Differential diagnosis of neurodegenerative diseases using structural MRI data

Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differen...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 11; no. C; pp. 435 - 449
Main Authors Koikkalainen, Juha, Rhodius-Meester, Hanneke, Tolonen, Antti, Barkhof, Frederik, Tijms, Betty, Lemstra, Afina W., Tong, Tong, Guerrero, Ricardo, Schuh, Andreas, Ledig, Christian, Rueckert, Daniel, Soininen, Hilkka, Remes, Anne M., Waldemar, Gunhild, Hasselbalch, Steen, Mecocci, Patrizia, van der Flier, Wiesje, Lötjönen, Jyrki
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. [Display omitted] •Differential diagnostics of dementias was studied using structural MRI data.•504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated.•Different fully automatic quantification methods were compared and combined.•Classification accuracy of 70.6% was obtained for 5-class classification problem.•Combination of several quantification methods was needed for optimal accuracy.
AbstractList AbstractDifferent neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.
Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. [Display omitted] •Differential diagnostics of dementias was studied using structural MRI data.•504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated.•Different fully automatic quantification methods were compared and combined.•Classification accuracy of 70.6% was obtained for 5-class classification problem.•Combination of several quantification methods was needed for optimal accuracy.
Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. Image 1 • Differential diagnostics of dementias was studied using structural MRI data. • 504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated. • Different fully automatic quantification methods were compared and combined. • Classification accuracy of 70.6% was obtained for 5-class classification problem. • Combination of several quantification methods was needed for optimal accuracy.
Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.
Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.
Author Guerrero, Ricardo
Remes, Anne M.
Waldemar, Gunhild
Hasselbalch, Steen
Ledig, Christian
Tijms, Betty
Lötjönen, Jyrki
Koikkalainen, Juha
Tong, Tong
Mecocci, Patrizia
Schuh, Andreas
Rhodius-Meester, Hanneke
Tolonen, Antti
van der Flier, Wiesje
Barkhof, Frederik
Rueckert, Daniel
Soininen, Hilkka
Lemstra, Afina W.
AuthorAffiliation e Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
f Department of Epidemiology and Biostatistics, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
d Department of Computing, Imperial College London, London, UK
h Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
b Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
i Combinostics Ltd., Tampere, Finland
a VTT Technical Research Centre of Finland, Tampere, Finland
c Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
g Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
AuthorAffiliation_xml – name: h Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
– name: f Department of Epidemiology and Biostatistics, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– name: c Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– name: i Combinostics Ltd., Tampere, Finland
– name: b Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– name: a VTT Technical Research Centre of Finland, Tampere, Finland
– name: d Department of Computing, Imperial College London, London, UK
– name: e Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
– name: g Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Juha
  surname: Koikkalainen
  fullname: Koikkalainen, Juha
  email: juha.koikkalainen@combinostics.com
  organization: VTT Technical Research Centre of Finland, Tampere, Finland
– sequence: 2
  givenname: Hanneke
  surname: Rhodius-Meester
  fullname: Rhodius-Meester, Hanneke
  organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– sequence: 3
  givenname: Antti
  surname: Tolonen
  fullname: Tolonen, Antti
  organization: VTT Technical Research Centre of Finland, Tampere, Finland
– sequence: 4
  givenname: Frederik
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– sequence: 5
  givenname: Betty
  surname: Tijms
  fullname: Tijms, Betty
  organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– sequence: 6
  givenname: Afina W.
  surname: Lemstra
  fullname: Lemstra, Afina W.
  organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– sequence: 7
  givenname: Tong
  surname: Tong
  fullname: Tong, Tong
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 8
  givenname: Ricardo
  surname: Guerrero
  fullname: Guerrero, Ricardo
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 9
  givenname: Andreas
  surname: Schuh
  fullname: Schuh, Andreas
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 10
  givenname: Christian
  surname: Ledig
  fullname: Ledig, Christian
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 11
  givenname: Daniel
  surname: Rueckert
  fullname: Rueckert, Daniel
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 12
  givenname: Hilkka
  surname: Soininen
  fullname: Soininen, Hilkka
  organization: Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
– sequence: 13
  givenname: Anne M.
  surname: Remes
  fullname: Remes, Anne M.
  organization: Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
– sequence: 14
  givenname: Gunhild
  surname: Waldemar
  fullname: Waldemar, Gunhild
  organization: Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
– sequence: 15
  givenname: Steen
  surname: Hasselbalch
  fullname: Hasselbalch, Steen
  organization: Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
– sequence: 16
  givenname: Patrizia
  surname: Mecocci
  fullname: Mecocci, Patrizia
  organization: Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
– sequence: 17
  givenname: Wiesje
  surname: van der Flier
  fullname: van der Flier, Wiesje
  organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
– sequence: 18
  givenname: Jyrki
  surname: Lötjönen
  fullname: Lötjönen, Jyrki
  organization: VTT Technical Research Centre of Finland, Tampere, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27104138$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAPKkcsutpPYDgckVL5WKiDxcR7N2uPFS2oXO1mp_x6H3aIWifpgjzzz3tPMm8fVUYiBquopZ0vOuHyxXQZvhqUo8ZKJJeP9g-pECN4seKfF0a34uDrLecvK0YwpKR9Vx0Jx1vJGn1Sf3njnKFEYPQ619bgJMftcR1cHmlK0tKFACUe_o5LOhJlyPWUfNnUe02TGKRXgxy-r2uKIT6qHDodMZ4f3tPr-7u238w-Li8_vV-evLxamU-24aE2PlmtBdt3JXrg16a7prJHcNMis6QyWi9uOG8V6zkS3VtYJ26Fw2DjRnFarPa-NuIWr5C8xXUNED38-YtoAprEMiKDpUcm2R0nSta3DXmjDtNatWnMhpSxcr_ZcV9P6kqwpsygt3SG9mwn-B2ziDlotlBKqEDw_EKT4a6I8wqXPhoYBA8UpA1e66QWToi2lz25r_RW5MaQU6H2BSTHnRA6MH8v04yztB-AMZvthC7P9MNsPTECxv0DFP9Ab9ntBh-apuLXzlMAMvlTh8JOuKW_jlEIxEjjkAoCv81bNS8Vlw1jL5uZf_p-guOHvU_8NrE7dtQ
CitedBy_id crossref_primary_10_1186_s13195_019_0482_3
crossref_primary_10_3390_biomedicines12040896
crossref_primary_10_3233_JAD_170850
crossref_primary_10_1016_j_nicl_2020_102267
crossref_primary_10_1016_j_matpr_2021_01_221
crossref_primary_10_3233_JAD_170733
crossref_primary_10_1016_j_nicl_2019_101718
crossref_primary_10_3390_molecules30051017
crossref_primary_10_1016_j_cccb_2023_100182
crossref_primary_10_1038_s41380_023_02215_8
crossref_primary_10_1002_hbm_25820
crossref_primary_10_1212_WNL_0000000000201043
crossref_primary_10_1016_j_nicl_2018_07_014
crossref_primary_10_3233_JAD_190691
crossref_primary_10_1016_S1474_4422_20_30314_8
crossref_primary_10_1002_jmri_25563
crossref_primary_10_1186_s12880_024_01242_3
crossref_primary_10_1007_s13311_023_01355_7
crossref_primary_10_1016_j_ncl_2017_01_004
crossref_primary_10_1007_s00330_019_06067_1
crossref_primary_10_36290_neu_2021_026
crossref_primary_10_1016_j_wneu_2023_10_045
crossref_primary_10_1016_j_neurobiolaging_2021_11_002
crossref_primary_10_1159_000502476
crossref_primary_10_1590_1980_57642016dn11_040003
crossref_primary_10_1080_14737175_2022_2048648
crossref_primary_10_1186_s12987_022_00338_8
crossref_primary_10_1016_j_radi_2025_102903
crossref_primary_10_1038_nrneurol_2016_51
crossref_primary_10_14412_2074_2711_2019_4_104_110
crossref_primary_10_3389_fnagi_2021_761954
crossref_primary_10_3389_fneur_2019_00459
crossref_primary_10_1038_s41598_020_80930_w
crossref_primary_10_1109_ACCESS_2020_3037107
crossref_primary_10_3389_fnagi_2022_939155
crossref_primary_10_1111_ene_14910
crossref_primary_10_1159_000506124
crossref_primary_10_1093_braincomms_fcae290
crossref_primary_10_1016_j_nbd_2024_106439
crossref_primary_10_3389_fnagi_2020_00228
crossref_primary_10_1097_MNM_0000000000000812
crossref_primary_10_1186_s40035_021_00272_z
crossref_primary_10_1111_ene_16533
crossref_primary_10_14283_jpad_2022_24
crossref_primary_10_4103_mgmj_mgmj_53_23
crossref_primary_10_1016_j_nantod_2023_101931
crossref_primary_10_1016_j_nicl_2017_06_012
crossref_primary_10_1021_acsnano_3c10249
crossref_primary_10_3233_JAD_180484
crossref_primary_10_1002_alz_13412
crossref_primary_10_1016_j_nicl_2018_08_028
crossref_primary_10_1186_s13195_019_0506_z
crossref_primary_10_3389_fneur_2023_1175922
crossref_primary_10_1136_jnnp_2019_320774
crossref_primary_10_1007_s11063_025_11735_z
crossref_primary_10_1038_s41598_020_68118_8
crossref_primary_10_3390_life11101108
crossref_primary_10_2174_1567205016666190103152425
crossref_primary_10_1016_j_jneumeth_2017_12_016
crossref_primary_10_1016_j_media_2021_102219
crossref_primary_10_1002_adma_201906539
crossref_primary_10_1186_s13195_023_01209_6
crossref_primary_10_1002_gps_5667
crossref_primary_10_1111_ene_15211
crossref_primary_10_1021_acs_iecr_8b06064
crossref_primary_10_1016_j_lpm_2022_104121
crossref_primary_10_1186_s13195_024_01477_w
crossref_primary_10_1186_s13195_024_01633_2
crossref_primary_10_1016_j_nicl_2023_103320
crossref_primary_10_1038_s41598_023_43706_6
crossref_primary_10_1371_journal_pone_0226784
crossref_primary_10_1097_RLU_0000000000003981
crossref_primary_10_1016_j_media_2023_102903
crossref_primary_10_1111_ene_15108
crossref_primary_10_1155_2018_2676409
crossref_primary_10_1186_s13195_018_0450_3
crossref_primary_10_1186_s13195_024_01614_5
crossref_primary_10_3233_JAD_191226
crossref_primary_10_1017_S1355617722000480
crossref_primary_10_1002_alz_12814
crossref_primary_10_1134_S0362119720080137
crossref_primary_10_1371_journal_pone_0276107
crossref_primary_10_1002_brb3_2679
crossref_primary_10_1038_s41598_019_49970_9
crossref_primary_10_1007_s12035_019_01698_3
crossref_primary_10_1093_braincomms_fcaa079
crossref_primary_10_1016_j_neuroimage_2019_116456
crossref_primary_10_1016_j_advms_2019_03_002
crossref_primary_10_1016_j_neurobiolaging_2021_04_029
crossref_primary_10_1002_brb3_3397
crossref_primary_10_1016_j_nicl_2019_102112
crossref_primary_10_55697_tnd_2024_96
crossref_primary_10_1002_brb3_2500
crossref_primary_10_1002_VIW_20200141
crossref_primary_10_1038_s41598_024_52910_x
crossref_primary_10_3233_JAD_200175
crossref_primary_10_1177_19714009251313511
crossref_primary_10_1016_j_dadm_2018_07_003
crossref_primary_10_3389_fnins_2019_00757
crossref_primary_10_1186_s13195_024_01433_8
crossref_primary_10_2217_nnm_2022_0246
crossref_primary_10_1097_WCO_0000000000001177
crossref_primary_10_1007_s41019_016_0011_3
crossref_primary_10_3389_fnagi_2017_00117
crossref_primary_10_1007_s00330_024_11257_7
crossref_primary_10_3389_fnmol_2024_1386735
crossref_primary_10_1016_j_compmedimag_2018_08_002
crossref_primary_10_1117_1_JMI_6_1_014005
crossref_primary_10_1007_s00234_021_02746_3
crossref_primary_10_1186_s13195_021_00815_6
crossref_primary_10_1039_C9NH00608G
crossref_primary_10_3389_fneur_2020_00606
crossref_primary_10_3233_JAD_190594
crossref_primary_10_1007_s11277_023_10586_y
crossref_primary_10_1159_000486849
crossref_primary_10_1371_journal_pone_0303111
crossref_primary_10_1016_j_neurad_2020_04_004
crossref_primary_10_1148_ryai_230151
crossref_primary_10_1007_s00415_024_12853_9
crossref_primary_10_1016_j_dadm_2018_09_001
crossref_primary_10_1186_s13195_022_00979_9
crossref_primary_10_3389_fnagi_2018_00111
crossref_primary_10_1016_j_drudis_2019_08_001
crossref_primary_10_3390_app13137921
crossref_primary_10_3390_biomedicines11071999
crossref_primary_10_1002_hbm_24428
Cites_doi 10.1016/j.neuroimage.2014.03.036
10.1212/WNL.51.6.1546
10.2214/ajr.149.2.351
10.1159/000051210
10.1016/j.jalz.2011.03.005
10.1109/42.811270
10.1093/brain/awl388
10.1016/j.neuroimage.2012.02.034
10.3233/JAD-132306
10.1002/gps.2141
10.1212/WNL.52.1.91
10.1016/j.neuroimage.2009.02.018
10.1212/WNL.52.6.1153
10.1371/journal.pone.0025446
10.1093/brain/awm319
10.1212/WNL.34.7.939
10.1177/1533317507308779
10.1093/brain/awp071
10.1212/WNL.47.5.1113
10.1007/BF00868807
10.1109/TMI.2009.2014372
10.1016/j.arcmed.2012.10.018
10.3233/JAD-131928
10.1006/cviu.1999.0815
10.1016/j.neuroimage.2011.01.062
10.1016/j.nicl.2012.10.002
10.1016/S1474-4422(07)70178-3
10.1111/j.1468-1331.2006.01605.x
10.1016/0022-3956(75)90026-6
10.1034/j.1600-0404.2002.1o148.x
10.1006/nimg.2002.1197
10.1093/brain/awn298
10.1006/nimg.2000.0582
10.1016/j.neuroimage.2004.04.026
10.1001/archneur.59.1.43
10.1109/TMI.2010.2046908
10.1371/journal.pone.0031112
10.1016/j.neuroimage.2006.05.061
10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P
10.1371/journal.pone.0052531
10.1016/j.neurobiolaging.2011.09.024
10.2967/jnumed.106.035691
10.3233/JAD-2011-110365
10.1136/jnnp.72.3.406
10.1016/S0006-3223(99)00306-6
10.1016/j.neuroimage.2013.02.069
10.1016/j.neuroimage.2011.03.029
10.1212/WNL.54.6.1304
10.1016/j.neuroimage.2009.10.026
10.1016/S0031-3203(98)00091-0
10.1016/j.jalz.2005.11.002
10.1016/j.jns.2007.01.016
10.1093/brain/awr179
10.1109/TBME.2011.2170986
10.1212/01.wnl.0000187889.17253.b1
10.1159/000117270
10.1016/j.media.2009.10.001
10.1192/bjp.174.1.45
10.1212/WNL.43.2.250
ContentType Journal Article
Copyright 2016 Commonwealth Scientific and Industrial Research Organisation
Commonwealth Scientific and Industrial Research Organisation
2016 The Authors 2016
Copyright_xml – notice: 2016 Commonwealth Scientific and Industrial Research Organisation
– notice: Commonwealth Scientific and Industrial Research Organisation
– notice: 2016 The Authors 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2016.02.019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 449
ExternalDocumentID oai_doaj_org_article_39a7649a6e6f44fa928c088847b12666
PMC4827727
27104138
10_1016_j_nicl_2016_02_019
1_s2_0_S2213158216300407
S2213158216300407
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c574t-4c9ad182edb5692fbe8535dc61c3a0dc5cadc51d51c7091025b7df2d5a2fa3f23
IEDL.DBID DOA
ISSN 2213-1582
IngestDate Wed Aug 27 01:07:25 EDT 2025
Thu Aug 21 14:05:19 EDT 2025
Fri Jul 11 05:11:28 EDT 2025
Thu Apr 03 07:10:51 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 01:09:15 EDT 2025
Sun Feb 23 10:19:21 EST 2025
Tue Aug 26 17:37:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords VBM
Vascular dementia
Neurodegenerative diseases
MRI
Volumetry
Classification
Frontotemporal lobar degeneration
Alzheimer's disease
TBM
Dementia with Lewy bodies
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-4c9ad182edb5692fbe8535dc61c3a0dc5cadc51d51c7091025b7df2d5a2fa3f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/39a7649a6e6f44fa928c088847b12666
PMID 27104138
PQID 1783920624
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_39a7649a6e6f44fa928c088847b12666
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4827727
proquest_miscellaneous_1783920624
pubmed_primary_27104138
crossref_citationtrail_10_1016_j_nicl_2016_02_019
crossref_primary_10_1016_j_nicl_2016_02_019
elsevier_clinicalkeyesjournals_1_s2_0_S2213158216300407
elsevier_clinicalkey_doi_10_1016_j_nicl_2016_02_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2016
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Burton, Karas, Paling, Barber, Williams, Ballard, McKeith, Scheltens, Barkhof, O'Brien (bb0055) 2002; 17
Ishii, Soma, Kono, Sofue, Miyamoto, Yoshikawa, Mori, Murase (bb0125) 2007; 48
Lötjönen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (bb0175) 2010; 49
Tong, Wolz, Coupé, Hajnal, Rueckert (bb0265) 2013; 76
Lopez, Becker, Kaufer, Hamilton, Sweet, Klunk, DeKosky (bb0165) 2002; 59
Ballmaier, O'Brien, Burton, Thompson, Rex, Narr, McKeith, DeLuca, Toga (bb0025) 2004; 23
Ashburner, Hutton, Frackowiak, Johnsrude, Price, Friston (bb0020) 1998; 6
Barber, McKeith, Ballard, O'Brien (bb0040) 2002; 72
McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bb0200) 1984; 34
Rascovsky, Hodges, Knopman, Mendez, Kramer, Neuhaus, van Swieten, Seelaar, Dopper, Onyike, Hillis, Josephs, Boeve, Kertesz, Seeley, Rankin, Johnson, Gorno-Tempini, Rosen, Prioleau-Latham, Lee, Kipps, Lillo, Piguet, Rohrer, Rossor, Warren, Fox, Galasko, Salmon, Black, Mesulam, Weintraub, Dickerson, Diehl-Schmid, Pasquier, Deramecourt, Lebert, Pijnenburg, Chow, Manes, Grafman, Cappa, Freedman, Grossman, Miller (bb0235) 2011; 134
Barber, Ballard, McKeith, Gholkar, O'Brien (bb0030) 2000; 54
Studholme, Hill, Hawkes (bb0260) 1999; 32
Scheltens, Launer, Barkhof, Weinstein, van Gool (bb0250) 1995; 242
McKeith, Dickson, Lowe, Emre, O'Brien, Feldman, Cummings, Duda, Lippa, Perry, Aarsland, Arai, Ballard, Boeve, Burn, Costa, Del Ser, Dubois, Galasko, Gauthier, Goetz, Gomez-Tortosa, Halliday, Hansen, Hardy, Iwatsubo, Kalaria, Kaufer, Kenny, Korczyn, Kosaka, Lee, Lees, Litvan, Londos, Lopez, Minoshima, Mizuno, Molina, Mukaetova-Ladinska, Pasquier, Perry, Schulz, Trojanowski, Yamada, for the Consortium on DLB (bb0195) 2005; 65
Barber, Gholkar, Scheltens, Ballard, McKeith, O'Brien (bb0035) 1999; 52
Artaechevarria, Munoz-Barrutia, de Solorzano (bb0010) 2009; 28
Ashburner, Friston (bb0015) 2000; 11
Feldman, Pirttila, Dartigues, Everitt, Van Baelen, Schwalen, Kavanagh (bb0090) 2009; 24
Neary, Snowden, Gustafson, Passant, Stuss, Black, Freedman, Kertesz, Robert, Albert, Boone, Miller, Cummings, Benson (bb0220) 1998; 51
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0005) 2009; 46
Guimond, Meunier, Thirion (bb0110) 2000; 7
Falahati, Westman, Simmons (bb0080) 2014; 41
Koikkalainen, Lötjönen, Thurfjell, Rueckert, Waldemar, Soininen (bb0145) 2011; 56
Siemers, Sundell, Carlson, Case, Sethuraman, Liu-Seifert, Dowsett, Pontecorvo, Dean, Demattos (bb0255) 2015
McKeith, Galasko, Kosaka, Perry, Dickson, Hansen, Salmon, Lowe, Mirra, Byrne, Lennox, Quinn, Edwardson, Ince, Bergeron, Burns, Miller, Lovestone, Collerton, Jansen, Ballard, de Vos, Wilcock, Jellinger, Perry (bb0190) 1996; 47
van Rikxoort, Isgum, Arzhaeva, Staring, Klein, Viergever, Pluim, van Ginneken (bb0280) 2010; 14
Wang, Catindig, Hilal, Soon, Ting, Wong, Venketasubramanian, Chen, Qiu (bb0295) 2012; 60
Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins (bb0065) 2012; 1
Folstein, Folstein, McHugh (bb0095) 1975; 12
Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bb0115) 2006; 33
Burton, Barber, Mukaetova-Ladinska, Robson, Perry, Jaros, Kalaria, O'Brien (bb0060) 2009; 132
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0140) 2008; 131
Roman, Pascual (bb0240) 2012; 43
van der Flier, Pijnenburg, Prins, Lemstra, Bouwman, Teunissen, van Berckel, Stam, Barkhof, Visser, van Egmond, Scheltens (bb0275) 2014; 41
Holmes, Cairns, Lantos, Mann (bb0120) 1999; 174
Duara, Barker, Luis (bb0070) 1999; 10
Pasquier, Leys, Weerts, Mounier-Vehier, Barkhof, Scheltens (bb0225) 1996; 36
Brodersen, Ong, Stephan, Buhmann (bb0050) 2010
Mattila, Koikkalainen, Virkki, Simonsen, van Gils, Waldemar, Soininen, Lötjönen (bb0180) 2011; 27
Mattila, Koikkalainen, Virkki, van Gils, Lötjönen (bb0185) 2012; 59
Koikkalainen, Pölönen, Mattila, van Gils, Soininen, Lötjönen, for the Alzheimer's Disease Neuroimaging Initiative (bb0150) 2012; 7
Belkin, Niyogi (bb0045) 2002; Vol. 14
Meyer, Huang, Chowdhury (bb0210) 2007; 257
Whitwell, Weigand, Shiung, Boeve, Ferman, Smith, Knopman, Petersen, Benarroch, Josephs, Jack (bb0300) 2007; 130
Guerrero, Wolz, Rao, Rueckert (bb0105) 2014; 94C
Lötjönen, Wolz, Koikkalainen, Julkunen, Thurfjell, Lundqvist, Waldemar, Soininen, Rueckert (bb0170) 2011; 56
Rabinovici, Seeley, Kim, Gorno-Tempini, Rascovsky, Pagliaro, Allison, Halabi, Kramer, Johnson, Weiner, Forman, Trojanowski, DeArmond, Miller, Rosen (bb0230) 2008; 22
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bb0270) 2010; 29
Zhang, Schuff, Du, Rosen, Kramer, Gorno-Tempini, Miller, Weiner (bb0310) 2009; 132
Fazekas, Chawluk, Alavi, Hurtig, Zimmerman (bb0085) 1987; 149
Varma, Adams, Lloyd, Carson, Snowden, Testa, Jackson, Neary (bb0285) 2002; 105
Kantarci, Lowe, Boeve, Weigand, Senjem, Przybelski, Dickson, Parisi, Knopman, Smith, Ferman, Petersen, Jack (bb0135) 2012; 33
Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen, the Alzheimer’s Disease Neuroimaging Initiative (bb0305) 2011; 6
Waldemar, Dubois, Emre, Georges, McKeith, Rossor, Scheltens, Tariska, Winblad (bb0290) 2007; 14
Frisoni, Laakso, Beltramello, Geroldi, Bianchetti, Soininen, Trabucchi (bb0100) 1999; 52
Jagust (bb0130) 2006; 2
Laakso, Frisoni, Könönen, Mikkonen, Beltramello, Geroldi, Bianchetti, Trabucchi, Soininen, Aronen (bb0155) 2000; 47
Román, Tatemichi, Erkinjuntti, Cummings, Masdeu, Garcia, Amaducci, Orgogozo, Brun, Hofman, Moody, O'Brien, Yamaguchi, Grafman, Drayer, Bennett, Fisher, Ogata, Kokmen, Bermejo, Wolf, Gorelick, Bick, Pajeau, Bell, DeCarli, Culebras, Korczyn, Bogousslavsky, Hartmann, Scheinberg (bb0245) 1993; 43
Dubois, Feldman, Jacova, DeKosky, Barberger-Gateau, Cummings, Delacourte, Galasko, Gauthier, Jicha, Meguro, O'Brien, Pasquier, Robert, Rossor, Salloway, Stern, Visser, Scheltens (bb0075) 2007; 6
Munoz-Ruiz, Hartikainen, Koikkalainen, Wolz, Julkunen, Niskanen, Herukka, Kivipelto, Vanninen, Rueckert, Liu, Lötjönen, Soininen (bb0215) 2012; 7
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bb0205) 2011; 7
Leemput, Maes, Vandermeulen, Suetens (bb0160) 1999; 18
Laakso (10.1016/j.nicl.2016.02.019_bb0155) 2000; 47
Ashburner (10.1016/j.nicl.2016.02.019_bb0020) 1998; 6
Burton (10.1016/j.nicl.2016.02.019_bb0055) 2002; 17
Tong (10.1016/j.nicl.2016.02.019_bb0265) 2013; 76
Siemers (10.1016/j.nicl.2016.02.019_bb0255) 2015
Barber (10.1016/j.nicl.2016.02.019_bb0040) 2002; 72
Mattila (10.1016/j.nicl.2016.02.019_bb0180) 2011; 27
Roman (10.1016/j.nicl.2016.02.019_bb0240) 2012; 43
Belkin (10.1016/j.nicl.2016.02.019_bb0045) 2002; Vol. 14
Duara (10.1016/j.nicl.2016.02.019_bb0070) 1999; 10
Ballmaier (10.1016/j.nicl.2016.02.019_bb0025) 2004; 23
Ishii (10.1016/j.nicl.2016.02.019_bb0125) 2007; 48
van Rikxoort (10.1016/j.nicl.2016.02.019_bb0280) 2010; 14
Aljabar (10.1016/j.nicl.2016.02.019_bb0005) 2009; 46
McKhann (10.1016/j.nicl.2016.02.019_bb0200) 1984; 34
Wolz (10.1016/j.nicl.2016.02.019_bb0305) 2011; 6
Ashburner (10.1016/j.nicl.2016.02.019_bb0015) 2000; 11
Munoz-Ruiz (10.1016/j.nicl.2016.02.019_bb0215) 2012; 7
Folstein (10.1016/j.nicl.2016.02.019_bb0095) 1975; 12
McKeith (10.1016/j.nicl.2016.02.019_bb0190) 1996; 47
Falahati (10.1016/j.nicl.2016.02.019_bb0080) 2014; 41
Klöppel (10.1016/j.nicl.2016.02.019_bb0140) 2008; 131
Guerrero (10.1016/j.nicl.2016.02.019_bb0105) 2014; 94C
Mattila (10.1016/j.nicl.2016.02.019_bb0185) 2012; 59
Koikkalainen (10.1016/j.nicl.2016.02.019_bb0145) 2011; 56
Brodersen (10.1016/j.nicl.2016.02.019_bb0050) 2010
Varma (10.1016/j.nicl.2016.02.019_bb0285) 2002; 105
Meyer (10.1016/j.nicl.2016.02.019_bb0210) 2007; 257
Holmes (10.1016/j.nicl.2016.02.019_bb0120) 1999; 174
Frisoni (10.1016/j.nicl.2016.02.019_bb0100) 1999; 52
Jagust (10.1016/j.nicl.2016.02.019_bb0130) 2006; 2
van der Flier (10.1016/j.nicl.2016.02.019_bb0275) 2014; 41
Kantarci (10.1016/j.nicl.2016.02.019_bb0135) 2012; 33
Whitwell (10.1016/j.nicl.2016.02.019_bb0300) 2007; 130
Tustison (10.1016/j.nicl.2016.02.019_bb0270) 2010; 29
McKeith (10.1016/j.nicl.2016.02.019_bb0195) 2005; 65
Scheltens (10.1016/j.nicl.2016.02.019_bb0250) 1995; 242
Fazekas (10.1016/j.nicl.2016.02.019_bb0085) 1987; 149
Lötjönen (10.1016/j.nicl.2016.02.019_bb0170) 2011; 56
Studholme (10.1016/j.nicl.2016.02.019_bb0260) 1999; 32
Dubois (10.1016/j.nicl.2016.02.019_bb0075) 2007; 6
Román (10.1016/j.nicl.2016.02.019_bb0245) 1993; 43
Feldman (10.1016/j.nicl.2016.02.019_bb0090) 2009; 24
Barber (10.1016/j.nicl.2016.02.019_bb0030) 2000; 54
Pasquier (10.1016/j.nicl.2016.02.019_bb0225) 1996; 36
Burton (10.1016/j.nicl.2016.02.019_bb0060) 2009; 132
Rascovsky (10.1016/j.nicl.2016.02.019_bb0235) 2011; 134
Artaechevarria (10.1016/j.nicl.2016.02.019_bb0010) 2009; 28
Guimond (10.1016/j.nicl.2016.02.019_bb0110) 2000; 7
Neary (10.1016/j.nicl.2016.02.019_bb0220) 1998; 51
Heckemann (10.1016/j.nicl.2016.02.019_bb0115) 2006; 33
Coupé (10.1016/j.nicl.2016.02.019_bb0065) 2012; 1
Rabinovici (10.1016/j.nicl.2016.02.019_bb0230) 2008; 22
Wang (10.1016/j.nicl.2016.02.019_bb0295) 2012; 60
Barber (10.1016/j.nicl.2016.02.019_bb0035) 1999; 52
Koikkalainen (10.1016/j.nicl.2016.02.019_bb0150) 2012; 7
Leemput (10.1016/j.nicl.2016.02.019_bb0160) 1999; 18
Zhang (10.1016/j.nicl.2016.02.019_bb0310) 2009; 132
Lopez (10.1016/j.nicl.2016.02.019_bb0165) 2002; 59
Lötjönen (10.1016/j.nicl.2016.02.019_bb0175) 2010; 49
McKhann (10.1016/j.nicl.2016.02.019_bb0205) 2011; 7
Waldemar (10.1016/j.nicl.2016.02.019_bb0290) 2007; 14
11861709 - J Neurol Neurosurg Psychiatry. 2002 Mar;72(3):406-7
10211150 - Br J Psychiatry. 1999 Jan;174:45-50
23142262 - Arch Med Res. 2012 Nov;43(8):671-6
20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
21799247 - J Alzheimers Dis. 2011;27(1):163-76
26238576 - Alzheimers Dement. 2016 Feb;12(2):110-20
6610841 - Neurology. 1984 Jul;34(7):939-44
18166607 - Am J Alzheimers Dis Other Demen. 2007 Dec-2008 Jan;22(6):474-88
11790229 - Arch Neurol. 2002 Jan;59(1):43-6
22022397 - PLoS One. 2011;6(10):e25446
10436338 - Dement Geriatr Cogn Disord. 1999;10 Suppl 1:37-42
10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
17316690 - J Neurol Sci. 2007 Jun 15;257(1-2):97-104
11939938 - Acta Neurol Scand. 2002 Apr;105(4):261-9
12377138 - Neuroimage. 2002 Oct;17(2):618-30
8094895 - Neurology. 1993 Feb;43(2):250-60
9855500 - Neurology. 1998 Dec;51(6):1546-54
24657351 - Neuroimage. 2014 Jul 1;94:275-86
15325380 - Neuroimage. 2004 Sep;23(1):325-35
17222085 - Eur J Neurol. 2007 Jan;14(1):e1-26
24179747 - Neuroimage Clin. 2012 Oct 17;1(1):141-52
19595854 - Alzheimers Dement. 2006 Jan;2(1):36-42
8864706 - Eur Neurol. 1996;36(5):268-72
17475957 - J Nucl Med. 2007 May;48(5):704-11
21419228 - Neuroimage. 2011 Jun 1;56(3):1134-44
8551316 - J Neurol. 1995 Sep;242(9):557-60
19022858 - Brain. 2009 Jan;132(Pt 1):195-203
23285078 - PLoS One. 2012;7(12):e52531
18202106 - Brain. 2008 Mar;131(Pt 3):681-9
10628949 - IEEE Trans Med Imaging. 1999 Oct;18(10):897-908
17267521 - Brain. 2007 Mar;130(Pt 3):708-19
22387175 - Neuroimage. 2012 May 1;60(4):2379-88
19439421 - Brain. 2009 Sep;132(Pt 9):2579-92
24718104 - J Alzheimers Dis. 2014;41(3):685-708
19857578 - Neuroimage. 2010 Feb 1;49(3):2352-65
1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
8909416 - Neurology. 1996 Nov;47(5):1113-24
9921854 - Neurology. 1999 Jan 1;52(1):91-100
10214736 - Neurology. 1999 Apr 12;52(6):1153-8
18985627 - Int J Geriatr Psychiatry. 2009 May;24(5):479-88
21514250 - Alzheimers Dement. 2011 May;7(3):263-9
16237129 - Neurology. 2005 Dec 27;65(12):1863-72
10746602 - Neurology. 2000 Mar 28;54(6):1304-9
24614907 - J Alzheimers Dis. 2014;41(1):313-27
22018896 - Neurobiol Aging. 2012 Sep;33(9):2091-105
23523774 - Neuroimage. 2013 Aug 1;76:11-23
16860573 - Neuroimage. 2006 Oct 15;33(1):115-26
3496763 - AJR Am J Roentgenol. 1987 Aug;149(2):351-6
19245840 - Neuroimage. 2009 Jul 1;46(3):726-38
9788071 - Hum Brain Mapp. 1998;6(5-6):348-57
10862805 - Biol Psychiatry. 2000 Jun 15;47(12):1056-63
21990325 - IEEE Trans Biomed Eng. 2012 Jan;59(1):234-40
21281717 - Neuroimage. 2011 May 1;56(1):185-96
17616482 - Lancet Neurol. 2007 Aug;6(8):734-46
21810890 - Brain. 2011 Sep;134(Pt 9):2456-77
19228554 - IEEE Trans Med Imaging. 2009 Aug;28(8):1266-77
19897403 - Med Image Anal. 2010 Feb;14(1):39-49
22348041 - PLoS One. 2012;7(2):e31112
References_xml – start-page: 3121
  year: 2010
  end-page: 3124
  ident: bb0050
  article-title: The balanced accuracy and its posterior distribution
  publication-title: Pattern Recognition (ICPR), 2010 20th International Conference on
– volume: 54
  start-page: 1304
  year: 2000
  end-page: 1309
  ident: bb0030
  article-title: MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia
  publication-title: Neurology
– volume: 43
  start-page: 250
  year: 1993
  end-page: 260
  ident: bb0245
  article-title: Vascular dementia. Diagnostic criteria for research studies: report of the NINDS-AIREN International workshop
  publication-title: Neurology
– volume: 33
  start-page: 2091
  year: 2012
  end-page: 2105
  ident: bb0135
  article-title: Multimodality imaging characteristics of dementia with Lewy bodies
  publication-title: Neurobiol. Aging
– volume: 27
  start-page: 163
  year: 2011
  end-page: 176
  ident: bb0180
  article-title: A disease state fingerprint for evaluation of Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 134
  start-page: 2456
  year: 2011
  end-page: 2477
  ident: bb0235
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
– volume: 7
  year: 2012
  ident: bb0150
  article-title: Improved classification of Alzheimer's disease data via removal of nuisance variability
  publication-title: PLoS ONE
– volume: 72
  start-page: 406
  year: 2002
  end-page: 407
  ident: bb0040
  article-title: Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 6
  start-page: 348
  year: 1998
  end-page: 357
  ident: bb0020
  article-title: Identifying global anatomical differences: deformation-based morphometry
  publication-title: Hum. Brain Mapp.
– volume: 149
  start-page: 351
  year: 1987
  end-page: 356
  ident: bb0085
  article-title: MR signal abnormalities at 1.5 t in Alzheimer's dementia and normal aging
  publication-title: AJR Am. J. Roentgenol.
– volume: 257
  start-page: 97
  year: 2007
  end-page: 104
  ident: bb0210
  article-title: MRI confirms mild cognitive impairments prodromal for Alzheimer's, vascular and Parkinson-Lewy body dementias
  publication-title: J. Neurol. Sci.
– volume: 32
  start-page: 71
  year: 1999
  end-page: 86
  ident: bb0260
  article-title: An overlap invariant entropy measure of 3d medical image alignment
  publication-title: Pattern Recogn.
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: bb0205
  article-title: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers Dement.
– volume: 60
  start-page: 2379
  year: 2012
  end-page: 2388
  ident: bb0295
  article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts
  publication-title: NeuroImage
– volume: 43
  start-page: 671
  year: 2012
  end-page: 676
  ident: bb0240
  article-title: Contribution of neuroimaging to the diagnosis of Alzheimer's disease and vascular dementia
  publication-title: Arch. Med. Res.
– volume: 65
  start-page: 1863
  year: 2005
  end-page: 1872
  ident: bb0195
  article-title: Diagnosis and management of dementia with Lewy bodies. third report of DLB consortium
  publication-title: Neurology
– volume: 130
  start-page: 708
  year: 2007
  end-page: 719
  ident: bb0300
  article-title: Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease
  publication-title: Brain
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0140
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 52
  start-page: 1153
  year: 1999
  end-page: 1158
  ident: bb0035
  article-title: Medial temporal lobe atrophy on MRI in dementia with Lewy bodies
  publication-title: Neurology
– volume: 34
  start-page: 939
  year: 1984
  end-page: 1944
  ident: bb0200
  article-title: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
  publication-title: Neurology
– volume: 56
  start-page: 185
  year: 2011
  end-page: 196
  ident: bb0170
  article-title: Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease
  publication-title: NeuroImage
– volume: 47
  start-page: 1113
  year: 1996
  end-page: 1124
  ident: bb0190
  article-title: Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop
  publication-title: Neurology
– volume: 1
  start-page: 141
  year: 2012
  end-page: 152
  ident: bb0065
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
  publication-title: NeuroImage Clin.
– volume: 41
  start-page: 313
  year: 2014
  end-page: 327
  ident: bb0275
  article-title: Optimizing patient care and research: the Amsterdam dementia cohort
  publication-title: J. Alzheimers Dis.
– volume: 7
  year: 2012
  ident: bb0215
  article-title: Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry
  publication-title: PLoS ONE
– volume: 132
  start-page: 195
  year: 2009
  end-page: 203
  ident: bb0060
  article-title: Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis
  publication-title: Brain
– volume: 94C
  start-page: 275
  year: 2014
  end-page: 286
  ident: bb0105
  article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO
  publication-title: NeuroImage
– volume: 23
  start-page: 325
  year: 2004
  end-page: 335
  ident: bb0025
  article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects
  publication-title: NeuroImage
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bb0005
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
– volume: 242
  start-page: 557
  year: 1995
  end-page: 560
  ident: bb0250
  article-title: Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability
  publication-title: J. Neurol.
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bb0015
  article-title: Voxel-based morphometry — the methods
  publication-title: NeuroImage
– volume: 10
  start-page: 37
  year: 1999
  end-page: 42
  ident: bb0070
  article-title: Frontotemporal dementia and Alzheimer's disease: differential diagnosis
  publication-title: Dement. Geriatr. Cogn. Disord.
– volume: 174
  start-page: 45
  year: 1999
  end-page: 50
  ident: bb0120
  article-title: Validity of current clinical criteria for Alzheimer's disease, vascular dementia and dementia with Lewy bodies
  publication-title: Br. J. Psychiatry
– volume: 6
  year: 2011
  ident: bb0305
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS ONE
– volume: 41
  start-page: 685
  year: 2014
  end-page: 708
  ident: bb0080
  article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheimers Dis.
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bb0270
  article-title: N4itk: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  ident: bb0010
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
– volume: 47
  start-page: 1056
  year: 2000
  end-page: 1063
  ident: bb0155
  article-title: Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study
  publication-title: Biol. Psychiatry
– volume: 76
  start-page: 11
  year: 2013
  end-page: 23
  ident: bb0265
  article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling
  publication-title: NeuroImage
– volume: 56
  start-page: 1134
  year: 2011
  end-page: 1144
  ident: bb0145
  article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease
  publication-title: NeuroImage
– volume: 14
  start-page: e1
  year: 2007
  end-page: e26
  ident: bb0290
  article-title: Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: Efns guideline
  publication-title: Eur. J. Neurol.
– volume: 18
  start-page: 897
  year: 1999
  end-page: 908
  ident: bb0160
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
– volume: 49
  start-page: 2352
  year: 2010
  end-page: 2365
  ident: bb0175
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: NeuroImage
– volume: 132
  start-page: 2579
  year: 2009
  end-page: 2592
  ident: bb0310
  article-title: White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI
  publication-title: Brain
– volume: 59
  start-page: 43
  year: 2002
  end-page: 46
  ident: bb0165
  article-title: Research evaluation and prospective diagnosis of dementia with Lewy bodies
  publication-title: Arch. Neurol.
– volume: 24
  start-page: 479
  year: 2009
  end-page: 488
  ident: bb0090
  article-title: Treatment with galantamine and time to nursing home placement in Alzheimer's disease patients with and without cerebrovascular disease
  publication-title: Int. J. Geriatr. Psychiatry
– volume: 7
  start-page: 192
  year: 2000
  end-page: 210
  ident: bb0110
  article-title: Average brain models. a convergence study
  publication-title: Comput. Vis. Image Underst.
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: bb0115
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
– volume: 51
  start-page: 1546
  year: 1998
  end-page: 1554
  ident: bb0220
  article-title: Frontotemporal lobar degeneration. a consensus on clinical diagnostics criteria
  publication-title: Neurology
– volume: Vol. 14
  start-page: 585
  year: 2002
  end-page: 591
  ident: bb0045
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in Neural Information Processing Systems 14
– volume: 6
  start-page: 734
  year: 2007
  end-page: 746
  ident: bb0075
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol.
– volume: 22
  start-page: 474
  year: 2008
  end-page: 488
  ident: bb0230
  article-title: Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration
  publication-title: Am. J. Alzheimers Dis. Other Demen.
– volume: 48
  start-page: 704
  year: 2007
  end-page: 711
  ident: bb0125
  article-title: Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer's disease
  publication-title: J. Nucl. Med.
– volume: 59
  start-page: 234
  year: 2012
  end-page: 240
  ident: bb0185
  article-title: Design and application of a generic clinical decision support system for multiscale data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  ident: bb0095
  article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
– volume: 2
  start-page: 36
  year: 2006
  end-page: 42
  ident: bb0130
  article-title: Positron emission tomography and magnetic resonance imaging in the diagnosis and prediction of dementia
  publication-title: Alzheimers Dement.
– volume: 17
  start-page: 618
  year: 2002
  end-page: 630
  ident: bb0055
  article-title: Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry
  publication-title: NeuroImage
– year: 2015
  ident: bb0255
  article-title: Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients
  publication-title: Alzheimers Dement.
– volume: 105
  start-page: 261
  year: 2002
  end-page: 269
  ident: bb0285
  article-title: Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on spect in young onset patients with Alzheimer's disease, frontotemporal dementia and vascular dementia
  publication-title: Acta Neurol. Scand.
– volume: 52
  start-page: 91
  year: 1999
  end-page: 100
  ident: bb0100
  article-title: Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease
  publication-title: Neurology
– volume: 36
  start-page: 268
  year: 1996
  end-page: 272
  ident: bb0225
  article-title: Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts
  publication-title: Eur. Neurol.
– volume: 14
  start-page: 39
  year: 2010
  end-page: 49
  ident: bb0280
  article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus
  publication-title: Med. Image Anal.
– volume: 94C
  start-page: 275
  year: 2014
  ident: 10.1016/j.nicl.2016.02.019_bb0105
  article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.036
– volume: 51
  start-page: 1546
  issue: 6
  year: 1998
  ident: 10.1016/j.nicl.2016.02.019_bb0220
  article-title: Frontotemporal lobar degeneration. a consensus on clinical diagnostics criteria
  publication-title: Neurology
  doi: 10.1212/WNL.51.6.1546
– volume: 149
  start-page: 351
  issue: 2
  year: 1987
  ident: 10.1016/j.nicl.2016.02.019_bb0085
  article-title: MR signal abnormalities at 1.5 t in Alzheimer's dementia and normal aging
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.149.2.351
– volume: Vol. 14
  start-page: 585
  year: 2002
  ident: 10.1016/j.nicl.2016.02.019_bb0045
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
– volume: 10
  start-page: 37
  issue: 1
  year: 1999
  ident: 10.1016/j.nicl.2016.02.019_bb0070
  article-title: Frontotemporal dementia and Alzheimer's disease: differential diagnosis
  publication-title: Dement. Geriatr. Cogn. Disord.
  doi: 10.1159/000051210
– volume: 7
  start-page: 263
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2016.02.019_bb0205
  article-title: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.005
– volume: 18
  start-page: 897
  issue: 10
  year: 1999
  ident: 10.1016/j.nicl.2016.02.019_bb0160
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.811270
– volume: 130
  start-page: 708
  issue: 3
  year: 2007
  ident: 10.1016/j.nicl.2016.02.019_bb0300
  article-title: Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awl388
– volume: 60
  start-page: 2379
  issue: 4
  year: 2012
  ident: 10.1016/j.nicl.2016.02.019_bb0295
  article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.034
– volume: 41
  start-page: 313
  issue: 1
  year: 2014
  ident: 10.1016/j.nicl.2016.02.019_bb0275
  article-title: Optimizing patient care and research: the Amsterdam dementia cohort
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-132306
– volume: 24
  start-page: 479
  issue: 5
  year: 2009
  ident: 10.1016/j.nicl.2016.02.019_bb0090
  article-title: Treatment with galantamine and time to nursing home placement in Alzheimer's disease patients with and without cerebrovascular disease
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/gps.2141
– volume: 52
  start-page: 91
  issue: 1
  year: 1999
  ident: 10.1016/j.nicl.2016.02.019_bb0100
  article-title: Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.52.1.91
– volume: 46
  start-page: 726
  issue: 3
  year: 2009
  ident: 10.1016/j.nicl.2016.02.019_bb0005
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 52
  start-page: 1153
  issue: 6
  year: 1999
  ident: 10.1016/j.nicl.2016.02.019_bb0035
  article-title: Medial temporal lobe atrophy on MRI in dementia with Lewy bodies
  publication-title: Neurology
  doi: 10.1212/WNL.52.6.1153
– volume: 6
  issue: 10
  year: 2011
  ident: 10.1016/j.nicl.2016.02.019_bb0305
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025446
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.nicl.2016.02.019_bb0140
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 34
  start-page: 939
  issue: 7
  year: 1984
  ident: 10.1016/j.nicl.2016.02.019_bb0200
  article-title: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– volume: 22
  start-page: 474
  issue: 6
  year: 2008
  ident: 10.1016/j.nicl.2016.02.019_bb0230
  article-title: Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration
  publication-title: Am. J. Alzheimers Dis. Other Demen.
  doi: 10.1177/1533317507308779
– volume: 132
  start-page: 2579
  issue: 9
  year: 2009
  ident: 10.1016/j.nicl.2016.02.019_bb0310
  article-title: White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI
  publication-title: Brain
  doi: 10.1093/brain/awp071
– volume: 47
  start-page: 1113
  issue: 5
  year: 1996
  ident: 10.1016/j.nicl.2016.02.019_bb0190
  article-title: Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop
  publication-title: Neurology
  doi: 10.1212/WNL.47.5.1113
– volume: 242
  start-page: 557
  issue: 9
  year: 1995
  ident: 10.1016/j.nicl.2016.02.019_bb0250
  article-title: Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability
  publication-title: J. Neurol.
  doi: 10.1007/BF00868807
– volume: 28
  start-page: 1266
  issue: 8
  year: 2009
  ident: 10.1016/j.nicl.2016.02.019_bb0010
  article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 43
  start-page: 671
  issue: 8
  year: 2012
  ident: 10.1016/j.nicl.2016.02.019_bb0240
  article-title: Contribution of neuroimaging to the diagnosis of Alzheimer's disease and vascular dementia
  publication-title: Arch. Med. Res.
  doi: 10.1016/j.arcmed.2012.10.018
– volume: 41
  start-page: 685
  issue: 3
  year: 2014
  ident: 10.1016/j.nicl.2016.02.019_bb0080
  article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-131928
– volume: 7
  start-page: 192
  year: 2000
  ident: 10.1016/j.nicl.2016.02.019_bb0110
  article-title: Average brain models. a convergence study
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1999.0815
– volume: 56
  start-page: 185
  issue: 1
  year: 2011
  ident: 10.1016/j.nicl.2016.02.019_bb0170
  article-title: Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.062
– volume: 1
  start-page: 141
  issue: 1
  year: 2012
  ident: 10.1016/j.nicl.2016.02.019_bb0065
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2012.10.002
– volume: 6
  start-page: 734
  issue: 8
  year: 2007
  ident: 10.1016/j.nicl.2016.02.019_bb0075
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 14
  start-page: e1
  issue: 1
  year: 2007
  ident: 10.1016/j.nicl.2016.02.019_bb0290
  article-title: Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: Efns guideline
  publication-title: Eur. J. Neurol.
  doi: 10.1111/j.1468-1331.2006.01605.x
– start-page: 3121
  year: 2010
  ident: 10.1016/j.nicl.2016.02.019_bb0050
  article-title: The balanced accuracy and its posterior distribution
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  ident: 10.1016/j.nicl.2016.02.019_bb0095
  article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(75)90026-6
– volume: 105
  start-page: 261
  issue: 4
  year: 2002
  ident: 10.1016/j.nicl.2016.02.019_bb0285
  article-title: Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on spect in young onset patients with Alzheimer's disease, frontotemporal dementia and vascular dementia
  publication-title: Acta Neurol. Scand.
  doi: 10.1034/j.1600-0404.2002.1o148.x
– volume: 17
  start-page: 618
  issue: 2
  year: 2002
  ident: 10.1016/j.nicl.2016.02.019_bb0055
  article-title: Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1197
– volume: 132
  start-page: 195
  issue: 1
  year: 2009
  ident: 10.1016/j.nicl.2016.02.019_bb0060
  article-title: Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis
  publication-title: Brain
  doi: 10.1093/brain/awn298
– volume: 11
  start-page: 805
  issue: 6
  year: 2000
  ident: 10.1016/j.nicl.2016.02.019_bb0015
  article-title: Voxel-based morphometry — the methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– volume: 23
  start-page: 325
  issue: 1
  year: 2004
  ident: 10.1016/j.nicl.2016.02.019_bb0025
  article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.04.026
– volume: 59
  start-page: 43
  issue: 1
  year: 2002
  ident: 10.1016/j.nicl.2016.02.019_bb0165
  article-title: Research evaluation and prospective diagnosis of dementia with Lewy bodies
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.59.1.43
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.nicl.2016.02.019_bb0270
  article-title: N4itk: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 7
  issue: 2
  year: 2012
  ident: 10.1016/j.nicl.2016.02.019_bb0150
  article-title: Improved classification of Alzheimer's disease data via removal of nuisance variability
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031112
– volume: 33
  start-page: 115
  issue: 1
  year: 2006
  ident: 10.1016/j.nicl.2016.02.019_bb0115
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.061
– volume: 6
  start-page: 348
  issue: 5-6
  year: 1998
  ident: 10.1016/j.nicl.2016.02.019_bb0020
  article-title: Identifying global anatomical differences: deformation-based morphometry
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P
– volume: 7
  issue: 12
  year: 2012
  ident: 10.1016/j.nicl.2016.02.019_bb0215
  article-title: Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052531
– volume: 33
  start-page: 2091
  issue: 9
  year: 2012
  ident: 10.1016/j.nicl.2016.02.019_bb0135
  article-title: Multimodality imaging characteristics of dementia with Lewy bodies
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.09.024
– volume: 48
  start-page: 704
  issue: 5
  year: 2007
  ident: 10.1016/j.nicl.2016.02.019_bb0125
  article-title: Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer's disease
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.106.035691
– volume: 27
  start-page: 163
  issue: 1
  year: 2011
  ident: 10.1016/j.nicl.2016.02.019_bb0180
  article-title: A disease state fingerprint for evaluation of Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-110365
– volume: 72
  start-page: 406
  issue: 3
  year: 2002
  ident: 10.1016/j.nicl.2016.02.019_bb0040
  article-title: Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.72.3.406
– volume: 47
  start-page: 1056
  issue: 12
  year: 2000
  ident: 10.1016/j.nicl.2016.02.019_bb0155
  article-title: Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(99)00306-6
– volume: 76
  start-page: 11
  year: 2013
  ident: 10.1016/j.nicl.2016.02.019_bb0265
  article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.02.069
– volume: 56
  start-page: 1134
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2016.02.019_bb0145
  article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.03.029
– volume: 54
  start-page: 1304
  issue: 6
  year: 2000
  ident: 10.1016/j.nicl.2016.02.019_bb0030
  article-title: MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia
  publication-title: Neurology
  doi: 10.1212/WNL.54.6.1304
– volume: 49
  start-page: 2352
  issue: 3
  year: 2010
  ident: 10.1016/j.nicl.2016.02.019_bb0175
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.026
– volume: 32
  start-page: 71
  issue: 1
  year: 1999
  ident: 10.1016/j.nicl.2016.02.019_bb0260
  article-title: An overlap invariant entropy measure of 3d medical image alignment
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(98)00091-0
– volume: 2
  start-page: 36
  issue: 1
  year: 2006
  ident: 10.1016/j.nicl.2016.02.019_bb0130
  article-title: Positron emission tomography and magnetic resonance imaging in the diagnosis and prediction of dementia
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2005.11.002
– volume: 257
  start-page: 97
  issue: 1-2
  year: 2007
  ident: 10.1016/j.nicl.2016.02.019_bb0210
  article-title: MRI confirms mild cognitive impairments prodromal for Alzheimer's, vascular and Parkinson-Lewy body dementias
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2007.01.016
– volume: 134
  start-page: 2456
  issue: 9
  year: 2011
  ident: 10.1016/j.nicl.2016.02.019_bb0235
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awr179
– volume: 59
  start-page: 234
  issue: 1
  year: 2012
  ident: 10.1016/j.nicl.2016.02.019_bb0185
  article-title: Design and application of a generic clinical decision support system for multiscale data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2170986
– volume: 65
  start-page: 1863
  issue: 12
  year: 2005
  ident: 10.1016/j.nicl.2016.02.019_bb0195
  article-title: Diagnosis and management of dementia with Lewy bodies. third report of DLB consortium
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000187889.17253.b1
– volume: 36
  start-page: 268
  issue: 5
  year: 1996
  ident: 10.1016/j.nicl.2016.02.019_bb0225
  article-title: Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts
  publication-title: Eur. Neurol.
  doi: 10.1159/000117270
– volume: 14
  start-page: 39
  issue: 1
  year: 2010
  ident: 10.1016/j.nicl.2016.02.019_bb0280
  article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.10.001
– volume: 174
  start-page: 45
  year: 1999
  ident: 10.1016/j.nicl.2016.02.019_bb0120
  article-title: Validity of current clinical criteria for Alzheimer's disease, vascular dementia and dementia with Lewy bodies
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.174.1.45
– volume: 43
  start-page: 250
  issue: 2
  year: 1993
  ident: 10.1016/j.nicl.2016.02.019_bb0245
  article-title: Vascular dementia. Diagnostic criteria for research studies: report of the NINDS-AIREN International workshop
  publication-title: Neurology
  doi: 10.1212/WNL.43.2.250
– year: 2015
  ident: 10.1016/j.nicl.2016.02.019_bb0255
  article-title: Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients
  publication-title: Alzheimers Dement.
– reference: 23285078 - PLoS One. 2012;7(12):e52531
– reference: 15325380 - Neuroimage. 2004 Sep;23(1):325-35
– reference: 10628949 - IEEE Trans Med Imaging. 1999 Oct;18(10):897-908
– reference: 8864706 - Eur Neurol. 1996;36(5):268-72
– reference: 17267521 - Brain. 2007 Mar;130(Pt 3):708-19
– reference: 24179747 - Neuroimage Clin. 2012 Oct 17;1(1):141-52
– reference: 21990325 - IEEE Trans Biomed Eng. 2012 Jan;59(1):234-40
– reference: 10214736 - Neurology. 1999 Apr 12;52(6):1153-8
– reference: 3496763 - AJR Am J Roentgenol. 1987 Aug;149(2):351-6
– reference: 21419228 - Neuroimage. 2011 Jun 1;56(3):1134-44
– reference: 19022858 - Brain. 2009 Jan;132(Pt 1):195-203
– reference: 22348041 - PLoS One. 2012;7(2):e31112
– reference: 19595854 - Alzheimers Dement. 2006 Jan;2(1):36-42
– reference: 9921854 - Neurology. 1999 Jan 1;52(1):91-100
– reference: 12377138 - Neuroimage. 2002 Oct;17(2):618-30
– reference: 19228554 - IEEE Trans Med Imaging. 2009 Aug;28(8):1266-77
– reference: 24614907 - J Alzheimers Dis. 2014;41(1):313-27
– reference: 11790229 - Arch Neurol. 2002 Jan;59(1):43-6
– reference: 16237129 - Neurology. 2005 Dec 27;65(12):1863-72
– reference: 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
– reference: 9788071 - Hum Brain Mapp. 1998;6(5-6):348-57
– reference: 9855500 - Neurology. 1998 Dec;51(6):1546-54
– reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98
– reference: 22018896 - Neurobiol Aging. 2012 Sep;33(9):2091-105
– reference: 21514250 - Alzheimers Dement. 2011 May;7(3):263-9
– reference: 11861709 - J Neurol Neurosurg Psychiatry. 2002 Mar;72(3):406-7
– reference: 22387175 - Neuroimage. 2012 May 1;60(4):2379-88
– reference: 10862805 - Biol Psychiatry. 2000 Jun 15;47(12):1056-63
– reference: 16860573 - Neuroimage. 2006 Oct 15;33(1):115-26
– reference: 17222085 - Eur J Neurol. 2007 Jan;14(1):e1-26
– reference: 22022397 - PLoS One. 2011;6(10):e25446
– reference: 8909416 - Neurology. 1996 Nov;47(5):1113-24
– reference: 19857578 - Neuroimage. 2010 Feb 1;49(3):2352-65
– reference: 10746602 - Neurology. 2000 Mar 28;54(6):1304-9
– reference: 18202106 - Brain. 2008 Mar;131(Pt 3):681-9
– reference: 17616482 - Lancet Neurol. 2007 Aug;6(8):734-46
– reference: 24718104 - J Alzheimers Dis. 2014;41(3):685-708
– reference: 10436338 - Dement Geriatr Cogn Disord. 1999;10 Suppl 1:37-42
– reference: 21810890 - Brain. 2011 Sep;134(Pt 9):2456-77
– reference: 17316690 - J Neurol Sci. 2007 Jun 15;257(1-2):97-104
– reference: 8551316 - J Neurol. 1995 Sep;242(9):557-60
– reference: 23523774 - Neuroimage. 2013 Aug 1;76:11-23
– reference: 17475957 - J Nucl Med. 2007 May;48(5):704-11
– reference: 19245840 - Neuroimage. 2009 Jul 1;46(3):726-38
– reference: 11939938 - Acta Neurol Scand. 2002 Apr;105(4):261-9
– reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21
– reference: 19439421 - Brain. 2009 Sep;132(Pt 9):2579-92
– reference: 19897403 - Med Image Anal. 2010 Feb;14(1):39-49
– reference: 6610841 - Neurology. 1984 Jul;34(7):939-44
– reference: 21281717 - Neuroimage. 2011 May 1;56(1):185-96
– reference: 10211150 - Br J Psychiatry. 1999 Jan;174:45-50
– reference: 21799247 - J Alzheimers Dis. 2011;27(1):163-76
– reference: 23142262 - Arch Med Res. 2012 Nov;43(8):671-6
– reference: 18985627 - Int J Geriatr Psychiatry. 2009 May;24(5):479-88
– reference: 18166607 - Am J Alzheimers Dis Other Demen. 2007 Dec-2008 Jan;22(6):474-88
– reference: 24657351 - Neuroimage. 2014 Jul 1;94:275-86
– reference: 8094895 - Neurology. 1993 Feb;43(2):250-60
– reference: 26238576 - Alzheimers Dement. 2016 Feb;12(2):110-20
SSID ssj0000800766
Score 2.4345484
Snippet Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients...
AbstractDifferent neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 435
SubjectTerms Aged
Alzheimer's disease
Brain Mapping
Cerebral Infarction - diagnostic imaging
Cerebral Infarction - etiology
Classification
Dementia with Lewy bodies
Diagnosis, Differential
Female
Frontotemporal lobar degeneration
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Mental Status Schedule
Middle Aged
MRI
Neurodegenerative diseases
Neurodegenerative Diseases - complications
Neurodegenerative Diseases - diagnostic imaging
Radiology
Regular
Retrospective Studies
TBM
Vascular dementia
VBM
Volumetry
White Matter - diagnostic imaging
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLaqIiEuqOwpi4zEDQXFjpfJASG2qiBND8BIvVmOl-lUoww0RYJ_z3uOMxAY9cQlh8TO8vKWz3kv3yPkmRWA8luJ-UEmSxEF-MHoeelmqtGhcrVO7YDmJ-p4IT6eytM9MrY7ygLsdy7tsJ_U4mL94se3n6_A4F_-rtVCElks01KJfxNZQK9BZNJoqPMM988zOtIpfck5q0smZzz_R7P7NJNYlSj9JyHrX0j6d2XlH6Hq6IDczBiTvh6U4hbZC91tcn2es-h3yMm73BUFrHtN_VBst-rpJtJEb-nDMpFRoyekOYPTU6yQX9KBbxa5Ouj80weKBaZ3yeLo_Ze3x2Xuq1A6qcVlKVxjPawrgm-lanhsA8Rs6Z1irraVd9JZ2DAvmdMIJ7hstY_cS8ujrSOv75H9btOFB4SCN4iwYhG-8kwE5ltkflAOgp5yjeK2IGyUoHGZdBx7X6zNWF12blDqBqVuKm5A6gV5vp3zdaDcuHL0G3wx25FIl512bC6WJlufqRsLN9lYFVQUItqGzxy4V4jMLQOEogpSj6_VjH-kgg-FE62uvLTeNSv0oxYbZnoYaT6juqG2sURwVumCPB11x4A5Y47GdmHzHWZoRKyV4qIg9wdd2j4aBzQImGMG151o2eTZp0e61VmiDEeyV0Cqh_9DWA_JDRTC8B3qEdkHvQuPAZldtk-Suf0CpSY0GA
  priority: 102
  providerName: Scholars Portal
Title Differential diagnosis of neurodegenerative diseases using structural MRI data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158216300407
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158216300407
https://www.ncbi.nlm.nih.gov/pubmed/27104138
https://www.proquest.com/docview/1783920624
https://pubmed.ncbi.nlm.nih.gov/PMC4827727
https://doaj.org/article/39a7649a6e6f44fa928c088847b12666
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLokBLaEFG4oaixo4fybE8qoK0PQCVerMcP8pWVRYp7f_vjO2sdqEqFy457NobefKN5_PO5BtC3lsBLH-QmB9kshZRwD4YPa9dp3odGtfq1A5ocaZOz8W3C3mx0eoLa8KyPHA23FHbW61Eb1VQUYhoe9458AzYVAcGwSWJbUPM2zhMXRUepFOiknPW1kx2vLwxk4u7UHUW67pUEuxEmZ2NqJTE-7eC09_k888ayo2gdPKMPC1skh7nVeySR2F8Th4vSr78BTn7XPqfgB9fU5_L6pYTXUWahCx9uEyy07jn0ZKrmSjWwl_SrCyLqhx08f0rxVLSl-T85MvPT6d16aBQO6nFTS1cbz2cIIIfpOp5HAJEZ-mdYq61jXfSWbgwL5nTSBy4HLSP3EvLo20jb_fIzrgawytCwe8jnE2EbzwTgfkBNR6Ug_CmXK-4rQibLWhckRfHLhfXZq4juzJodYNWNw03YPWKfFjP-Z3FNR4c_REfzHokCmOnDwAupsDF_AsuFWnnx2rmd09ht4QfWj54a33frDAVh58MMxOMND8Qbog2lqTMGl2RdzN2DDguZmPsGFa3MEMjN20UFxXZz1haL40D7wN20cF9t1C2tfbtb8blryQOjrKuwElf_w9jHZAnaIT8j9Mh2QHchTfAwW6Gt8nd4LoQ3R1vnSvw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+diagnosis+of+neurodegenerative+diseases+using+structural+MRI+data&rft.jtitle=NeuroImage+clinical&rft.au=Juha+Koikkalainen&rft.au=Hanneke+Rhodius-Meester&rft.au=Antti+Tolonen&rft.au=Frederik+Barkhof&rft.date=2016-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=11&rft.issue=C&rft.spage=435&rft.epage=449&rft_id=info:doi/10.1016%2Fj.nicl.2016.02.019&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39a7649a6e6f44fa928c088847b12666
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158216X00022%2Fcov150h.gif