Differential diagnosis of neurodegenerative diseases using structural MRI data
Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differen...
Saved in:
Published in | NeuroImage clinical Vol. 11; no. C; pp. 435 - 449 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia.
Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making.
A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods.
The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.
[Display omitted]
•Differential diagnostics of dementias was studied using structural MRI data.•504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated.•Different fully automatic quantification methods were compared and combined.•Classification accuracy of 70.6% was obtained for 5-class classification problem.•Combination of several quantification methods was needed for optimal accuracy. |
---|---|
AbstractList | AbstractDifferent neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. [Display omitted] •Differential diagnostics of dementias was studied using structural MRI data.•504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated.•Different fully automatic quantification methods were compared and combined.•Classification accuracy of 70.6% was obtained for 5-class classification problem.•Combination of several quantification methods was needed for optimal accuracy. Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. Image 1 • Differential diagnostics of dementias was studied using structural MRI data. • 504 patients with both T1 and FLAIR MRIs from five patient classes were evaluated. • Different fully automatic quantification methods were compared and combined. • Classification accuracy of 70.6% was obtained for 5-class classification problem. • Combination of several quantification methods was needed for optimal accuracy. Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making. |
Author | Guerrero, Ricardo Remes, Anne M. Waldemar, Gunhild Hasselbalch, Steen Ledig, Christian Tijms, Betty Lötjönen, Jyrki Koikkalainen, Juha Tong, Tong Mecocci, Patrizia Schuh, Andreas Rhodius-Meester, Hanneke Tolonen, Antti van der Flier, Wiesje Barkhof, Frederik Rueckert, Daniel Soininen, Hilkka Lemstra, Afina W. |
AuthorAffiliation | e Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland f Department of Epidemiology and Biostatistics, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands d Department of Computing, Imperial College London, London, UK h Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy b Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands i Combinostics Ltd., Tampere, Finland a VTT Technical Research Centre of Finland, Tampere, Finland c Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands g Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark |
AuthorAffiliation_xml | – name: h Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy – name: f Department of Epidemiology and Biostatistics, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – name: c Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – name: i Combinostics Ltd., Tampere, Finland – name: b Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – name: a VTT Technical Research Centre of Finland, Tampere, Finland – name: d Department of Computing, Imperial College London, London, UK – name: e Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland – name: g Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark |
Author_xml | – sequence: 1 givenname: Juha surname: Koikkalainen fullname: Koikkalainen, Juha email: juha.koikkalainen@combinostics.com organization: VTT Technical Research Centre of Finland, Tampere, Finland – sequence: 2 givenname: Hanneke surname: Rhodius-Meester fullname: Rhodius-Meester, Hanneke organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – sequence: 3 givenname: Antti surname: Tolonen fullname: Tolonen, Antti organization: VTT Technical Research Centre of Finland, Tampere, Finland – sequence: 4 givenname: Frederik surname: Barkhof fullname: Barkhof, Frederik organization: Department of Radiology and Nuclear Medicine, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – sequence: 5 givenname: Betty surname: Tijms fullname: Tijms, Betty organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – sequence: 6 givenname: Afina W. surname: Lemstra fullname: Lemstra, Afina W. organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – sequence: 7 givenname: Tong surname: Tong fullname: Tong, Tong organization: Department of Computing, Imperial College London, London, UK – sequence: 8 givenname: Ricardo surname: Guerrero fullname: Guerrero, Ricardo organization: Department of Computing, Imperial College London, London, UK – sequence: 9 givenname: Andreas surname: Schuh fullname: Schuh, Andreas organization: Department of Computing, Imperial College London, London, UK – sequence: 10 givenname: Christian surname: Ledig fullname: Ledig, Christian organization: Department of Computing, Imperial College London, London, UK – sequence: 11 givenname: Daniel surname: Rueckert fullname: Rueckert, Daniel organization: Department of Computing, Imperial College London, London, UK – sequence: 12 givenname: Hilkka surname: Soininen fullname: Soininen, Hilkka organization: Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland – sequence: 13 givenname: Anne M. surname: Remes fullname: Remes, Anne M. organization: Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland – sequence: 14 givenname: Gunhild surname: Waldemar fullname: Waldemar, Gunhild organization: Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark – sequence: 15 givenname: Steen surname: Hasselbalch fullname: Hasselbalch, Steen organization: Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark – sequence: 16 givenname: Patrizia surname: Mecocci fullname: Mecocci, Patrizia organization: Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy – sequence: 17 givenname: Wiesje surname: van der Flier fullname: van der Flier, Wiesje organization: Alzheimer Center, Department of Neurology, VU University Medical Centre, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands – sequence: 18 givenname: Jyrki surname: Lötjönen fullname: Lötjönen, Jyrki organization: VTT Technical Research Centre of Finland, Tampere, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27104138$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAPKkcsutpPYDgckVL5WKiDxcR7N2uPFS2oXO1mp_x6H3aIWifpgjzzz3tPMm8fVUYiBquopZ0vOuHyxXQZvhqUo8ZKJJeP9g-pECN4seKfF0a34uDrLecvK0YwpKR9Vx0Jx1vJGn1Sf3njnKFEYPQ619bgJMftcR1cHmlK0tKFACUe_o5LOhJlyPWUfNnUe02TGKRXgxy-r2uKIT6qHDodMZ4f3tPr-7u238w-Li8_vV-evLxamU-24aE2PlmtBdt3JXrg16a7prJHcNMis6QyWi9uOG8V6zkS3VtYJ26Fw2DjRnFarPa-NuIWr5C8xXUNED38-YtoAprEMiKDpUcm2R0nSta3DXmjDtNatWnMhpSxcr_ZcV9P6kqwpsygt3SG9mwn-B2ziDlotlBKqEDw_EKT4a6I8wqXPhoYBA8UpA1e66QWToi2lz25r_RW5MaQU6H2BSTHnRA6MH8v04yztB-AMZvthC7P9MNsPTECxv0DFP9Ab9ntBh-apuLXzlMAMvlTh8JOuKW_jlEIxEjjkAoCv81bNS8Vlw1jL5uZf_p-guOHvU_8NrE7dtQ |
CitedBy_id | crossref_primary_10_1186_s13195_019_0482_3 crossref_primary_10_3390_biomedicines12040896 crossref_primary_10_3233_JAD_170850 crossref_primary_10_1016_j_nicl_2020_102267 crossref_primary_10_1016_j_matpr_2021_01_221 crossref_primary_10_3233_JAD_170733 crossref_primary_10_1016_j_nicl_2019_101718 crossref_primary_10_3390_molecules30051017 crossref_primary_10_1016_j_cccb_2023_100182 crossref_primary_10_1038_s41380_023_02215_8 crossref_primary_10_1002_hbm_25820 crossref_primary_10_1212_WNL_0000000000201043 crossref_primary_10_1016_j_nicl_2018_07_014 crossref_primary_10_3233_JAD_190691 crossref_primary_10_1016_S1474_4422_20_30314_8 crossref_primary_10_1002_jmri_25563 crossref_primary_10_1186_s12880_024_01242_3 crossref_primary_10_1007_s13311_023_01355_7 crossref_primary_10_1016_j_ncl_2017_01_004 crossref_primary_10_1007_s00330_019_06067_1 crossref_primary_10_36290_neu_2021_026 crossref_primary_10_1016_j_wneu_2023_10_045 crossref_primary_10_1016_j_neurobiolaging_2021_11_002 crossref_primary_10_1159_000502476 crossref_primary_10_1590_1980_57642016dn11_040003 crossref_primary_10_1080_14737175_2022_2048648 crossref_primary_10_1186_s12987_022_00338_8 crossref_primary_10_1016_j_radi_2025_102903 crossref_primary_10_1038_nrneurol_2016_51 crossref_primary_10_14412_2074_2711_2019_4_104_110 crossref_primary_10_3389_fnagi_2021_761954 crossref_primary_10_3389_fneur_2019_00459 crossref_primary_10_1038_s41598_020_80930_w crossref_primary_10_1109_ACCESS_2020_3037107 crossref_primary_10_3389_fnagi_2022_939155 crossref_primary_10_1111_ene_14910 crossref_primary_10_1159_000506124 crossref_primary_10_1093_braincomms_fcae290 crossref_primary_10_1016_j_nbd_2024_106439 crossref_primary_10_3389_fnagi_2020_00228 crossref_primary_10_1097_MNM_0000000000000812 crossref_primary_10_1186_s40035_021_00272_z crossref_primary_10_1111_ene_16533 crossref_primary_10_14283_jpad_2022_24 crossref_primary_10_4103_mgmj_mgmj_53_23 crossref_primary_10_1016_j_nantod_2023_101931 crossref_primary_10_1016_j_nicl_2017_06_012 crossref_primary_10_1021_acsnano_3c10249 crossref_primary_10_3233_JAD_180484 crossref_primary_10_1002_alz_13412 crossref_primary_10_1016_j_nicl_2018_08_028 crossref_primary_10_1186_s13195_019_0506_z crossref_primary_10_3389_fneur_2023_1175922 crossref_primary_10_1136_jnnp_2019_320774 crossref_primary_10_1007_s11063_025_11735_z crossref_primary_10_1038_s41598_020_68118_8 crossref_primary_10_3390_life11101108 crossref_primary_10_2174_1567205016666190103152425 crossref_primary_10_1016_j_jneumeth_2017_12_016 crossref_primary_10_1016_j_media_2021_102219 crossref_primary_10_1002_adma_201906539 crossref_primary_10_1186_s13195_023_01209_6 crossref_primary_10_1002_gps_5667 crossref_primary_10_1111_ene_15211 crossref_primary_10_1021_acs_iecr_8b06064 crossref_primary_10_1016_j_lpm_2022_104121 crossref_primary_10_1186_s13195_024_01477_w crossref_primary_10_1186_s13195_024_01633_2 crossref_primary_10_1016_j_nicl_2023_103320 crossref_primary_10_1038_s41598_023_43706_6 crossref_primary_10_1371_journal_pone_0226784 crossref_primary_10_1097_RLU_0000000000003981 crossref_primary_10_1016_j_media_2023_102903 crossref_primary_10_1111_ene_15108 crossref_primary_10_1155_2018_2676409 crossref_primary_10_1186_s13195_018_0450_3 crossref_primary_10_1186_s13195_024_01614_5 crossref_primary_10_3233_JAD_191226 crossref_primary_10_1017_S1355617722000480 crossref_primary_10_1002_alz_12814 crossref_primary_10_1134_S0362119720080137 crossref_primary_10_1371_journal_pone_0276107 crossref_primary_10_1002_brb3_2679 crossref_primary_10_1038_s41598_019_49970_9 crossref_primary_10_1007_s12035_019_01698_3 crossref_primary_10_1093_braincomms_fcaa079 crossref_primary_10_1016_j_neuroimage_2019_116456 crossref_primary_10_1016_j_advms_2019_03_002 crossref_primary_10_1016_j_neurobiolaging_2021_04_029 crossref_primary_10_1002_brb3_3397 crossref_primary_10_1016_j_nicl_2019_102112 crossref_primary_10_55697_tnd_2024_96 crossref_primary_10_1002_brb3_2500 crossref_primary_10_1002_VIW_20200141 crossref_primary_10_1038_s41598_024_52910_x crossref_primary_10_3233_JAD_200175 crossref_primary_10_1177_19714009251313511 crossref_primary_10_1016_j_dadm_2018_07_003 crossref_primary_10_3389_fnins_2019_00757 crossref_primary_10_1186_s13195_024_01433_8 crossref_primary_10_2217_nnm_2022_0246 crossref_primary_10_1097_WCO_0000000000001177 crossref_primary_10_1007_s41019_016_0011_3 crossref_primary_10_3389_fnagi_2017_00117 crossref_primary_10_1007_s00330_024_11257_7 crossref_primary_10_3389_fnmol_2024_1386735 crossref_primary_10_1016_j_compmedimag_2018_08_002 crossref_primary_10_1117_1_JMI_6_1_014005 crossref_primary_10_1007_s00234_021_02746_3 crossref_primary_10_1186_s13195_021_00815_6 crossref_primary_10_1039_C9NH00608G crossref_primary_10_3389_fneur_2020_00606 crossref_primary_10_3233_JAD_190594 crossref_primary_10_1007_s11277_023_10586_y crossref_primary_10_1159_000486849 crossref_primary_10_1371_journal_pone_0303111 crossref_primary_10_1016_j_neurad_2020_04_004 crossref_primary_10_1148_ryai_230151 crossref_primary_10_1007_s00415_024_12853_9 crossref_primary_10_1016_j_dadm_2018_09_001 crossref_primary_10_1186_s13195_022_00979_9 crossref_primary_10_3389_fnagi_2018_00111 crossref_primary_10_1016_j_drudis_2019_08_001 crossref_primary_10_3390_app13137921 crossref_primary_10_3390_biomedicines11071999 crossref_primary_10_1002_hbm_24428 |
Cites_doi | 10.1016/j.neuroimage.2014.03.036 10.1212/WNL.51.6.1546 10.2214/ajr.149.2.351 10.1159/000051210 10.1016/j.jalz.2011.03.005 10.1109/42.811270 10.1093/brain/awl388 10.1016/j.neuroimage.2012.02.034 10.3233/JAD-132306 10.1002/gps.2141 10.1212/WNL.52.1.91 10.1016/j.neuroimage.2009.02.018 10.1212/WNL.52.6.1153 10.1371/journal.pone.0025446 10.1093/brain/awm319 10.1212/WNL.34.7.939 10.1177/1533317507308779 10.1093/brain/awp071 10.1212/WNL.47.5.1113 10.1007/BF00868807 10.1109/TMI.2009.2014372 10.1016/j.arcmed.2012.10.018 10.3233/JAD-131928 10.1006/cviu.1999.0815 10.1016/j.neuroimage.2011.01.062 10.1016/j.nicl.2012.10.002 10.1016/S1474-4422(07)70178-3 10.1111/j.1468-1331.2006.01605.x 10.1016/0022-3956(75)90026-6 10.1034/j.1600-0404.2002.1o148.x 10.1006/nimg.2002.1197 10.1093/brain/awn298 10.1006/nimg.2000.0582 10.1016/j.neuroimage.2004.04.026 10.1001/archneur.59.1.43 10.1109/TMI.2010.2046908 10.1371/journal.pone.0031112 10.1016/j.neuroimage.2006.05.061 10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P 10.1371/journal.pone.0052531 10.1016/j.neurobiolaging.2011.09.024 10.2967/jnumed.106.035691 10.3233/JAD-2011-110365 10.1136/jnnp.72.3.406 10.1016/S0006-3223(99)00306-6 10.1016/j.neuroimage.2013.02.069 10.1016/j.neuroimage.2011.03.029 10.1212/WNL.54.6.1304 10.1016/j.neuroimage.2009.10.026 10.1016/S0031-3203(98)00091-0 10.1016/j.jalz.2005.11.002 10.1016/j.jns.2007.01.016 10.1093/brain/awr179 10.1109/TBME.2011.2170986 10.1212/01.wnl.0000187889.17253.b1 10.1159/000117270 10.1016/j.media.2009.10.001 10.1192/bjp.174.1.45 10.1212/WNL.43.2.250 |
ContentType | Journal Article |
Copyright | 2016 Commonwealth Scientific and Industrial Research Organisation Commonwealth Scientific and Industrial Research Organisation 2016 The Authors 2016 |
Copyright_xml | – notice: 2016 Commonwealth Scientific and Industrial Research Organisation – notice: Commonwealth Scientific and Industrial Research Organisation – notice: 2016 The Authors 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.nicl.2016.02.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 449 |
ExternalDocumentID | oai_doaj_org_article_39a7649a6e6f44fa928c088847b12666 PMC4827727 27104138 10_1016_j_nicl_2016_02_019 1_s2_0_S2213158216300407 S2213158216300407 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c574t-4c9ad182edb5692fbe8535dc61c3a0dc5cadc51d51c7091025b7df2d5a2fa3f23 |
IEDL.DBID | DOA |
ISSN | 2213-1582 |
IngestDate | Wed Aug 27 01:07:25 EDT 2025 Thu Aug 21 14:05:19 EDT 2025 Fri Jul 11 05:11:28 EDT 2025 Thu Apr 03 07:10:51 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 01:09:15 EDT 2025 Sun Feb 23 10:19:21 EST 2025 Tue Aug 26 17:37:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | VBM Vascular dementia Neurodegenerative diseases MRI Volumetry Classification Frontotemporal lobar degeneration Alzheimer's disease TBM Dementia with Lewy bodies |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-4c9ad182edb5692fbe8535dc61c3a0dc5cadc51d51c7091025b7df2d5a2fa3f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/39a7649a6e6f44fa928c088847b12666 |
PMID | 27104138 |
PQID | 1783920624 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_39a7649a6e6f44fa928c088847b12666 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4827727 proquest_miscellaneous_1783920624 pubmed_primary_27104138 crossref_citationtrail_10_1016_j_nicl_2016_02_019 crossref_primary_10_1016_j_nicl_2016_02_019 elsevier_clinicalkeyesjournals_1_s2_0_S2213158216300407 elsevier_clinicalkey_doi_10_1016_j_nicl_2016_02_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Burton, Karas, Paling, Barber, Williams, Ballard, McKeith, Scheltens, Barkhof, O'Brien (bb0055) 2002; 17 Ishii, Soma, Kono, Sofue, Miyamoto, Yoshikawa, Mori, Murase (bb0125) 2007; 48 Lötjönen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (bb0175) 2010; 49 Tong, Wolz, Coupé, Hajnal, Rueckert (bb0265) 2013; 76 Lopez, Becker, Kaufer, Hamilton, Sweet, Klunk, DeKosky (bb0165) 2002; 59 Ballmaier, O'Brien, Burton, Thompson, Rex, Narr, McKeith, DeLuca, Toga (bb0025) 2004; 23 Ashburner, Hutton, Frackowiak, Johnsrude, Price, Friston (bb0020) 1998; 6 Barber, McKeith, Ballard, O'Brien (bb0040) 2002; 72 McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bb0200) 1984; 34 Rascovsky, Hodges, Knopman, Mendez, Kramer, Neuhaus, van Swieten, Seelaar, Dopper, Onyike, Hillis, Josephs, Boeve, Kertesz, Seeley, Rankin, Johnson, Gorno-Tempini, Rosen, Prioleau-Latham, Lee, Kipps, Lillo, Piguet, Rohrer, Rossor, Warren, Fox, Galasko, Salmon, Black, Mesulam, Weintraub, Dickerson, Diehl-Schmid, Pasquier, Deramecourt, Lebert, Pijnenburg, Chow, Manes, Grafman, Cappa, Freedman, Grossman, Miller (bb0235) 2011; 134 Barber, Ballard, McKeith, Gholkar, O'Brien (bb0030) 2000; 54 Studholme, Hill, Hawkes (bb0260) 1999; 32 Scheltens, Launer, Barkhof, Weinstein, van Gool (bb0250) 1995; 242 McKeith, Dickson, Lowe, Emre, O'Brien, Feldman, Cummings, Duda, Lippa, Perry, Aarsland, Arai, Ballard, Boeve, Burn, Costa, Del Ser, Dubois, Galasko, Gauthier, Goetz, Gomez-Tortosa, Halliday, Hansen, Hardy, Iwatsubo, Kalaria, Kaufer, Kenny, Korczyn, Kosaka, Lee, Lees, Litvan, Londos, Lopez, Minoshima, Mizuno, Molina, Mukaetova-Ladinska, Pasquier, Perry, Schulz, Trojanowski, Yamada, for the Consortium on DLB (bb0195) 2005; 65 Barber, Gholkar, Scheltens, Ballard, McKeith, O'Brien (bb0035) 1999; 52 Artaechevarria, Munoz-Barrutia, de Solorzano (bb0010) 2009; 28 Ashburner, Friston (bb0015) 2000; 11 Feldman, Pirttila, Dartigues, Everitt, Van Baelen, Schwalen, Kavanagh (bb0090) 2009; 24 Neary, Snowden, Gustafson, Passant, Stuss, Black, Freedman, Kertesz, Robert, Albert, Boone, Miller, Cummings, Benson (bb0220) 1998; 51 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0005) 2009; 46 Guimond, Meunier, Thirion (bb0110) 2000; 7 Falahati, Westman, Simmons (bb0080) 2014; 41 Koikkalainen, Lötjönen, Thurfjell, Rueckert, Waldemar, Soininen (bb0145) 2011; 56 Siemers, Sundell, Carlson, Case, Sethuraman, Liu-Seifert, Dowsett, Pontecorvo, Dean, Demattos (bb0255) 2015 McKeith, Galasko, Kosaka, Perry, Dickson, Hansen, Salmon, Lowe, Mirra, Byrne, Lennox, Quinn, Edwardson, Ince, Bergeron, Burns, Miller, Lovestone, Collerton, Jansen, Ballard, de Vos, Wilcock, Jellinger, Perry (bb0190) 1996; 47 van Rikxoort, Isgum, Arzhaeva, Staring, Klein, Viergever, Pluim, van Ginneken (bb0280) 2010; 14 Wang, Catindig, Hilal, Soon, Ting, Wong, Venketasubramanian, Chen, Qiu (bb0295) 2012; 60 Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins (bb0065) 2012; 1 Folstein, Folstein, McHugh (bb0095) 1975; 12 Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bb0115) 2006; 33 Burton, Barber, Mukaetova-Ladinska, Robson, Perry, Jaros, Kalaria, O'Brien (bb0060) 2009; 132 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0140) 2008; 131 Roman, Pascual (bb0240) 2012; 43 van der Flier, Pijnenburg, Prins, Lemstra, Bouwman, Teunissen, van Berckel, Stam, Barkhof, Visser, van Egmond, Scheltens (bb0275) 2014; 41 Holmes, Cairns, Lantos, Mann (bb0120) 1999; 174 Duara, Barker, Luis (bb0070) 1999; 10 Pasquier, Leys, Weerts, Mounier-Vehier, Barkhof, Scheltens (bb0225) 1996; 36 Brodersen, Ong, Stephan, Buhmann (bb0050) 2010 Mattila, Koikkalainen, Virkki, Simonsen, van Gils, Waldemar, Soininen, Lötjönen (bb0180) 2011; 27 Mattila, Koikkalainen, Virkki, van Gils, Lötjönen (bb0185) 2012; 59 Koikkalainen, Pölönen, Mattila, van Gils, Soininen, Lötjönen, for the Alzheimer's Disease Neuroimaging Initiative (bb0150) 2012; 7 Belkin, Niyogi (bb0045) 2002; Vol. 14 Meyer, Huang, Chowdhury (bb0210) 2007; 257 Whitwell, Weigand, Shiung, Boeve, Ferman, Smith, Knopman, Petersen, Benarroch, Josephs, Jack (bb0300) 2007; 130 Guerrero, Wolz, Rao, Rueckert (bb0105) 2014; 94C Lötjönen, Wolz, Koikkalainen, Julkunen, Thurfjell, Lundqvist, Waldemar, Soininen, Rueckert (bb0170) 2011; 56 Rabinovici, Seeley, Kim, Gorno-Tempini, Rascovsky, Pagliaro, Allison, Halabi, Kramer, Johnson, Weiner, Forman, Trojanowski, DeArmond, Miller, Rosen (bb0230) 2008; 22 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bb0270) 2010; 29 Zhang, Schuff, Du, Rosen, Kramer, Gorno-Tempini, Miller, Weiner (bb0310) 2009; 132 Fazekas, Chawluk, Alavi, Hurtig, Zimmerman (bb0085) 1987; 149 Varma, Adams, Lloyd, Carson, Snowden, Testa, Jackson, Neary (bb0285) 2002; 105 Kantarci, Lowe, Boeve, Weigand, Senjem, Przybelski, Dickson, Parisi, Knopman, Smith, Ferman, Petersen, Jack (bb0135) 2012; 33 Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen, the Alzheimer’s Disease Neuroimaging Initiative (bb0305) 2011; 6 Waldemar, Dubois, Emre, Georges, McKeith, Rossor, Scheltens, Tariska, Winblad (bb0290) 2007; 14 Frisoni, Laakso, Beltramello, Geroldi, Bianchetti, Soininen, Trabucchi (bb0100) 1999; 52 Jagust (bb0130) 2006; 2 Laakso, Frisoni, Könönen, Mikkonen, Beltramello, Geroldi, Bianchetti, Trabucchi, Soininen, Aronen (bb0155) 2000; 47 Román, Tatemichi, Erkinjuntti, Cummings, Masdeu, Garcia, Amaducci, Orgogozo, Brun, Hofman, Moody, O'Brien, Yamaguchi, Grafman, Drayer, Bennett, Fisher, Ogata, Kokmen, Bermejo, Wolf, Gorelick, Bick, Pajeau, Bell, DeCarli, Culebras, Korczyn, Bogousslavsky, Hartmann, Scheinberg (bb0245) 1993; 43 Dubois, Feldman, Jacova, DeKosky, Barberger-Gateau, Cummings, Delacourte, Galasko, Gauthier, Jicha, Meguro, O'Brien, Pasquier, Robert, Rossor, Salloway, Stern, Visser, Scheltens (bb0075) 2007; 6 Munoz-Ruiz, Hartikainen, Koikkalainen, Wolz, Julkunen, Niskanen, Herukka, Kivipelto, Vanninen, Rueckert, Liu, Lötjönen, Soininen (bb0215) 2012; 7 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bb0205) 2011; 7 Leemput, Maes, Vandermeulen, Suetens (bb0160) 1999; 18 Laakso (10.1016/j.nicl.2016.02.019_bb0155) 2000; 47 Ashburner (10.1016/j.nicl.2016.02.019_bb0020) 1998; 6 Burton (10.1016/j.nicl.2016.02.019_bb0055) 2002; 17 Tong (10.1016/j.nicl.2016.02.019_bb0265) 2013; 76 Siemers (10.1016/j.nicl.2016.02.019_bb0255) 2015 Barber (10.1016/j.nicl.2016.02.019_bb0040) 2002; 72 Mattila (10.1016/j.nicl.2016.02.019_bb0180) 2011; 27 Roman (10.1016/j.nicl.2016.02.019_bb0240) 2012; 43 Belkin (10.1016/j.nicl.2016.02.019_bb0045) 2002; Vol. 14 Duara (10.1016/j.nicl.2016.02.019_bb0070) 1999; 10 Ballmaier (10.1016/j.nicl.2016.02.019_bb0025) 2004; 23 Ishii (10.1016/j.nicl.2016.02.019_bb0125) 2007; 48 van Rikxoort (10.1016/j.nicl.2016.02.019_bb0280) 2010; 14 Aljabar (10.1016/j.nicl.2016.02.019_bb0005) 2009; 46 McKhann (10.1016/j.nicl.2016.02.019_bb0200) 1984; 34 Wolz (10.1016/j.nicl.2016.02.019_bb0305) 2011; 6 Ashburner (10.1016/j.nicl.2016.02.019_bb0015) 2000; 11 Munoz-Ruiz (10.1016/j.nicl.2016.02.019_bb0215) 2012; 7 Folstein (10.1016/j.nicl.2016.02.019_bb0095) 1975; 12 McKeith (10.1016/j.nicl.2016.02.019_bb0190) 1996; 47 Falahati (10.1016/j.nicl.2016.02.019_bb0080) 2014; 41 Klöppel (10.1016/j.nicl.2016.02.019_bb0140) 2008; 131 Guerrero (10.1016/j.nicl.2016.02.019_bb0105) 2014; 94C Mattila (10.1016/j.nicl.2016.02.019_bb0185) 2012; 59 Koikkalainen (10.1016/j.nicl.2016.02.019_bb0145) 2011; 56 Brodersen (10.1016/j.nicl.2016.02.019_bb0050) 2010 Varma (10.1016/j.nicl.2016.02.019_bb0285) 2002; 105 Meyer (10.1016/j.nicl.2016.02.019_bb0210) 2007; 257 Holmes (10.1016/j.nicl.2016.02.019_bb0120) 1999; 174 Frisoni (10.1016/j.nicl.2016.02.019_bb0100) 1999; 52 Jagust (10.1016/j.nicl.2016.02.019_bb0130) 2006; 2 van der Flier (10.1016/j.nicl.2016.02.019_bb0275) 2014; 41 Kantarci (10.1016/j.nicl.2016.02.019_bb0135) 2012; 33 Whitwell (10.1016/j.nicl.2016.02.019_bb0300) 2007; 130 Tustison (10.1016/j.nicl.2016.02.019_bb0270) 2010; 29 McKeith (10.1016/j.nicl.2016.02.019_bb0195) 2005; 65 Scheltens (10.1016/j.nicl.2016.02.019_bb0250) 1995; 242 Fazekas (10.1016/j.nicl.2016.02.019_bb0085) 1987; 149 Lötjönen (10.1016/j.nicl.2016.02.019_bb0170) 2011; 56 Studholme (10.1016/j.nicl.2016.02.019_bb0260) 1999; 32 Dubois (10.1016/j.nicl.2016.02.019_bb0075) 2007; 6 Román (10.1016/j.nicl.2016.02.019_bb0245) 1993; 43 Feldman (10.1016/j.nicl.2016.02.019_bb0090) 2009; 24 Barber (10.1016/j.nicl.2016.02.019_bb0030) 2000; 54 Pasquier (10.1016/j.nicl.2016.02.019_bb0225) 1996; 36 Burton (10.1016/j.nicl.2016.02.019_bb0060) 2009; 132 Rascovsky (10.1016/j.nicl.2016.02.019_bb0235) 2011; 134 Artaechevarria (10.1016/j.nicl.2016.02.019_bb0010) 2009; 28 Guimond (10.1016/j.nicl.2016.02.019_bb0110) 2000; 7 Neary (10.1016/j.nicl.2016.02.019_bb0220) 1998; 51 Heckemann (10.1016/j.nicl.2016.02.019_bb0115) 2006; 33 Coupé (10.1016/j.nicl.2016.02.019_bb0065) 2012; 1 Rabinovici (10.1016/j.nicl.2016.02.019_bb0230) 2008; 22 Wang (10.1016/j.nicl.2016.02.019_bb0295) 2012; 60 Barber (10.1016/j.nicl.2016.02.019_bb0035) 1999; 52 Koikkalainen (10.1016/j.nicl.2016.02.019_bb0150) 2012; 7 Leemput (10.1016/j.nicl.2016.02.019_bb0160) 1999; 18 Zhang (10.1016/j.nicl.2016.02.019_bb0310) 2009; 132 Lopez (10.1016/j.nicl.2016.02.019_bb0165) 2002; 59 Lötjönen (10.1016/j.nicl.2016.02.019_bb0175) 2010; 49 McKhann (10.1016/j.nicl.2016.02.019_bb0205) 2011; 7 Waldemar (10.1016/j.nicl.2016.02.019_bb0290) 2007; 14 11861709 - J Neurol Neurosurg Psychiatry. 2002 Mar;72(3):406-7 10211150 - Br J Psychiatry. 1999 Jan;174:45-50 23142262 - Arch Med Res. 2012 Nov;43(8):671-6 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 21799247 - J Alzheimers Dis. 2011;27(1):163-76 26238576 - Alzheimers Dement. 2016 Feb;12(2):110-20 6610841 - Neurology. 1984 Jul;34(7):939-44 18166607 - Am J Alzheimers Dis Other Demen. 2007 Dec-2008 Jan;22(6):474-88 11790229 - Arch Neurol. 2002 Jan;59(1):43-6 22022397 - PLoS One. 2011;6(10):e25446 10436338 - Dement Geriatr Cogn Disord. 1999;10 Suppl 1:37-42 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 17316690 - J Neurol Sci. 2007 Jun 15;257(1-2):97-104 11939938 - Acta Neurol Scand. 2002 Apr;105(4):261-9 12377138 - Neuroimage. 2002 Oct;17(2):618-30 8094895 - Neurology. 1993 Feb;43(2):250-60 9855500 - Neurology. 1998 Dec;51(6):1546-54 24657351 - Neuroimage. 2014 Jul 1;94:275-86 15325380 - Neuroimage. 2004 Sep;23(1):325-35 17222085 - Eur J Neurol. 2007 Jan;14(1):e1-26 24179747 - Neuroimage Clin. 2012 Oct 17;1(1):141-52 19595854 - Alzheimers Dement. 2006 Jan;2(1):36-42 8864706 - Eur Neurol. 1996;36(5):268-72 17475957 - J Nucl Med. 2007 May;48(5):704-11 21419228 - Neuroimage. 2011 Jun 1;56(3):1134-44 8551316 - J Neurol. 1995 Sep;242(9):557-60 19022858 - Brain. 2009 Jan;132(Pt 1):195-203 23285078 - PLoS One. 2012;7(12):e52531 18202106 - Brain. 2008 Mar;131(Pt 3):681-9 10628949 - IEEE Trans Med Imaging. 1999 Oct;18(10):897-908 17267521 - Brain. 2007 Mar;130(Pt 3):708-19 22387175 - Neuroimage. 2012 May 1;60(4):2379-88 19439421 - Brain. 2009 Sep;132(Pt 9):2579-92 24718104 - J Alzheimers Dis. 2014;41(3):685-708 19857578 - Neuroimage. 2010 Feb 1;49(3):2352-65 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 8909416 - Neurology. 1996 Nov;47(5):1113-24 9921854 - Neurology. 1999 Jan 1;52(1):91-100 10214736 - Neurology. 1999 Apr 12;52(6):1153-8 18985627 - Int J Geriatr Psychiatry. 2009 May;24(5):479-88 21514250 - Alzheimers Dement. 2011 May;7(3):263-9 16237129 - Neurology. 2005 Dec 27;65(12):1863-72 10746602 - Neurology. 2000 Mar 28;54(6):1304-9 24614907 - J Alzheimers Dis. 2014;41(1):313-27 22018896 - Neurobiol Aging. 2012 Sep;33(9):2091-105 23523774 - Neuroimage. 2013 Aug 1;76:11-23 16860573 - Neuroimage. 2006 Oct 15;33(1):115-26 3496763 - AJR Am J Roentgenol. 1987 Aug;149(2):351-6 19245840 - Neuroimage. 2009 Jul 1;46(3):726-38 9788071 - Hum Brain Mapp. 1998;6(5-6):348-57 10862805 - Biol Psychiatry. 2000 Jun 15;47(12):1056-63 21990325 - IEEE Trans Biomed Eng. 2012 Jan;59(1):234-40 21281717 - Neuroimage. 2011 May 1;56(1):185-96 17616482 - Lancet Neurol. 2007 Aug;6(8):734-46 21810890 - Brain. 2011 Sep;134(Pt 9):2456-77 19228554 - IEEE Trans Med Imaging. 2009 Aug;28(8):1266-77 19897403 - Med Image Anal. 2010 Feb;14(1):39-49 22348041 - PLoS One. 2012;7(2):e31112 |
References_xml | – start-page: 3121 year: 2010 end-page: 3124 ident: bb0050 article-title: The balanced accuracy and its posterior distribution publication-title: Pattern Recognition (ICPR), 2010 20th International Conference on – volume: 54 start-page: 1304 year: 2000 end-page: 1309 ident: bb0030 article-title: MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia publication-title: Neurology – volume: 43 start-page: 250 year: 1993 end-page: 260 ident: bb0245 article-title: Vascular dementia. Diagnostic criteria for research studies: report of the NINDS-AIREN International workshop publication-title: Neurology – volume: 33 start-page: 2091 year: 2012 end-page: 2105 ident: bb0135 article-title: Multimodality imaging characteristics of dementia with Lewy bodies publication-title: Neurobiol. Aging – volume: 27 start-page: 163 year: 2011 end-page: 176 ident: bb0180 article-title: A disease state fingerprint for evaluation of Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 134 start-page: 2456 year: 2011 end-page: 2477 ident: bb0235 article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia publication-title: Brain – volume: 7 year: 2012 ident: bb0150 article-title: Improved classification of Alzheimer's disease data via removal of nuisance variability publication-title: PLoS ONE – volume: 72 start-page: 406 year: 2002 end-page: 407 ident: bb0040 article-title: Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 6 start-page: 348 year: 1998 end-page: 357 ident: bb0020 article-title: Identifying global anatomical differences: deformation-based morphometry publication-title: Hum. Brain Mapp. – volume: 149 start-page: 351 year: 1987 end-page: 356 ident: bb0085 article-title: MR signal abnormalities at 1.5 t in Alzheimer's dementia and normal aging publication-title: AJR Am. J. Roentgenol. – volume: 257 start-page: 97 year: 2007 end-page: 104 ident: bb0210 article-title: MRI confirms mild cognitive impairments prodromal for Alzheimer's, vascular and Parkinson-Lewy body dementias publication-title: J. Neurol. Sci. – volume: 32 start-page: 71 year: 1999 end-page: 86 ident: bb0260 article-title: An overlap invariant entropy measure of 3d medical image alignment publication-title: Pattern Recogn. – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: bb0205 article-title: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers Dement. – volume: 60 start-page: 2379 year: 2012 end-page: 2388 ident: bb0295 article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts publication-title: NeuroImage – volume: 43 start-page: 671 year: 2012 end-page: 676 ident: bb0240 article-title: Contribution of neuroimaging to the diagnosis of Alzheimer's disease and vascular dementia publication-title: Arch. Med. Res. – volume: 65 start-page: 1863 year: 2005 end-page: 1872 ident: bb0195 article-title: Diagnosis and management of dementia with Lewy bodies. third report of DLB consortium publication-title: Neurology – volume: 130 start-page: 708 year: 2007 end-page: 719 ident: bb0300 article-title: Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease publication-title: Brain – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bb0140 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 52 start-page: 1153 year: 1999 end-page: 1158 ident: bb0035 article-title: Medial temporal lobe atrophy on MRI in dementia with Lewy bodies publication-title: Neurology – volume: 34 start-page: 939 year: 1984 end-page: 1944 ident: bb0200 article-title: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease publication-title: Neurology – volume: 56 start-page: 185 year: 2011 end-page: 196 ident: bb0170 article-title: Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease publication-title: NeuroImage – volume: 47 start-page: 1113 year: 1996 end-page: 1124 ident: bb0190 article-title: Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop publication-title: Neurology – volume: 1 start-page: 141 year: 2012 end-page: 152 ident: bb0065 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease publication-title: NeuroImage Clin. – volume: 41 start-page: 313 year: 2014 end-page: 327 ident: bb0275 article-title: Optimizing patient care and research: the Amsterdam dementia cohort publication-title: J. Alzheimers Dis. – volume: 7 year: 2012 ident: bb0215 article-title: Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry publication-title: PLoS ONE – volume: 132 start-page: 195 year: 2009 end-page: 203 ident: bb0060 article-title: Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis publication-title: Brain – volume: 94C start-page: 275 year: 2014 end-page: 286 ident: bb0105 article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO publication-title: NeuroImage – volume: 23 start-page: 325 year: 2004 end-page: 335 ident: bb0025 article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects publication-title: NeuroImage – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bb0005 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage – volume: 242 start-page: 557 year: 1995 end-page: 560 ident: bb0250 article-title: Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability publication-title: J. Neurol. – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bb0015 article-title: Voxel-based morphometry — the methods publication-title: NeuroImage – volume: 10 start-page: 37 year: 1999 end-page: 42 ident: bb0070 article-title: Frontotemporal dementia and Alzheimer's disease: differential diagnosis publication-title: Dement. Geriatr. Cogn. Disord. – volume: 174 start-page: 45 year: 1999 end-page: 50 ident: bb0120 article-title: Validity of current clinical criteria for Alzheimer's disease, vascular dementia and dementia with Lewy bodies publication-title: Br. J. Psychiatry – volume: 6 year: 2011 ident: bb0305 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS ONE – volume: 41 start-page: 685 year: 2014 end-page: 708 ident: bb0080 article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheimers Dis. – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bb0270 article-title: N4itk: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging – volume: 28 start-page: 1266 year: 2009 end-page: 1277 ident: bb0010 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Trans. Med. Imaging – volume: 47 start-page: 1056 year: 2000 end-page: 1063 ident: bb0155 article-title: Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study publication-title: Biol. Psychiatry – volume: 76 start-page: 11 year: 2013 end-page: 23 ident: bb0265 article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling publication-title: NeuroImage – volume: 56 start-page: 1134 year: 2011 end-page: 1144 ident: bb0145 article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease publication-title: NeuroImage – volume: 14 start-page: e1 year: 2007 end-page: e26 ident: bb0290 article-title: Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: Efns guideline publication-title: Eur. J. Neurol. – volume: 18 start-page: 897 year: 1999 end-page: 908 ident: bb0160 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imaging – volume: 49 start-page: 2352 year: 2010 end-page: 2365 ident: bb0175 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: NeuroImage – volume: 132 start-page: 2579 year: 2009 end-page: 2592 ident: bb0310 article-title: White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI publication-title: Brain – volume: 59 start-page: 43 year: 2002 end-page: 46 ident: bb0165 article-title: Research evaluation and prospective diagnosis of dementia with Lewy bodies publication-title: Arch. Neurol. – volume: 24 start-page: 479 year: 2009 end-page: 488 ident: bb0090 article-title: Treatment with galantamine and time to nursing home placement in Alzheimer's disease patients with and without cerebrovascular disease publication-title: Int. J. Geriatr. Psychiatry – volume: 7 start-page: 192 year: 2000 end-page: 210 ident: bb0110 article-title: Average brain models. a convergence study publication-title: Comput. Vis. Image Underst. – volume: 33 start-page: 115 year: 2006 end-page: 126 ident: bb0115 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage – volume: 51 start-page: 1546 year: 1998 end-page: 1554 ident: bb0220 article-title: Frontotemporal lobar degeneration. a consensus on clinical diagnostics criteria publication-title: Neurology – volume: Vol. 14 start-page: 585 year: 2002 end-page: 591 ident: bb0045 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Advances in Neural Information Processing Systems 14 – volume: 6 start-page: 734 year: 2007 end-page: 746 ident: bb0075 article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol. – volume: 22 start-page: 474 year: 2008 end-page: 488 ident: bb0230 article-title: Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration publication-title: Am. J. Alzheimers Dis. Other Demen. – volume: 48 start-page: 704 year: 2007 end-page: 711 ident: bb0125 article-title: Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer's disease publication-title: J. Nucl. Med. – volume: 59 start-page: 234 year: 2012 end-page: 240 ident: bb0185 article-title: Design and application of a generic clinical decision support system for multiscale data publication-title: IEEE Trans. Biomed. Eng. – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bb0095 article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. – volume: 2 start-page: 36 year: 2006 end-page: 42 ident: bb0130 article-title: Positron emission tomography and magnetic resonance imaging in the diagnosis and prediction of dementia publication-title: Alzheimers Dement. – volume: 17 start-page: 618 year: 2002 end-page: 630 ident: bb0055 article-title: Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry publication-title: NeuroImage – year: 2015 ident: bb0255 article-title: Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients publication-title: Alzheimers Dement. – volume: 105 start-page: 261 year: 2002 end-page: 269 ident: bb0285 article-title: Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on spect in young onset patients with Alzheimer's disease, frontotemporal dementia and vascular dementia publication-title: Acta Neurol. Scand. – volume: 52 start-page: 91 year: 1999 end-page: 100 ident: bb0100 article-title: Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease publication-title: Neurology – volume: 36 start-page: 268 year: 1996 end-page: 272 ident: bb0225 article-title: Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts publication-title: Eur. Neurol. – volume: 14 start-page: 39 year: 2010 end-page: 49 ident: bb0280 article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus publication-title: Med. Image Anal. – volume: 94C start-page: 275 year: 2014 ident: 10.1016/j.nicl.2016.02.019_bb0105 article-title: Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.036 – volume: 51 start-page: 1546 issue: 6 year: 1998 ident: 10.1016/j.nicl.2016.02.019_bb0220 article-title: Frontotemporal lobar degeneration. a consensus on clinical diagnostics criteria publication-title: Neurology doi: 10.1212/WNL.51.6.1546 – volume: 149 start-page: 351 issue: 2 year: 1987 ident: 10.1016/j.nicl.2016.02.019_bb0085 article-title: MR signal abnormalities at 1.5 t in Alzheimer's dementia and normal aging publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.149.2.351 – volume: Vol. 14 start-page: 585 year: 2002 ident: 10.1016/j.nicl.2016.02.019_bb0045 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering – volume: 10 start-page: 37 issue: 1 year: 1999 ident: 10.1016/j.nicl.2016.02.019_bb0070 article-title: Frontotemporal dementia and Alzheimer's disease: differential diagnosis publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000051210 – volume: 7 start-page: 263 issue: 3 year: 2011 ident: 10.1016/j.nicl.2016.02.019_bb0205 article-title: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.03.005 – volume: 18 start-page: 897 issue: 10 year: 1999 ident: 10.1016/j.nicl.2016.02.019_bb0160 article-title: Automated model-based tissue classification of MR images of the brain publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.811270 – volume: 130 start-page: 708 issue: 3 year: 2007 ident: 10.1016/j.nicl.2016.02.019_bb0300 article-title: Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awl388 – volume: 60 start-page: 2379 issue: 4 year: 2012 ident: 10.1016/j.nicl.2016.02.019_bb0295 article-title: Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.034 – volume: 41 start-page: 313 issue: 1 year: 2014 ident: 10.1016/j.nicl.2016.02.019_bb0275 article-title: Optimizing patient care and research: the Amsterdam dementia cohort publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-132306 – volume: 24 start-page: 479 issue: 5 year: 2009 ident: 10.1016/j.nicl.2016.02.019_bb0090 article-title: Treatment with galantamine and time to nursing home placement in Alzheimer's disease patients with and without cerebrovascular disease publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/gps.2141 – volume: 52 start-page: 91 issue: 1 year: 1999 ident: 10.1016/j.nicl.2016.02.019_bb0100 article-title: Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.52.1.91 – volume: 46 start-page: 726 issue: 3 year: 2009 ident: 10.1016/j.nicl.2016.02.019_bb0005 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 52 start-page: 1153 issue: 6 year: 1999 ident: 10.1016/j.nicl.2016.02.019_bb0035 article-title: Medial temporal lobe atrophy on MRI in dementia with Lewy bodies publication-title: Neurology doi: 10.1212/WNL.52.6.1153 – volume: 6 issue: 10 year: 2011 ident: 10.1016/j.nicl.2016.02.019_bb0305 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0025446 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.nicl.2016.02.019_bb0140 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 34 start-page: 939 issue: 7 year: 1984 ident: 10.1016/j.nicl.2016.02.019_bb0200 article-title: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 22 start-page: 474 issue: 6 year: 2008 ident: 10.1016/j.nicl.2016.02.019_bb0230 article-title: Distinct MRI atrophy patterns in autopsy-proven Alzheimer's disease and frontotemporal lobar degeneration publication-title: Am. J. Alzheimers Dis. Other Demen. doi: 10.1177/1533317507308779 – volume: 132 start-page: 2579 issue: 9 year: 2009 ident: 10.1016/j.nicl.2016.02.019_bb0310 article-title: White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI publication-title: Brain doi: 10.1093/brain/awp071 – volume: 47 start-page: 1113 issue: 5 year: 1996 ident: 10.1016/j.nicl.2016.02.019_bb0190 article-title: Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop publication-title: Neurology doi: 10.1212/WNL.47.5.1113 – volume: 242 start-page: 557 issue: 9 year: 1995 ident: 10.1016/j.nicl.2016.02.019_bb0250 article-title: Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability publication-title: J. Neurol. doi: 10.1007/BF00868807 – volume: 28 start-page: 1266 issue: 8 year: 2009 ident: 10.1016/j.nicl.2016.02.019_bb0010 article-title: Combination strategies in multi-atlas image segmentation: application to brain MR data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2014372 – volume: 43 start-page: 671 issue: 8 year: 2012 ident: 10.1016/j.nicl.2016.02.019_bb0240 article-title: Contribution of neuroimaging to the diagnosis of Alzheimer's disease and vascular dementia publication-title: Arch. Med. Res. doi: 10.1016/j.arcmed.2012.10.018 – volume: 41 start-page: 685 issue: 3 year: 2014 ident: 10.1016/j.nicl.2016.02.019_bb0080 article-title: Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-131928 – volume: 7 start-page: 192 year: 2000 ident: 10.1016/j.nicl.2016.02.019_bb0110 article-title: Average brain models. a convergence study publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1999.0815 – volume: 56 start-page: 185 issue: 1 year: 2011 ident: 10.1016/j.nicl.2016.02.019_bb0170 article-title: Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.062 – volume: 1 start-page: 141 issue: 1 year: 2012 ident: 10.1016/j.nicl.2016.02.019_bb0065 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2012.10.002 – volume: 6 start-page: 734 issue: 8 year: 2007 ident: 10.1016/j.nicl.2016.02.019_bb0075 article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(07)70178-3 – volume: 14 start-page: e1 issue: 1 year: 2007 ident: 10.1016/j.nicl.2016.02.019_bb0290 article-title: Recommendations for the diagnosis and management of Alzheimer's disease and other disorders associated with dementia: Efns guideline publication-title: Eur. J. Neurol. doi: 10.1111/j.1468-1331.2006.01605.x – start-page: 3121 year: 2010 ident: 10.1016/j.nicl.2016.02.019_bb0050 article-title: The balanced accuracy and its posterior distribution – volume: 12 start-page: 189 issue: 3 year: 1975 ident: 10.1016/j.nicl.2016.02.019_bb0095 article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(75)90026-6 – volume: 105 start-page: 261 issue: 4 year: 2002 ident: 10.1016/j.nicl.2016.02.019_bb0285 article-title: Diagnostic patterns of regional atrophy on MRI and regional cerebral blood flow change on spect in young onset patients with Alzheimer's disease, frontotemporal dementia and vascular dementia publication-title: Acta Neurol. Scand. doi: 10.1034/j.1600-0404.2002.1o148.x – volume: 17 start-page: 618 issue: 2 year: 2002 ident: 10.1016/j.nicl.2016.02.019_bb0055 article-title: Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry publication-title: NeuroImage doi: 10.1006/nimg.2002.1197 – volume: 132 start-page: 195 issue: 1 year: 2009 ident: 10.1016/j.nicl.2016.02.019_bb0060 article-title: Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis publication-title: Brain doi: 10.1093/brain/awn298 – volume: 11 start-page: 805 issue: 6 year: 2000 ident: 10.1016/j.nicl.2016.02.019_bb0015 article-title: Voxel-based morphometry — the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 23 start-page: 325 issue: 1 year: 2004 ident: 10.1016/j.nicl.2016.02.019_bb0025 article-title: Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.04.026 – volume: 59 start-page: 43 issue: 1 year: 2002 ident: 10.1016/j.nicl.2016.02.019_bb0165 article-title: Research evaluation and prospective diagnosis of dementia with Lewy bodies publication-title: Arch. Neurol. doi: 10.1001/archneur.59.1.43 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.nicl.2016.02.019_bb0270 article-title: N4itk: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 7 issue: 2 year: 2012 ident: 10.1016/j.nicl.2016.02.019_bb0150 article-title: Improved classification of Alzheimer's disease data via removal of nuisance variability publication-title: PLoS ONE doi: 10.1371/journal.pone.0031112 – volume: 33 start-page: 115 issue: 1 year: 2006 ident: 10.1016/j.nicl.2016.02.019_bb0115 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.05.061 – volume: 6 start-page: 348 issue: 5-6 year: 1998 ident: 10.1016/j.nicl.2016.02.019_bb0020 article-title: Identifying global anatomical differences: deformation-based morphometry publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P – volume: 7 issue: 12 year: 2012 ident: 10.1016/j.nicl.2016.02.019_bb0215 article-title: Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry publication-title: PLoS ONE doi: 10.1371/journal.pone.0052531 – volume: 33 start-page: 2091 issue: 9 year: 2012 ident: 10.1016/j.nicl.2016.02.019_bb0135 article-title: Multimodality imaging characteristics of dementia with Lewy bodies publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.09.024 – volume: 48 start-page: 704 issue: 5 year: 2007 ident: 10.1016/j.nicl.2016.02.019_bb0125 article-title: Comparison of regional brain volume and glucose metabolism between patients with mild dementia with Lewy bodies and those with mild Alzheimer's disease publication-title: J. Nucl. Med. doi: 10.2967/jnumed.106.035691 – volume: 27 start-page: 163 issue: 1 year: 2011 ident: 10.1016/j.nicl.2016.02.019_bb0180 article-title: A disease state fingerprint for evaluation of Alzheimer's disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-110365 – volume: 72 start-page: 406 issue: 3 year: 2002 ident: 10.1016/j.nicl.2016.02.019_bb0040 article-title: Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.72.3.406 – volume: 47 start-page: 1056 issue: 12 year: 2000 ident: 10.1016/j.nicl.2016.02.019_bb0155 article-title: Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(99)00306-6 – volume: 76 start-page: 11 year: 2013 ident: 10.1016/j.nicl.2016.02.019_bb0265 article-title: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.069 – volume: 56 start-page: 1134 issue: 3 year: 2011 ident: 10.1016/j.nicl.2016.02.019_bb0145 article-title: Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.029 – volume: 54 start-page: 1304 issue: 6 year: 2000 ident: 10.1016/j.nicl.2016.02.019_bb0030 article-title: MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia publication-title: Neurology doi: 10.1212/WNL.54.6.1304 – volume: 49 start-page: 2352 issue: 3 year: 2010 ident: 10.1016/j.nicl.2016.02.019_bb0175 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.026 – volume: 32 start-page: 71 issue: 1 year: 1999 ident: 10.1016/j.nicl.2016.02.019_bb0260 article-title: An overlap invariant entropy measure of 3d medical image alignment publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(98)00091-0 – volume: 2 start-page: 36 issue: 1 year: 2006 ident: 10.1016/j.nicl.2016.02.019_bb0130 article-title: Positron emission tomography and magnetic resonance imaging in the diagnosis and prediction of dementia publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2005.11.002 – volume: 257 start-page: 97 issue: 1-2 year: 2007 ident: 10.1016/j.nicl.2016.02.019_bb0210 article-title: MRI confirms mild cognitive impairments prodromal for Alzheimer's, vascular and Parkinson-Lewy body dementias publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2007.01.016 – volume: 134 start-page: 2456 issue: 9 year: 2011 ident: 10.1016/j.nicl.2016.02.019_bb0235 article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awr179 – volume: 59 start-page: 234 issue: 1 year: 2012 ident: 10.1016/j.nicl.2016.02.019_bb0185 article-title: Design and application of a generic clinical decision support system for multiscale data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2170986 – volume: 65 start-page: 1863 issue: 12 year: 2005 ident: 10.1016/j.nicl.2016.02.019_bb0195 article-title: Diagnosis and management of dementia with Lewy bodies. third report of DLB consortium publication-title: Neurology doi: 10.1212/01.wnl.0000187889.17253.b1 – volume: 36 start-page: 268 issue: 5 year: 1996 ident: 10.1016/j.nicl.2016.02.019_bb0225 article-title: Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts publication-title: Eur. Neurol. doi: 10.1159/000117270 – volume: 14 start-page: 39 issue: 1 year: 2010 ident: 10.1016/j.nicl.2016.02.019_bb0280 article-title: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.10.001 – volume: 174 start-page: 45 year: 1999 ident: 10.1016/j.nicl.2016.02.019_bb0120 article-title: Validity of current clinical criteria for Alzheimer's disease, vascular dementia and dementia with Lewy bodies publication-title: Br. J. Psychiatry doi: 10.1192/bjp.174.1.45 – volume: 43 start-page: 250 issue: 2 year: 1993 ident: 10.1016/j.nicl.2016.02.019_bb0245 article-title: Vascular dementia. Diagnostic criteria for research studies: report of the NINDS-AIREN International workshop publication-title: Neurology doi: 10.1212/WNL.43.2.250 – year: 2015 ident: 10.1016/j.nicl.2016.02.019_bb0255 article-title: Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients publication-title: Alzheimers Dement. – reference: 23285078 - PLoS One. 2012;7(12):e52531 – reference: 15325380 - Neuroimage. 2004 Sep;23(1):325-35 – reference: 10628949 - IEEE Trans Med Imaging. 1999 Oct;18(10):897-908 – reference: 8864706 - Eur Neurol. 1996;36(5):268-72 – reference: 17267521 - Brain. 2007 Mar;130(Pt 3):708-19 – reference: 24179747 - Neuroimage Clin. 2012 Oct 17;1(1):141-52 – reference: 21990325 - IEEE Trans Biomed Eng. 2012 Jan;59(1):234-40 – reference: 10214736 - Neurology. 1999 Apr 12;52(6):1153-8 – reference: 3496763 - AJR Am J Roentgenol. 1987 Aug;149(2):351-6 – reference: 21419228 - Neuroimage. 2011 Jun 1;56(3):1134-44 – reference: 19022858 - Brain. 2009 Jan;132(Pt 1):195-203 – reference: 22348041 - PLoS One. 2012;7(2):e31112 – reference: 19595854 - Alzheimers Dement. 2006 Jan;2(1):36-42 – reference: 9921854 - Neurology. 1999 Jan 1;52(1):91-100 – reference: 12377138 - Neuroimage. 2002 Oct;17(2):618-30 – reference: 19228554 - IEEE Trans Med Imaging. 2009 Aug;28(8):1266-77 – reference: 24614907 - J Alzheimers Dis. 2014;41(1):313-27 – reference: 11790229 - Arch Neurol. 2002 Jan;59(1):43-6 – reference: 16237129 - Neurology. 2005 Dec 27;65(12):1863-72 – reference: 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 – reference: 9788071 - Hum Brain Mapp. 1998;6(5-6):348-57 – reference: 9855500 - Neurology. 1998 Dec;51(6):1546-54 – reference: 1202204 - J Psychiatr Res. 1975 Nov;12(3):189-98 – reference: 22018896 - Neurobiol Aging. 2012 Sep;33(9):2091-105 – reference: 21514250 - Alzheimers Dement. 2011 May;7(3):263-9 – reference: 11861709 - J Neurol Neurosurg Psychiatry. 2002 Mar;72(3):406-7 – reference: 22387175 - Neuroimage. 2012 May 1;60(4):2379-88 – reference: 10862805 - Biol Psychiatry. 2000 Jun 15;47(12):1056-63 – reference: 16860573 - Neuroimage. 2006 Oct 15;33(1):115-26 – reference: 17222085 - Eur J Neurol. 2007 Jan;14(1):e1-26 – reference: 22022397 - PLoS One. 2011;6(10):e25446 – reference: 8909416 - Neurology. 1996 Nov;47(5):1113-24 – reference: 19857578 - Neuroimage. 2010 Feb 1;49(3):2352-65 – reference: 10746602 - Neurology. 2000 Mar 28;54(6):1304-9 – reference: 18202106 - Brain. 2008 Mar;131(Pt 3):681-9 – reference: 17616482 - Lancet Neurol. 2007 Aug;6(8):734-46 – reference: 24718104 - J Alzheimers Dis. 2014;41(3):685-708 – reference: 10436338 - Dement Geriatr Cogn Disord. 1999;10 Suppl 1:37-42 – reference: 21810890 - Brain. 2011 Sep;134(Pt 9):2456-77 – reference: 17316690 - J Neurol Sci. 2007 Jun 15;257(1-2):97-104 – reference: 8551316 - J Neurol. 1995 Sep;242(9):557-60 – reference: 23523774 - Neuroimage. 2013 Aug 1;76:11-23 – reference: 17475957 - J Nucl Med. 2007 May;48(5):704-11 – reference: 19245840 - Neuroimage. 2009 Jul 1;46(3):726-38 – reference: 11939938 - Acta Neurol Scand. 2002 Apr;105(4):261-9 – reference: 10860804 - Neuroimage. 2000 Jun;11(6 Pt 1):805-21 – reference: 19439421 - Brain. 2009 Sep;132(Pt 9):2579-92 – reference: 19897403 - Med Image Anal. 2010 Feb;14(1):39-49 – reference: 6610841 - Neurology. 1984 Jul;34(7):939-44 – reference: 21281717 - Neuroimage. 2011 May 1;56(1):185-96 – reference: 10211150 - Br J Psychiatry. 1999 Jan;174:45-50 – reference: 21799247 - J Alzheimers Dis. 2011;27(1):163-76 – reference: 23142262 - Arch Med Res. 2012 Nov;43(8):671-6 – reference: 18985627 - Int J Geriatr Psychiatry. 2009 May;24(5):479-88 – reference: 18166607 - Am J Alzheimers Dis Other Demen. 2007 Dec-2008 Jan;22(6):474-88 – reference: 24657351 - Neuroimage. 2014 Jul 1;94:275-86 – reference: 8094895 - Neurology. 1993 Feb;43(2):250-60 – reference: 26238576 - Alzheimers Dement. 2016 Feb;12(2):110-20 |
SSID | ssj0000800766 |
Score | 2.4345484 |
Snippet | Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients... AbstractDifferent neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 435 |
SubjectTerms | Aged Alzheimer's disease Brain Mapping Cerebral Infarction - diagnostic imaging Cerebral Infarction - etiology Classification Dementia with Lewy bodies Diagnosis, Differential Female Frontotemporal lobar degeneration Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Mental Status Schedule Middle Aged MRI Neurodegenerative diseases Neurodegenerative Diseases - complications Neurodegenerative Diseases - diagnostic imaging Radiology Regular Retrospective Studies TBM Vascular dementia VBM Volumetry White Matter - diagnostic imaging |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLaqIiEuqOwpi4zEDQXFjpfJASG2qiBND8BIvVmOl-lUoww0RYJ_z3uOMxAY9cQlh8TO8vKWz3kv3yPkmRWA8luJ-UEmSxEF-MHoeelmqtGhcrVO7YDmJ-p4IT6eytM9MrY7ygLsdy7tsJ_U4mL94se3n6_A4F_-rtVCElks01KJfxNZQK9BZNJoqPMM988zOtIpfck5q0smZzz_R7P7NJNYlSj9JyHrX0j6d2XlH6Hq6IDczBiTvh6U4hbZC91tcn2es-h3yMm73BUFrHtN_VBst-rpJtJEb-nDMpFRoyekOYPTU6yQX9KBbxa5Ouj80weKBaZ3yeLo_Ze3x2Xuq1A6qcVlKVxjPawrgm-lanhsA8Rs6Z1irraVd9JZ2DAvmdMIJ7hstY_cS8ujrSOv75H9btOFB4SCN4iwYhG-8kwE5ltkflAOgp5yjeK2IGyUoHGZdBx7X6zNWF12blDqBqVuKm5A6gV5vp3zdaDcuHL0G3wx25FIl512bC6WJlufqRsLN9lYFVQUItqGzxy4V4jMLQOEogpSj6_VjH-kgg-FE62uvLTeNSv0oxYbZnoYaT6juqG2sURwVumCPB11x4A5Y47GdmHzHWZoRKyV4qIg9wdd2j4aBzQImGMG151o2eTZp0e61VmiDEeyV0Cqh_9DWA_JDRTC8B3qEdkHvQuPAZldtk-Suf0CpSY0GA priority: 102 providerName: Scholars Portal |
Title | Differential diagnosis of neurodegenerative diseases using structural MRI data |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158216300407 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158216300407 https://www.ncbi.nlm.nih.gov/pubmed/27104138 https://www.proquest.com/docview/1783920624 https://pubmed.ncbi.nlm.nih.gov/PMC4827727 https://doaj.org/article/39a7649a6e6f44fa928c088847b12666 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLokBLaEFG4oaixo4fybE8qoK0PQCVerMcP8pWVRYp7f_vjO2sdqEqFy457NobefKN5_PO5BtC3lsBLH-QmB9kshZRwD4YPa9dp3odGtfq1A5ocaZOz8W3C3mx0eoLa8KyPHA23FHbW61Eb1VQUYhoe9458AzYVAcGwSWJbUPM2zhMXRUepFOiknPW1kx2vLwxk4u7UHUW67pUEuxEmZ2NqJTE-7eC09_k888ayo2gdPKMPC1skh7nVeySR2F8Th4vSr78BTn7XPqfgB9fU5_L6pYTXUWahCx9uEyy07jn0ZKrmSjWwl_SrCyLqhx08f0rxVLSl-T85MvPT6d16aBQO6nFTS1cbz2cIIIfpOp5HAJEZ-mdYq61jXfSWbgwL5nTSBy4HLSP3EvLo20jb_fIzrgawytCwe8jnE2EbzwTgfkBNR6Ug_CmXK-4rQibLWhckRfHLhfXZq4juzJodYNWNw03YPWKfFjP-Z3FNR4c_REfzHokCmOnDwAupsDF_AsuFWnnx2rmd09ht4QfWj54a33frDAVh58MMxOMND8Qbog2lqTMGl2RdzN2DDguZmPsGFa3MEMjN20UFxXZz1haL40D7wN20cF9t1C2tfbtb8blryQOjrKuwElf_w9jHZAnaIT8j9Mh2QHchTfAwW6Gt8nd4LoQ3R1vnSvw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+diagnosis+of+neurodegenerative+diseases+using+structural+MRI+data&rft.jtitle=NeuroImage+clinical&rft.au=Juha+Koikkalainen&rft.au=Hanneke+Rhodius-Meester&rft.au=Antti+Tolonen&rft.au=Frederik+Barkhof&rft.date=2016-01-01&rft.pub=Elsevier&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=11&rft.issue=C&rft.spage=435&rft.epage=449&rft_id=info:doi/10.1016%2Fj.nicl.2016.02.019&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_39a7649a6e6f44fa928c088847b12666 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158216X00022%2Fcov150h.gif |