Agent-based modelling of reactive vaccination of workplaces and schools against COVID-19

With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 1414 - 11
Main Authors Faucher, Benjamin, Assab, Rania, Roux, Jonathan, Levy-Bruhl, Daniel, Tran Kiem, Cécile, Cauchemez, Simon, Zanetti, Laura, Colizza, Vittoria, Boëlle, Pierre-Yves, Poletto, Chiara
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.03.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout. The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios.
AbstractList With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout. The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios.
The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios.
With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios.
With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.
With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.
ArticleNumber 1414
Author Poletto, Chiara
Colizza, Vittoria
Roux, Jonathan
Faucher, Benjamin
Assab, Rania
Levy-Bruhl, Daniel
Boëlle, Pierre-Yves
Cauchemez, Simon
Zanetti, Laura
Tran Kiem, Cécile
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Faucher
  fullname: Faucher, Benjamin
  organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique
– sequence: 2
  givenname: Rania
  surname: Assab
  fullname: Assab, Rania
  organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique
– sequence: 3
  givenname: Jonathan
  surname: Roux
  fullname: Roux, Jonathan
  organization: Univ Rennes, EHESP, CNRS, ARENES—UMR 6051
– sequence: 4
  givenname: Daniel
  surname: Levy-Bruhl
  fullname: Levy-Bruhl, Daniel
  organization: Santé Publique France
– sequence: 5
  givenname: Cécile
  orcidid: 0000-0003-0563-8428
  surname: Tran Kiem
  fullname: Tran Kiem, Cécile
  organization: Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université de Paris, UMR2000, CNRS, Collège Doctoral, Sorbonne Université
– sequence: 6
  givenname: Simon
  orcidid: 0000-0001-9186-4549
  surname: Cauchemez
  fullname: Cauchemez, Simon
  organization: Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université de Paris, UMR2000, CNRS
– sequence: 7
  givenname: Laura
  surname: Zanetti
  fullname: Zanetti, Laura
  organization: Haute Autorité de Santé
– sequence: 8
  givenname: Vittoria
  orcidid: 0000-0002-2113-2374
  surname: Colizza
  fullname: Colizza, Vittoria
  organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology
– sequence: 9
  givenname: Pierre-Yves
  surname: Boëlle
  fullname: Boëlle, Pierre-Yves
  organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique
– sequence: 10
  givenname: Chiara
  orcidid: 0000-0002-4051-1716
  surname: Poletto
  fullname: Poletto, Chiara
  email: chiara.poletto@inserm.fr
  organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35301289$$D View this record in MEDLINE/PubMed
https://ehesp.hal.science/hal-03615409$$DView record in HAL
BookMark eNp9Uk2P0zAQjdAidln2D3BAkbgsh4C_4tgXpKp8bKVKewAhbpbjTFKX1C52WtR_j9Pswm4P64M9Gr_3Zjx-L7Mz5x1k2WuM3mNExYfIMONVgQgpiES4LA7PsguCGC5wRejZg_g8u4pxjdKiEgvGXmTntKQIEyEvsp-zDtxQ1DpCk298A31vXZf7Ng-gzWD3kO-1MdbpwXo35v_48GvbawMx167Jo1l536e409bFIZ_f_lh8KrB8lT1vdR_h6u68zL59-fx9flMsb78u5rNlYcqKDUWJGGGMAmdIYGiwFlxUhkkKGASUDLei5UgI3oiW4aqWvAVORGkkY6Skl9liUm28XqttsBsdDsprq44JHzqlw2BND0pw4LQ2NYBpWAmV4LptJNUC80YC4KT1cdLa7uoNNCbNJej-kejjG2dXqvN7JSTFCFdJ4N0ksDqh3cyWaswhynHJkNyPxa7vigX_ewdxUBsbTZq-duB3UZE0EClxwifo2xPo2u-CS0M9okqetrH4m4fd_6t__9UJICaACT7GAK0ydjj-anqM7RVGajSWmoylkrHU0VjqkKjkhHqv_iSJTqSYwK6D8L_tJ1h_AQuA3kY
CitedBy_id crossref_primary_10_1038_s41598_022_24967_z
crossref_primary_10_1002_nav_22134
crossref_primary_10_1016_j_eiar_2024_107723
crossref_primary_10_2478_amns_2023_1_00413
crossref_primary_10_15580_gjbhs_2024_1_102024146
crossref_primary_10_1002_14651858_CD015112_pub3
crossref_primary_10_3934_mbe_2023481
crossref_primary_10_1016_j_chaos_2024_115160
crossref_primary_10_1186_s13643_023_02411_1
crossref_primary_10_1093_jpids_piae032
crossref_primary_10_1038_s41598_022_25801_2
crossref_primary_10_1016_j_apgeog_2022_102759
crossref_primary_10_3390_su15065326
crossref_primary_10_1371_journal_pcbi_1012661
crossref_primary_10_1016_j_heliyon_2024_e39725
crossref_primary_10_1016_j_idm_2023_11_008
crossref_primary_10_1098_rsif_2022_0164
crossref_primary_10_1371_journal_pone_0316294
crossref_primary_10_1016_j_healthplace_2025_103422
crossref_primary_10_1016_j_epidem_2024_100752
crossref_primary_10_1038_s41467_024_48024_7
crossref_primary_10_1038_s41567_024_02471_7
Cites_doi 10.1038/s41467-020-20544-y
10.1017/S0950268818000602
10.1038/s41591-020-0962-9
10.1016/S0140-6736(15)61117-5
10.1126/sciadv.abf1374
10.1073/pnas.1811115115
10.1101/2021.09.17.21263549
10.1038/s41591-020-0869-5
10.1101/2020.09.07.20189688
10.1056/NEJMoa2034577
10.1016/j.epidem.2014.08.004
10.1186/1471-2334-10-190
10.2807/1560-7917.ES.2020.25.49.2000790
10.1080/21645515.2018.1547606
10.2471/BLT.14.139949
10.1093/aje/kwn259
10.1073/pnas.2112656119
10.1126/science.abe6959
10.2807/1560-7917.ES2014.19.49.20982
10.1371/journal.pone.0133203
10.1056/NEJMc2102507
10.1093/epirev/mxz014
10.1371/journal.pcbi.1009346
10.1038/s41586-020-03095-6
10.1016/S1473-3099(21)00143-2
10.2807/1560-7917.ES.2021.26.37.2100824
10.12688/wellcomeopenres.15889.2
10.1016/j.clindermatol.2005.11.009
10.1186/s12879-017-2699-8
10.1038/s41562-021-01063-2
10.1056/NEJMoa2101765
10.5281/zenodo.5910314
10.1101/2020.09.15.20191957
10.1093/jtm/taab045
10.1101/2021.03.19.21253974
10.1371/journal.pntd.0005093
10.1371/journal.pcbi.1000656
10.1038/s41467-021-21249-6
10.1016/j.vaccine.2014.01.002
10.1186/s12916-022-02235-1
10.1016/j.vaccine.2021.04.042
10.1371/journal.pbio.3000897
10.7554/eLife.44942
10.1016/j.lanepe.2021.100118
10.1038/s41562-021-01155-z
10.1098/rsif.2007.1038
10.1016/S2468-2667(21)00064-5
10.1371/journal.pmed.1002509
10.1126/sciadv.abd8750
10.1016/j.eclinm.2021.101001
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41467-022-29015-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_86e63bcbeecd45e786afd93a816d9ee1
PMC8931017
oai_HAL_hal_03615409v1
35301289
10_1038_s41467_022_29015_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Haute Autorité de Santé; the ANR and Fondation de France (00105995); the Municipality of Paris through the programme Emergence(s); EU H2020 (H2020-874850); EU H2020 (H2020-101003589); ANRS (ANRS0151); Institut des Sciences du Calcul et de la Donnée;
– fundername: Agence Nationale de la Recherche (French National Research Agency)
  grantid: ANR-17-CE36-0008-05
  funderid: https://doi.org/10.13039/501100001665
– fundername: Agence Nationale de la Recherche (French National Research Agency)
  grantid: ANR-17-CE36-0008-05
– fundername: ;
  grantid: ANR-17-CE36-0008-05
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
1XC
4.4
ABAWZ
BAPOH
CAG
COF
EJD
LGEZI
LOTEE
NADUK
NXXTH
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c574t-5042443e64081ed1a8687c493e1e8e541f8f60886d8f417b96fe6285c944253
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:13:36 EDT 2025
Thu Aug 21 13:51:40 EDT 2025
Fri May 09 12:09:00 EDT 2025
Fri Jul 11 03:28:42 EDT 2025
Wed Aug 13 07:17:09 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Tue Jul 01 04:17:46 EDT 2025
Thu Apr 24 22:50:22 EDT 2025
Fri Feb 21 02:38:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Workplace
COVID 19
Systems Analysis
Schools
Vaccination
Humans
Language English
License 2022. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-5042443e64081ed1a8687c493e1e8e541f8f60886d8f417b96fe6285c944253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0563-8428
0000-0002-4051-1716
0000-0001-9186-4549
0000-0002-2113-2374
0000-0002-0158-2837
0000-0002-5367-8232
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-29015-y
PMID 35301289
PQID 2640566407
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_86e63bcbeecd45e786afd93a816d9ee1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8931017
hal_primary_oai_HAL_hal_03615409v1
proquest_miscellaneous_2640991615
proquest_journals_2640566407
pubmed_primary_35301289
crossref_citationtrail_10_1038_s41467_022_29015_y
crossref_primary_10_1038_s41467_022_29015_y
springer_journals_10_1038_s41467_022_29015_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-17
PublicationDateYYYYMMDD 2022-03-17
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DW.COM. COVID: Cologne project aims to vaccinate urban hot spots. https://www.dw.com/en/covid-cologne-project-aims-to-vaccinate-urban-hot-spots/a-57472989 (2021).
Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med.https://doi.org/10.1038/s41591-020-0962-9 (2020).
BosettiPEpidemiology and control of SARS-CoV-2 epidemics in partially vaccinated populations: a modeling study applied to FranceBMC Med202220331:CAS:528:DC%2BB38Xit1elu7g%3D10.1186/s12916-022-02235-1
Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVModelling safe protocols for reopening schools during the COVID-19 pandemic in FranceNat. Commun.2021122021NatCo..12.1073D10.1038/s41467-021-21249-6
MerlerSContaining Ebola at the source with Ring vaccinationPLOS Neglected Tropical Dis.201610e000509310.1371/journal.pntd.0005093
ValdanoELeeJBansalSRubrichiSColizzaVHighlighting socio-economic constraints on mobility reductions during COVID-19 restrictions in France can inform effective and equitable pandemic responseJ. Travel Med.20212810.1093/jtm/taab045
ARS Grand Est. COVID-19: présence du variant indien dans l’Eurométropole et plan d’actions immédiat. http://www.grand-est.ars.sante.fr/covid-19-presence-du-variant-indien-dans-leurometropole-et-plan-dactions-immediat (2021).
MistryDInferring high-resolution human mixing patterns for disease modelingNat Commun2021122021NatCo..12..316M1:CAS:528:DC%2BB3MXhsVels7w%3D10.1038/s41467-020-20544-y
Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2101765 (2021).
European Centre for Disease Prevention and Control. Overview of the implementation of COVID-19 vaccination strategies and deployment plans in the EU/EEA. https://www.ecdc.europa.eu/en/publications-data/overview-implementation-covid-19-vaccination-strategies-and-deployment-plans (2021).
Christensen, H. et al. COVID-19 transmission in a university setting: a rapid review of modelling studies. medRxivhttps://doi.org/10.1101/2020.09.07.20189688 (2020).
Le MenachAIncreased measles–mumps–rubella (MMR) vaccine uptake in the context of a targeted immunisation campaign during a measles outbreak in a vaccine-reluctant community in EnglandVaccine2014321147115210.1016/j.vaccine.2014.01.002
CapitanoBDillonKLeDucAAtkinsonBBurmanCExperience implementing a university-based mass immunization program in response to a meningococcal B outbreakHum. Vaccines Immunotherapeutics20191571772410.1080/21645515.2018.1547606
Ritchie, H. et al. Our World In Data. Coronavirus Pandemic (COVID-19). https://ourworldindata.org/coronavirus (2021).
KisslerSMViral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated personsN. Engl. J. Med.20213852489249110.1056/NEJMc2102507
GeddesAMThe history of smallpoxClin. Dermatol.20062415215710.1016/j.clindermatol.2005.11.009
Institut Pasteur. Proportion de la population infectée par SARS-CoV-2. https://modelisation-covid19.pasteur.fr/realtime-analysis/infected-population/ (2021).
Lu, D. et al. Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual contact pattern variations. medRxivhttps://doi.org/10.1101/2021.03.19.21253974 (2021).
YouGov. Personal measures taken to avoid COVID-19. https://yougov.co.uk/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19 (2021).
Smith, L. E. et al. Adherence to the test, trace and isolate system: results from a time series of 21 nationally representative surveys in the UK (the COVID-19 Rapid Survey of Adherence to Interventions and Responses [CORSAIR] study). medRxivhttps://doi.org/10.1101/2020.09.15.20191957 (2020).
MetcalfCJESeven challenges in modeling vaccine preventable diseasesEpidemics20151011151:STN:280:DC%2BC2MjhtlaisA%3D%3D10.1016/j.epidem.2014.08.004
Moreno López, J. A. et al. Anatomy of digital contact tracing: role of age, transmission setting, adoption and case detection. Sci. Adv.https://doi.org/10.1126/sciadv.abd8750 (2021).
Krymova, E. et al. Trend estimation and short-term forecasting of COVID-19 cases and deaths worldwide. arXivhttps://arxiv.org/abs/2106.10203 (2021).
MarzianoVParental vaccination to reduce measles immunity gaps in ItalyeLife20198e449421:CAS:528:DC%2BB3cXht1CrtrjL10.7554/eLife.44942
Grais, R. F. et al. Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. J. R. Soc. Interfacehttps://doi.org/10.1098/rsif.2007.1038 (2007).
XuWSuSJiangSRing vaccination of COVID-19 vaccines in medium- and high-risk areas of countries with low incidence of SARS-CoV-2 infectionClin. Transl. Med.2021111:CAS:528:DC%2BB3MXlvVygtLo%3D336349797888539
Pullano, G. et al. Underdetection of COVID-19 cases in France threatens epidemic control. Naturehttps://doi.org/10.1038/s41586-020-03095-6 (2020).
He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med.https://doi.org/10.1038/s41591-020-0869-5 (2020).
Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancethttps://doi.org/10.1016/S0140-6736(15)61117-5 (2015).
MullerCPCan integrated post-exposure vaccination against SARS-COV2 mitigate severe disease?Lancet Reg. Health Euro.2021510.1016/j.lanepe.2021.100118
GallagherTLipsitchMPostexposure effects of vaccines on infectious diseasesEpidemiol. Rev.201941132710.1093/epirev/mxz014
BBC News. Covid-19: More variant hotspots to get surge tests and jabs. https://www.bbc.com/news/uk-57172139 (2021).
Google. COVID-19 Community Mobility Report. https://www.google.com/covid19/mobility?hl=en (2021).
MacIntyre, C. R., Costantino, V. & Trent, M. Modelling of COVID-19 vaccination strategies and herd immunity, in scenarios of limited and full vaccine supply in NSW, Australia. Vaccinehttps://doi.org/10.1016/j.vaccine.2021.04.042 (2021).
Tran KiemCA modelling study investigating short and medium-term challenges for COVID-19 vaccination: From prioritisation to the relaxation of measuresEClinicalMedicine20213810100110.1016/j.eclinm.2021.101001
STAT. To vaccinate more Americans, lean into outbreaks. https://www.statnews.com/2021/08/19/lean-into-outbreaks-to-vaccinate-more-americans/ (2021).
FingerFThe potential impact of case-area targeted interventions in response to cholera outbreaks: a modeling studyPLoS Med.201815e100250910.1371/journal.pmed.1002509
MatrajtLEatonJLeungTBrownERVaccine optimization for COVID-19: Who to vaccinate first?Sci. Adv.20207eabf137410.1126/sciadv.abf1374
GozziNBajardiPPerraNThe importance of non-pharmaceutical interventions during the COVID-19 vaccine rolloutPLoS Comput. Biol.202117e10093462021PLSCB..17E9346G1:CAS:528:DC%2BB3MXitFWmu77M10.1371/journal.pcbi.1009346
RiccardoFEpidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020Euro. Surveill.20202520007901:CAS:528:DC%2BB3MXltVKhuw%3D%3D10.2807/1560-7917.ES.2020.25.49.2000790
ChaoDLHalloranMEObenchainVJLonginiIMJrFluTE, a publicly available stochastic influenza epidemic simulation modelPLoS Comput. Biol.20106e10006562010PLSCB...6E0656C260136610.1371/journal.pcbi.1000656
PolackFPSafety and efficacy of the BNT162b2 mRNA Covid-19 vaccineN. Engl. J. Med.2020383260326151:CAS:528:DC%2BB3MXotFSjuw%3D%3D10.1056/NEJMoa2034577
KirolosAImported case of measles in a university setting leading to an outbreak of measles in Edinburgh, Scotland from September to December 2016Epidemiol. Infect.20181467417461:STN:280:DC%2BC1Mnjs12nsw%3D%3D10.1017/S0950268818000602
HuangBIntegrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese citiesNat. Hum. Behav.2021569570510.1038/s41562-021-01063-2
ARS Nouvelle Aquitaine. Communiqué de presse - Covid-19 - La nécessité de se faire vacciner rapidement pour éviter la propagation du virus, notamment du variant delta. http://www.nouvelle-aquitaine.ars.sante.fr/communique-de-presse-covid-19-la-necessite-de-se-faire-vacciner-rapidement-pour-eviter-la (2021).
BastaNEHalloranMEMatrajtLLonginiIMEstimating influenza vaccine efficacy from challenge and community-based study dataAm. J. Epidemiol.20081681343135210.1093/aje/kwn259
Yang, J. et al. Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01155-z (2021).
BéraudGThe French Connection: the first large population-based contact survey in France relevant for the spread of infectious diseasesPLoS ONE201510e013320310.1371/journal.pone.0133203
BlanquartFCharacterisation of vaccine breakthrough infections of SARS-CoV-2 Delta and Alpha variants and within-host viral load dynamics in the community, France, June to July 2021Euro. Surveill.20212621008241:CAS:528:DC%2BB3MXitF2mtrnM10.2807/1560-7917.ES.2021.26.37.2100824
ARS Bretagne. COVID-19: en Pays de Brest, la vaccination s’accélère. http://www.bretagne.ars.sante.fr/covid-19-en-pays-de-brest-la-vaccination-saccelere (2021).
Higdon, M. M. et al. A systematic review of COVID-19 vaccine efficacy and effectiveness against SARS-CoV-2 infection and disease. medRxivhttps://www.medrxiv.org/content/10.1101/2021.09.17.21263549v1 (2021).
HarderTEffectiveness of COVID-19 vaccines against SARS-CoV-2 infection with the Delta (B.1.617.2) variant: second interim results of a living systematic review and meta-analysis, 1 January to 25 August 2021Euro. Surveill.20212621009201:CAS:528:DC%2BB3MXisVCrurvF8518304
SPF. Coronavirus: circulation des variants du SARS-CoV-2. https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-circulation-des-variants-du-sars-cov-2 (2021).
LeclercQJWhat settings have been linked to SARS-CoV-2 transmission clusters?Wellcome Open Res.202058310.12688/wellcomeopenres.15889.2
HozéNMonitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serologi
29015_CR19
L Di Domenico (29015_CR62) 2021; 12
DL Chao (29015_CR12) 2010; 6
C Tran Kiem (29015_CR25) 2021; 38
29015_CR55
29015_CR10
29015_CR54
29015_CR59
29015_CR17
P Bosetti (29015_CR35) 2022; 20
M Pegorie (29015_CR40) 2014; 19
M Ajelli (29015_CR11) 2010; 10
29015_CR60
FP Polack (29015_CR16) 2020; 383
29015_CR61
W Xu (29015_CR49) 2021; 11
T Harder (29015_CR18) 2021; 26
NE Basta (29015_CR15) 2008; 168
B Huang (29015_CR31) 2021; 5
E Valdano (29015_CR48) 2021; 28
L Matrajt (29015_CR27) 2020; 7
F Finger (29015_CR37) 2018; 15
Q-H Liu (29015_CR14) 2018; 115
29015_CR44
29015_CR43
29015_CR46
29015_CR45
V Marziano (29015_CR29) 2019; 8
29015_CR47
F Riccardo (29015_CR63) 2020; 25
29015_CR50
SM Kissler (29015_CR64) 2021; 385
L Willem (29015_CR13) 2017; 17
QJ Leclerc (29015_CR53) 2020; 5
S Martin (29015_CR38) 2014; 92
29015_CR33
F Blanquart (29015_CR65) 2021; 26
29015_CR36
S Merler (29015_CR5) 2016; 10
CP Muller (29015_CR51) 2021; 5
A Le Menach (29015_CR4) 2014; 32
29015_CR42
AM Geddes (29015_CR7) 2006; 24
N Gozzi (29015_CR34) 2021; 17
29015_CR22
29015_CR66
29015_CR21
29015_CR24
29015_CR68
29015_CR23
B Capitano (29015_CR39) 2019; 15
29015_CR67
29015_CR26
29015_CR28
A Kirolos (29015_CR41) 2018; 146
G Béraud (29015_CR58) 2015; 10
D Mistry (29015_CR57) 2021; 12
29015_CR1
29015_CR2
29015_CR3
T Gallagher (29015_CR8) 2019; 41
BM Althouse (29015_CR52) 2020; 18
29015_CR6
N Hozé (29015_CR20) 2021; 6
29015_CR30
29015_CR9
S Moore (29015_CR32) 2021; 21
CJE Metcalf (29015_CR56) 2015; 10
References_xml – reference: ARS Bretagne. COVID-19: en Pays de Brest, la vaccination s’accélère. http://www.bretagne.ars.sante.fr/covid-19-en-pays-de-brest-la-vaccination-saccelere (2021).
– reference: MerlerSContaining Ebola at the source with Ring vaccinationPLOS Neglected Tropical Dis.201610e000509310.1371/journal.pntd.0005093
– reference: MarzianoVParental vaccination to reduce measles immunity gaps in ItalyeLife20198e449421:CAS:528:DC%2BB3cXht1CrtrjL10.7554/eLife.44942
– reference: Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2101765 (2021).
– reference: RiccardoFEpidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020Euro. Surveill.20202520007901:CAS:528:DC%2BB3MXltVKhuw%3D%3D10.2807/1560-7917.ES.2020.25.49.2000790
– reference: AjelliMComparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation modelsBMC Infect. Dis.20101010.1186/1471-2334-10-190
– reference: BastaNEHalloranMEMatrajtLLonginiIMEstimating influenza vaccine efficacy from challenge and community-based study dataAm. J. Epidemiol.20081681343135210.1093/aje/kwn259
– reference: Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVModelling safe protocols for reopening schools during the COVID-19 pandemic in FranceNat. Commun.2021122021NatCo..12.1073D10.1038/s41467-021-21249-6
– reference: Bansal Lab. US COVID-19 Vaccination Tracking. http://www.vaccinetracking.us (2021).
– reference: BéraudGThe French Connection: the first large population-based contact survey in France relevant for the spread of infectious diseasesPLoS ONE201510e013320310.1371/journal.pone.0133203
– reference: SPF. Coronavirus: circulation des variants du SARS-CoV-2. https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-circulation-des-variants-du-sars-cov-2 (2021).
– reference: ChaoDLHalloranMEObenchainVJLonginiIMJrFluTE, a publicly available stochastic influenza epidemic simulation modelPLoS Comput. Biol.20106e10006562010PLSCB...6E0656C260136610.1371/journal.pcbi.1000656
– reference: Smith, L. E. et al. Adherence to the test, trace and isolate system: results from a time series of 21 nationally representative surveys in the UK (the COVID-19 Rapid Survey of Adherence to Interventions and Responses [CORSAIR] study). medRxivhttps://doi.org/10.1101/2020.09.15.20191957 (2020).
– reference: FingerFThe potential impact of case-area targeted interventions in response to cholera outbreaks: a modeling studyPLoS Med.201815e100250910.1371/journal.pmed.1002509
– reference: Krymova, E. et al. Trend estimation and short-term forecasting of COVID-19 cases and deaths worldwide. arXivhttps://arxiv.org/abs/2106.10203 (2021).
– reference: Ritchie, H. et al. Our World In Data. Coronavirus Pandemic (COVID-19). https://ourworldindata.org/coronavirus (2021).
– reference: SPF. COVID-19: point épidémiologique du 6 mai 2021. https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-6-mai-2021 (2021).
– reference: YouGov. COVID-19: Willingness to be vaccinated. https://yougov.co.uk/topics/international/articles-reports/2021/01/12/covid-19-willingness-be-vaccinated (2021).
– reference: MooreSHillEMTildesleyMJDysonLKeelingMJVaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling studyLancet Infect. Dis.2021217938021:CAS:528:DC%2BB3MXntFOrtL4%3D10.1016/S1473-3099(21)00143-2
– reference: MacIntyre, C. R., Costantino, V. & Trent, M. Modelling of COVID-19 vaccination strategies and herd immunity, in scenarios of limited and full vaccine supply in NSW, Australia. Vaccinehttps://doi.org/10.1016/j.vaccine.2021.04.042 (2021).
– reference: KirolosAImported case of measles in a university setting leading to an outbreak of measles in Edinburgh, Scotland from September to December 2016Epidemiol. Infect.20181467417461:STN:280:DC%2BC1Mnjs12nsw%3D%3D10.1017/S0950268818000602
– reference: Bubar, K. M. et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Sciencehttps://doi.org/10.1126/science.abe6959 (2021).
– reference: Christensen, H. et al. COVID-19 transmission in a university setting: a rapid review of modelling studies. medRxivhttps://doi.org/10.1101/2020.09.07.20189688 (2020).
– reference: European Centre for Disease Prevention and Control. Overview of the implementation of COVID-19 vaccination strategies and deployment plans in the EU/EEA. https://www.ecdc.europa.eu/en/publications-data/overview-implementation-covid-19-vaccination-strategies-and-deployment-plans (2021).
– reference: GozziNBajardiPPerraNThe importance of non-pharmaceutical interventions during the COVID-19 vaccine rolloutPLoS Comput. Biol.202117e10093462021PLSCB..17E9346G1:CAS:528:DC%2BB3MXitFWmu77M10.1371/journal.pcbi.1009346
– reference: Tran KiemCA modelling study investigating short and medium-term challenges for COVID-19 vaccination: From prioritisation to the relaxation of measuresEClinicalMedicine20213810100110.1016/j.eclinm.2021.101001
– reference: ARS Nouvelle Aquitaine. Communiqué de presse - Covid-19 - La nécessité de se faire vacciner rapidement pour éviter la propagation du virus, notamment du variant delta. http://www.nouvelle-aquitaine.ars.sante.fr/communique-de-presse-covid-19-la-necessite-de-se-faire-vacciner-rapidement-pour-eviter-la (2021).
– reference: Lu, D. et al. Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual contact pattern variations. medRxivhttps://doi.org/10.1101/2021.03.19.21253974 (2021).
– reference: MartinSPost-licensure deployment of oral cholera vaccines: a systematic reviewBull. World Health Organ20149288189310.2471/BLT.14.139949
– reference: DW.COM. COVID: Cologne project aims to vaccinate urban hot spots. https://www.dw.com/en/covid-cologne-project-aims-to-vaccinate-urban-hot-spots/a-57472989 (2021).
– reference: Moreno López, J. A. et al. Anatomy of digital contact tracing: role of age, transmission setting, adoption and case detection. Sci. Adv.https://doi.org/10.1126/sciadv.abd8750 (2021).
– reference: XuWSuSJiangSRing vaccination of COVID-19 vaccines in medium- and high-risk areas of countries with low incidence of SARS-CoV-2 infectionClin. Transl. Med.2021111:CAS:528:DC%2BB3MXlvVygtLo%3D336349797888539
– reference: Pullano, G. et al. Underdetection of COVID-19 cases in France threatens epidemic control. Naturehttps://doi.org/10.1038/s41586-020-03095-6 (2020).
– reference: Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancethttps://doi.org/10.1016/S0140-6736(15)61117-5 (2015).
– reference: MatrajtLEatonJLeungTBrownERVaccine optimization for COVID-19: Who to vaccinate first?Sci. Adv.20207eabf137410.1126/sciadv.abf1374
– reference: STAT. To vaccinate more Americans, lean into outbreaks. https://www.statnews.com/2021/08/19/lean-into-outbreaks-to-vaccinate-more-americans/ (2021).
– reference: LeclercQJWhat settings have been linked to SARS-CoV-2 transmission clusters?Wellcome Open Res.202058310.12688/wellcomeopenres.15889.2
– reference: Le MenachAIncreased measles–mumps–rubella (MMR) vaccine uptake in the context of a targeted immunisation campaign during a measles outbreak in a vaccine-reluctant community in EnglandVaccine2014321147115210.1016/j.vaccine.2014.01.002
– reference: COVID-19 (coronavirus) in Ontario. Ontario’s COVID-19 vaccination plan. https://covid-19.ontario.ca/ontarios-covid-19-vaccination-plan (2021).
– reference: GeddesAMThe history of smallpoxClin. Dermatol.20062415215710.1016/j.clindermatol.2005.11.009
– reference: PolackFPSafety and efficacy of the BNT162b2 mRNA Covid-19 vaccineN. Engl. J. Med.2020383260326151:CAS:528:DC%2BB3MXotFSjuw%3D%3D10.1056/NEJMoa2034577
– reference: HuangBIntegrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese citiesNat. Hum. Behav.2021569570510.1038/s41562-021-01063-2
– reference: Faucher, B. et al. Code for Agent-based modelling of reactive vaccination of workplaces and schools against COVID-19. https://doi.org/10.5281/zenodo.5910314 (Zenodo, 2022).
– reference: Institut Pasteur. Proportion de la population infectée par SARS-CoV-2. https://modelisation-covid19.pasteur.fr/realtime-analysis/infected-population/ (2021).
– reference: Higdon, M. M. et al. A systematic review of COVID-19 vaccine efficacy and effectiveness against SARS-CoV-2 infection and disease. medRxivhttps://www.medrxiv.org/content/10.1101/2021.09.17.21263549v1 (2021).
– reference: YouGov. Personal measures taken to avoid COVID-19. https://yougov.co.uk/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19 (2021).
– reference: BlanquartFCharacterisation of vaccine breakthrough infections of SARS-CoV-2 Delta and Alpha variants and within-host viral load dynamics in the community, France, June to July 2021Euro. Surveill.20212621008241:CAS:528:DC%2BB3MXitF2mtrnM10.2807/1560-7917.ES.2021.26.37.2100824
– reference: GallagherTLipsitchMPostexposure effects of vaccines on infectious diseasesEpidemiol. Rev.201941132710.1093/epirev/mxz014
– reference: MistryDInferring high-resolution human mixing patterns for disease modelingNat Commun2021122021NatCo..12..316M1:CAS:528:DC%2BB3MXhsVels7w%3D10.1038/s41467-020-20544-y
– reference: BBC News. Covid-19: More variant hotspots to get surge tests and jabs. https://www.bbc.com/news/uk-57172139 (2021).
– reference: WillemLVerelstFBilckeJHensNBeutelsPLessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015)BMC Infect. Dis.20171710.1186/s12879-017-2699-8
– reference: ValdanoELeeJBansalSRubrichiSColizzaVHighlighting socio-economic constraints on mobility reductions during COVID-19 restrictions in France can inform effective and equitable pandemic responseJ. Travel Med.20212810.1093/jtm/taab045
– reference: MetcalfCJESeven challenges in modeling vaccine preventable diseasesEpidemics20151011151:STN:280:DC%2BC2MjhtlaisA%3D%3D10.1016/j.epidem.2014.08.004
– reference: He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med.https://doi.org/10.1038/s41591-020-0869-5 (2020).
– reference: CapitanoBDillonKLeDucAAtkinsonBBurmanCExperience implementing a university-based mass immunization program in response to a meningococcal B outbreakHum. Vaccines Immunotherapeutics20191571772410.1080/21645515.2018.1547606
– reference: MullerCPCan integrated post-exposure vaccination against SARS-COV2 mitigate severe disease?Lancet Reg. Health Euro.2021510.1016/j.lanepe.2021.100118
– reference: LiuQ-HMeasurability of the epidemic reproduction number in data-driven contact networksPNAS201811512680126851:CAS:528:DC%2BC1cXisVyhu7zO10.1073/pnas.1811115115
– reference: HarderTEffectiveness of COVID-19 vaccines against SARS-CoV-2 infection with the Delta (B.1.617.2) variant: second interim results of a living systematic review and meta-analysis, 1 January to 25 August 2021Euro. Surveill.20212621009201:CAS:528:DC%2BB3MXisVCrurvF8518304
– reference: PegorieMMeasles outbreak in Greater Manchester, England, October 2012 to September 2013: epidemiology and controlEuro. Surveill.2014192098210.2807/1560-7917.ES2014.19.49.20982
– reference: ARS Grand Est. COVID-19: présence du variant indien dans l’Eurométropole et plan d’actions immédiat. http://www.grand-est.ars.sante.fr/covid-19-presence-du-variant-indien-dans-leurometropole-et-plan-dactions-immediat (2021).
– reference: Grais, R. F. et al. Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. J. R. Soc. Interfacehttps://doi.org/10.1098/rsif.2007.1038 (2007).
– reference: Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med.https://doi.org/10.1038/s41591-020-0962-9 (2020).
– reference: HozéNMonitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: a modelling studyLancet Public Health20216e408e41510.1016/S2468-2667(21)00064-5
– reference: Google. COVID-19 Community Mobility Report. https://www.google.com/covid19/mobility?hl=en (2021).
– reference: Yang, J. et al. Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01155-z (2021).
– reference: AlthouseBMSuperspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and controlPLoS Biol.202018e30008971:CAS:528:DC%2BB3cXisVWgtrbM10.1371/journal.pbio.3000897
– reference: KisslerSMViral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated personsN. Engl. J. Med.20213852489249110.1056/NEJMc2102507
– reference: BosettiPEpidemiology and control of SARS-CoV-2 epidemics in partially vaccinated populations: a modeling study applied to FranceBMC Med202220331:CAS:528:DC%2BB38Xit1elu7g%3D10.1186/s12916-022-02235-1
– volume: 12
  year: 2021
  ident: 29015_CR57
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20544-y
– volume: 146
  start-page: 741
  year: 2018
  ident: 29015_CR41
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268818000602
– ident: 29015_CR61
  doi: 10.1038/s41591-020-0962-9
– ident: 29015_CR6
  doi: 10.1016/S0140-6736(15)61117-5
– volume: 7
  start-page: eabf1374
  year: 2020
  ident: 29015_CR27
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf1374
– ident: 29015_CR19
– ident: 29015_CR30
– volume: 115
  start-page: 12680
  year: 2018
  ident: 29015_CR14
  publication-title: PNAS
  doi: 10.1073/pnas.1811115115
– ident: 29015_CR17
  doi: 10.1101/2021.09.17.21263549
– ident: 29015_CR9
  doi: 10.1038/s41591-020-0869-5
– ident: 29015_CR1
– ident: 29015_CR54
  doi: 10.1101/2020.09.07.20189688
– volume: 383
  start-page: 2603
  year: 2020
  ident: 29015_CR16
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– ident: 29015_CR44
– volume: 10
  start-page: 11
  year: 2015
  ident: 29015_CR56
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2014.08.004
– volume: 10
  year: 2010
  ident: 29015_CR11
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-10-190
– volume: 25
  start-page: 2000790
  year: 2020
  ident: 29015_CR63
  publication-title: Euro. Surveill.
  doi: 10.2807/1560-7917.ES.2020.25.49.2000790
– volume: 15
  start-page: 717
  year: 2019
  ident: 29015_CR39
  publication-title: Hum. Vaccines Immunotherapeutics
  doi: 10.1080/21645515.2018.1547606
– volume: 92
  start-page: 881
  year: 2014
  ident: 29015_CR38
  publication-title: Bull. World Health Organ
  doi: 10.2471/BLT.14.139949
– volume: 168
  start-page: 1343
  year: 2008
  ident: 29015_CR15
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwn259
– ident: 29015_CR22
– ident: 29015_CR60
– ident: 29015_CR2
– ident: 29015_CR47
– ident: 29015_CR21
  doi: 10.1073/pnas.2112656119
– ident: 29015_CR43
– ident: 29015_CR26
  doi: 10.1126/science.abe6959
– volume: 19
  start-page: 20982
  year: 2014
  ident: 29015_CR40
  publication-title: Euro. Surveill.
  doi: 10.2807/1560-7917.ES2014.19.49.20982
– volume: 10
  start-page: e0133203
  year: 2015
  ident: 29015_CR58
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0133203
– volume: 385
  start-page: 2489
  year: 2021
  ident: 29015_CR64
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2102507
– volume: 41
  start-page: 13
  year: 2019
  ident: 29015_CR8
  publication-title: Epidemiol. Rev.
  doi: 10.1093/epirev/mxz014
– volume: 17
  start-page: e1009346
  year: 2021
  ident: 29015_CR34
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009346
– ident: 29015_CR23
  doi: 10.1038/s41586-020-03095-6
– volume: 21
  start-page: 793
  year: 2021
  ident: 29015_CR32
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00143-2
– volume: 26
  start-page: 2100824
  year: 2021
  ident: 29015_CR65
  publication-title: Euro. Surveill.
  doi: 10.2807/1560-7917.ES.2021.26.37.2100824
– volume: 5
  start-page: 83
  year: 2020
  ident: 29015_CR53
  publication-title: Wellcome Open Res.
  doi: 10.12688/wellcomeopenres.15889.2
– ident: 29015_CR59
– volume: 24
  start-page: 152
  year: 2006
  ident: 29015_CR7
  publication-title: Clin. Dermatol.
  doi: 10.1016/j.clindermatol.2005.11.009
– ident: 29015_CR55
– volume: 17
  year: 2017
  ident: 29015_CR13
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-017-2699-8
– volume: 5
  start-page: 695
  year: 2021
  ident: 29015_CR31
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-021-01063-2
– ident: 29015_CR66
  doi: 10.1056/NEJMoa2101765
– ident: 29015_CR68
  doi: 10.5281/zenodo.5910314
– ident: 29015_CR67
  doi: 10.1101/2020.09.15.20191957
– volume: 28
  year: 2021
  ident: 29015_CR48
  publication-title: J. Travel Med.
  doi: 10.1093/jtm/taab045
– ident: 29015_CR46
– ident: 29015_CR3
– ident: 29015_CR28
  doi: 10.1101/2021.03.19.21253974
– volume: 10
  start-page: e0005093
  year: 2016
  ident: 29015_CR5
  publication-title: PLOS Neglected Tropical Dis.
  doi: 10.1371/journal.pntd.0005093
– ident: 29015_CR42
– volume: 6
  start-page: e1000656
  year: 2010
  ident: 29015_CR12
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000656
– volume: 12
  year: 2021
  ident: 29015_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21249-6
– volume: 32
  start-page: 1147
  year: 2014
  ident: 29015_CR4
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2014.01.002
– volume: 20
  start-page: 33
  year: 2022
  ident: 29015_CR35
  publication-title: BMC Med
  doi: 10.1186/s12916-022-02235-1
– volume: 11
  year: 2021
  ident: 29015_CR49
  publication-title: Clin. Transl. Med.
– ident: 29015_CR50
  doi: 10.1016/j.vaccine.2021.04.042
– volume: 18
  start-page: e3000897
  year: 2020
  ident: 29015_CR52
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000897
– volume: 8
  start-page: e44942
  year: 2019
  ident: 29015_CR29
  publication-title: eLife
  doi: 10.7554/eLife.44942
– volume: 5
  year: 2021
  ident: 29015_CR51
  publication-title: Lancet Reg. Health Euro.
  doi: 10.1016/j.lanepe.2021.100118
– volume: 26
  start-page: 2100920
  year: 2021
  ident: 29015_CR18
  publication-title: Euro. Surveill.
– ident: 29015_CR33
  doi: 10.1038/s41562-021-01155-z
– ident: 29015_CR36
  doi: 10.1098/rsif.2007.1038
– volume: 6
  start-page: e408
  year: 2021
  ident: 29015_CR20
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00064-5
– volume: 15
  start-page: e1002509
  year: 2018
  ident: 29015_CR37
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002509
– ident: 29015_CR10
  doi: 10.1126/sciadv.abd8750
– ident: 29015_CR45
– volume: 38
  start-page: 101001
  year: 2021
  ident: 29015_CR25
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2021.101001
– ident: 29015_CR24
SSID ssj0000391844
Score 2.4994295
Snippet With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control....
The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1414
SubjectTerms 631/114/2397
639/705/1042
692/700/478/174
Agent-based models
Coronaviruses
COVID-19
COVID-19 - prevention & control
COVID-19 vaccines
Demography
Disease control
Disease transmission
Epidemics
Humanities and Social Sciences
Humans
Immunization
Immunology
Life Sciences
multidisciplinary
Santé publique et épidémiologie
Schools
Science
Science (multidisciplinary)
Systems Analysis
Vaccination
Vaccines
Vaccinology
Viral diseases
Workplace
Workplaces
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQJSQuiJ3QggziBlbreol9HArVgFgOLJqb5TgvdCSUQZ1ppfn3vGdnpg0VcOEWOU5i-W2f8zbGnlvXdk5LwLOJiUJ7ZYVP0YlOu4SQ38RkKDn5w0c7_arfzczsUqsvigkr5YHLxu07C1Y1qQFIrTZQOxu71qvopG09QD74oM27dJjKOlh5PLroIUvmQLn9pc46gYLXyXVoxHpkiXLBfrQvJxQOeRVrXg2Z_M1vms3R8S12c8CRfFLWf5tdg_4Ou146S67vstmEUqYE2aiW5243lHbOFx1HkJhVHD-PKc3Lv0AavwjQ4rFv-TJX58Tr73GOCJIfffr29rWQ_h77fPzmy9FUDE0URDK1XglDvk2twGo0_tDK6KyrExIFJDgwWnaus6hqbOs6LevG2w4orTJ5jeKs7rOdftHDQ8bhsPGdkrFx0elkrGtUQvHXEandoJaqmNxsZ0hDfXFqc_EjZD-3cqGQICAJQiZBWFfsxfaZn6W6xl9nvyIqbWdSZew8gPwSBn4J_-KXij1DGo_eMZ28DzSGxhwB5YE_x0l7GxYIg0wvA0JHRIvk-KzY0-1tlEZyscQeFmdlDiFuaSr2oHDM9lPKKEIDvmL1iJdGaxnf6ecnueI3gkpSnRV7ueG6i2X9eb8e_Y_92mU3DkloKISx3mM7q9MzeIw4bNU8ySL3C5XaLXE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLYm-goIC4gdW6XvJ8QkNhGBDLgUVzsxzHaUdCSelMK82_5z0nk1Go6C1ynM1v--K3MfbSQFWDEhH_TbTnykrDbfDAawUBIb_2QVNy8pevZvZTfZrreb_htuzDKjc6MSnqqg20R76PhhttNbmd3pz-4dQ1iryrfQuN6-yGQEtDIV0w_TDssVD1c1Cqz5U5kLC_VEkzUAg7ORA1X4_sUSrbj1bmhIIiLyPOy4GT_3hPk1Ga3mG3ezSZTzry32XXYnOP3ez6S67vs_mEEqc4WaoqTz1vKPk8b-scoWJSdPmFD2HR7QjS-DZMK_dNlS9TjU48PvYLxJH50bdfH99xYR-w79P3P45mvG-lwIMu1Ipr8nAqGXH9QMRKeDBQBCRNFBGiVqKG2qDCMRXUShSlNXWk5MpgFQq1fMh2mraJuyyPh6WtpfAleFBBGyhlQCWgPNK8RF2VMbFZThf6KuPU7OK3S95uCa4jgUMSuEQCt87Yq-Ga067GxpWz3xKVhplUHzsNtGfHrhc3ByYaWYYyxlApHQswvq6s9CBMZWMUGXuBNB7dYzb57GgMTTrCygN7gZP2Nizgesleui0fZuz5cBplkhwtvonteTeHcLfQGXvUcczwKKklYQKbsWLES6N3GZ9pFiep7jdCS1KgGXu94brta_1_vR5f_RVP2K1DEgcKUSz22M7q7Dw-RZy1Kp8lYfoLE1MjLQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVkhcKt41lMogbmDRzT68ezSFKkQ8DgWU22q9XreRKgc1aaX8e2bWj8qUInGL1uNk5Xl98cx8C_Ba6arWggX8byJdJgxXmfFOZ7XQHiG_dF7ScPKXr2r6Q8zmcr4Fk34WJjbtR0rLGKb77rB3KxFdmnrPqfIns80d2CGqdrTtnaKYncyGNyvEea6F6CZkDrn-y82jLBTJ-jG3nFEr5E2cebNd8o-aaUxFx_dht8OQadHu-gFsheYh3G1Pldw8gnlB41IZ5acqjSfd0Mh5uqxTBIgxvKVXzvtF-x6Q1q-bs1LXVOkqMnPi51O3QPSYHn37-elDxsxjODn--P1omnUHKGRe5mKdSaprCh6UwMQfKua00rlHhQQWdJCC1bpWGGZUpWvB8tKoOtBIpTcCXZk_ge1m2YQ9SMOkNDVnrtROCy-VLrlH1xcONV1ihEqA9Y_T-o5bnI64OLexxs21bVVgUQU2qsBuEngz3POrZdb4p_R70tIgSazYcWF5cWo7K7FaBcVLX4bgKyFDrpWrK8OdZqoyIbAEXqGOR98xLT5bWsNEjmDy0Fyh0H5vArbz55VF2IhIkYqeCbwcLqMnUnnFNWF52coQ2mYygaetxQw_xSUnJGASyEe2NNrL-EqzOIts3wgoKWwm8La3uutt3f68nv2f-HO4NyH3oEbFfB-21xeX4QWirXV50LnXb833Itg
  priority: 102
  providerName: Springer Nature
Title Agent-based modelling of reactive vaccination of workplaces and schools against COVID-19
URI https://link.springer.com/article/10.1038/s41467-022-29015-y
https://www.ncbi.nlm.nih.gov/pubmed/35301289
https://www.proquest.com/docview/2640566407
https://www.proquest.com/docview/2640991615
https://ehesp.hal.science/hal-03615409
https://pubmed.ncbi.nlm.nih.gov/PMC8931017
https://doaj.org/article/86e63bcbeecd45e786afd93a816d9ee1
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aRUi8IO6EjSog3iCwzJfYDwhlZaVUbCDGUN8sx3G2SlPK2m6i_55znLRT2UDiJY0cJ418bp9zbgAvpSorxVOPexNhE66ZTLSzKqm4cgj5hXWCkpMPDmX_mA-GYrgGi3ZH7QJOb9zaUT-p48nZm1_n8_co8O-alHH1dsqDuFNcOnkFRTJfh020TBl1NDho4X7QzEzjhoa3uTM337pin0IZf7Q6pxQkeR2BXg-k_MObGoxU7y7cadFlnDfscA_WfH0fbjX9JucPYJhTIlVClquMQw8cSkaPx1WM0DEovvjSOjdqvhDS-FXYVmzrMp6Gmp14fmJHiCvj7pcfnz4kqX4IR739791-0rZWSJzI-CwR5PHkzEuOkMCXqVVSZQ5J5VOvvOBppSqJCkiWqsKFLLSsPCVbOs1RyNkj2KjHtX8Csd8tdMVSWyiruBNSFcyhUuAWeaBA3RVBulhO49qq49T84swE7zdTpiGBQRKYQAIzj-DV8p6fTc2Nf87eIyotZ1K97DAwnpyYVvyMkl6ywhXeu5ILnylpq1Izq1JZau_TCF4gjVee0c8_GxpDE48wc0df4qTtBQuYBaMaBJSIIckdGsHz5WWUUXK82NqPL5o5hMNTEcHjhmOWf8UEI4ygI8hWeGnlXVav1KPTUAccoSYp1AheL7ju6rX-vl5P_2_6FtzeJfGgEMZsGzZmkwv_DHHYrOjAejbM8Kh6HzuwmeeDowH-7u0ffv2Go13Z7YQvHJ0ghL8BQ7Yx4A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwheEHcCAwKCJ4g215c4DwiVjdKybjwwpj5hOY6zVULpWLuh_id-JOc4Sasysbe9VY7ruj63Lz43gNdKF6UWzOO7ibSJyLhKMmd1UgrtEPJL6yQlJ-_tq_538WUkR2vwp82FobDKVicGRV1MHN2Rb6LhRltNbqcPJ78S6hpF3tW2hUbNFrt-_htf2abvBztI3zedTu_TwXY_aboKJE6mYpZIcvYJ7nEpzXzBrFY6dbhLz7z2UrBSlwplTxW6FCzNM1V6yjN0mUD-5rjqNbguONpxykvvfV7c6FCtdS1Ek5mzxfXmVAQ9RAHz5K6UyXzF-oUmAWjTjikE8yK-vRim-Y-vNpjA3h243WDXuFsz211Y89U9uFF3s5zfh1GX0rQSsotFHDrsUKp7PCljBKZBrcbn1rlxff9I48ugsNhWRTwNFUHx85EdI2qNt78eDnYSlj2Ab1dwxA9hvZpU_jHEvpNnJWc211YLJ5XOuUOVIyxyWI6aMQLWHqdxTU1zaq3x0wTfOtemJoFBEphAAjOP4O3iOyd1RY9LZ38kKi1mUjXuMDA5PTKNcButvOK5y713hZA-1cqWRcatZqrIvGcRvEIar6zR7w4NjSGAQBC7lZ3jpI2WBUyjR6ZmyfURvFw8Rg1Abh1b-clZPYdQPpMRPKo5ZvFTXHJCIFkE6Qovrexl9Uk1Pg5VxhHIkrqO4F3Ldctt_f-8nlz-L17Azf7B3tAMB_u7T-FWh0SDgiPTDVifnZ75Z4jwZvnzIFgx_LhaOf4LMb1cXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqUBcEDsDBQYEJxiljpfxHBBKm0YJLaFiU05YHo-njYQmpUmL8s_4ebw3S6JQ0VtvkceZOH7bZ78N4JXSWa4F83g2kTYSCVdR4qyOcqEdQn5pnaTk5I8jNfgmPozleAP-NLkwFFbZ6MRSUWdTR3fkbTTcaKvJ7dTO67CIw17__cmviDpIkae1aadRsci-X_zG49vs3bCHtH7d6fT3vu4OorrDQORkLOaRJMef4B5fq5nPmNVKxw5X7JnXXgqW61yhHKpM54LFaaJyTzmHLhHI6xzfeg02YzoTtWBzZ290-Hl5v0OV17UQdZ7ONtftmSi1EoXPk_NSRos1W1i2DEALd0wBmRfR7sWgzX88t6VB7N-GWzWSDbsV692BDV_chetVb8vFPRh3KWkrIiuZhWW_HUp8D6d5iDC1VLLhuXVuUt1G0vgqRCy0RRbOyvqg-PnIThDDhrufvg97EUvuw5cr2OQH0CqmhX8Eoe-kSc6ZTbXVwkmlU-5QAQmL_JaingyANdtpXF3hnBpt_DSlp51rU5HAIAlMSQKzCODN8jsnVX2PS2fvEJWWM6k2dzkwPT0ytagbrbziqUu9d5mQPtbK5lnCrWYqS7xnAbxEGq-9Y9A9MDSGcAIh7XZyjpO2GhYwtVaZmZUMBPBi-Rj1ATl5bOGnZ9UcwvxMBvCw4pjlT3HJCY8kAcRrvLS2lvUnxeS4rDmOsJaUdwBvG65bLev_-_X48n_xHG6gDJuD4Wj_CdzskGRQpGS8Ba356Zl_inBvnj6rJSuEH1cryn8BmdFh7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agent-based+modelling+of+reactive+vaccination+of+workplaces+and+schools+against+COVID-19&rft.jtitle=Nature+communications&rft.au=Faucher%2C+Benjamin&rft.au=Assab%2C+Rania&rft.au=Roux%2C+Jonathan&rft.au=Levy-Bruhl%2C+Daniel&rft.date=2022-03-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-29015-y&rft.externalDocID=10_1038_s41467_022_29015_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon