Agent-based modelling of reactive vaccination of workplaces and schools against COVID-19
With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 1414 - 11 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.03.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.
The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios. |
---|---|
AbstractList | With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.
The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios. The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios. With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that distributing vaccines in schools and workplaces where cases are detected is more impactful than non-reactive strategies in a wide range of epidemic scenarios. With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout. With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout.With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control. Here, we study the impact of reactive vaccination targeting schools and workplaces where cases are detected, with an agent-based model accounting for COVID-19 natural history, vaccine characteristics, demographics, behavioural changes and social distancing. In most scenarios, reactive vaccination leads to a higher reduction in cases compared with non-reactive strategies using the same number of doses. The reactive strategy could however be less effective than a moderate/high pace mass vaccination program if initial vaccination coverage is high or disease incidence is low, because few people would be vaccinated around each case. In case of flare-ups, reactive vaccination could better mitigate spread if it is implemented quickly, is supported by enhanced test-trace-isolate and triggers an increased vaccine uptake. These results provide key information to plan an adaptive vaccination rollout. |
ArticleNumber | 1414 |
Author | Poletto, Chiara Colizza, Vittoria Roux, Jonathan Faucher, Benjamin Assab, Rania Levy-Bruhl, Daniel Boëlle, Pierre-Yves Cauchemez, Simon Zanetti, Laura Tran Kiem, Cécile |
Author_xml | – sequence: 1 givenname: Benjamin surname: Faucher fullname: Faucher, Benjamin organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique – sequence: 2 givenname: Rania surname: Assab fullname: Assab, Rania organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique – sequence: 3 givenname: Jonathan surname: Roux fullname: Roux, Jonathan organization: Univ Rennes, EHESP, CNRS, ARENES—UMR 6051 – sequence: 4 givenname: Daniel surname: Levy-Bruhl fullname: Levy-Bruhl, Daniel organization: Santé Publique France – sequence: 5 givenname: Cécile orcidid: 0000-0003-0563-8428 surname: Tran Kiem fullname: Tran Kiem, Cécile organization: Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université de Paris, UMR2000, CNRS, Collège Doctoral, Sorbonne Université – sequence: 6 givenname: Simon orcidid: 0000-0001-9186-4549 surname: Cauchemez fullname: Cauchemez, Simon organization: Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université de Paris, UMR2000, CNRS – sequence: 7 givenname: Laura surname: Zanetti fullname: Zanetti, Laura organization: Haute Autorité de Santé – sequence: 8 givenname: Vittoria orcidid: 0000-0002-2113-2374 surname: Colizza fullname: Colizza, Vittoria organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology – sequence: 9 givenname: Pierre-Yves surname: Boëlle fullname: Boëlle, Pierre-Yves organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique – sequence: 10 givenname: Chiara orcidid: 0000-0002-4051-1716 surname: Poletto fullname: Poletto, Chiara email: chiara.poletto@inserm.fr organization: Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35301289$$D View this record in MEDLINE/PubMed https://ehesp.hal.science/hal-03615409$$DView record in HAL |
BookMark | eNp9Uk2P0zAQjdAidln2D3BAkbgsh4C_4tgXpKp8bKVKewAhbpbjTFKX1C52WtR_j9Pswm4P64M9Gr_3Zjx-L7Mz5x1k2WuM3mNExYfIMONVgQgpiES4LA7PsguCGC5wRejZg_g8u4pxjdKiEgvGXmTntKQIEyEvsp-zDtxQ1DpCk298A31vXZf7Ng-gzWD3kO-1MdbpwXo35v_48GvbawMx167Jo1l536e409bFIZ_f_lh8KrB8lT1vdR_h6u68zL59-fx9flMsb78u5rNlYcqKDUWJGGGMAmdIYGiwFlxUhkkKGASUDLei5UgI3oiW4aqWvAVORGkkY6Skl9liUm28XqttsBsdDsprq44JHzqlw2BND0pw4LQ2NYBpWAmV4LptJNUC80YC4KT1cdLa7uoNNCbNJej-kejjG2dXqvN7JSTFCFdJ4N0ksDqh3cyWaswhynHJkNyPxa7vigX_ewdxUBsbTZq-duB3UZE0EClxwifo2xPo2u-CS0M9okqetrH4m4fd_6t__9UJICaACT7GAK0ydjj-anqM7RVGajSWmoylkrHU0VjqkKjkhHqv_iSJTqSYwK6D8L_tJ1h_AQuA3kY |
CitedBy_id | crossref_primary_10_1038_s41598_022_24967_z crossref_primary_10_1002_nav_22134 crossref_primary_10_1016_j_eiar_2024_107723 crossref_primary_10_2478_amns_2023_1_00413 crossref_primary_10_15580_gjbhs_2024_1_102024146 crossref_primary_10_1002_14651858_CD015112_pub3 crossref_primary_10_3934_mbe_2023481 crossref_primary_10_1016_j_chaos_2024_115160 crossref_primary_10_1186_s13643_023_02411_1 crossref_primary_10_1093_jpids_piae032 crossref_primary_10_1038_s41598_022_25801_2 crossref_primary_10_1016_j_apgeog_2022_102759 crossref_primary_10_3390_su15065326 crossref_primary_10_1371_journal_pcbi_1012661 crossref_primary_10_1016_j_heliyon_2024_e39725 crossref_primary_10_1016_j_idm_2023_11_008 crossref_primary_10_1098_rsif_2022_0164 crossref_primary_10_1371_journal_pone_0316294 crossref_primary_10_1016_j_healthplace_2025_103422 crossref_primary_10_1016_j_epidem_2024_100752 crossref_primary_10_1038_s41467_024_48024_7 crossref_primary_10_1038_s41567_024_02471_7 |
Cites_doi | 10.1038/s41467-020-20544-y 10.1017/S0950268818000602 10.1038/s41591-020-0962-9 10.1016/S0140-6736(15)61117-5 10.1126/sciadv.abf1374 10.1073/pnas.1811115115 10.1101/2021.09.17.21263549 10.1038/s41591-020-0869-5 10.1101/2020.09.07.20189688 10.1056/NEJMoa2034577 10.1016/j.epidem.2014.08.004 10.1186/1471-2334-10-190 10.2807/1560-7917.ES.2020.25.49.2000790 10.1080/21645515.2018.1547606 10.2471/BLT.14.139949 10.1093/aje/kwn259 10.1073/pnas.2112656119 10.1126/science.abe6959 10.2807/1560-7917.ES2014.19.49.20982 10.1371/journal.pone.0133203 10.1056/NEJMc2102507 10.1093/epirev/mxz014 10.1371/journal.pcbi.1009346 10.1038/s41586-020-03095-6 10.1016/S1473-3099(21)00143-2 10.2807/1560-7917.ES.2021.26.37.2100824 10.12688/wellcomeopenres.15889.2 10.1016/j.clindermatol.2005.11.009 10.1186/s12879-017-2699-8 10.1038/s41562-021-01063-2 10.1056/NEJMoa2101765 10.5281/zenodo.5910314 10.1101/2020.09.15.20191957 10.1093/jtm/taab045 10.1101/2021.03.19.21253974 10.1371/journal.pntd.0005093 10.1371/journal.pcbi.1000656 10.1038/s41467-021-21249-6 10.1016/j.vaccine.2014.01.002 10.1186/s12916-022-02235-1 10.1016/j.vaccine.2021.04.042 10.1371/journal.pbio.3000897 10.7554/eLife.44942 10.1016/j.lanepe.2021.100118 10.1038/s41562-021-01155-z 10.1098/rsif.2007.1038 10.1016/S2468-2667(21)00064-5 10.1371/journal.pmed.1002509 10.1126/sciadv.abd8750 10.1016/j.eclinm.2021.101001 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41467-022-29015-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_86e63bcbeecd45e786afd93a816d9ee1 PMC8931017 oai_HAL_hal_03615409v1 35301289 10_1038_s41467_022_29015_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Haute Autorité de Santé; the ANR and Fondation de France (00105995); the Municipality of Paris through the programme Emergence(s); EU H2020 (H2020-874850); EU H2020 (H2020-101003589); ANRS (ANRS0151); Institut des Sciences du Calcul et de la Donnée; – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: ANR-17-CE36-0008-05 funderid: https://doi.org/10.13039/501100001665 – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: ANR-17-CE36-0008-05 – fundername: ; grantid: ANR-17-CE36-0008-05 – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 1XC 4.4 ABAWZ BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c574t-5042443e64081ed1a8687c493e1e8e541f8f60886d8f417b96fe6285c944253 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:13:36 EDT 2025 Thu Aug 21 13:51:40 EDT 2025 Fri May 09 12:09:00 EDT 2025 Fri Jul 11 03:28:42 EDT 2025 Wed Aug 13 07:17:09 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Tue Jul 01 04:17:46 EDT 2025 Thu Apr 24 22:50:22 EDT 2025 Fri Feb 21 02:38:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Workplace COVID 19 Systems Analysis Schools Vaccination Humans |
Language | English |
License | 2022. The Author(s). Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-5042443e64081ed1a8687c493e1e8e541f8f60886d8f417b96fe6285c944253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0563-8428 0000-0002-4051-1716 0000-0001-9186-4549 0000-0002-2113-2374 0000-0002-0158-2837 0000-0002-5367-8232 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-29015-y |
PMID | 35301289 |
PQID | 2640566407 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_86e63bcbeecd45e786afd93a816d9ee1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8931017 hal_primary_oai_HAL_hal_03615409v1 proquest_miscellaneous_2640991615 proquest_journals_2640566407 pubmed_primary_35301289 crossref_citationtrail_10_1038_s41467_022_29015_y crossref_primary_10_1038_s41467_022_29015_y springer_journals_10_1038_s41467_022_29015_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-17 |
PublicationDateYYYYMMDD | 2022-03-17 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DW.COM. COVID: Cologne project aims to vaccinate urban hot spots. https://www.dw.com/en/covid-cologne-project-aims-to-vaccinate-urban-hot-spots/a-57472989 (2021). Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med.https://doi.org/10.1038/s41591-020-0962-9 (2020). BosettiPEpidemiology and control of SARS-CoV-2 epidemics in partially vaccinated populations: a modeling study applied to FranceBMC Med202220331:CAS:528:DC%2BB38Xit1elu7g%3D10.1186/s12916-022-02235-1 Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVModelling safe protocols for reopening schools during the COVID-19 pandemic in FranceNat. Commun.2021122021NatCo..12.1073D10.1038/s41467-021-21249-6 MerlerSContaining Ebola at the source with Ring vaccinationPLOS Neglected Tropical Dis.201610e000509310.1371/journal.pntd.0005093 ValdanoELeeJBansalSRubrichiSColizzaVHighlighting socio-economic constraints on mobility reductions during COVID-19 restrictions in France can inform effective and equitable pandemic responseJ. Travel Med.20212810.1093/jtm/taab045 ARS Grand Est. COVID-19: présence du variant indien dans l’Eurométropole et plan d’actions immédiat. http://www.grand-est.ars.sante.fr/covid-19-presence-du-variant-indien-dans-leurometropole-et-plan-dactions-immediat (2021). MistryDInferring high-resolution human mixing patterns for disease modelingNat Commun2021122021NatCo..12..316M1:CAS:528:DC%2BB3MXhsVels7w%3D10.1038/s41467-020-20544-y Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2101765 (2021). European Centre for Disease Prevention and Control. Overview of the implementation of COVID-19 vaccination strategies and deployment plans in the EU/EEA. https://www.ecdc.europa.eu/en/publications-data/overview-implementation-covid-19-vaccination-strategies-and-deployment-plans (2021). Christensen, H. et al. COVID-19 transmission in a university setting: a rapid review of modelling studies. medRxivhttps://doi.org/10.1101/2020.09.07.20189688 (2020). Le MenachAIncreased measles–mumps–rubella (MMR) vaccine uptake in the context of a targeted immunisation campaign during a measles outbreak in a vaccine-reluctant community in EnglandVaccine2014321147115210.1016/j.vaccine.2014.01.002 CapitanoBDillonKLeDucAAtkinsonBBurmanCExperience implementing a university-based mass immunization program in response to a meningococcal B outbreakHum. Vaccines Immunotherapeutics20191571772410.1080/21645515.2018.1547606 Ritchie, H. et al. Our World In Data. Coronavirus Pandemic (COVID-19). https://ourworldindata.org/coronavirus (2021). KisslerSMViral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated personsN. Engl. J. Med.20213852489249110.1056/NEJMc2102507 GeddesAMThe history of smallpoxClin. Dermatol.20062415215710.1016/j.clindermatol.2005.11.009 Institut Pasteur. Proportion de la population infectée par SARS-CoV-2. https://modelisation-covid19.pasteur.fr/realtime-analysis/infected-population/ (2021). Lu, D. et al. Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual contact pattern variations. medRxivhttps://doi.org/10.1101/2021.03.19.21253974 (2021). YouGov. Personal measures taken to avoid COVID-19. https://yougov.co.uk/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19 (2021). Smith, L. E. et al. Adherence to the test, trace and isolate system: results from a time series of 21 nationally representative surveys in the UK (the COVID-19 Rapid Survey of Adherence to Interventions and Responses [CORSAIR] study). medRxivhttps://doi.org/10.1101/2020.09.15.20191957 (2020). MetcalfCJESeven challenges in modeling vaccine preventable diseasesEpidemics20151011151:STN:280:DC%2BC2MjhtlaisA%3D%3D10.1016/j.epidem.2014.08.004 Moreno López, J. A. et al. Anatomy of digital contact tracing: role of age, transmission setting, adoption and case detection. Sci. Adv.https://doi.org/10.1126/sciadv.abd8750 (2021). Krymova, E. et al. Trend estimation and short-term forecasting of COVID-19 cases and deaths worldwide. arXivhttps://arxiv.org/abs/2106.10203 (2021). MarzianoVParental vaccination to reduce measles immunity gaps in ItalyeLife20198e449421:CAS:528:DC%2BB3cXht1CrtrjL10.7554/eLife.44942 Grais, R. F. et al. Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. J. R. Soc. Interfacehttps://doi.org/10.1098/rsif.2007.1038 (2007). XuWSuSJiangSRing vaccination of COVID-19 vaccines in medium- and high-risk areas of countries with low incidence of SARS-CoV-2 infectionClin. Transl. Med.2021111:CAS:528:DC%2BB3MXlvVygtLo%3D336349797888539 Pullano, G. et al. Underdetection of COVID-19 cases in France threatens epidemic control. Naturehttps://doi.org/10.1038/s41586-020-03095-6 (2020). He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med.https://doi.org/10.1038/s41591-020-0869-5 (2020). Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancethttps://doi.org/10.1016/S0140-6736(15)61117-5 (2015). MullerCPCan integrated post-exposure vaccination against SARS-COV2 mitigate severe disease?Lancet Reg. Health Euro.2021510.1016/j.lanepe.2021.100118 GallagherTLipsitchMPostexposure effects of vaccines on infectious diseasesEpidemiol. Rev.201941132710.1093/epirev/mxz014 BBC News. Covid-19: More variant hotspots to get surge tests and jabs. https://www.bbc.com/news/uk-57172139 (2021). Google. COVID-19 Community Mobility Report. https://www.google.com/covid19/mobility?hl=en (2021). MacIntyre, C. R., Costantino, V. & Trent, M. Modelling of COVID-19 vaccination strategies and herd immunity, in scenarios of limited and full vaccine supply in NSW, Australia. Vaccinehttps://doi.org/10.1016/j.vaccine.2021.04.042 (2021). Tran KiemCA modelling study investigating short and medium-term challenges for COVID-19 vaccination: From prioritisation to the relaxation of measuresEClinicalMedicine20213810100110.1016/j.eclinm.2021.101001 STAT. To vaccinate more Americans, lean into outbreaks. https://www.statnews.com/2021/08/19/lean-into-outbreaks-to-vaccinate-more-americans/ (2021). FingerFThe potential impact of case-area targeted interventions in response to cholera outbreaks: a modeling studyPLoS Med.201815e100250910.1371/journal.pmed.1002509 MatrajtLEatonJLeungTBrownERVaccine optimization for COVID-19: Who to vaccinate first?Sci. Adv.20207eabf137410.1126/sciadv.abf1374 GozziNBajardiPPerraNThe importance of non-pharmaceutical interventions during the COVID-19 vaccine rolloutPLoS Comput. Biol.202117e10093462021PLSCB..17E9346G1:CAS:528:DC%2BB3MXitFWmu77M10.1371/journal.pcbi.1009346 RiccardoFEpidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020Euro. Surveill.20202520007901:CAS:528:DC%2BB3MXltVKhuw%3D%3D10.2807/1560-7917.ES.2020.25.49.2000790 ChaoDLHalloranMEObenchainVJLonginiIMJrFluTE, a publicly available stochastic influenza epidemic simulation modelPLoS Comput. Biol.20106e10006562010PLSCB...6E0656C260136610.1371/journal.pcbi.1000656 PolackFPSafety and efficacy of the BNT162b2 mRNA Covid-19 vaccineN. Engl. J. Med.2020383260326151:CAS:528:DC%2BB3MXotFSjuw%3D%3D10.1056/NEJMoa2034577 KirolosAImported case of measles in a university setting leading to an outbreak of measles in Edinburgh, Scotland from September to December 2016Epidemiol. Infect.20181467417461:STN:280:DC%2BC1Mnjs12nsw%3D%3D10.1017/S0950268818000602 HuangBIntegrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese citiesNat. Hum. Behav.2021569570510.1038/s41562-021-01063-2 ARS Nouvelle Aquitaine. Communiqué de presse - Covid-19 - La nécessité de se faire vacciner rapidement pour éviter la propagation du virus, notamment du variant delta. http://www.nouvelle-aquitaine.ars.sante.fr/communique-de-presse-covid-19-la-necessite-de-se-faire-vacciner-rapidement-pour-eviter-la (2021). BastaNEHalloranMEMatrajtLLonginiIMEstimating influenza vaccine efficacy from challenge and community-based study dataAm. J. Epidemiol.20081681343135210.1093/aje/kwn259 Yang, J. et al. Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01155-z (2021). BéraudGThe French Connection: the first large population-based contact survey in France relevant for the spread of infectious diseasesPLoS ONE201510e013320310.1371/journal.pone.0133203 BlanquartFCharacterisation of vaccine breakthrough infections of SARS-CoV-2 Delta and Alpha variants and within-host viral load dynamics in the community, France, June to July 2021Euro. Surveill.20212621008241:CAS:528:DC%2BB3MXitF2mtrnM10.2807/1560-7917.ES.2021.26.37.2100824 ARS Bretagne. COVID-19: en Pays de Brest, la vaccination s’accélère. http://www.bretagne.ars.sante.fr/covid-19-en-pays-de-brest-la-vaccination-saccelere (2021). Higdon, M. M. et al. A systematic review of COVID-19 vaccine efficacy and effectiveness against SARS-CoV-2 infection and disease. medRxivhttps://www.medrxiv.org/content/10.1101/2021.09.17.21263549v1 (2021). HarderTEffectiveness of COVID-19 vaccines against SARS-CoV-2 infection with the Delta (B.1.617.2) variant: second interim results of a living systematic review and meta-analysis, 1 January to 25 August 2021Euro. Surveill.20212621009201:CAS:528:DC%2BB3MXisVCrurvF8518304 SPF. Coronavirus: circulation des variants du SARS-CoV-2. https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-circulation-des-variants-du-sars-cov-2 (2021). LeclercQJWhat settings have been linked to SARS-CoV-2 transmission clusters?Wellcome Open Res.202058310.12688/wellcomeopenres.15889.2 HozéNMonitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serologi 29015_CR19 L Di Domenico (29015_CR62) 2021; 12 DL Chao (29015_CR12) 2010; 6 C Tran Kiem (29015_CR25) 2021; 38 29015_CR55 29015_CR10 29015_CR54 29015_CR59 29015_CR17 P Bosetti (29015_CR35) 2022; 20 M Pegorie (29015_CR40) 2014; 19 M Ajelli (29015_CR11) 2010; 10 29015_CR60 FP Polack (29015_CR16) 2020; 383 29015_CR61 W Xu (29015_CR49) 2021; 11 T Harder (29015_CR18) 2021; 26 NE Basta (29015_CR15) 2008; 168 B Huang (29015_CR31) 2021; 5 E Valdano (29015_CR48) 2021; 28 L Matrajt (29015_CR27) 2020; 7 F Finger (29015_CR37) 2018; 15 Q-H Liu (29015_CR14) 2018; 115 29015_CR44 29015_CR43 29015_CR46 29015_CR45 V Marziano (29015_CR29) 2019; 8 29015_CR47 F Riccardo (29015_CR63) 2020; 25 29015_CR50 SM Kissler (29015_CR64) 2021; 385 L Willem (29015_CR13) 2017; 17 QJ Leclerc (29015_CR53) 2020; 5 S Martin (29015_CR38) 2014; 92 29015_CR33 F Blanquart (29015_CR65) 2021; 26 29015_CR36 S Merler (29015_CR5) 2016; 10 CP Muller (29015_CR51) 2021; 5 A Le Menach (29015_CR4) 2014; 32 29015_CR42 AM Geddes (29015_CR7) 2006; 24 N Gozzi (29015_CR34) 2021; 17 29015_CR22 29015_CR66 29015_CR21 29015_CR24 29015_CR68 29015_CR23 B Capitano (29015_CR39) 2019; 15 29015_CR67 29015_CR26 29015_CR28 A Kirolos (29015_CR41) 2018; 146 G Béraud (29015_CR58) 2015; 10 D Mistry (29015_CR57) 2021; 12 29015_CR1 29015_CR2 29015_CR3 T Gallagher (29015_CR8) 2019; 41 BM Althouse (29015_CR52) 2020; 18 29015_CR6 N Hozé (29015_CR20) 2021; 6 29015_CR30 29015_CR9 S Moore (29015_CR32) 2021; 21 CJE Metcalf (29015_CR56) 2015; 10 |
References_xml | – reference: ARS Bretagne. COVID-19: en Pays de Brest, la vaccination s’accélère. http://www.bretagne.ars.sante.fr/covid-19-en-pays-de-brest-la-vaccination-saccelere (2021). – reference: MerlerSContaining Ebola at the source with Ring vaccinationPLOS Neglected Tropical Dis.201610e000509310.1371/journal.pntd.0005093 – reference: MarzianoVParental vaccination to reduce measles immunity gaps in ItalyeLife20198e449421:CAS:528:DC%2BB3cXht1CrtrjL10.7554/eLife.44942 – reference: Dagan, N. et al. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa2101765 (2021). – reference: RiccardoFEpidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020Euro. Surveill.20202520007901:CAS:528:DC%2BB3MXltVKhuw%3D%3D10.2807/1560-7917.ES.2020.25.49.2000790 – reference: AjelliMComparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation modelsBMC Infect. Dis.20101010.1186/1471-2334-10-190 – reference: BastaNEHalloranMEMatrajtLLonginiIMEstimating influenza vaccine efficacy from challenge and community-based study dataAm. J. Epidemiol.20081681343135210.1093/aje/kwn259 – reference: Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVModelling safe protocols for reopening schools during the COVID-19 pandemic in FranceNat. Commun.2021122021NatCo..12.1073D10.1038/s41467-021-21249-6 – reference: Bansal Lab. US COVID-19 Vaccination Tracking. http://www.vaccinetracking.us (2021). – reference: BéraudGThe French Connection: the first large population-based contact survey in France relevant for the spread of infectious diseasesPLoS ONE201510e013320310.1371/journal.pone.0133203 – reference: SPF. Coronavirus: circulation des variants du SARS-CoV-2. https://www.santepubliquefrance.fr/dossiers/coronavirus-covid-19/coronavirus-circulation-des-variants-du-sars-cov-2 (2021). – reference: ChaoDLHalloranMEObenchainVJLonginiIMJrFluTE, a publicly available stochastic influenza epidemic simulation modelPLoS Comput. Biol.20106e10006562010PLSCB...6E0656C260136610.1371/journal.pcbi.1000656 – reference: Smith, L. E. et al. Adherence to the test, trace and isolate system: results from a time series of 21 nationally representative surveys in the UK (the COVID-19 Rapid Survey of Adherence to Interventions and Responses [CORSAIR] study). medRxivhttps://doi.org/10.1101/2020.09.15.20191957 (2020). – reference: FingerFThe potential impact of case-area targeted interventions in response to cholera outbreaks: a modeling studyPLoS Med.201815e100250910.1371/journal.pmed.1002509 – reference: Krymova, E. et al. Trend estimation and short-term forecasting of COVID-19 cases and deaths worldwide. arXivhttps://arxiv.org/abs/2106.10203 (2021). – reference: Ritchie, H. et al. Our World In Data. Coronavirus Pandemic (COVID-19). https://ourworldindata.org/coronavirus (2021). – reference: SPF. COVID-19: point épidémiologique du 6 mai 2021. https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-6-mai-2021 (2021). – reference: YouGov. COVID-19: Willingness to be vaccinated. https://yougov.co.uk/topics/international/articles-reports/2021/01/12/covid-19-willingness-be-vaccinated (2021). – reference: MooreSHillEMTildesleyMJDysonLKeelingMJVaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling studyLancet Infect. Dis.2021217938021:CAS:528:DC%2BB3MXntFOrtL4%3D10.1016/S1473-3099(21)00143-2 – reference: MacIntyre, C. R., Costantino, V. & Trent, M. Modelling of COVID-19 vaccination strategies and herd immunity, in scenarios of limited and full vaccine supply in NSW, Australia. Vaccinehttps://doi.org/10.1016/j.vaccine.2021.04.042 (2021). – reference: KirolosAImported case of measles in a university setting leading to an outbreak of measles in Edinburgh, Scotland from September to December 2016Epidemiol. Infect.20181467417461:STN:280:DC%2BC1Mnjs12nsw%3D%3D10.1017/S0950268818000602 – reference: Bubar, K. M. et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Sciencehttps://doi.org/10.1126/science.abe6959 (2021). – reference: Christensen, H. et al. COVID-19 transmission in a university setting: a rapid review of modelling studies. medRxivhttps://doi.org/10.1101/2020.09.07.20189688 (2020). – reference: European Centre for Disease Prevention and Control. Overview of the implementation of COVID-19 vaccination strategies and deployment plans in the EU/EEA. https://www.ecdc.europa.eu/en/publications-data/overview-implementation-covid-19-vaccination-strategies-and-deployment-plans (2021). – reference: GozziNBajardiPPerraNThe importance of non-pharmaceutical interventions during the COVID-19 vaccine rolloutPLoS Comput. Biol.202117e10093462021PLSCB..17E9346G1:CAS:528:DC%2BB3MXitFWmu77M10.1371/journal.pcbi.1009346 – reference: Tran KiemCA modelling study investigating short and medium-term challenges for COVID-19 vaccination: From prioritisation to the relaxation of measuresEClinicalMedicine20213810100110.1016/j.eclinm.2021.101001 – reference: ARS Nouvelle Aquitaine. Communiqué de presse - Covid-19 - La nécessité de se faire vacciner rapidement pour éviter la propagation du virus, notamment du variant delta. http://www.nouvelle-aquitaine.ars.sante.fr/communique-de-presse-covid-19-la-necessite-de-se-faire-vacciner-rapidement-pour-eviter-la (2021). – reference: Lu, D. et al. Data-driven estimate of SARS-CoV-2 herd immunity threshold in populations with individual contact pattern variations. medRxivhttps://doi.org/10.1101/2021.03.19.21253974 (2021). – reference: MartinSPost-licensure deployment of oral cholera vaccines: a systematic reviewBull. World Health Organ20149288189310.2471/BLT.14.139949 – reference: DW.COM. COVID: Cologne project aims to vaccinate urban hot spots. https://www.dw.com/en/covid-cologne-project-aims-to-vaccinate-urban-hot-spots/a-57472989 (2021). – reference: Moreno López, J. A. et al. Anatomy of digital contact tracing: role of age, transmission setting, adoption and case detection. Sci. Adv.https://doi.org/10.1126/sciadv.abd8750 (2021). – reference: XuWSuSJiangSRing vaccination of COVID-19 vaccines in medium- and high-risk areas of countries with low incidence of SARS-CoV-2 infectionClin. Transl. Med.2021111:CAS:528:DC%2BB3MXlvVygtLo%3D336349797888539 – reference: Pullano, G. et al. Underdetection of COVID-19 cases in France threatens epidemic control. Naturehttps://doi.org/10.1038/s41586-020-03095-6 (2020). – reference: Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancethttps://doi.org/10.1016/S0140-6736(15)61117-5 (2015). – reference: MatrajtLEatonJLeungTBrownERVaccine optimization for COVID-19: Who to vaccinate first?Sci. Adv.20207eabf137410.1126/sciadv.abf1374 – reference: STAT. To vaccinate more Americans, lean into outbreaks. https://www.statnews.com/2021/08/19/lean-into-outbreaks-to-vaccinate-more-americans/ (2021). – reference: LeclercQJWhat settings have been linked to SARS-CoV-2 transmission clusters?Wellcome Open Res.202058310.12688/wellcomeopenres.15889.2 – reference: Le MenachAIncreased measles–mumps–rubella (MMR) vaccine uptake in the context of a targeted immunisation campaign during a measles outbreak in a vaccine-reluctant community in EnglandVaccine2014321147115210.1016/j.vaccine.2014.01.002 – reference: COVID-19 (coronavirus) in Ontario. Ontario’s COVID-19 vaccination plan. https://covid-19.ontario.ca/ontarios-covid-19-vaccination-plan (2021). – reference: GeddesAMThe history of smallpoxClin. Dermatol.20062415215710.1016/j.clindermatol.2005.11.009 – reference: PolackFPSafety and efficacy of the BNT162b2 mRNA Covid-19 vaccineN. Engl. J. Med.2020383260326151:CAS:528:DC%2BB3MXotFSjuw%3D%3D10.1056/NEJMoa2034577 – reference: HuangBIntegrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese citiesNat. Hum. Behav.2021569570510.1038/s41562-021-01063-2 – reference: Faucher, B. et al. Code for Agent-based modelling of reactive vaccination of workplaces and schools against COVID-19. https://doi.org/10.5281/zenodo.5910314 (Zenodo, 2022). – reference: Institut Pasteur. Proportion de la population infectée par SARS-CoV-2. https://modelisation-covid19.pasteur.fr/realtime-analysis/infected-population/ (2021). – reference: Higdon, M. M. et al. A systematic review of COVID-19 vaccine efficacy and effectiveness against SARS-CoV-2 infection and disease. medRxivhttps://www.medrxiv.org/content/10.1101/2021.09.17.21263549v1 (2021). – reference: YouGov. Personal measures taken to avoid COVID-19. https://yougov.co.uk/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19 (2021). – reference: BlanquartFCharacterisation of vaccine breakthrough infections of SARS-CoV-2 Delta and Alpha variants and within-host viral load dynamics in the community, France, June to July 2021Euro. Surveill.20212621008241:CAS:528:DC%2BB3MXitF2mtrnM10.2807/1560-7917.ES.2021.26.37.2100824 – reference: GallagherTLipsitchMPostexposure effects of vaccines on infectious diseasesEpidemiol. Rev.201941132710.1093/epirev/mxz014 – reference: MistryDInferring high-resolution human mixing patterns for disease modelingNat Commun2021122021NatCo..12..316M1:CAS:528:DC%2BB3MXhsVels7w%3D10.1038/s41467-020-20544-y – reference: BBC News. Covid-19: More variant hotspots to get surge tests and jabs. https://www.bbc.com/news/uk-57172139 (2021). – reference: WillemLVerelstFBilckeJHensNBeutelsPLessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015)BMC Infect. Dis.20171710.1186/s12879-017-2699-8 – reference: ValdanoELeeJBansalSRubrichiSColizzaVHighlighting socio-economic constraints on mobility reductions during COVID-19 restrictions in France can inform effective and equitable pandemic responseJ. Travel Med.20212810.1093/jtm/taab045 – reference: MetcalfCJESeven challenges in modeling vaccine preventable diseasesEpidemics20151011151:STN:280:DC%2BC2MjhtlaisA%3D%3D10.1016/j.epidem.2014.08.004 – reference: He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med.https://doi.org/10.1038/s41591-020-0869-5 (2020). – reference: CapitanoBDillonKLeDucAAtkinsonBBurmanCExperience implementing a university-based mass immunization program in response to a meningococcal B outbreakHum. Vaccines Immunotherapeutics20191571772410.1080/21645515.2018.1547606 – reference: MullerCPCan integrated post-exposure vaccination against SARS-COV2 mitigate severe disease?Lancet Reg. Health Euro.2021510.1016/j.lanepe.2021.100118 – reference: LiuQ-HMeasurability of the epidemic reproduction number in data-driven contact networksPNAS201811512680126851:CAS:528:DC%2BC1cXisVyhu7zO10.1073/pnas.1811115115 – reference: HarderTEffectiveness of COVID-19 vaccines against SARS-CoV-2 infection with the Delta (B.1.617.2) variant: second interim results of a living systematic review and meta-analysis, 1 January to 25 August 2021Euro. Surveill.20212621009201:CAS:528:DC%2BB3MXisVCrurvF8518304 – reference: PegorieMMeasles outbreak in Greater Manchester, England, October 2012 to September 2013: epidemiology and controlEuro. Surveill.2014192098210.2807/1560-7917.ES2014.19.49.20982 – reference: ARS Grand Est. COVID-19: présence du variant indien dans l’Eurométropole et plan d’actions immédiat. http://www.grand-est.ars.sante.fr/covid-19-presence-du-variant-indien-dans-leurometropole-et-plan-dactions-immediat (2021). – reference: Grais, R. F. et al. Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. J. R. Soc. Interfacehttps://doi.org/10.1098/rsif.2007.1038 (2007). – reference: Davies, N. G. et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med.https://doi.org/10.1038/s41591-020-0962-9 (2020). – reference: HozéNMonitoring the proportion of the population infected by SARS-CoV-2 using age-stratified hospitalisation and serological data: a modelling studyLancet Public Health20216e408e41510.1016/S2468-2667(21)00064-5 – reference: Google. COVID-19 Community Mobility Report. https://www.google.com/covid19/mobility?hl=en (2021). – reference: Yang, J. et al. Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nat. Hum. Behav. https://doi.org/10.1038/s41562-021-01155-z (2021). – reference: AlthouseBMSuperspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and controlPLoS Biol.202018e30008971:CAS:528:DC%2BB3cXisVWgtrbM10.1371/journal.pbio.3000897 – reference: KisslerSMViral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated personsN. Engl. J. Med.20213852489249110.1056/NEJMc2102507 – reference: BosettiPEpidemiology and control of SARS-CoV-2 epidemics in partially vaccinated populations: a modeling study applied to FranceBMC Med202220331:CAS:528:DC%2BB38Xit1elu7g%3D10.1186/s12916-022-02235-1 – volume: 12 year: 2021 ident: 29015_CR57 publication-title: Nat Commun doi: 10.1038/s41467-020-20544-y – volume: 146 start-page: 741 year: 2018 ident: 29015_CR41 publication-title: Epidemiol. Infect. doi: 10.1017/S0950268818000602 – ident: 29015_CR61 doi: 10.1038/s41591-020-0962-9 – ident: 29015_CR6 doi: 10.1016/S0140-6736(15)61117-5 – volume: 7 start-page: eabf1374 year: 2020 ident: 29015_CR27 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf1374 – ident: 29015_CR19 – ident: 29015_CR30 – volume: 115 start-page: 12680 year: 2018 ident: 29015_CR14 publication-title: PNAS doi: 10.1073/pnas.1811115115 – ident: 29015_CR17 doi: 10.1101/2021.09.17.21263549 – ident: 29015_CR9 doi: 10.1038/s41591-020-0869-5 – ident: 29015_CR1 – ident: 29015_CR54 doi: 10.1101/2020.09.07.20189688 – volume: 383 start-page: 2603 year: 2020 ident: 29015_CR16 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – ident: 29015_CR44 – volume: 10 start-page: 11 year: 2015 ident: 29015_CR56 publication-title: Epidemics doi: 10.1016/j.epidem.2014.08.004 – volume: 10 year: 2010 ident: 29015_CR11 publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-10-190 – volume: 25 start-page: 2000790 year: 2020 ident: 29015_CR63 publication-title: Euro. Surveill. doi: 10.2807/1560-7917.ES.2020.25.49.2000790 – volume: 15 start-page: 717 year: 2019 ident: 29015_CR39 publication-title: Hum. Vaccines Immunotherapeutics doi: 10.1080/21645515.2018.1547606 – volume: 92 start-page: 881 year: 2014 ident: 29015_CR38 publication-title: Bull. World Health Organ doi: 10.2471/BLT.14.139949 – volume: 168 start-page: 1343 year: 2008 ident: 29015_CR15 publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwn259 – ident: 29015_CR22 – ident: 29015_CR60 – ident: 29015_CR2 – ident: 29015_CR47 – ident: 29015_CR21 doi: 10.1073/pnas.2112656119 – ident: 29015_CR43 – ident: 29015_CR26 doi: 10.1126/science.abe6959 – volume: 19 start-page: 20982 year: 2014 ident: 29015_CR40 publication-title: Euro. Surveill. doi: 10.2807/1560-7917.ES2014.19.49.20982 – volume: 10 start-page: e0133203 year: 2015 ident: 29015_CR58 publication-title: PLoS ONE doi: 10.1371/journal.pone.0133203 – volume: 385 start-page: 2489 year: 2021 ident: 29015_CR64 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2102507 – volume: 41 start-page: 13 year: 2019 ident: 29015_CR8 publication-title: Epidemiol. Rev. doi: 10.1093/epirev/mxz014 – volume: 17 start-page: e1009346 year: 2021 ident: 29015_CR34 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009346 – ident: 29015_CR23 doi: 10.1038/s41586-020-03095-6 – volume: 21 start-page: 793 year: 2021 ident: 29015_CR32 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00143-2 – volume: 26 start-page: 2100824 year: 2021 ident: 29015_CR65 publication-title: Euro. Surveill. doi: 10.2807/1560-7917.ES.2021.26.37.2100824 – volume: 5 start-page: 83 year: 2020 ident: 29015_CR53 publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.15889.2 – ident: 29015_CR59 – volume: 24 start-page: 152 year: 2006 ident: 29015_CR7 publication-title: Clin. Dermatol. doi: 10.1016/j.clindermatol.2005.11.009 – ident: 29015_CR55 – volume: 17 year: 2017 ident: 29015_CR13 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-017-2699-8 – volume: 5 start-page: 695 year: 2021 ident: 29015_CR31 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-021-01063-2 – ident: 29015_CR66 doi: 10.1056/NEJMoa2101765 – ident: 29015_CR68 doi: 10.5281/zenodo.5910314 – ident: 29015_CR67 doi: 10.1101/2020.09.15.20191957 – volume: 28 year: 2021 ident: 29015_CR48 publication-title: J. Travel Med. doi: 10.1093/jtm/taab045 – ident: 29015_CR46 – ident: 29015_CR3 – ident: 29015_CR28 doi: 10.1101/2021.03.19.21253974 – volume: 10 start-page: e0005093 year: 2016 ident: 29015_CR5 publication-title: PLOS Neglected Tropical Dis. doi: 10.1371/journal.pntd.0005093 – ident: 29015_CR42 – volume: 6 start-page: e1000656 year: 2010 ident: 29015_CR12 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000656 – volume: 12 year: 2021 ident: 29015_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21249-6 – volume: 32 start-page: 1147 year: 2014 ident: 29015_CR4 publication-title: Vaccine doi: 10.1016/j.vaccine.2014.01.002 – volume: 20 start-page: 33 year: 2022 ident: 29015_CR35 publication-title: BMC Med doi: 10.1186/s12916-022-02235-1 – volume: 11 year: 2021 ident: 29015_CR49 publication-title: Clin. Transl. Med. – ident: 29015_CR50 doi: 10.1016/j.vaccine.2021.04.042 – volume: 18 start-page: e3000897 year: 2020 ident: 29015_CR52 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000897 – volume: 8 start-page: e44942 year: 2019 ident: 29015_CR29 publication-title: eLife doi: 10.7554/eLife.44942 – volume: 5 year: 2021 ident: 29015_CR51 publication-title: Lancet Reg. Health Euro. doi: 10.1016/j.lanepe.2021.100118 – volume: 26 start-page: 2100920 year: 2021 ident: 29015_CR18 publication-title: Euro. Surveill. – ident: 29015_CR33 doi: 10.1038/s41562-021-01155-z – ident: 29015_CR36 doi: 10.1098/rsif.2007.1038 – volume: 6 start-page: e408 year: 2021 ident: 29015_CR20 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(21)00064-5 – volume: 15 start-page: e1002509 year: 2018 ident: 29015_CR37 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002509 – ident: 29015_CR10 doi: 10.1126/sciadv.abd8750 – ident: 29015_CR45 – volume: 38 start-page: 101001 year: 2021 ident: 29015_CR25 publication-title: EClinicalMedicine doi: 10.1016/j.eclinm.2021.101001 – ident: 29015_CR24 |
SSID | ssj0000391844 |
Score | 2.4994295 |
Snippet | With vaccination against COVID-19 stalled in some countries, increasing vaccine accessibility and distribution could help keep transmission under control.... The authors use an agent-based model to investigate the potential of reactive vaccination strategies for COVID-19 outbreak mitigation. They find that... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1414 |
SubjectTerms | 631/114/2397 639/705/1042 692/700/478/174 Agent-based models Coronaviruses COVID-19 COVID-19 - prevention & control COVID-19 vaccines Demography Disease control Disease transmission Epidemics Humanities and Social Sciences Humans Immunization Immunology Life Sciences multidisciplinary Santé publique et épidémiologie Schools Science Science (multidisciplinary) Systems Analysis Vaccination Vaccines Vaccinology Viral diseases Workplace Workplaces |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQJSQuiJ3QggziBlbreol9HArVgFgOLJqb5TgvdCSUQZ1ppfn3vGdnpg0VcOEWOU5i-W2f8zbGnlvXdk5LwLOJiUJ7ZYVP0YlOu4SQ38RkKDn5w0c7_arfzczsUqsvigkr5YHLxu07C1Y1qQFIrTZQOxu71qvopG09QD74oM27dJjKOlh5PLroIUvmQLn9pc46gYLXyXVoxHpkiXLBfrQvJxQOeRVrXg2Z_M1vms3R8S12c8CRfFLWf5tdg_4Ou146S67vstmEUqYE2aiW5243lHbOFx1HkJhVHD-PKc3Lv0AavwjQ4rFv-TJX58Tr73GOCJIfffr29rWQ_h77fPzmy9FUDE0URDK1XglDvk2twGo0_tDK6KyrExIFJDgwWnaus6hqbOs6LevG2w4orTJ5jeKs7rOdftHDQ8bhsPGdkrFx0elkrGtUQvHXEandoJaqmNxsZ0hDfXFqc_EjZD-3cqGQICAJQiZBWFfsxfaZn6W6xl9nvyIqbWdSZew8gPwSBn4J_-KXij1DGo_eMZ28DzSGxhwB5YE_x0l7GxYIg0wvA0JHRIvk-KzY0-1tlEZyscQeFmdlDiFuaSr2oHDM9lPKKEIDvmL1iJdGaxnf6ecnueI3gkpSnRV7ueG6i2X9eb8e_Y_92mU3DkloKISx3mM7q9MzeIw4bNU8ySL3C5XaLXE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLYm-goIC4gdW6XvJ8QkNhGBDLgUVzsxzHaUdCSelMK82_5z0nk1Go6C1ynM1v--K3MfbSQFWDEhH_TbTnykrDbfDAawUBIb_2QVNy8pevZvZTfZrreb_htuzDKjc6MSnqqg20R76PhhttNbmd3pz-4dQ1iryrfQuN6-yGQEtDIV0w_TDssVD1c1Cqz5U5kLC_VEkzUAg7ORA1X4_sUSrbj1bmhIIiLyPOy4GT_3hPk1Ga3mG3ezSZTzry32XXYnOP3ez6S67vs_mEEqc4WaoqTz1vKPk8b-scoWJSdPmFD2HR7QjS-DZMK_dNlS9TjU48PvYLxJH50bdfH99xYR-w79P3P45mvG-lwIMu1Ipr8nAqGXH9QMRKeDBQBCRNFBGiVqKG2qDCMRXUShSlNXWk5MpgFQq1fMh2mraJuyyPh6WtpfAleFBBGyhlQCWgPNK8RF2VMbFZThf6KuPU7OK3S95uCa4jgUMSuEQCt87Yq-Ga067GxpWz3xKVhplUHzsNtGfHrhc3ByYaWYYyxlApHQswvq6s9CBMZWMUGXuBNB7dYzb57GgMTTrCygN7gZP2Nizgesleui0fZuz5cBplkhwtvonteTeHcLfQGXvUcczwKKklYQKbsWLES6N3GZ9pFiep7jdCS1KgGXu94brta_1_vR5f_RVP2K1DEgcKUSz22M7q7Dw-RZy1Kp8lYfoLE1MjLQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVkhcKt41lMogbmDRzT68ezSFKkQ8DgWU22q9XreRKgc1aaX8e2bWj8qUInGL1uNk5Xl98cx8C_Ba6arWggX8byJdJgxXmfFOZ7XQHiG_dF7ScPKXr2r6Q8zmcr4Fk34WJjbtR0rLGKb77rB3KxFdmnrPqfIns80d2CGqdrTtnaKYncyGNyvEea6F6CZkDrn-y82jLBTJ-jG3nFEr5E2cebNd8o-aaUxFx_dht8OQadHu-gFsheYh3G1Pldw8gnlB41IZ5acqjSfd0Mh5uqxTBIgxvKVXzvtF-x6Q1q-bs1LXVOkqMnPi51O3QPSYHn37-elDxsxjODn--P1omnUHKGRe5mKdSaprCh6UwMQfKua00rlHhQQWdJCC1bpWGGZUpWvB8tKoOtBIpTcCXZk_ge1m2YQ9SMOkNDVnrtROCy-VLrlH1xcONV1ihEqA9Y_T-o5bnI64OLexxs21bVVgUQU2qsBuEngz3POrZdb4p_R70tIgSazYcWF5cWo7K7FaBcVLX4bgKyFDrpWrK8OdZqoyIbAEXqGOR98xLT5bWsNEjmDy0Fyh0H5vArbz55VF2IhIkYqeCbwcLqMnUnnFNWF52coQ2mYygaetxQw_xSUnJGASyEe2NNrL-EqzOIts3wgoKWwm8La3uutt3f68nv2f-HO4NyH3oEbFfB-21xeX4QWirXV50LnXb833Itg priority: 102 providerName: Springer Nature |
Title | Agent-based modelling of reactive vaccination of workplaces and schools against COVID-19 |
URI | https://link.springer.com/article/10.1038/s41467-022-29015-y https://www.ncbi.nlm.nih.gov/pubmed/35301289 https://www.proquest.com/docview/2640566407 https://www.proquest.com/docview/2640991615 https://ehesp.hal.science/hal-03615409 https://pubmed.ncbi.nlm.nih.gov/PMC8931017 https://doaj.org/article/86e63bcbeecd45e786afd93a816d9ee1 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aRUi8IO6EjSog3iCwzJfYDwhlZaVUbCDGUN8sx3G2SlPK2m6i_55znLRT2UDiJY0cJ418bp9zbgAvpSorxVOPexNhE66ZTLSzKqm4cgj5hXWCkpMPDmX_mA-GYrgGi3ZH7QJOb9zaUT-p48nZm1_n8_co8O-alHH1dsqDuFNcOnkFRTJfh020TBl1NDho4X7QzEzjhoa3uTM337pin0IZf7Q6pxQkeR2BXg-k_MObGoxU7y7cadFlnDfscA_WfH0fbjX9JucPYJhTIlVClquMQw8cSkaPx1WM0DEovvjSOjdqvhDS-FXYVmzrMp6Gmp14fmJHiCvj7pcfnz4kqX4IR739791-0rZWSJzI-CwR5PHkzEuOkMCXqVVSZQ5J5VOvvOBppSqJCkiWqsKFLLSsPCVbOs1RyNkj2KjHtX8Csd8tdMVSWyiruBNSFcyhUuAWeaBA3RVBulhO49qq49T84swE7zdTpiGBQRKYQAIzj-DV8p6fTc2Nf87eIyotZ1K97DAwnpyYVvyMkl6ywhXeu5ILnylpq1Izq1JZau_TCF4gjVee0c8_GxpDE48wc0df4qTtBQuYBaMaBJSIIckdGsHz5WWUUXK82NqPL5o5hMNTEcHjhmOWf8UEI4ygI8hWeGnlXVav1KPTUAccoSYp1AheL7ju6rX-vl5P_2_6FtzeJfGgEMZsGzZmkwv_DHHYrOjAejbM8Kh6HzuwmeeDowH-7u0ffv2Go13Z7YQvHJ0ghL8BQ7Yx4A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwheEHcCAwKCJ4g215c4DwiVjdKybjwwpj5hOY6zVULpWLuh_id-JOc4Sasysbe9VY7ruj63Lz43gNdKF6UWzOO7ibSJyLhKMmd1UgrtEPJL6yQlJ-_tq_538WUkR2vwp82FobDKVicGRV1MHN2Rb6LhRltNbqcPJ78S6hpF3tW2hUbNFrt-_htf2abvBztI3zedTu_TwXY_aboKJE6mYpZIcvYJ7nEpzXzBrFY6dbhLz7z2UrBSlwplTxW6FCzNM1V6yjN0mUD-5rjqNbguONpxykvvfV7c6FCtdS1Ek5mzxfXmVAQ9RAHz5K6UyXzF-oUmAWjTjikE8yK-vRim-Y-vNpjA3h243WDXuFsz211Y89U9uFF3s5zfh1GX0rQSsotFHDrsUKp7PCljBKZBrcbn1rlxff9I48ugsNhWRTwNFUHx85EdI2qNt78eDnYSlj2Ab1dwxA9hvZpU_jHEvpNnJWc211YLJ5XOuUOVIyxyWI6aMQLWHqdxTU1zaq3x0wTfOtemJoFBEphAAjOP4O3iOyd1RY9LZ38kKi1mUjXuMDA5PTKNcButvOK5y713hZA-1cqWRcatZqrIvGcRvEIar6zR7w4NjSGAQBC7lZ3jpI2WBUyjR6ZmyfURvFw8Rg1Abh1b-clZPYdQPpMRPKo5ZvFTXHJCIFkE6Qovrexl9Uk1Pg5VxhHIkrqO4F3Ldctt_f-8nlz-L17Azf7B3tAMB_u7T-FWh0SDgiPTDVifnZ75Z4jwZvnzIFgx_LhaOf4LMb1cXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqUBcEDsDBQYEJxiljpfxHBBKm0YJLaFiU05YHo-njYQmpUmL8s_4ebw3S6JQ0VtvkceZOH7bZ78N4JXSWa4F83g2kTYSCVdR4qyOcqEdQn5pnaTk5I8jNfgmPozleAP-NLkwFFbZ6MRSUWdTR3fkbTTcaKvJ7dTO67CIw17__cmviDpIkae1aadRsci-X_zG49vs3bCHtH7d6fT3vu4OorrDQORkLOaRJMef4B5fq5nPmNVKxw5X7JnXXgqW61yhHKpM54LFaaJyTzmHLhHI6xzfeg02YzoTtWBzZ290-Hl5v0OV17UQdZ7ONtftmSi1EoXPk_NSRos1W1i2DEALd0wBmRfR7sWgzX88t6VB7N-GWzWSDbsV692BDV_chetVb8vFPRh3KWkrIiuZhWW_HUp8D6d5iDC1VLLhuXVuUt1G0vgqRCy0RRbOyvqg-PnIThDDhrufvg97EUvuw5cr2OQH0CqmhX8Eoe-kSc6ZTbXVwkmlU-5QAQmL_JaingyANdtpXF3hnBpt_DSlp51rU5HAIAlMSQKzCODN8jsnVX2PS2fvEJWWM6k2dzkwPT0ytagbrbziqUu9d5mQPtbK5lnCrWYqS7xnAbxEGq-9Y9A9MDSGcAIh7XZyjpO2GhYwtVaZmZUMBPBi-Rj1ATl5bOGnZ9UcwvxMBvCw4pjlT3HJCY8kAcRrvLS2lvUnxeS4rDmOsJaUdwBvG65bLev_-_X48n_xHG6gDJuD4Wj_CdzskGRQpGS8Ba356Zl_inBvnj6rJSuEH1cryn8BmdFh7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agent-based+modelling+of+reactive+vaccination+of+workplaces+and+schools+against+COVID-19&rft.jtitle=Nature+communications&rft.au=Faucher%2C+Benjamin&rft.au=Assab%2C+Rania&rft.au=Roux%2C+Jonathan&rft.au=Levy-Bruhl%2C+Daniel&rft.date=2022-03-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-29015-y&rft.externalDocID=10_1038_s41467_022_29015_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |