Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer
The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 20...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 5105 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.
White-tailed deer are an important reservoir of SARS-CoV-2 in the USA and continued monitoring of the virus in deer populations is needed. In this genomic epidemiology study from Ohio, the authors show that the virus has been introduced multiple times to deer from humans, and that it has evolved faster in deer. |
---|---|
AbstractList | The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.
White-tailed deer are an important reservoir of SARS-CoV-2 in the USA and continued monitoring of the virus in deer populations is needed. In this genomic epidemiology study from Ohio, the authors show that the virus has been introduced multiple times to deer from humans, and that it has evolved faster in deer. The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock. The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.White-tailed deer are an important reservoir of SARS-CoV-2 in the USA and continued monitoring of the virus in deer populations is needed. In this genomic epidemiology study from Ohio, the authors show that the virus has been introduced multiple times to deer from humans, and that it has evolved faster in deer. Abstract The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2–8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock. The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock. |
ArticleNumber | 5105 |
Author | McBride, Dillon S. Huey, Devra Bowman, Andrew S. Trifkovic, Sanja Jeevan, Trushar Franks, John Genders, J. Tyler Lenoch, Julianna B. Miller, Lance Kandeil, Ahmed Patel, Anami Magee, Andrew F. Kasnyik, Kevin Tonkovich, Michael J. Linder, Timothy J. Montoney, Andrew J. Koonin, Eugene V. Suchard, Marc A. Webby, Richard J. Faith, Seth A. Williams, Amanda M. Chandler, Jeffrey C. DeLiberto, Thomas J. Nelson, Martha I. Garushyants, Sofya K. Lemey, Philippe Bevins, Sarah N. Nolting, Jacqueline M. Overend, Steven H. |
Author_xml | – sequence: 1 givenname: Dillon S. orcidid: 0000-0002-7408-3959 surname: McBride fullname: McBride, Dillon S. organization: Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine – sequence: 2 givenname: Sofya K. surname: Garushyants fullname: Garushyants, Sofya K. organization: Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health – sequence: 3 givenname: John surname: Franks fullname: Franks, John organization: Department of Infectious Diseases, St Jude Children’s Research Hospital – sequence: 4 givenname: Andrew F. surname: Magee fullname: Magee, Andrew F. organization: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles – sequence: 5 givenname: Steven H. surname: Overend fullname: Overend, Steven H. organization: Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine – sequence: 6 givenname: Devra surname: Huey fullname: Huey, Devra organization: Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine – sequence: 7 givenname: Amanda M. surname: Williams fullname: Williams, Amanda M. organization: Infectious Diseases Institute, The Ohio State University – sequence: 8 givenname: Seth A. surname: Faith fullname: Faith, Seth A. organization: Infectious Diseases Institute, The Ohio State University – sequence: 9 givenname: Ahmed orcidid: 0000-0003-3253-6961 surname: Kandeil fullname: Kandeil, Ahmed organization: Department of Infectious Diseases, St Jude Children’s Research Hospital, Center of Scientific Excellence for Influenza Viruses, National Research Centre – sequence: 10 givenname: Sanja orcidid: 0000-0002-0710-9514 surname: Trifkovic fullname: Trifkovic, Sanja organization: Department of Infectious Diseases, St Jude Children’s Research Hospital – sequence: 11 givenname: Lance surname: Miller fullname: Miller, Lance organization: Department of Infectious Diseases, St Jude Children’s Research Hospital – sequence: 12 givenname: Trushar surname: Jeevan fullname: Jeevan, Trushar organization: Department of Infectious Diseases, St Jude Children’s Research Hospital – sequence: 13 givenname: Anami surname: Patel fullname: Patel, Anami organization: PathAI Diagnostics – sequence: 14 givenname: Jacqueline M. orcidid: 0000-0002-2705-4805 surname: Nolting fullname: Nolting, Jacqueline M. organization: Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine – sequence: 15 givenname: Michael J. surname: Tonkovich fullname: Tonkovich, Michael J. organization: Ohio Department of Natural Resources, Division of Wildlife – sequence: 16 givenname: J. Tyler surname: Genders fullname: Genders, J. Tyler organization: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services – sequence: 17 givenname: Andrew J. surname: Montoney fullname: Montoney, Andrew J. organization: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services – sequence: 18 givenname: Kevin surname: Kasnyik fullname: Kasnyik, Kevin organization: Columbus and Franklin County Metro Parks – sequence: 19 givenname: Timothy J. orcidid: 0000-0003-3440-0574 surname: Linder fullname: Linder, Timothy J. organization: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program – sequence: 20 givenname: Sarah N. orcidid: 0000-0002-4999-6836 surname: Bevins fullname: Bevins, Sarah N. organization: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program – sequence: 21 givenname: Julianna B. surname: Lenoch fullname: Lenoch, Julianna B. organization: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Disease Program – sequence: 22 givenname: Jeffrey C. surname: Chandler fullname: Chandler, Jeffrey C. organization: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Wildlife Disease Diagnostic Laboratory – sequence: 23 givenname: Thomas J. orcidid: 0000-0003-1115-1472 surname: DeLiberto fullname: DeLiberto, Thomas J. organization: U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services – sequence: 24 givenname: Eugene V. orcidid: 