 6
  year: 2019
  ident: 658_CR8
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.10.027
– volume: 58
  start-page: 208
  year: 2017
  ident: 658_CR47
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.07.124
– volume: 61
  start-page: B4823
  year: 2014
  ident: 658_CR48
  publication-title: Dan. Med. J.
– volume: 17
  start-page: 359
  year: 1989
  ident: 658_CR39
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 38
  start-page: 105
  year: 2008
  ident: 658_CR24
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2008.02.002
– volume: 28
  start-page: 1049
  year: 2013
  ident: 658_CR1
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2013.09.007
– volume: 17
  start-page: 150
  year: 2012
  ident: 658_CR3
  publication-title: Physiother. Res. Int.
  doi: 10.1002/pri.528
– volume: 16
  start-page: 20190402
  year: 2019
  ident: 658_CR29
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0402
– volume: 92
  start-page: 320
  year: 2011
  ident: 658_CR52
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2010.10.038
– volume: 137
  start-page: 499
  year: 2017
  ident: 658_CR21
  publication-title: Arch. Orthop. Trauma Surg.
  doi: 10.1007/s00402-017-2652-8
– volume: 12
  start-page: 563
  year: 2009
  ident: 658_CR41
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840902788587
– volume: 72
  start-page: 24
  year: 2020
  ident: 658_CR45
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2019.11.024
– volume: 40
  start-page: 209
  year: 2016
  ident: 658_CR19
  publication-title: J. Neurol. Phys. Ther.
  doi: 10.1097/NPT.0000000000000137
– volume: 4
  start-page: 136
  year: 1996
  ident: 658_CR5
  publication-title: Gait Posture
  doi: 10.1016/0966-6362(96)01063-6
– volume: 38
  start-page: 1
  year: 2019
  ident: 658_CR27
  publication-title: ACM Trans. Graph.
– volume: 38
  start-page: 165
  year: 2013
  ident: 658_CR2
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.05.003
– volume: 100
  start-page: 223
  year: 2016
  ident: 658_CR22
  publication-title: Musculoskelet. Surg.
  doi: 10.1007/s12306-016-0423-2
– volume: 18
  start-page: 263
  year: 2010
  ident: 658_CR26
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2047592
– volume: 9
  start-page: 18079
  year: 2019
  ident: 658_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54271-2
– volume: 11
  start-page: 2037
  year: 2021
  ident: 658_CR33
  publication-title: Appl. Sci.
  doi: 10.3390/app11052037
– volume: 18
  start-page: 114
  year: 2003
  ident: 658_CR49
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00165-0
– volume: 106
  start-page: 25
  year: 2006
  ident: 658_CR38
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– volume: 30
  start-page: 595
  year: 1997
  ident: 658_CR42
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(96)00188-1
– volume: 88
  start-page: 43
  year: 2007
  ident: 658_CR6
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2006.10.004
– volume: 18
  start-page: 23
  year: 2003
  ident: 658_CR7
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(02)00122-4
– volume: 20
  start-page: 140
  year: 2004
  ident: 658_CR12
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.07.002
– volume: 45
  start-page: 335
  year: 2015
  ident: 658_CR11
  publication-title: Neurophysiol. Clin.
  doi: 10.1016/j.neucli.2015.09.005
– volume: 14
  start-page: 40
  year: 2020
  ident: 658_CR30
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00040
– volume: 2
  start-page: 241
  year: 2011
  ident: 658_CR44
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2011.04.023
– volume: 19
  start-page: 147
  year: 2017
  ident: 658_CR9
  publication-title: Acta Bioeng. Biomech.
– volume: 14
  start-page: 125
  year: 1999
  ident: 658_CR53
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(98)00062-X
– volume: 43
  start-page: 1055
  year: 2010
  ident: 658_CR28
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.12.012
– volume: 89
  start-page: 56
  year: 2008
  ident: 658_CR18
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.08.131
– volume: 29
  start-page: 723
  year: 1996
  ident: 658_CR55
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00144-1
– volume: 41
  start-page: 948
  year: 2011
  ident: 658_CR50
  publication-title: J. Orthop. Sports Phys. Ther.
  doi: 10.2519/jospt.2011.3660
– volume: 88
  start-page: 1127
  year: 2007
  ident: 658_CR51
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.05.027
– volume: 51
  start-page: 1
  year: 2021
  ident: 658_CR32
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-020-09751-z
– volume: 11
  start-page: 1
  year: 2019
  ident: 658_CR37
  publication-title: Math. Prog. Comp.
  doi: 10.1007/s12532-018-0139-4
– volume: 39
  start-page: 259
  year: 1993
  ident: 658_CR13
  publication-title: Aust. J. Physiother.
  doi: 10.1016/S0004-9514(14)60486-4
– volume: 2
  start-page: 201
  year: 2014
  ident: 658_CR4
  publication-title: Int. J. Phys. Med. Rehabil.
– volume: 44
  start-page: 2922
  year: 2016
  ident: 658_CR40
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1591-9
– volume: 38
  start-page: 287
  year: 2006
  ident: 658_CR56
  publication-title: J. Rehabil. Med.
  doi: 10.1080/16501970600694859
– volume: 9
  start-page: 2627
  year: 2019
  ident: 658_CR17
  publication-title: Appl. Sci.
  doi: 10.3390/app9132627
– volume: 6
  start-page: 635
  year: 2014
  ident: 658_CR10
  publication-title: PM R
  doi: 10.1016/j.pmrj.2013.12.017
– volume: 51
  start-page: 1069
  year: 2013
  ident: 658_CR43
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-013-1076-z
– volume: 19
  start-page: 369
  year: 1986
  ident: 658_CR46
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(86)90013-8
– volume: 288
  start-page: 20202432
  year: 2021
  ident: 658_CR34
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2020.2432
– volume: 17
  start-page: 117
  year: 2020
  ident: 658_CR14
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-020-00724-z
– volume: 7
  start-page: 849
  year: 1989
  ident: 658_CR35
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100070611
– volume: 4
  start-page: 77
  year: 2016
  ident: 658_CR31
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00077
– volume: 25
  start-page: 949
  year: 2010
  ident: 658_CR16
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2010.06.013
SSID ssj0000529419
Score 2.3803875
Snippet Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical stimulation...
Abstract Post-stroke patients present various gait abnormalities such as drop foot, stiff-knee gait (SKG), and knee hyperextension. Functional electrical...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21351
SubjectTerms 631/1647/767/2200
631/57/2266
639/166/985
639/766/747
692/617/375/534
Adult
Ankle
Bioengineering
Biomechanical Phenomena
Biomechanics
Cause-effect relationships
Electric Stimulation Therapy
Electrical stimuli
Engineering Sciences
Feet
Female
Gait
Gait Disorders, Neurologic - etiology
Gait Disorders, Neurologic - physiopathology
Gait Disorders, Neurologic - therapy
Human health and pathology
Humanities and Social Sciences
Humans
Knee
Life Sciences
Mechanics
multidisciplinary
Muscle strength
Patients
Rehabilitation
Science
Science (multidisciplinary)
Stroke
Stroke - complications
Stroke - physiopathology
Stroke Rehabilitation
Walking
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCMor0FYGcYOoSezE9rFUVCsEqAcq9WY5ftAVkFSbFKn99Z2xs0tDBVy47EqJvbE-z-zMZDzfEPJaqqJxqma5NfDBORe5Yt7mpSk4D2ARWom1w58-N4sT_uG0Pr3R6gvPhCV64ATcflEYy6ytvAiO8zYoJYy3PmYYrTSR5xNs3o1gKrF6V4qXaqqSKZjcH8BSYTVZBdEzmt38amaJImE_2JczPA5529e8fWTyt7xpNEdHD8j9yY-kB2n9D8kd322Tu6mz5OUjcny8wgwM_pfRYflj6tFF-0DP-2HMh3HVf_P0q1mOFN_EUjRv6a0gTY1xcO8oqP966mNycvT-y-Ein5on5LYWfMwbo4qWy6aUkeMlAOYqMFb6gjmhAgxyNWchlpS7SlljveMqlNwbX0HEzJ6Qra7v_DNCmWBBGVHBN9i8VsjSOtM45wTALEuTkXINpLYTszg2uPiuY4abSZ3A1wC-juDrq4y82cw5T7wafx39DvdnMxI5seMFkBQ9SYr-l6Rk5BXs7uw3FgcfNV4rWI2eSvGzzMjOevP1pM2DhhARPSlR1xl5ubkNeojJFdP5_iKOgWhO1lJm5GmSlc2jGBcV0uZkRMykaLaW-Z1ueRa5viV4pKKGmW_X8vZrWX_G6_n_wOsFuVehusTCyx2yNa4u_C54YGO7F5XtGkhMLEE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gCIkXxDcdAwXEG1Rrm7RJntBATCcEaA9Murcol6TbadDerh0S--ux07RTmdjLVWqda2vH-bl2bBPyVqqscqpkqTXwwzkXqWLeprnJOK8BEVYSc4e_fa8Wx_zLslxGh1sXt1WOa2JYqF1r0Ue-D2Y6opkoyw-b8xS7RmF0NbbQuE3uYOky3NIllmLysWAUi-cq5spkTO53gFeYU1bANzSCb3o5w6NQth9Q5hQ3RV63OK9vnPwnehpA6fABuR-tSXowiP8hueWbR-Tu0F_yz2NydLTFOAyuaLRb_4qdumhb003b9WnXb9szT0_Muqfoj6UIcoNvkA7tcVCCFBaBcegTcnz4-cenRRpbKKS2FLxPK6OyFZdVLkOllxo4r2rGcp8xJ1QNRK7krA6J5a5Q1ljvuKpz7o0vgOHsKdlp2sY_J5QJVisjCjgC8q2EzK0zlXNOAJtlbhKSj4zUNtYXxzYXP3WIczOpB-ZrYL4OzNeXCXk3jdkM1TVupP6I8pkosTJ2ONFuT3RUNKA1lllbeFE7zle1UsJ460NE2krDEvIGpDv7j8XBV43nMlaivZL9zhOyNwpfR53u9NUMTMjr6TJoI4ZYTOPbi0AD33SylDIhz4a5Mt2KcVFg8ZyEiNksmj3L_EqzPg0VvyXYpaKEke_H-Xb1WP_n1-7Nb_GC3CtQEUJi5R7Z6bcX_iVYWP3qVVCjv_xWIqY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_GEBIXxDcdAwXEDSraJm2S43hiekKAdmDSblGaj-0JaKfXDmn767HTD1QGSFxaqXHayLFrJ45_JuSVVFnlVMlSa-DCORepYt6muck4D2ARaom5w58-V-tj_uGkPNkhxZQLEw_tR0jL-JueToe97cDQYDJYAYtftJrp1Q1yE6HbUapX1WreV8HIFc_VmB-TMfmHrgsbFKH6wbKc4UHI617m9cOSv0VMoyE6vEvujB4kPRjGfI_s-OY-uTXUlLx8QI6Othh7wb8Y7Tbfx-pctA30vO36tOu37VdPT82mp7gHS9GwDfuBdCiJg7NGQfGnrg_J8eH7L6t1OpZNSG0peJ9WRmU1l1UuI7pLAG6rwFjuM-aECkDkSs5CTCZ3hbLGesdVyLk3voC1MntEdpu28U8IZYIFZUQBd7B2tZC5daZyzglgs8xNQvKJkdqOmOJY2uKbjrFtJvXAfA3M15H5-iohr-c-5wOixj-p3-H8zJSIhh0ftNtTPUoH0BrLrC28CI7zOigljLc-RqGtNCwhL2F2F-9YH3zU-CxjJfoo2Y88IfvT5OtRjzsNi0P0oURZJuTF3AwaiGEV0_j2ItLAOk6WUibk8SAr86cYFwUC5iRELKRoMZZlS7M5iyjfEnxRUULPN5O8_RrW3_m193_kT8ntAhUjJlfuk91-e-GfgZfV18-jWv0E_EYg7A
  priority: 102
  providerName: Springer Nature
Title Predictive simulation of post-stroke gait with functional electrical stimulation
URI https://link.springer.com/article/10.1038/s41598-021-00658-z
https://www.ncbi.nlm.nih.gov/pubmed/34725376
https://www.proquest.com/docview/2590782755
https://www.proquest.com/docview/2592308588
https://hal.science/hal-03542660
https://pubmed.ncbi.nlm.nih.gov/PMC8560756
https://doaj.org/article/00ac3cc2e7fd44bf997aece27423c8a3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8LQPIfGC-CYwqoB4g0ASO7H9gFBXbaoqNlVApb5FruNsFaMZTYbYfj13TlIUNhAviWSfE-s-cne-3B3AK6nCNFcJC4zGC-dcBIpZE0Q65LxAjbCQlDt8dJyOZ3wyT-Zb0LU7ahFY3ejaUT-p2frs7c_vlx9Q4N83KePyXYVKiBLFYnSMSaMGV9uwi5pJkKAeteZ-U-s7Vtz1-qAi7AEaE3GbR3PzY3q6ypX0Rw10Sj9MXrdGr_9U-Udk1Smsw7twp7U0_WHDGvdgy67uw62m9-TlA5hO1xSjoa-dXy2_tV28_LLwz8uqDqp6XX61_ole1j6d1fqkAJtzQ79pnUPU9fED0S19CLPDgy-jcdC2VwhMIngdpFqFCy7TSLoqMAVSRRWMRTZkuVAFAuUJZ4VLOs9jZbSxOVdFxK22MfrU7BHsrMqVfQI-E6xQWsR4R624EDIyuU7zPBeIchlpD6IOkZlpa49TC4yzzMXAmcwa5GeI_MwhP7vy4PVmzXlTeeOf0PtEnw0kVc12A-X6JGuFEGG1YcbEVhQ554tCKaGtsS5abaRmHrxE6vaeMR5-zGgsZAnZMuGPyIO9jvhZx64ZOpFka4kk8eDFZhollcIvemXLCweD_p5MpPTgccMrm1cxLmIqrOOB6HFRby_9mdXy1FUDl2izigRXvun47fe2_o6vp_-xzWdwOyZpcJmXe7BTry_sczTB6sUAtsVcDGB3OJx8nuB9_-B4-glHR-lo4I41Bk7yfgHNxC_J
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6IXhBfBMYEBA8QbQkdmr7AaENNnWsqyq0SXvLHMfZKqApTQbafhS_kTsn6VQm9raXRIrPiXO-L_t8dwBvpAr7uUpYYDReOOciUMyaINIh5wVqhExS7PDeqD844F8Ok8MV-NPFwtCxyk4mOkGdl4b2yNfRTCdtJpLk4-xnQFWjyLvaldBoyGLXnv3GJVv1Yeczzu_bON7e2v80CNqqAoFJBK-DvlZhxmU_ki75SYGDUQVjkQ1ZLlSBQHnCWeFirfNYGW1szlURcattjGNg-N4bsMoZLmV6sLq5NRp_XezqkN-MR6qNzgmZXK9QQ1IUW4yrdlL3wfmSBnSFAlCvndAxzMs27uWjmv_4a50a3L4Ld1r71d9oCO4erNjpfbjZVLQ8ewDj8Zw8PyRD_Wryo60N5peFPyurOqjqefnN-sd6Uvu0A-yTWm12I_2mIA_RjI9ip-v6EA6uBb2PoDctp_YJ-EywQmkR4x11bSZkZHLdz_NcIJplpD2IOkSmps1oToU1vqfOs85k2iA_ReSnDvnpuQfvFn1mTT6PK6E3aX4WkJSL2z0o58dpy9oIqw0zJraiyDnPCqWEtsY6H7iRmnnwGmd36R2DjWFKz0KWkIUU_oo8WOsmP22lSJVe0LwHrxbNyP_k1NFTW546GFxFykRKDx43tLL4FOMipnQ9HoglKloay3LLdHLicoxLtIRFgj3fd_R2Maz_4-vp1X_xEm4N9veG6XBntPsMbsfEFC6scw169fzUPkf7rs5etEzlw9F18_Ffbbhf9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDIF4Q3wQGBARPEDWJndp-QGgwqo6NqQ9M6ptx_bFVG01pMtD20_h13DlJpzKxt70kUnxOnPN92ee7I-S1kGnfyoImRsOFMcYTSZ1JMp0y5kEjTATGDn_d6w_32ZdxMV4jf7pYGDxW2cnEIKhtaXCPvAdmOmozXhQ93x6LGG0NPsx_JlhBCj2tXTmNhkR23OlvWL5V77e3YK7f5Png87dPw6StMJCYgrM66WuZTpjoZyIkQvEwMOkpzVxKLZcegGzBqA9x1zaXRhtnmfQZc9rlMB4K771GrnNaZMhjfMyX-zvoQWOZbON0Uip6FehKjGfLYf2Oij85W9GFoWQAaLhDPJB50dq9eGjzH89tUIiDO-R2a8nGmw3p3SVrbnaP3GhqW57eJ6PRAn1AKE3javqjrRIWlz6el1WdVPWiPHLxgZ7WMe4Fx6hgm33JuCnNg9QTgwDquj4g-1eC3IdkfVbO3GMSU0691DyHO2jdCReZsbpvreWAZpHpiGQdIpVpc5tjiY1jFXzsVKgG-QqQrwLy1VlE3i77zJvMHpdCf8T5WUJiVu7woFwcqJbJAVYbakzuuLeMTbyUXDvjgjfcCE0j8gpmd-Udw81dhc9SWqCtlP7KIrLRTb5q5Umlzqk_Ii-XzSAJ0L2jZ648CTCwnhSFEBF51NDK8lOU8RwT90SEr1DRylhWW2bTw5BtXIBNzAvo-a6jt_Nh_R9fTy7_ixfkJnCv2t3e23lKbuXIEyG-c4Os14sT9wwMvXryPHBUTL5fNQv_Bfp7Ysc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+simulation+of+post-stroke+gait+with+functional+electrical+stimulation&rft.jtitle=Scientific+reports&rft.au=Santos%2C+Gilmar+F&rft.au=Jakubowitz%2C+Eike&rft.au=Pronost%2C+Nicolas&rft.au=Bonis%2C+Thomas&rft.date=2021-11-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=21351&rft_id=info:doi/10.1038%2Fs41598-021-00658-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon