Noninvasive fetal genotyping of single nucleotide variants and linkage analysis for prenatal diagnosis of monogenic disorders

Background High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required. Methods We established a low-cos...

Full description

Saved in:
Bibliographic Details
Published inHuman genomics Vol. 16; no. 1; pp. 1 - 15
Main Authors Wu, Wenman, Zhou, Xuanyou, Jiang, Zhengwen, Zhang, Dazhi, Yu, Feng, Zhang, Lanlan, Wang, Xuefeng, Chen, Songchang, Xu, Chenming
Format Journal Article
LanguageEnglish
Published London BioMed Central 27.07.2022
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required. Methods We established a low-cost and convenient test to noninvasively deduce fetal genotypes of the mutation and single nucleotide polymorphisms (SNPs) loci by means of targeted amplification combined with deep sequencing of maternal genomic and plasma DNA. The sequential probability ratio test was performed to detect the allelic imbalance in maternal plasma. This method can be employed to directly examine familial pathogenic mutations in the fetal genome, as well as infer the inheritance of parental haplotypes through a group of selected SNPs linked to the pathogenic mutation. Results The fetal mutations in 17 families with different types of monogenic disorders including hemophilia A, von Willebrand disease type 3, Duchenne muscular dystrophy, hyper-IgM type 1, glutaric acidemia type I, Nagashima-type palmoplantar keratosis, and familial exudative vitreoretinopathy were identified in the study. The mutations included various forms: point mutations, gene inversion, deletions/insertions and duplication. The results of 12 families were verified by sequencing of amniotic fluid samples, the accuracy of the approach in fetal genotyping at the mutation and SNPs loci was 98.85% (172/174 loci), and the no-call rate was 28.98% (71/245 loci). The overall accuracy was 12/12 (100%). Moreover, the approach was successfully applied in plasma samples with a fetal fraction as low as 2.3%. Conclusions We have shown in this study that the approach is a cost-effective, less time consuming and accurate method for NIPD of monogenic disorders.
AbstractList Abstract Background High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required. Methods We established a low-cost and convenient test to noninvasively deduce fetal genotypes of the mutation and single nucleotide polymorphisms (SNPs) loci by means of targeted amplification combined with deep sequencing of maternal genomic and plasma DNA. The sequential probability ratio test was performed to detect the allelic imbalance in maternal plasma. This method can be employed to directly examine familial pathogenic mutations in the fetal genome, as well as infer the inheritance of parental haplotypes through a group of selected SNPs linked to the pathogenic mutation. Results The fetal mutations in 17 families with different types of monogenic disorders including hemophilia A, von Willebrand disease type 3, Duchenne muscular dystrophy, hyper-IgM type 1, glutaric acidemia type I, Nagashima-type palmoplantar keratosis, and familial exudative vitreoretinopathy were identified in the study. The mutations included various forms: point mutations, gene inversion, deletions/insertions and duplication. The results of 12 families were verified by sequencing of amniotic fluid samples, the accuracy of the approach in fetal genotyping at the mutation and SNPs loci was 98.85% (172/174 loci), and the no-call rate was 28.98% (71/245 loci). The overall accuracy was 12/12 (100%). Moreover, the approach was successfully applied in plasma samples with a fetal fraction as low as 2.3%. Conclusions We have shown in this study that the approach is a cost-effective, less time consuming and accurate method for NIPD of monogenic disorders.
High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required.BACKGROUNDHigh-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required.We established a low-cost and convenient test to noninvasively deduce fetal genotypes of the mutation and single nucleotide polymorphisms (SNPs) loci by means of targeted amplification combined with deep sequencing of maternal genomic and plasma DNA. The sequential probability ratio test was performed to detect the allelic imbalance in maternal plasma. This method can be employed to directly examine familial pathogenic mutations in the fetal genome, as well as infer the inheritance of parental haplotypes through a group of selected SNPs linked to the pathogenic mutation.METHODSWe established a low-cost and convenient test to noninvasively deduce fetal genotypes of the mutation and single nucleotide polymorphisms (SNPs) loci by means of targeted amplification combined with deep sequencing of maternal genomic and plasma DNA. The sequential probability ratio test was performed to detect the allelic imbalance in maternal plasma. This method can be employed to directly examine familial pathogenic mutations in the fetal genome, as well as infer the inheritance of parental haplotypes through a group of selected SNPs linked to the pathogenic mutation.The fetal mutations in 17 families with different types of monogenic disorders including hemophilia A, von Willebrand disease type 3, Duchenne muscular dystrophy, hyper-IgM type 1, glutaric acidemia type I, Nagashima-type palmoplantar keratosis, and familial exudative vitreoretinopathy were identified in the study. The mutations included various forms: point mutations, gene inversion, deletions/insertions and duplication. The results of 12 families were verified by sequencing of amniotic fluid samples, the accuracy of the approach in fetal genotyping at the mutation and SNPs loci was 98.85% (172/174 loci), and the no-call rate was 28.98% (71/245 loci). The overall accuracy was 12/12 (100%). Moreover, the approach was successfully applied in plasma samples with a fetal fraction as low as 2.3%.RESULTSThe fetal mutations in 17 families with different types of monogenic disorders including hemophilia A, von Willebrand disease type 3, Duchenne muscular dystrophy, hyper-IgM type 1, glutaric acidemia type I, Nagashima-type palmoplantar keratosis, and familial exudative vitreoretinopathy were identified in the study. The mutations included various forms: point mutations, gene inversion, deletions/insertions and duplication. The results of 12 families were verified by sequencing of amniotic fluid samples, the accuracy of the approach in fetal genotyping at the mutation and SNPs loci was 98.85% (172/174 loci), and the no-call rate was 28.98% (71/245 loci). The overall accuracy was 12/12 (100%). Moreover, the approach was successfully applied in plasma samples with a fetal fraction as low as 2.3%.We have shown in this study that the approach is a cost-effective, less time consuming and accurate method for NIPD of monogenic disorders.CONCLUSIONSWe have shown in this study that the approach is a cost-effective, less time consuming and accurate method for NIPD of monogenic disorders.
Background High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required. Methods We established a low-cost and convenient test to noninvasively deduce fetal genotypes of the mutation and single nucleotide polymorphisms (SNPs) loci by means of targeted amplification combined with deep sequencing of maternal genomic and plasma DNA. The sequential probability ratio test was performed to detect the allelic imbalance in maternal plasma. This method can be employed to directly examine familial pathogenic mutations in the fetal genome, as well as infer the inheritance of parental haplotypes through a group of selected SNPs linked to the pathogenic mutation. Results The fetal mutations in 17 families with different types of monogenic disorders including hemophilia A, von Willebrand disease type 3, Duchenne muscular dystrophy, hyper-IgM type 1, glutaric acidemia type I, Nagashima-type palmoplantar keratosis, and familial exudative vitreoretinopathy were identified in the study. The mutations included various forms: point mutations, gene inversion, deletions/insertions and duplication. The results of 12 families were verified by sequencing of amniotic fluid samples, the accuracy of the approach in fetal genotyping at the mutation and SNPs loci was 98.85% (172/174 loci), and the no-call rate was 28.98% (71/245 loci). The overall accuracy was 12/12 (100%). Moreover, the approach was successfully applied in plasma samples with a fetal fraction as low as 2.3%. Conclusions We have shown in this study that the approach is a cost-effective, less time consuming and accurate method for NIPD of monogenic disorders.
ArticleNumber 28
Author Zhang, Lanlan
Xu, Chenming
Wang, Xuefeng
Wu, Wenman
Yu, Feng
Zhang, Dazhi
Jiang, Zhengwen
Zhou, Xuanyou
Chen, Songchang
Author_xml – sequence: 1
  givenname: Wenman
  surname: Wu
  fullname: Wu, Wenman
– sequence: 2
  givenname: Xuanyou
  surname: Zhou
  fullname: Zhou, Xuanyou
– sequence: 3
  givenname: Zhengwen
  surname: Jiang
  fullname: Jiang, Zhengwen
– sequence: 4
  givenname: Dazhi
  surname: Zhang
  fullname: Zhang, Dazhi
– sequence: 5
  givenname: Feng
  surname: Yu
  fullname: Yu, Feng
– sequence: 6
  givenname: Lanlan
  surname: Zhang
  fullname: Zhang, Lanlan
– sequence: 7
  givenname: Xuefeng
  surname: Wang
  fullname: Wang, Xuefeng
– sequence: 8
  givenname: Songchang
  surname: Chen
  fullname: Chen, Songchang
– sequence: 9
  givenname: Chenming
  surname: Xu
  fullname: Xu, Chenming
BookMark eNp9kk2LFDEQhhtZcT_0D3hq8OKlNV-dpC-CLH4sLHrRc6gk1W3GnmRMegbm4H83vbOCuwdPVVTeeoo3vJfNWUwRm-YlJW8o1fJtEYQJ2RHGOkIEIZ140lxQoYZOcSnO_unPm8tSNoRwypV41pzzXg-K0v6i-f0lxRAPUMIB2xEXmNsJY1qOuxCnNo1tqXXGNu7djGkJHtsD5ABxKS1E384h_oQJaw_zsYTSjim3u4wRVpQPMMW0jitpm2Kq7ODquKTsMZfnzdMR5oIv7utV8_3jh2_Xn7vbr59urt_fdq5XYul67okd_Mi5QqGrC8GYHAizTEoPnghPpdWKo_BaA-WeO0c1KBwGRZSQ_Kq5OXF9go3Z5bCFfDQJgrkbpDwZyEuoFg0lVnFLhOMDERbsYEfLlOwd9RS97ivr3Ym129steodxyTA_gD58ieGHmdLBDJwpxlbA63tATr_2WBazDcXhPEPEtC-mWpOEyF7oKn31SLpJ-1y_uqoUEZTQQa5AfVK5nErJOBoXFlhCWu-HuVoya17MKS-m5sXc5cWIusoerf718Z-lPy44xWw
CitedBy_id crossref_primary_10_1002_ajmg_a_63560
crossref_primary_10_2217_pme_2023_0076
crossref_primary_10_1002_jimd_12659
crossref_primary_10_1016_j_jmoldx_2024_04_002
crossref_primary_10_1016_j_mcp_2023_101910
crossref_primary_10_1186_s13039_023_00637_1
crossref_primary_10_1007_s00404_024_07800_y
crossref_primary_10_1016_j_lmd_2024_100007
crossref_primary_10_1111_exd_14762
Cites_doi 10.1016/j.ajhg.2019.11.004
10.1016/j.jcf.2016.12.011
10.1126/scitranslmed.3004323
10.1073/pnas.1615800113
10.1038/nature11251
10.1373/clinchem.2016.268375
10.1126/scitranslmed.3001720
10.1016/S0140-6736(97)02174-0
10.1002/mgg3.948
10.1373/clinchem.2008.111385
10.1007/978-3-319-42044-8_14
10.1073/pnas.0810373105
10.1086/301800
10.1016/j.ejogrb.2020.08.001
10.1002/mgg3.963
10.1002/pd.1528
10.1371/journal.pone.0218166
10.1038/s41591-018-0334-x
10.1055/s-0033-1363155
10.1210/jc.2014-1118
10.1373/clinchem.2012.189589
10.1203/01.pdr.0000219387.79887.86
10.1515/cclm-2017-0689
10.1373/clinchem.2016.266247
10.1016/S0140-6736(86)91218-3
10.1038/eye.2014.70
10.1073/pnas.0705765104
10.1002/pd.4124
10.1016/j.csbj.2020.09.003
10.1159/000271995
10.1073/pnas.0810641105
10.1101/gr.235796.118
10.1056/NEJM200106073442307
ContentType Journal Article
Copyright 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
The Author(s) 2022
Copyright_xml – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
– notice: The Author(s) 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40246-022-00400-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1479-7364
EndPage 15
ExternalDocumentID oai_doaj_org_article_10b73b04c3904bab9bfb2765c1d1ed85
PMC9327225
10_1186_s40246_022_00400_4
GrantInformation_xml – fundername: ;
  grantid: 21Y21901002
– fundername: ;
  grantid: 202140110, 20215Y0216
– fundername: ;
  grantid: GW-10.1-XK07
– fundername: ;
  grantid: 201972
– fundername: ;
  grantid: 81971344; 81771638; 81901495
– fundername: ;
  grantid: 2018YFC1004900
GroupedDBID ---
0R~
2JY
36B
4.4
53G
5GY
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ACPRK
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
IAO
IHR
IHW
INH
ISR
ITC
KQ8
LK8
M1P
M48
M7P
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
3V.
7XB
88A
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c574t-53d0b9df337e480314226902b266dad04d16b873e4d88a13d3cc18a7e99707463
IEDL.DBID M48
ISSN 1479-7364
1473-9542
IngestDate Wed Aug 27 01:29:14 EDT 2025
Thu Aug 21 13:57:28 EDT 2025
Tue Aug 05 11:28:10 EDT 2025
Fri Jul 25 19:38:30 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Tue Jul 01 03:47:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-53d0b9df337e480314226902b266dad04d16b873e4d88a13d3cc18a7e99707463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40246-022-00400-4
PMID 35897115
PQID 2704101965
PQPubID 27863
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_10b73b04c3904bab9bfb2765c1d1ed85
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9327225
proquest_miscellaneous_2696006548
proquest_journals_2704101965
crossref_citationtrail_10_1186_s40246_022_00400_4
crossref_primary_10_1186_s40246_022_00400_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-27
PublicationDateYYYYMMDD 2022-07-27
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Human genomics
PublicationYear 2022
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References YM Lo (400_CR9) 1998; 62
E Scotchman (400_CR10) 2020; 253
J Zhang (400_CR26) 2019; 25
WWI Hui (400_CR25) 2017; 63
S Drury (400_CR15) 2016; 924
S Kölker (400_CR32) 2006; 59
FMF Lun (400_CR24) 2008; 105
F Prefumo (400_CR8) 2019; 14
L Vossaert (400_CR5) 2019; 105
K-WG Lam (400_CR21) 2012; 58
A Tabor (400_CR1) 1986; 1
YM Lo (400_CR27) 2007; 104
JO Kitzman (400_CR20) 2012; 4
A Tabor (400_CR2) 2010; 27
T Rabinowitz (400_CR18) 2020; 18
DF Gilmour (400_CR33) 2015
CW Kong (400_CR3) 2006; 26
RW Chiu (400_CR11) 2008; 105
A Gruber (400_CR16) 2018; 56
YM Lo (400_CR4) 1997; 350
PM Mannucci (400_CR29) 2001; 344
YMD Lo (400_CR7) 2010; 2
H Li (400_CR19) 2019; 7
AB Federici (400_CR30) 2003; 88
MI New (400_CR35) 2014; 99
N Lench (400_CR14) 2013; 33
FMF Lun (400_CR6) 2008; 54
KW Lam (400_CR12) 2012; 58
C Guissart (400_CR17) 2017; 16
KC Chan (400_CR13) 2016; 113
C Xu (400_CR28) 2017; 63
A Yee (400_CR31) 2014; 40
W Li (400_CR34) 2019; 7
T Rabinowitz (400_CR23) 2019; 29
HC Fan (400_CR22) 2012; 487
References_xml – volume: 105
  start-page: 1262
  issue: 6
  year: 2019
  ident: 400_CR5
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2019.11.004
– volume: 16
  start-page: 198
  issue: 2
  year: 2017
  ident: 400_CR17
  publication-title: J Cyst Fibros
  doi: 10.1016/j.jcf.2016.12.011
– volume: 4
  start-page: 137ra76
  issue: 137
  year: 2012
  ident: 400_CR20
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3004323
– volume: 113
  start-page: E8159
  issue: 50
  year: 2016
  ident: 400_CR13
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1615800113
– volume: 487
  start-page: 320
  issue: 7407
  year: 2012
  ident: 400_CR22
  publication-title: Nature
  doi: 10.1038/nature11251
– volume: 88
  start-page: EREP02
  issue: 6
  year: 2003
  ident: 400_CR30
  publication-title: Haematologica
– volume: 63
  start-page: 513
  issue: 2
  year: 2017
  ident: 400_CR25
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2016.268375
– volume: 2
  start-page: 61ra91
  issue: 61
  year: 2010
  ident: 400_CR7
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3001720
– volume: 350
  start-page: 485
  issue: 9076
  year: 1997
  ident: 400_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)02174-0
– volume: 7
  start-page: e00948
  issue: 10
  year: 2019
  ident: 400_CR34
  publication-title: Mol Genet Genomic Med
  doi: 10.1002/mgg3.948
– volume: 54
  start-page: 1664
  issue: 10
  year: 2008
  ident: 400_CR6
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2008.111385
– volume: 924
  start-page: 71
  year: 2016
  ident: 400_CR15
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-3-319-42044-8_14
– volume: 105
  start-page: 19920
  issue: 50
  year: 2008
  ident: 400_CR24
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0810373105
– volume: 62
  start-page: 768
  issue: 4
  year: 1998
  ident: 400_CR9
  publication-title: Am J Hum Genet
  doi: 10.1086/301800
– volume: 253
  start-page: 320
  year: 2020
  ident: 400_CR10
  publication-title: Eur J Obstet Gynecol Reprod Biol
  doi: 10.1016/j.ejogrb.2020.08.001
– volume: 7
  start-page: e963
  issue: 11
  year: 2019
  ident: 400_CR19
  publication-title: Mol Genet Genomic Med
  doi: 10.1002/mgg3.963
– volume: 26
  start-page: 925
  issue: 10
  year: 2006
  ident: 400_CR3
  publication-title: Prenat Diagn
  doi: 10.1002/pd.1528
– volume: 14
  start-page: e0218166
  issue: 6
  year: 2019
  ident: 400_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0218166
– volume: 25
  start-page: 439
  issue: 3
  year: 2019
  ident: 400_CR26
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0334-x
– volume: 40
  start-page: 17
  issue: 1
  year: 2014
  ident: 400_CR31
  publication-title: Semin Thromb Hemost
  doi: 10.1055/s-0033-1363155
– volume: 99
  start-page: E1022
  issue: 6
  year: 2014
  ident: 400_CR35
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2014-1118
– volume: 58
  start-page: 1467
  issue: 10
  year: 2012
  ident: 400_CR21
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2012.189589
– volume: 59
  start-page: 840
  issue: 6
  year: 2006
  ident: 400_CR32
  publication-title: Pediatr Res
  doi: 10.1203/01.pdr.0000219387.79887.86
– volume: 56
  start-page: 728
  issue: 5
  year: 2018
  ident: 400_CR16
  publication-title: Clin Chem Lab Med
  doi: 10.1515/cclm-2017-0689
– volume: 63
  start-page: 861
  issue: 4
  year: 2017
  ident: 400_CR28
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2016.266247
– volume: 1
  start-page: 1287
  issue: 8493
  year: 1986
  ident: 400_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)91218-3
– year: 2015
  ident: 400_CR33
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2014.70
– volume: 104
  start-page: 13116
  issue: 32
  year: 2007
  ident: 400_CR27
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0705765104
– volume: 58
  start-page: 1467
  issue: 10
  year: 2012
  ident: 400_CR12
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2012.189589
– volume: 33
  start-page: 555
  issue: 6
  year: 2013
  ident: 400_CR14
  publication-title: Prenat Diagn
  doi: 10.1002/pd.4124
– volume: 18
  start-page: 2463
  year: 2020
  ident: 400_CR18
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.09.003
– volume: 27
  start-page: 1
  issue: 1
  year: 2010
  ident: 400_CR2
  publication-title: Fetal Diagn Ther
  doi: 10.1159/000271995
– volume: 105
  start-page: 20458
  issue: 51
  year: 2008
  ident: 400_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0810641105
– volume: 29
  start-page: 428
  issue: 3
  year: 2019
  ident: 400_CR23
  publication-title: Genome Res
  doi: 10.1101/gr.235796.118
– volume: 344
  start-page: 1773
  issue: 23
  year: 2001
  ident: 400_CR29
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200106073442307
SSID ssj0031374
Score 2.3296251
Snippet Background High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic...
High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in...
Abstract Background High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Amniotic fluid
Cell-free DNA
Chi-square test
Clinical medicine
Duchenne's muscular dystrophy
Familial exudative vitreoretinopathy
Families & family life
Fetal genotyping
Fetuses
Genotype & phenotype
Genotyping
Haplotypes
Hemophilia
Immunoglobulin M
Keratosis
Linkage analysis
Massively parallel sequencing
Monogenic disorder
Mutation
Plasma
Prenatal diagnosis
Single-nucleotide polymorphism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja90wEBYlUMgldEnJa9OiQG_F1Fqs5ZiUhlBITg3kJrSZPgh2yXMCOfS_d0bye8SX5tKb0YasGUnfSKNvCPmcY257HRXYJkLi0Y1qgoqssTxFK2RQVuF758srdXEtf9x0N09CfaFPWKUHrgMHszpoEVoZwTiXwQcb-sC16iJLLCdT2Ethz9saU3UNFkxouX0iY9TXDVhJEp1teVO0tpGLbaiw9S8g5tJB8smOc_6KHMxQkZ7WLr4mL_LwhryswSMf35I_V3iS-uDR_5z2GUA0RcLV6RFfQNGxp3gKcJvpgIzF47ROmT6AYYx-L9QPieLVLSwm8F1pSSjAV4oMl3igQ1N1wYNkaAlUdYS215Gmmaxzc0iuz7___HbRzMEUmthpOTWdSG2wqRdCZ2mQtB6Al215gB06-dTKxFQwWmSZjPFMJBEjM15nazXGJBHvyN4wDvmIUCt9ApThwRrJYE1Kk4S3bY4djzwAxFkRth1bF2emcQx4ceuKxWGUq_JwIA9X5OGgzpddnd-VZ-Ofpc9QZLuSyJFdEkBz3Kw57jnNWZHjrcDdPHE3jutWskKzuCInu2yYcniP4oc83kMZUODyKNesiF4oyqJDy5xh_auQdwNe1rCGvv8ff_CB7POi07rh-pjsTXf3-SNgpCl8KtPhL7JWEGE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Complete (ProQuest Database)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyIn_i0SgRvErr52HycRMVSBHuy8G5LvlYflN22b1vowf_dmWze0730tmST7JKZJL-ZTH5DyIccc9ObqME2kQpdN5oFHTlzIkUnVdBO433nH6f65Ex9X7fr6nDb1rDK3ZpYFuo0RvSRHwnTKF747z5dXDLMGoWnqzWFxn3yAKnLMKTLrPcGl-SysDBzZSRzrRK7SzNWH23BblIYfitY0WOmFhtT4e9fgM5lyOR_e9DxE_K4gkf6eZb2U3IvD8_Iwzmd5O1z8ucUfas3HiPSaZ8BVlOkYJ1u8U4UHXuKfoHzTAfkMB6nTcr0BkxljIShfkgUD3NheYHnmaiEAqClyHmJLh6a5qA8KIaeYDRG6HsTaar0ndsX5Oz428-vJ6ymV2CxNWpirUxNcKmX0mRlkcYeoJhrRIA9O_nUqMR1sEZmlaz1XCYZI7feZOcMZimRL8nBMA75FaFO-QS4w4N9ksG-VDZJ75ocWxFFANCzInw3tl2s3OOYAuO8KzaI1d0sjw7k0RV5dNDm477Nxcy8cWftLyiyfU1kzS4F49Wvrk5CaB6MDI2K0jUq-OBCH4TRbeSJ52TbFTncCbyrU3nb_VO8FXm_fw2TEE9W_JDHa6gDKl2u6doVMQtFWfzQ8s2w-V3ovAFBG1hVX9_98TfkkSjaapgwh-RgurrObwEPTeFdUfq_eeYJXw
  priority: 102
  providerName: ProQuest
Title Noninvasive fetal genotyping of single nucleotide variants and linkage analysis for prenatal diagnosis of monogenic disorders
URI https://www.proquest.com/docview/2704101965
https://www.proquest.com/docview/2696006548
https://pubmed.ncbi.nlm.nih.gov/PMC9327225
https://doaj.org/article/10b73b04c3904bab9bfb2765c1d1ed85
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ50JJL6ZNumi4q9FbcWg9b0qGUbkkIhSwldGHpxViPTRcWu911QvbQ_94Z2V5iCD30Yoxe2JoZaWY0-oaQt8GFdKFcDraJkOi6yRObO5YY7p0R0uYmx_vOF9P8fCa_zrP5HunTHXUTuLnXtMN8UrP16v3t7-0nEPiPUeB1_mEDNpDEUFqeRJ5M5D45hJ1JoaBeyN2pgmAiojIzqURiMsn7SzT3jnFEHopMG8UwY-6dPStC-w_00WE05Z3t6ewxedTplfRzywhPyF6onpIHbabJ7TPyZ4pu15sSg9XpIsDPUkRnbbZ4XYrWC4oug1WgFcIb183SB3oDVjQGydCy8hTPeWHlgfcWw4SCrksRDhO9P9S38XpQDCMBX9cw9tJR3yF7bp6T2dnp9y_nSZd5IXGZkk2SCZ9a4xdCqCA1ItyDlmZSbmE796VPpWe51UoE6bUumfDCOaZLFYxRmMBEvCAHVV2Fl4QaWXpQSUowXQKYnlJ7UZo0uIw7bkEfGhHWz23hOlhyzI6xKqJ5ovOiJU0BpCkiaQro827X51cLyvHP1hMk2a4lAmrHgnp9VXTyCd2tEjaVTphU2tIau7Bc5ZljngWvsxE56Qle9ExacJVKFjEZR-TNrhrkEw9dyirU19AGuD3e4NUjogaMMvigYU21_BmRvkG5VrDgHv93z1fkiEeeVglXJ-SgWV-H16BFNXZM9tVcjcnh5HT67XIcfRHjKC7wvJz8-Atg3x5f
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiKe6UMBIcEJRE9ux4wNCLbTa0naFUCv1FvwKrFQlpbst2gN_id_YGSdZyKW33laJ7Y08D8-MZ74h5G1wIa2Uk-CbcIGhG5lY6bJEM-80F1ZqifXOR1M5ORFfTvPTNfK3r4XBtMpeJ0ZF7RuHMfItplKRRfy7j-e_EuwahberfQuNli0OwvI3uGzzD_ufgb7vGNvbPf40SbquAonLlVgkOfep1b7iXAVRIHo7WCA6ZRaOKm98KnwmbaF4EL4oTMY9dy4rjApaK2zOwWHdO2RdcHBlRmR9Z3f69Vuv-3nGI-5zJhRPdC5YX6ZTyK05eGoCE35ZEiUnEYOjMHYMGJi5wyTN_069vYfkQWeu0u2Wvx6RtVA_JnfbBpbLJ-TPFKO5VwZz4GkVwJCnCPq6WGIVFm0qipGIs0BrRE1uFjMf6BU455h7Q03tKV4fg0KD3y00CgUTmiLKJgaVqG_TAOExrAT738DaM0d9Bxg6f0pObmXrn5FR3dRhg1AtjAdLx4BHFMCjFYXnRqfB5cwxC2bWmGT93pauQzvHphtnZfR6Clm29CiBHmWkRwlz3q_mnLdYHzeO3kGSrUYiTnd80Fz8KDuxh-lWcZsKx3UqrLHaVpYpmbvMZ8EX-Zhs9gQvO-UxL_-x-pi8Wb0Gsce7HFOH5hLGgBDFwuBiTNSAUQYfNHxTz35GAHGw2RXo8ec3__lrcm9yfHRYHu5PD16Q-yxyrkqY2iSjxcVleAnW2MK-6kSAku-3LXXXlz1FkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qluW8BIcELRxo_E9gEhoKxaCisOVNpbiB-BlaqkdNOiPfDH-HXMOMlCLr31tkpsb-R5eGY88w0hL4ILaaVcDr6JkBi6yRObO5YY7p0R0uYmx3rnz_P88ER-XGSLLfJnqIXBtMpBJ0ZF7RuHMfIpV6lkEf9uWvVpEV8OZm_OfibYQQpvWod2Gh2LHIf1L3DfVq-PDoDWLzmfffj6_jDpOwwkLlOyTTLhU2t8JYQKUiOSO1gjJuUWji1f-lR6llutRJBe65IJL5xjulTBGIWNOgSse4PcVCJjKGNqsXH2BBMRAZpJJRKTST4U7Oh8ugKfTWLqL0-iDCVydCjG3gEjg3ecrvnf-Te7R-72hit923HafbIV6gfkVtfKcv2Q_J5jXPeyxGx4WgUw6SnCv7ZrrMeiTUUxJnEaaI34yU279IFegpuOWTi0rD3Fi2RQbfC7A0mhYExTxNvE8BL1XUIgPIaVYPcbWHvpqO-hQ1ePyMm1bPxjsl03ddgh1MjSg81Tgm8UwLeV2ovSpMFl3HELBteEsGFvC9fjnmP7jdMi-j86Lzp6FECPItKjgDmvNnPOOtSPK0e_Q5JtRiJid3zQnH8vegUA060SNpVOmFTa0hpbWa7yzDHPgtfZhOwPBC96NbIq_jH9hDzfvAYFgLc6ZR2aCxgD4hRLhPWEqBGjjD5o_KZe_ohQ4mC9K9Dou1f_-TNyG2St-HQ0P94jd3hkXJVwtU-22_OL8ATMstY-jfxPybfrFri_OMlIYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+fetal+genotyping+of+single+nucleotide+variants+and+linkage+analysis+for+prenatal+diagnosis+of+monogenic+disorders&rft.jtitle=Human+genomics&rft.au=Wu%2C+Wenman&rft.au=Zhou%2C+Xuanyou&rft.au=Jiang%2C+Zhengwen&rft.au=Zhang%2C+Dazhi&rft.date=2022-07-27&rft.pub=BioMed+Central&rft.issn=1473-9542&rft.eissn=1479-7364&rft.volume=16&rft_id=info:doi/10.1186%2Fs40246-022-00400-4&rft_id=info%3Apmid%2F35897115&rft.externalDocID=PMC9327225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-7364&client=summon