0000-0003-3943-8299 surname: Koonin fullname: Koonin, Eugene V. organization: Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health – sequence: 25 givenname: Marc A. orcidid: 0000-0001-9818-479X surname: Suchard fullname: Suchard, Marc A. organization: Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles – sequence: 26 givenname: Philippe orcidid: 0000-0003-2826-5353 surname: Lemey fullname: Lemey, Philippe organization: Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – sequence: 27 givenname: Richard J. orcidid: 0000-0002-4397-7132 surname: Webby fullname: Webby, Richard J. organization: Department of Infectious Diseases, St Jude Children’s Research Hospital – sequence: 28 givenname: Martha I. orcidid: 0000-0003-4814-0179 surname: Nelson fullname: Nelson, Martha I. email: nelsonma@mail.nih.gov organization: Division of Intramural Research, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health – sequence: 29 givenname: Andrew S. orcidid: 0000-0002-0738-8453 surname: Bowman fullname: Bowman, Andrew S. email: bowman.214@osu.edu organization: Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37640694$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vFCEYx4mpsS_2C3gwk3jxggIPMzAns9nU2qSJiVWvhGFgymYWKszU7LeX3W217aGSEAj8_788b8foIMRgEXpDyQdKQH7MnPJGYMIAcyJIgzcv0BEjnGIqGBw8uB-i05xXpCxoqeT8FToE0XDStPwInS2MsaNNerJ9ZW_jOE8-hiq66mrx7Qov40_MKh8ql6zFSYfBh6H6fe0niyftx2LqrU2v0Uunx2xP784T9OPz2fflF3z59fxiubjEphZ8wlxz0AQcQEc74rgEQ6kUUjrRMyudK7vruei5qZ3k0AqjoZNUmt6VFAmcoIs9t496pW6SX-u0UVF7tXuIaVA6Td6MVumWa1IzACaAA6kl7TtjWluKR6Hv2sL6tGfdzN3a9saGKenxEfTxT_DXaoi3ihLeMFHzQnh_R0jx12zzpNY-l2qOOtg4ZwW0BkFky9l_pUzWspWtEKJI3z2RruKcQinrTlV4QLfAtw-j_xv2fWeLQO4FJsWck3XK-Elvm1uS8WPJQm3nSO3nSJU5Urs5UptiZU-s9_RnTbA35SIOg03_wn7G9Qec4Nfo |
CitedBy_id | crossref_primary_10_1146_annurev_virology_093022_013037 crossref_primary_10_3201_eid3102_241458 crossref_primary_10_1080_22221751_2024_2321994 crossref_primary_10_1128_msphere_00989_24 crossref_primary_10_1371_journal_ppat_1012883 crossref_primary_10_1016_j_jviromet_2024_115027 crossref_primary_10_1371_journal_pcbi_1012263 crossref_primary_10_3390_pathogens12111361 crossref_primary_10_3390_vaccines12080887 crossref_primary_10_3390_genes15101321 crossref_primary_10_1093_database_baaf002 crossref_primary_10_1098_rstb_2023_0259 crossref_primary_10_3201_eid3002_231093 crossref_primary_10_1155_2024_7589509 crossref_primary_10_1111_2041_210X_14370 crossref_primary_10_1038_s41467_024_52737_0 crossref_primary_10_1016_j_heliyon_2024_e33040 crossref_primary_10_1038_d41586_024_00108_6 crossref_primary_10_3390_v16101599 crossref_primary_10_1186_s12985_024_02505_9 crossref_primary_10_3389_fvets_2024_1496207 crossref_primary_10_1016_j_virol_2025_110446 crossref_primary_10_1038_s41598_024_76506_7 crossref_primary_10_1007_s11259_024_10315_1 crossref_primary_10_1093_ve_veae117 crossref_primary_10_3389_fcimb_2023_1232772 |
Cites_doi | 10.1093/sysbio/syz020 10.3390/v13030494 10.1038/s41586-020-1943-3 10.1038/s41587-020-0631-z 10.1038/s41586-021-04245-0 10.1038/s41586-021-04353-x 10.1177/1536867X1701700106 10.1038/s41586-020-2787-6 10.1038/nature13016 10.1093/oxfordjournals.aje.a118408 10.1073/pnas.2215067120 10.1016/j.scitotenv.2021.149757 10.1073/pnas.2010146117 10.1371/journal.pcbi.1005471 10.1038/s41586-020-2342-5 10.1128/spectrum.00576-22 10.1016/j.scitotenv.2021.151046 10.3201/eid2704.203945 10.1126/science.abp8337 10.1371/journal.ppat.1003932 10.1016/S0167-5877(02)00010-7 10.1093/molbev/msm088 10.1093/nar/gkac1238 10.1101/2022.11.04.515237 10.1093/molbev/mst010 10.1126/science.abe5901 10.1016/j.cell.2021.03.028 10.1073/pnas.2009799117 10.1093/molbev/mss265 10.1038/s41588-021-00862-7 10.1016/S0140-6736(22)00326-9 10.1093/bioinformatics/bts580 10.1073/pnas.2114828118 10.1126/science.1176225 10.1007/s00285-007-0120-8 10.1038/s41467-021-21891-0 10.1186/s12864-022-08357-3 10.1093/ve/vey016 10.1093/ve/veab064 10.3390/v14122770 10.1073/pnas.2121644119 10.1093/molbev/msw046 10.3201/eid2702.203794 10.1093/molbev/msaa015 10.1093/molbev/msv022 10.1126/science.abf2946 10.1371/journal.pcbi.1000520 10.4161/fly.19695 10.5281/zenodo.8137224 10.1038/s41564-022-01268-9 10.1093/molbev/msaa130 10.1038/s41592-023-01769-3 10.1093/ve/vex042 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. Springer Nature Limited. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. Springer Nature Limited. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 7S9 L.6 5PM DOA |
DOI | 10.1038/s41467-023-40706-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_a94a05233273430581dbcc9e10313db9 PMC10462754 37640694 10_1038_s41467_023_40706_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Ohio |
GeographicLocations_xml | – name: United States--US – name: Ohio |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: AI153044; AI162611 funderid: https://doi.org/10.13039/100000002 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: 75N93021C00016; 75N93021C00014 funderid: https://doi.org/10.13039/100000060 – fundername: United States Department of Agriculture | Animal and Plant Health Inspection Service (APHIS) funderid: https://doi.org/10.13039/100009168 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) – fundername: The Ohio State University Infectious Diseases Institute, Intramural Research Program of the US National Library of Medicine at the NIH – fundername: NIAID NIH HHS grantid: R01 AI162611 – fundername: NIAID NIH HHS grantid: 75N93021C00014 – fundername: NIAID NIH HHS grantid: 75N93021C00016 – fundername: NIAID NIH HHS grantid: R01 AI153044 – fundername: ; – fundername: ; grantid: 75N93021C00016; 75N93021C00014 – fundername: ; grantid: AI153044; AI162611 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c574t-4a43a03f33b1b0f483c118788f7d2e8ffe8fbd47d4c5f84397ca3b818cdf70603 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:07:39 EDT 2025 Thu Aug 21 18:36:19 EDT 2025 Fri Jul 11 18:34:48 EDT 2025 Thu Jul 10 18:01:33 EDT 2025 Wed Aug 13 08:19:53 EDT 2025 Mon Jul 21 05:43:32 EDT 2025 Tue Jul 01 02:10:32 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. Springer Nature Limited. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-4a43a03f33b1b0f483c118788f7d2e8ffe8fbd47d4c5f84397ca3b818cdf70603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4397-7132 0000-0002-0738-8453 0000-0003-3253-6961 0000-0001-9818-479X 0000-0003-4814-0179 0000-0003-2826-5353 0000-0002-0710-9514 0000-0002-2705-4805 0000-0003-3943-8299 0000-0002-7408-3959 0000-0002-4999-6836 0000-0003-1115-1472 0000-0003-3440-0574 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40706-y |
PMID | 37640694 |
PQID | 2858089312 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a94a05233273430581dbcc9e10313db9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10462754 proquest_miscellaneous_3153708942 proquest_miscellaneous_2858989777 proquest_journals_2858089312 pubmed_primary_37640694 crossref_citationtrail_10_1038_s41467_023_40706_y crossref_primary_10_1038_s41467_023_40706_y springer_journals_10_1038_s41467_023_40706_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-28 |
PublicationDateYYYYMMDD | 2023-08-28 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | TanCWA SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interactionNat. Biotechnol.202038107310781:CAS:528:DC%2BB3cXhsVCisrnE32704169 MininVNSuchardMACounting labeled transitions in continuous-time Markov models of evolutionJ. Math. Biol.20085639141223584401145.6032317874105 Muñoz-FontelaCAnimal models for COVID-19Nature202058650951581368622020Natur.586..509M32967005 O’TooleÁAssignment of epidemiological lineages in an emerging pandemic using the pangolin toolVirus Evol.20217veab064834459134527285 Huerta-CepasJSerraFBorkPETE 3: reconstruction, analysis, and visualization of phylogenomic dataMol. Biol. Evol.201633163516381:CAS:528:DC%2BC28XhsFeisrrN486811626921390 BernardKDetection of SARS-CoV-2 in urban stormwater: an environmental reservoir and potential interface between human and animal sourcesSci. Total Environ.20228071510461:CAS:528:DC%2BB3MXitlCjtr7I2022ScTEn.807o1046B34673059 HaleVLSARS-CoV-2 infection in free-ranging white-tailed deerNature20226024814861:CAS:528:DC%2BB38Xisleltro%3D2022Natur.602..481H34942632 GartenRJAntigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in HumansScience20093251972011:CAS:528:DC%2BD1MXos1Srt7w%3D32509842009Sci...325..197G19465683 NakataYCellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genomeNucleic Acids Res.2023517837951:CAS:528:DC%2BB3sXhsVagtLbP988112936610792 LemeyPUnifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2PLOS Pathog.201410e1003932393055924586153 MinhBQIQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic eraMol. Biol. Evol.202037153015341:CAS:528:DC%2BB3cXis1egsLbL718220632011700 WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int. ReedLJMuenchHA simple method of estimating fifty per cent endpoints12Am. J. Epidemiol.193827493497 YangZPAML 4: phylogenetic analysis by maximum likelihoodMol. Biol. Evol.200724158615911:CAS:528:DC%2BD2sXpsVGrs7c%3D17483113 PekarJEThe molecular epidemiology of multiple zoonotic origins of SARS-CoV-2Science20223779609661:CAS:528:DC%2BB38Xit1yrtLvJ2022Sci...377..960P35881005 KatohKStandleyDMMAFFT multiple sequence alignment software version 7: improvements in performance and usabilityMol. Biol. Evol.2013307727801:CAS:528:DC%2BC3sXksFWisLc%3D360331823329690 USDA APHIS. Confirmation of COVID-19 in deer in Ohio. https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2021/sa-08/covid-deer (2021). SmithMDLess is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selectionMol. Biol. Evol.201532134213531:CAS:528:DC%2BC28XhtlWnurbJ440841325697341 USDA APHIS. Confirmed cases of SARS-CoV-2 in animals in the United States. https://www.aphis.usda.gov/aphis/ourfocus/onehealth/one-health-sarscov2-in-animals. MarquesADMultiple introductions of SARS-CoV-2 alpha and delta variants into white-tailed deer in PennsylvaniamBio20220e02101e02122 RoundyCMHigh seroprevalence of SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) at one of three captive cervid facilities in TexasMicrobiol. Spectr.202210e0057622904530635319276 YenH-LTransmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: a case studyLancet2022399107010781:CAS:528:DC%2BB38Xnt1Oqsrw%3D891292935279259 du PlessisLEstablishment and lineage dynamics of the SARS-CoV-2 epidemic in the UKScience20213717087122021Sci...371..708D33419936 GhaiRRAnimal reservoirs and hosts for emerging alphacoronaviruses and betacoronavirusesEmerg. Infect. Dis.202127101510221:CAS:528:DC%2BB3MXhsFWnsL7K800731933770472 GillMSImproving Bayesian population dynamics inference: a coalescent-based model for multiple lociMol. Biol. Evol.2013307137241:CAS:528:DC%2BC3sXitl2lurc%3D23180580 US Census Bureau. Population and housing unit estimates tables. https://www.census.gov/programs-surveys/popest/data/tables.html. ChenJMacCarthyTThe preferred nucleotide contexts of the AID/APOBEC cytidine deaminases have differential effects when mutating retrotransposon and virus sequences compared to host genesPLOS Comput. Biol.201713e100547153919552017PLSCB..13E5471C28362825 World Organisation for Animal Health. SARS-CoV-2 in Animals - Situation Report 20. https://www.woah.org/app/uploads/2023/01/sars-cov-2-situation-report-20.pdf (2022). VandegriftKJSARS-CoV-2 Omicron (B.1.1.529) infection of wild white-tailed deer in New York CityViruses20221427701:CAS:528:DC%2BB3sXmtlOqsQ%3D%3D978566936560774 CingolaniPA program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEffFly2012680921:CAS:528:DC%2BC38Xht1GmtL3E367928522728672 CasertaLCWhite-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concernProc. Natl Acad. Sci. USA2023120e22150671201:CAS:528:DC%2BB3sXktlagsbw%3D996352536719912 SiaSFPathogenesis and transmission of SARS-CoV-2 in golden hamstersNature20205838348381:CAS:528:DC%2BB3cXhsVCisrjK73947202020Natur.583..834S32408338 AiYWastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United StatesSci. Total Environ.20218011497571:CAS:528:DC%2BB3MXhvVyjsb%2FL83738512021ScTEn.801n9757A34467932 AyresDLBEAGLE 3: improved performance, scaling, and usability for a high-performance computing library for statistical phylogeneticsSyst. Biol.20196810521061680257231034053 USDA APHIS. Cervids: bovine tuberculosis (bTB) in cervids. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-bovine-tb. CDC. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker (Centers for Disease Control and Prevention, 2020). O’BrienDJEpidemiology of Mycobacterium bovis in free-ranging white-tailed deer, Michigan, USA, 1995–2000Prev. Vet. Med.200254476312062519 MandersFMutationalPatterns: the one stop shop for the analysis of mutational processesBMC Genom.202223 ChandlerJCSARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus)Proc. Natl Acad. Sci.2021118e21148281181:CAS:528:DC%2BB38XhtVGnuro%3D861740534732584 DamasJBroad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebratesProc. Natl Acad. Sci. USA202011722311223221:CAS:528:DC%2BB3cXhsl2hsbjP74867732020PNAS..11722311D32826334 PickeringBDivergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmissionNat. Microbiol.20227201120241:CAS:528:DC%2BB38XivVGltbbN971211136357713 LemeyPRambautADrummondAJSuchardMABayesian phylogeography finds its rootsPLoS Comput. Biol.20095e1000520255930027408352009PLSCB...5E0520L19779555 GangavarapuKOutbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutationsNat. Methods2023205125221:CAS:528:DC%2BB3sXjvVKlt7c%3D1039961436823332 SchunckRPeralesFWithin- and between-cluster effects in generalized linear mixed models: a discussion of approaches and the xthybrid commandStata J.20171789115 LiuYThe N501Y spike substitution enhances SARS-CoV-2 infection and transmissionNature20226022942991:CAS:528:DC%2BB38XhtVOlt7w%3D2022Natur.602..294L34818667 USDA ERS. Rural-urban continuum codes. https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx. PrinceTSARS-CoV-2 infections in animals: reservoirs for reverse zoonosis and models for studyViruses2021134941:CAS:528:DC%2BB3MXhtVanurnJ800274733802857 WorobeyMHanG-ZRambautAA synchronized global sweep of the internal genes of modern avian influenza virusNature20145082542571:CAS:528:DC%2BC2cXmtlahsLk%3D40981252014Natur.508..254W24531761 McCallumMN-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2Cell202118423322347.e161:CAS:528:DC%2BB3MXnsVGgtbo%3D796258533761326 ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165951:CAS:528:DC%2BB3cXhsFahtrvI73682552020PNAS..11716587I32571934 AlexandrovLBThe repertoire of mutational signatures in human cancerNature2020578941011:CAS:528:DC%2BB3cXktlClsL0%3D70542132020Natur.578...94A32025018 KuchipudiSVMultiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deerProc. Natl Acad. Sci. USA2022119e21216441191:CAS:528:DC%2BB38XksVGqsbw%3D883319135078920 USDA APHIS. Cervids: chronic wasting disease. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervid-cwd. LangenbucherAAn extended APOBEC3A mutation signature in cancerNat. Commun.2021121:CAS:528:DC%2BB3MXmslKjs7k%3D79526022021NatCo..12.1602L33707442 Goldberg, A. R. et al. Wildlife exposure to SARS-CoV-2 across a human use gradient. Preprint at bioRxivhttps://doi.org/10.1101/2022.11.04.515237 (2022). Association of Fish and Wildlife Agencies. Methods for managing deer in populated areas. https://www.fishwildlife.org/application/files/7315/3745/9637/AFWA_Deer_Mngmt_Pop_Areas_August_31_2018_version.pdf (2018). JiXGradients do grow on trees: a linear-time O(N)-dimensional gradient for statistical phylogeneticsMol. Biol. Evol.202037304730601:CAS:528:DC%2BB3MXhtlWntr%2FJ753061132458974 CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020252000045698826931992387 KimKThe roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitnessSci. Rep.2022121:CAS:528:DC%2BB38XitlyrtL%2FI94706792022NatSR..1214972K36100631 HammerASSARS-CoV-2 transmission between mink (Neovison vison) and humans, DenmarkEmerg. Infect. Dis.2021275475511:CAS:528:DC%2BB3MXhtVKqur3J785358033207152 Oude MunninkBBTransmission of SARS-CoV-2 on mink farms between humans and mink and back to humansScience20213711721771:CAS:528:DC%2BB3MXhtVCgt7g%3D2021Sci...371..172O33172935 TurakhiaYUltrafast Sample Placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemicNat. Genet.2021538098161:CAS:528:DC%2BB3MXhtVGktrfJ924829433 40706_CR12 M Worobey (40706_CR32) 2014; 508 LJ Reed (40706_CR65) 1938; 27 RJ Garten (40706_CR33) 2009; 325 VM Corman (40706_CR42) 2020; 25 AS Hammer (40706_CR8) 2021; 27 P Cingolani (40706_CR59) 2012; 6 J Huerta-Cepas (40706_CR60) 2016; 33 VL Hale (40706_CR11) 2022; 602 SF Sia (40706_CR30) 2020; 583 Y Turakhia (40706_CR48) 2021; 53 KJ Vandegrift (40706_CR18) 2022; 14 Y Liu (40706_CR28) 2022; 602 40706_CR19 M Imai (40706_CR31) 2020; 117 40706_CR20 DL Ayres (40706_CR51) 2019; 68 AD Marques (40706_CR15) 2022; 0 40706_CR66 H-L Yen (40706_CR7) 2022; 399 B Pickering (40706_CR13) 2022; 7 BB Oude Munnink (40706_CR9) 2021; 371 P Sagulenko (40706_CR58) 2018; 4 K Gangavarapu (40706_CR64) 2023; 20 JE Pekar (40706_CR21) 2022; 377 R Schunck (40706_CR45) 2017; 17 LC Caserta (40706_CR16) 2023; 120 P Lemey (40706_CR53) 2014; 10 DJ O’Brien (40706_CR36) 2002; 54 K Bernard (40706_CR37) 2022; 807 P Lemey (40706_CR55) 2012; 28 40706_CR4 40706_CR35 40706_CR34 Z Yang (40706_CR63) 2007; 24 40706_CR1 40706_CR6 A Langenbucher (40706_CR23) 2021; 12 Á O’Toole (40706_CR46) 2021; 7 MA Suchard (40706_CR49) 2018; 4 C Muñoz-Fontela (40706_CR29) 2020; 586 J Damas (40706_CR5) 2020; 117 VN Minin (40706_CR54) 2008; 56 X Ji (40706_CR56) 2020; 37 K Kim (40706_CR25) 2022; 12 40706_CR39 JC Chandler (40706_CR10) 2021; 118 F Manders (40706_CR61) 2022; 23 SV Kuchipudi (40706_CR14) 2022; 119 40706_CR40 T Prince (40706_CR2) 2021; 13 LB Alexandrov (40706_CR22) 2020; 578 40706_CR44 CM Roundy (40706_CR17) 2022; 10 K Katoh (40706_CR57) 2013; 30 Y Nakata (40706_CR26) 2023; 51 P Lemey (40706_CR52) 2009; 5 BQ Minh (40706_CR47) 2020; 37 MD Smith (40706_CR62) 2015; 32 L du Plessis (40706_CR41) 2021; 371 J Chen (40706_CR24) 2017; 13 Y Ai (40706_CR38) 2021; 801 MS Gill (40706_CR50) 2013; 30 RR Ghai (40706_CR3) 2021; 27 CW Tan (40706_CR43) 2020; 38 M McCallum (40706_CR27) 2021; 184 36824718 - Res Sq. 2023 Feb 16:rs.3.rs-2574993. doi: 10.21203/rs.3.rs-2574993/v1 |
References_xml | – reference: CDC. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker (Centers for Disease Control and Prevention, 2020). – reference: PickeringBDivergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmissionNat. Microbiol.20227201120241:CAS:528:DC%2BB38XivVGltbbN971211136357713 – reference: GhaiRRAnimal reservoirs and hosts for emerging alphacoronaviruses and betacoronavirusesEmerg. Infect. Dis.202127101510221:CAS:528:DC%2BB3MXhsFWnsL7K800731933770472 – reference: AyresDLBEAGLE 3: improved performance, scaling, and usability for a high-performance computing library for statistical phylogeneticsSyst. Biol.20196810521061680257231034053 – reference: GillMSImproving Bayesian population dynamics inference: a coalescent-based model for multiple lociMol. Biol. Evol.2013307137241:CAS:528:DC%2BC3sXitl2lurc%3D23180580 – reference: RoundyCMHigh seroprevalence of SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) at one of three captive cervid facilities in TexasMicrobiol. Spectr.202210e0057622904530635319276 – reference: ImaiMSyrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure developmentProc. Natl Acad. Sci. USA202011716587165951:CAS:528:DC%2BB3cXhsFahtrvI73682552020PNAS..11716587I32571934 – reference: McCallumMN-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2Cell202118423322347.e161:CAS:528:DC%2BB3MXnsVGgtbo%3D796258533761326 – reference: BernardKDetection of SARS-CoV-2 in urban stormwater: an environmental reservoir and potential interface between human and animal sourcesSci. Total Environ.20228071510461:CAS:528:DC%2BB3MXitlCjtr7I2022ScTEn.807o1046B34673059 – reference: LemeyPRambautADrummondAJSuchardMABayesian phylogeography finds its rootsPLoS Comput. Biol.20095e1000520255930027408352009PLSCB...5E0520L19779555 – reference: HaleVLSARS-CoV-2 infection in free-ranging white-tailed deerNature20226024814861:CAS:528:DC%2BB38Xisleltro%3D2022Natur.602..481H34942632 – reference: O’TooleÁAssignment of epidemiological lineages in an emerging pandemic using the pangolin toolVirus Evol.20217veab064834459134527285 – reference: NakataYCellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genomeNucleic Acids Res.2023517837951:CAS:528:DC%2BB3sXhsVagtLbP988112936610792 – reference: SchunckRPeralesFWithin- and between-cluster effects in generalized linear mixed models: a discussion of approaches and the xthybrid commandStata J.20171789115 – reference: ReedLJMuenchHA simple method of estimating fifty per cent endpoints12Am. J. Epidemiol.193827493497 – reference: O’BrienDJEpidemiology of Mycobacterium bovis in free-ranging white-tailed deer, Michigan, USA, 1995–2000Prev. Vet. Med.200254476312062519 – reference: AiYWastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United StatesSci. Total Environ.20218011497571:CAS:528:DC%2BB3MXhvVyjsb%2FL83738512021ScTEn.801n9757A34467932 – reference: GangavarapuKOutbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutationsNat. Methods2023205125221:CAS:528:DC%2BB3sXjvVKlt7c%3D1039961436823332 – reference: SagulenkoPPullerVNeherRATreeTime: maximum-likelihood phylodynamic analysisVirus Evol.20184vex042575892029340210 – reference: YangZPAML 4: phylogenetic analysis by maximum likelihoodMol. Biol. Evol.200724158615911:CAS:528:DC%2BD2sXpsVGrs7c%3D17483113 – reference: SiaSFPathogenesis and transmission of SARS-CoV-2 in golden hamstersNature20205838348381:CAS:528:DC%2BB3cXhsVCisrjK73947202020Natur.583..834S32408338 – reference: USDA APHIS. Cervids: bovine tuberculosis (bTB) in cervids. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-bovine-tb. – reference: Goldberg, A. R. et al. Wildlife exposure to SARS-CoV-2 across a human use gradient. Preprint at bioRxivhttps://doi.org/10.1101/2022.11.04.515237 (2022). – reference: LiuYThe N501Y spike substitution enhances SARS-CoV-2 infection and transmissionNature20226022942991:CAS:528:DC%2BB38XhtVOlt7w%3D2022Natur.602..294L34818667 – reference: TurakhiaYUltrafast Sample Placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemicNat. Genet.2021538098161:CAS:528:DC%2BB3MXhtVGktrfJ924829433972780 – reference: MandersFMutationalPatterns: the one stop shop for the analysis of mutational processesBMC Genom.202223 – reference: du PlessisLEstablishment and lineage dynamics of the SARS-CoV-2 epidemic in the UKScience20213717087122021Sci...371..708D33419936 – reference: CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREurosurveillance2020252000045698826931992387 – reference: TanCWA SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interactionNat. Biotechnol.202038107310781:CAS:528:DC%2BB3cXhsVCisrnE32704169 – reference: WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int. – reference: YenH-LTransmission of SARS-CoV-2 delta variant (AY.127) from pet hamsters to humans, leading to onward human-to-human transmission: a case studyLancet2022399107010781:CAS:528:DC%2BB38Xnt1Oqsrw%3D891292935279259 – reference: LemeyPMininVNBielejecFKosakovsky PondSLSuchardMAA counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selectionBioinformatics201228324832561:CAS:528:DC%2BC38XhvVSmsrjI357924023064000 – reference: CasertaLCWhite-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concernProc. Natl Acad. Sci. USA2023120e22150671201:CAS:528:DC%2BB3sXktlagsbw%3D996352536719912 – reference: Oude MunninkBBTransmission of SARS-CoV-2 on mink farms between humans and mink and back to humansScience20213711721771:CAS:528:DC%2BB3MXhtVCgt7g%3D2021Sci...371..172O33172935 – reference: VandegriftKJSARS-CoV-2 Omicron (B.1.1.529) infection of wild white-tailed deer in New York CityViruses20221427701:CAS:528:DC%2BB3sXmtlOqsQ%3D%3D978566936560774 – reference: Muñoz-FontelaCAnimal models for COVID-19Nature202058650951581368622020Natur.586..509M32967005 – reference: Association of Fish and Wildlife Agencies. Methods for managing deer in populated areas. https://www.fishwildlife.org/application/files/7315/3745/9637/AFWA_Deer_Mngmt_Pop_Areas_August_31_2018_version.pdf (2018). – reference: ChenJMacCarthyTThe preferred nucleotide contexts of the AID/APOBEC cytidine deaminases have differential effects when mutating retrotransposon and virus sequences compared to host genesPLOS Comput. Biol.201713e100547153919552017PLSCB..13E5471C28362825 – reference: USDA APHIS. Confirmed cases of SARS-CoV-2 in animals in the United States. https://www.aphis.usda.gov/aphis/ourfocus/onehealth/one-health-sarscov2-in-animals. – reference: MinhBQIQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic eraMol. Biol. Evol.202037153015341:CAS:528:DC%2BB3cXis1egsLbL718220632011700 – reference: PekarJEThe molecular epidemiology of multiple zoonotic origins of SARS-CoV-2Science20223779609661:CAS:528:DC%2BB38Xit1yrtLvJ2022Sci...377..960P35881005 – reference: GartenRJAntigenic and Genetic Characteristics of Swine-Origin 2009 A(H1N1) Influenza Viruses Circulating in HumansScience20093251972011:CAS:528:DC%2BD1MXos1Srt7w%3D32509842009Sci...325..197G19465683 – reference: World Organisation for Animal Health. SARS-CoV-2 in Animals - Situation Report 20. https://www.woah.org/app/uploads/2023/01/sars-cov-2-situation-report-20.pdf (2022). – reference: HammerASSARS-CoV-2 transmission between mink (Neovison vison) and humans, DenmarkEmerg. Infect. Dis.2021275475511:CAS:528:DC%2BB3MXhtVKqur3J785358033207152 – reference: USDA ERS. Rural-urban continuum codes. https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx. – reference: PrinceTSARS-CoV-2 infections in animals: reservoirs for reverse zoonosis and models for studyViruses2021134941:CAS:528:DC%2BB3MXhtVanurnJ800274733802857 – reference: Garushyants, S. K. Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer. GitHubhttps://doi.org/10.5281/zenodo.8137224 (2023). – reference: ChandlerJCSARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus)Proc. Natl Acad. Sci.2021118e21148281181:CAS:528:DC%2BB38XhtVGnuro%3D861740534732584 – reference: CingolaniPA program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEffFly2012680921:CAS:528:DC%2BC38Xht1GmtL3E367928522728672 – reference: WorobeyMHanG-ZRambautAA synchronized global sweep of the internal genes of modern avian influenza virusNature20145082542571:CAS:528:DC%2BC2cXmtlahsLk%3D40981252014Natur.508..254W24531761 – reference: Huerta-CepasJSerraFBorkPETE 3: reconstruction, analysis, and visualization of phylogenomic dataMol. Biol. Evol.201633163516381:CAS:528:DC%2BC28XhsFeisrrN486811626921390 – reference: KuchipudiSVMultiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deerProc. Natl Acad. Sci. USA2022119e21216441191:CAS:528:DC%2BB38XksVGqsbw%3D883319135078920 – reference: MarquesADMultiple introductions of SARS-CoV-2 alpha and delta variants into white-tailed deer in PennsylvaniamBio20220e02101e02122 – reference: SuchardMABayesian phylogenetic and phylodynamic data integration using BEAST 1.10Virus Evol.20184vey016600767429942656 – reference: DamasJBroad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebratesProc. Natl Acad. Sci. USA202011722311223221:CAS:528:DC%2BB3cXhsl2hsbjP74867732020PNAS..11722311D32826334 – reference: USDA APHIS. Cervids: chronic wasting disease. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervid-cwd. – reference: SmithMDLess is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selectionMol. Biol. Evol.201532134213531:CAS:528:DC%2BC28XhtlWnurbJ440841325697341 – reference: LangenbucherAAn extended APOBEC3A mutation signature in cancerNat. Commun.2021121:CAS:528:DC%2BB3MXmslKjs7k%3D79526022021NatCo..12.1602L33707442 – reference: US Census Bureau. Population and housing unit estimates tables. https://www.census.gov/programs-surveys/popest/data/tables.html. – reference: LemeyPUnifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2PLOS Pathog.201410e1003932393055924586153 – reference: KatohKStandleyDMMAFFT multiple sequence alignment software version 7: improvements in performance and usabilityMol. Biol. Evol.2013307727801:CAS:528:DC%2BC3sXksFWisLc%3D360331823329690 – reference: MininVNSuchardMACounting labeled transitions in continuous-time Markov models of evolutionJ. Math. Biol.20085639141223584401145.6032317874105 – reference: AlexandrovLBThe repertoire of mutational signatures in human cancerNature2020578941011:CAS:528:DC%2BB3cXktlClsL0%3D70542132020Natur.578...94A32025018 – reference: JiXGradients do grow on trees: a linear-time O(N)-dimensional gradient for statistical phylogeneticsMol. Biol. Evol.202037304730601:CAS:528:DC%2BB3MXhtlWntr%2FJ753061132458974 – reference: USDA APHIS. Confirmation of COVID-19 in deer in Ohio. https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2021/sa-08/covid-deer (2021). – reference: KimKThe roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitnessSci. Rep.2022121:CAS:528:DC%2BB38XitlyrtL%2FI94706792022NatSR..1214972K36100631 – volume: 68 start-page: 1052 year: 2019 ident: 40706_CR51 publication-title: Syst. Biol. doi: 10.1093/sysbio/syz020 – volume: 13 start-page: 494 year: 2021 ident: 40706_CR2 publication-title: Viruses doi: 10.3390/v13030494 – volume: 578 start-page: 94 year: 2020 ident: 40706_CR22 publication-title: Nature doi: 10.1038/s41586-020-1943-3 – volume: 38 start-page: 1073 year: 2020 ident: 40706_CR43 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0631-z – volume: 602 start-page: 294 year: 2022 ident: 40706_CR28 publication-title: Nature doi: 10.1038/s41586-021-04245-0 – volume: 602 start-page: 481 year: 2022 ident: 40706_CR11 publication-title: Nature doi: 10.1038/s41586-021-04353-x – volume: 17 start-page: 89 year: 2017 ident: 40706_CR45 publication-title: Stata J. doi: 10.1177/1536867X1701700106 – volume: 0 start-page: e02101 year: 2022 ident: 40706_CR15 publication-title: mBio – ident: 40706_CR20 – volume: 586 start-page: 509 year: 2020 ident: 40706_CR29 publication-title: Nature doi: 10.1038/s41586-020-2787-6 – ident: 40706_CR6 – volume: 508 start-page: 254 year: 2014 ident: 40706_CR32 publication-title: Nature doi: 10.1038/nature13016 – volume: 27 start-page: 493 year: 1938 ident: 40706_CR65 publication-title: Am. J. Epidemiol. doi: 10.1093/oxfordjournals.aje.a118408 – volume: 120 start-page: e2215067120 year: 2023 ident: 40706_CR16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2215067120 – volume: 801 start-page: 149757 year: 2021 ident: 40706_CR38 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149757 – volume: 117 start-page: 22311 year: 2020 ident: 40706_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010146117 – volume: 13 start-page: e1005471 year: 2017 ident: 40706_CR24 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1005471 – volume: 583 start-page: 834 year: 2020 ident: 40706_CR30 publication-title: Nature doi: 10.1038/s41586-020-2342-5 – volume: 10 start-page: e00576 year: 2022 ident: 40706_CR17 publication-title: Microbiol. Spectr. doi: 10.1128/spectrum.00576-22 – volume: 807 start-page: 151046 year: 2022 ident: 40706_CR37 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151046 – volume: 27 start-page: 1015 year: 2021 ident: 40706_CR3 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2704.203945 – volume: 377 start-page: 960 year: 2022 ident: 40706_CR21 publication-title: Science doi: 10.1126/science.abp8337 – volume: 10 start-page: e1003932 year: 2014 ident: 40706_CR53 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1003932 – volume: 54 start-page: 47 year: 2002 ident: 40706_CR36 publication-title: Prev. Vet. Med. doi: 10.1016/S0167-5877(02)00010-7 – volume: 24 start-page: 1586 year: 2007 ident: 40706_CR63 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm088 – volume: 51 start-page: 783 year: 2023 ident: 40706_CR26 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1238 – ident: 40706_CR39 doi: 10.1101/2022.11.04.515237 – ident: 40706_CR35 – volume: 30 start-page: 772 year: 2013 ident: 40706_CR57 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 371 start-page: 172 year: 2021 ident: 40706_CR9 publication-title: Science doi: 10.1126/science.abe5901 – volume: 184 start-page: 2332 year: 2021 ident: 40706_CR27 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – volume: 117 start-page: 16587 year: 2020 ident: 40706_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2009799117 – volume: 30 start-page: 713 year: 2013 ident: 40706_CR50 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss265 – volume: 53 start-page: 809 year: 2021 ident: 40706_CR48 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00862-7 – volume: 25 start-page: 2000045 year: 2020 ident: 40706_CR42 publication-title: Eurosurveillance – volume: 399 start-page: 1070 year: 2022 ident: 40706_CR7 publication-title: Lancet doi: 10.1016/S0140-6736(22)00326-9 – volume: 28 start-page: 3248 year: 2012 ident: 40706_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts580 – volume: 118 start-page: e2114828118 year: 2021 ident: 40706_CR10 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2114828118 – volume: 325 start-page: 197 year: 2009 ident: 40706_CR33 publication-title: Science doi: 10.1126/science.1176225 – volume: 56 start-page: 391 year: 2008 ident: 40706_CR54 publication-title: J. Math. Biol. doi: 10.1007/s00285-007-0120-8 – volume: 12 year: 2021 ident: 40706_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21891-0 – volume: 23 year: 2022 ident: 40706_CR61 publication-title: BMC Genom. doi: 10.1186/s12864-022-08357-3 – ident: 40706_CR19 – volume: 4 start-page: vey016 year: 2018 ident: 40706_CR49 publication-title: Virus Evol. doi: 10.1093/ve/vey016 – ident: 40706_CR4 – volume: 7 start-page: veab064 year: 2021 ident: 40706_CR46 publication-title: Virus Evol. doi: 10.1093/ve/veab064 – ident: 40706_CR34 – volume: 14 start-page: 2770 year: 2022 ident: 40706_CR18 publication-title: Viruses doi: 10.3390/v14122770 – volume: 119 start-page: e2121644119 year: 2022 ident: 40706_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2121644119 – volume: 33 start-page: 1635 year: 2016 ident: 40706_CR60 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw046 – volume: 27 start-page: 547 year: 2021 ident: 40706_CR8 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2702.203794 – ident: 40706_CR1 – volume: 37 start-page: 1530 year: 2020 ident: 40706_CR47 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa015 – volume: 32 start-page: 1342 year: 2015 ident: 40706_CR62 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msv022 – volume: 371 start-page: 708 year: 2021 ident: 40706_CR41 publication-title: Science doi: 10.1126/science.abf2946 – volume: 5 start-page: e1000520 year: 2009 ident: 40706_CR52 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000520 – volume: 6 start-page: 80 year: 2012 ident: 40706_CR59 publication-title: Fly doi: 10.4161/fly.19695 – ident: 40706_CR66 doi: 10.5281/zenodo.8137224 – ident: 40706_CR44 – ident: 40706_CR12 – ident: 40706_CR40 – volume: 7 start-page: 2011 year: 2022 ident: 40706_CR13 publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01268-9 – volume: 12 year: 2022 ident: 40706_CR25 publication-title: Sci. Rep. – volume: 37 start-page: 3047 year: 2020 ident: 40706_CR56 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa130 – volume: 20 start-page: 512 year: 2023 ident: 40706_CR64 publication-title: Nat. Methods doi: 10.1038/s41592-023-01769-3 – volume: 4 start-page: vex042 year: 2018 ident: 40706_CR58 publication-title: Virus Evol. doi: 10.1093/ve/vex042 – reference: 36824718 - Res Sq. 2023 Feb 16:rs.3.rs-2574993. doi: 10.21203/rs.3.rs-2574993/v1 |
SSID | ssj0000391844 |
Score | 2.5653384 |
Snippet | The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human... Abstract The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5105 |
SubjectTerms | 13/1 13/106 45/23 45/88 45/90 631/181/735 631/181/757 631/326/596/4130 692/699/255/2514 692/700/478/174 Animal models Animals Bayes Theorem Bayesian analysis COVID-19 COVID-19 - veterinary COVID-19 infection Deer Disease transmission ecology Epidemiology Evolution Humanities and Social Sciences Humans Livestock long term effects Mathematical models multidisciplinary Odocoileus virginianus Ohio Pandemics phenotype Phylogeny Populations risk SARS-CoV-2 - genetics Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Viral diseases Viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT90wDI8mpEm7oLENKLCpk3aDiLZOSXJ8IBCatB3GQNyifAqkqQ89Hpvef4-d9r3x2GCXHXpp7Ch1nNiuk58Z-wQWZK1dywNIwABFa-60IyRMJ2wjgnCa7jt_-Xpwei4-X7aXD0p90ZmwHh64F9y-1cLSr0sgHBZUTvSvnPc6UnkCCC5f3UOb9yCYynswaAxdxHBLpgK1fyvynoAmCkckMYyeLVmiDNj_Ny_zz8OSjzKm2RCdvGargwdZjvqRr7EXsXvDXvY1JWdv2fHIezQlhAARyvhz0KxynMqz0bczfjS-4E153ZVpEiNHQ0VFispflEzgdJgUmUKMk3fs_OT4-9EpH2olcN9KMeXCCrAVJABXuyoJBZ4KiSuVZGiiSgkfF4QMwrdJkRfiLTi01j4kAtCBdbbSjbu4yUpbVwFCfUAZTiE0qKiqFpm8b5xGpoLVc7kZPwCJUz2LHyYntEGZXtYGZW2yrM2sYLsLnpseRuNZ6kOajgUlQWDnF6gYZlAM8y_FKNjOfDLNsC5vTaNaVaGLVjcF-7hoxhVFaRLbxfFdT6MV-sXyaRpAQyGxI4H9bPT6sRgtbtn5OnHB1JLmLH3Ockt3fZWRvSnh3sgWWffmSvZ77E_La-t_yGubvWpodVS4c6odtjKd3MX36HBN3Ye8tu4BxY0iCw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxZu0pQoSN7CaxE5tn9BSdamQ4EAp6s3ys1RCSdndgvbfd8bxplpoe8gl8UTOeDzfxGN_Q8hbZpiolW2pZ4LBD4pS1CqLTJiWm4Z7bhWed_7ydf_ohH8-bU_zgts8b6tc-cTkqH3vcI18r5GtrABc6-bDxW-KVaMwu5pLaNwnD2pAGtzSJaefxjUWZD-XnOezMhWTe3OePAMAFfRLwM_0cg2PEm3_TbHm_1sm_8mbJjiaPiabOY4sJ8PAPyH3QveUPBwqSy6fkcOJcwAoyAPhy_An21fZx_J48u2YHvQ_aFOed2WchUABrrBUUfkXUwoUt5SCkA9h9pycTA-_HxzRXDGBulbwBeWGM1OxyJitbRW5ZA7LiUsZhW-CjBEu67nw3LVRYiziDLOA2c5HpNFhL8hG13fhFSlNXXnm633Mc3KumAyyakHIucYqECpIvdKbdplOHKta_NIprc2kHnStQdc66VovC_JulLkYyDTubP0Rh2NsiUTY6UY_O9N5XmmjuMGVbYY0PeC7IPy2zqmA1SuYt6ogO6vB1Hl2zvW1LRXkzfgY5hUmS0wX-suhjZIQHYvb2zCACwEv4vCel4N9jL0Fx50OFRdErlnO2uesP-nOfyZ-b0y7N6IF0fcrI7vu--362rr7U7fJowbtvgLPKHfIxmJ2GV5DQLWwu2nWXAGz7xrD priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfAifrtaZQVvGtxNsk1yXEtLeaAHn5XeQj61UHbl9VV5_70z2Q952goe9rI7E7KTmcwkk_yGkNfccllr19DAJYcFitbUaYdImE5YJoJwGu87f_h4cHIqFmfN2Q5h012YfGg_Q1rmaXo6HfbuUmSTBg8DDUpYBW9ukT2Eagfd3mvbxXIx76wg5rkSYrwhU3F1DfOWF8pg_ddFmH8flPwjW5qd0PE9cneMHst26O99shO7B-T2UE9y85Actd6DG0H0h1DGH6NWlX0ql-2nJT3sv1BWnndlWsVIwUlhgaLyJyYSKB4kBaYQ4-oROT0--nx4Qsc6CdQ3UqypsILbiifOXe2qJBT3WERcqSQDiyoleFwQMgjfJIURiLfcgaf2ISF4Dn9Mdru-i09Jaesq8FAfYHZTCM1VVFUDTN4zp4GpIPUkN-NHEHGsZXFhcjKbKzPI2oCsTZa12RTkzczzfYDQ-Cf1exyOmRLhr_OLfvXVjOpgrBYW97M5gvPAjAVBt_NeR6xZwYPTBdmfBtOMNnlpmGpUBeFZzQryav4M1oQpEtvF_mqg0QpiYnkzDQcnIaEhAe08GfRj7i1M1_kqcUHUluZs_c72l-78W0b1xmQ7kw2wvp2U7Hffb5bXs_8jf07uMLSDCuZHtU9216ur-ALCqrV7OdrRL0QxGmQ priority: 102 providerName: Springer Nature |
Title | Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer |
URI | https://link.springer.com/article/10.1038/s41467-023-40706-y https://www.ncbi.nlm.nih.gov/pubmed/37640694 https://www.proquest.com/docview/2858089312 https://www.proquest.com/docview/2858989777 https://www.proquest.com/docview/3153708942 https://pubmed.ncbi.nlm.nih.gov/PMC10462754 https://doaj.org/article/a94a05233273430581dbcc9e10313db9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISReEN9kjCpIvEEgiZ3afkAoq1qmSpvQSlHfrPgjY9KUsKwD-t9z5yRFhQ6Jh7ZScpeklzvfORf_foS8ogXlidRZZCmnMEGRMtJSIxKmZkXKLNMS1zufnA6P52y6yBY7pKc76gx4vXVqh3xS8-by7c-r1QcI-PftknHx7pr5cIfsAyfjMENe7ZJ9yEwcGQ1OunLfj8xUwoSGdWtntqtu5CcP47-t9vz7Fco_-qg-PU3uk3tdXRnmrSM8IDuuekjutEyTq0dknBsDCQZxIWzovnf-FtZlOMvPZtGo_hKl4UUVlo1zEaQvpC4Kf2CLIcJXTEHJOtc8JvPJ-PPoOOoYFCKTcbaMWMFoEdOSUp3ouGSCGqQXF6LkNnWiLOGjLeOWmawUWJuYgmrI4caWCKtDn5C9qq7cMxIWSWypTYbY92RMUuFEnIGSMamWoBSQpLebMh28OLJcXCrf5qZCtbZWYGvlba1WAXm91vnWgmv8U_oIb8daEoGx_Ya6OVddnKlCsgKfdFOE7YGxDMpxbYx0yGZBrZYBOexvpuqdTaUiEzEUbkkakJfr3RBn2DwpKlfftDJSQLXMb5ehkD44HIjBcZ62_rG-WhjI_SLjgIgNz9n4O5t7qouvHu8b2_Apz0D1Te9kv6_9dnsd_J_4c3I3xTiIYeQUh2Rv2dy4F1BwLfWA7PIFh28x-Tgg-3k-nU3h92h8-ukMto6Go4F_lDHw0fYLpIgpbA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCawmttPYB4SW0mVLHwfaot7c-BGohJKyu6XaP8VvZCaPrRZobz3sZe2xkvHMfBOPZwbglShEnmqbMS9ygR8oWjOrLVXCtLLg0kurKd95Z3dtdCA_H2aHS_C7z4Wha5W9TWwMta8dnZGvcpWpBME15e9PfjLqGkXR1b6FRisWW2F2hp9sk3ebH3F_X3M-3NhfH7GuqwBzWS6nTBZSFIkohbCpTUqphKOW20qVuedBlSX-rJe5ly4rFeG1K4RFXHO-pFIzAte9BtelwBHKTB9-mp_pULV1JWWXm5MItTqRjSVCYEQ-IDWbLeBf0ybgf77tv1c0_4rTNvA3vAO3O781HrSCdheWQnUPbrSdLGf3YWPgHAIY1Z3wcfjVyXNcl_He4MseW6-_Mh4fV3E5DoEhPFJrpPiMQhiMrrAikQ9h_AAOroSXD2G5qqvwGOIiTbzw6RrFVaXUQgWVZEjkHLcaiSJIe74Z15Uvpy4aP0wTRhfKtLw2yGvT8NrMIngzpzlpi3dcOvsDbcd8JhXebv6ox99Mp8em0LKgk3RBZYHQVqK7b53TgbplCG91BCv9ZprOGkzMuexG8HI-jHpMwZmiCvVpO0cr9Mbzi-cIhKccF5K4zqNWPuZPi0DRJDFHoBYkZ-F1Fkeq4-9NPXEK8_M8Q9K3vZCdP_vF_Hpy-au-gJuj_Z1ts725u_UUbnHSgQStslqB5en4NDxDZ25qnzcaFMPRVavsH3EnV_M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ7A2iZ3GPiC0bXfVUlhVLUW9ufEjUAklZXdLtX-NX8dMHlst0N56yCXxWPF4Zr6xx54BeM1znsXKpMzxjOMCRSlmlKFMmEbkiXDCKLrv_Hm8vn0oPh6lRyvwu7sLQ8cqO5tYG2pXWdoj7ycylRGCa5z0i_ZYxN7W6MPpT0YVpCjS2pXTaERk18_Pcfk2fb-zhXP9JklGwy-b26ytMMBsmokZE7ngecQLzk1sokJIbqn8tpRF5hIviwIf40TmhE0LSdhtc24Q46wrKO0Mx35vwGpGq6IerG4Mx3v7ix0eyr0uhWhv6kRc9qeitksIk8gVpGfzJTSsiwb8z9P998DmX1HbGgxHd-FO68WGg0bs7sGKL-_Dzaau5fwBDAfWIpxRFgoX-l-tdIdVER4M9g_YZvWVJeFJGRYT7xmCJRVKCs8poMHoQCsSOe8nD-HwWrj5CHplVfonEOZx5LiL1ynKKoTi0ssoRSJrE6OQKIC445u2bTJzqqnxQ9dBdS51w2uNvNY1r_U8gLcLmtMmlceVrTdoOhYtKQ13_aKafNOtVutciZz21TklCULLic6_sVZ5qp3BnVEBrHWTqVvbMNUXkhzAq8Vn1GoK1eSlr86aNkqib55d3oYjWGXYkcB-HjfysfhbhI36SnMAcklyloaz_KU8-V5nF6egf5KlSPquE7KLf7-cX0-vHupLuIXqqj_tjHefwe2EVCBCEy3XoDebnPnn6NnNzItWhUI4vm6t_QNwE12F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+evolution+of+SARS-CoV-2+in+free-ranging+white-tailed+deer&rft.jtitle=Nature+communications&rft.au=McBride%2C+Dillon+S.&rft.au=Garushyants%2C+Sofya+K.&rft.au=Franks%2C+John&rft.au=Magee%2C+Andrew+F.&rft.date=2023-08-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40706-y&rft.externalDocID=10_1038_s41467_023_40706_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |