Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency

Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualization...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 325; no. 5947; pp. 1549 - 1552
Main Authors Young, John, Walker, Simon M., Bomphrey, Richard J., Taylor, Graham K., Thomas, Adrian L. R.
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 18.09.2009
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
AbstractList Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full- fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
Locust Wing Aerodynamics Insect wings function as deformable aerofoils, but the precise aerodynamic benefits of the observed deformations have remained obscure. Previous models have treated the wing as a flat plate, lacking any deformation, even though it is clear that the locust wing can twist and rotate along its length. Young et al. (p. 1549 ) validate a computational fluid dynamic model, using particle imaging velocimetry and smoke visualization of the flow around actual locusts, and use the model to investigate the effect of measured changes in wing shape during a stroke cycle. The complexity of insect wing venation directly affects the aerodynamics of flight via the intermediary of wing deformation. Measurements of locust wing kinematics validate a fluid dynamics model of the aerodynamic effects of wing deformation. Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight. [PUBLICATION ABSTRACT]
Author Taylor, Graham K.
Young, John
Thomas, Adrian L. R.
Walker, Simon M.
Bomphrey, Richard J.
Author_xml – sequence: 1
  givenname: John
  surname: Young
  fullname: Young, John
– sequence: 2
  givenname: Simon M.
  surname: Walker
  fullname: Walker, Simon M.
– sequence: 3
  givenname: Richard J.
  surname: Bomphrey
  fullname: Bomphrey, Richard J.
– sequence: 4
  givenname: Graham K.
  surname: Taylor
  fullname: Taylor, Graham K.
– sequence: 5
  givenname: Adrian L. R.
  surname: Thomas
  fullname: Thomas, Adrian L. R.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21970490$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19762645$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1v2zAQxYkiReOknTu1EAKkm5rjp8gxSOw2QIAuLTIqFE06NCQyJaXB_31oW0iBLpl4xPvdvSPfGToJMViEPmP4jjERV9l4G4wtl4YrIt-hBQbFa0WAnqAFABW1hIaforOctwBFU_QDOsWqEUQwvkCPt3bUvs9VdNVdyNaM1YMPm-rWZr8JlQ7rUrqYBj36GKpleNLFr7q2Ka53QQ_eVKspmIO4h1e93zyN1dI5f1ht9xG9d7rP9tN8nqM_q-Xvm5_1_a8fdzfX97XhDRtrpoBILrgAqjTpgGKhicKqkwJ3wlIrGsCKdLYT3GHrFHRUGAKMYizXTtJz9O049znFv5PNYzv4bGzf62DjlFvRCE655G-ClBVLBm-DBCQD0eytL_4Dt3FKoby2JZgKzOnB9uoImRRzTta1z8kPOu1aDO0-y3bOsp2zLB1f57FTN9j1P34OrwCXM6Cz0b1LJRqfXzlSQCj_WrgvR26bx5hedQYUsKSMvgC-8bEW
CODEN SCIEAS
CitedBy_id crossref_primary_10_1098_rspb_2011_1023
crossref_primary_10_1098_rsif_2014_0933
crossref_primary_10_1016_j_energy_2024_132231
crossref_primary_10_1038_ncomms4293
crossref_primary_10_1088_1748_3190_aa65db
crossref_primary_10_1371_journal_pone_0218672
crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_058
crossref_primary_10_1088_1748_3190_aa7f16
crossref_primary_10_1115_1_4044268
crossref_primary_10_4028_www_scientific_net_AMM_709_245
crossref_primary_10_1039_C9SM02364J
crossref_primary_10_1088_1748_3190_11_3_036005
crossref_primary_10_1088_1748_3190_aa65e6
crossref_primary_10_1016_j_jtbi_2017_10_014
crossref_primary_10_1016_S1672_6529_14_60065_2
crossref_primary_10_1080_13887890_2019_1688502
crossref_primary_10_1088_1748_3190_10_5_056003
crossref_primary_10_1098_rsos_211788
crossref_primary_10_1088_1748_3182_5_4_045005
crossref_primary_10_1007_s42235_022_00277_y
crossref_primary_10_1016_j_jinsphys_2015_01_013
crossref_primary_10_1016_j_cois_2020_10_001
crossref_primary_10_1007_s12046_018_1036_2
crossref_primary_10_1063_5_0136580
crossref_primary_10_4031_MTSJ_53_5_11
crossref_primary_10_1242_jeb_187369
crossref_primary_10_3390_aerospace10060554
crossref_primary_10_1038_ncomms10851
crossref_primary_10_1007_s00419_022_02138_w
crossref_primary_10_1088_1748_3190_11_3_036014
crossref_primary_10_3390_biomimetics9040233
crossref_primary_10_1016_j_jfluidstructs_2014_12_004
crossref_primary_10_2514_1_C036224
crossref_primary_10_2514_1_J060661
crossref_primary_10_1088_0960_1317_21_12_125020
crossref_primary_10_1007_s11071_016_2666_8
crossref_primary_10_1063_5_0160346
crossref_primary_10_1016_S1672_6529_11_60113_3
crossref_primary_10_1242_jeb_245346
crossref_primary_10_1007_s42235_022_00203_2
crossref_primary_10_1063_1_5019200
crossref_primary_10_1002_fld_5251
crossref_primary_10_1098_rsif_2022_0315
crossref_primary_10_3390_s22208018
crossref_primary_10_1086_706914
crossref_primary_10_1007_s10409_018_0789_5
crossref_primary_10_1111_nyas_15152
crossref_primary_10_1242_jeb_045351
crossref_primary_10_1007_s42235_021_00116_6
crossref_primary_10_1016_j_cja_2020_05_010
crossref_primary_10_1080_13887890_2019_1677515
crossref_primary_10_1088_1748_3182_8_3_036001
crossref_primary_10_2514_1_J050834
crossref_primary_10_1088_1748_3182_7_3_036020
crossref_primary_10_1088_1748_3182_5_3_036005
crossref_primary_10_1098_rsif_2023_0527
crossref_primary_10_1007_s11433_012_4907_2
crossref_primary_10_1016_j_cja_2024_01_006
crossref_primary_10_1242_jeb_051342
crossref_primary_10_1002_jmor_10992
crossref_primary_10_1038_s41598_018_19237_w
crossref_primary_10_1016_j_jinsphys_2018_07_005
crossref_primary_10_2514_1_J061726
crossref_primary_10_1098_rsif_2022_0426
crossref_primary_10_1098_rsif_2011_0749
crossref_primary_10_1242_bio_038299
crossref_primary_10_1007_s00707_013_1037_5
crossref_primary_10_1098_rspb_2013_0531
crossref_primary_10_1016_S1672_6529_14_60115_3
crossref_primary_10_1098_rstb_2015_0390
crossref_primary_10_1017_jfm_2015_537
crossref_primary_10_1098_rsif_2020_0352
crossref_primary_10_1007_s00707_018_2117_3
crossref_primary_10_1177_0954406220907950
crossref_primary_10_1299_jbse_17_00618
crossref_primary_10_1007_s42235_021_0014_2
crossref_primary_10_1038_s42003_023_05206_1
crossref_primary_10_1038_s44172_023_00077_0
crossref_primary_10_1098_rsif_2014_0585
crossref_primary_10_1016_j_jsv_2019_114883
crossref_primary_10_1242_jeb_163360
crossref_primary_10_1098_rsos_160746
crossref_primary_10_7566_JPSJ_92_121003
crossref_primary_10_1098_rsos_170307
crossref_primary_10_1209_0295_5075_121_66001
crossref_primary_10_1016_j_compbiomed_2014_12_018
crossref_primary_10_2108_zs150182
crossref_primary_10_1016_j_compfluid_2012_10_019
crossref_primary_10_2514_1_J061027
crossref_primary_10_1017_jfm_2014_533
crossref_primary_10_1098_rsif_2019_0804
crossref_primary_10_1007_s00162_023_00673_y
crossref_primary_10_1063_5_0094820
crossref_primary_10_1088_1748_3190_aad5a3
crossref_primary_10_1088_1748_3190_aa7f52
crossref_primary_10_1016_j_ast_2011_10_011
crossref_primary_10_1242_jeb_246223
crossref_primary_10_1088_1748_3190_aab313
crossref_primary_10_1007_s00348_010_0873_5
crossref_primary_10_1002_jemt_24173
crossref_primary_10_3390_biomimetics8030287
crossref_primary_10_1371_journal_pbio_1001823
crossref_primary_10_1017_jfm_2013_46
crossref_primary_10_1088_1748_3182_9_2_025005
crossref_primary_10_1061__ASCE_AS_1943_5525_0000548
crossref_primary_10_1063_5_0136024
crossref_primary_10_1093_iob_obaa026
crossref_primary_10_1088_1757_899X_234_1_012006
crossref_primary_10_1061__ASCE_AS_1943_5525_0000677
crossref_primary_10_1016_j_jfluidstructs_2015_03_003
crossref_primary_10_1098_rsif_2013_0312
crossref_primary_10_1021_acsami_6b13666
crossref_primary_10_1364_OE_451968
crossref_primary_10_1016_S1672_6529_13_60227_9
crossref_primary_10_1103_PhysRevE_81_056304
crossref_primary_10_1038_s41467_018_05708_1
crossref_primary_10_1155_2010_675462
crossref_primary_10_1088_1748_3182_8_4_046008
crossref_primary_10_1177_0954406220917426
crossref_primary_10_1016_j_jfluidstructs_2018_04_019
crossref_primary_10_1088_1748_3190_aba8ac
crossref_primary_10_20965_jrm_2022_p0223
crossref_primary_10_1139_cjz_2013_0196
crossref_primary_10_1016_S1672_6529_16_60298_6
crossref_primary_10_1016_j_cois_2018_08_003
crossref_primary_10_1016_j_jsv_2018_05_005
crossref_primary_10_1098_rsif_2014_1088
crossref_primary_10_1098_rsif_2020_0268
crossref_primary_10_1103_RevModPhys_95_041001
crossref_primary_10_1177_0954406217752531
crossref_primary_10_1242_jeb_077453
crossref_primary_10_1007_s11692_011_9134_7
crossref_primary_10_1103_PhysRevE_82_015303
crossref_primary_10_1177_1756829321992138
crossref_primary_10_2514_1_J050485
crossref_primary_10_1093_icb_icy065
crossref_primary_10_1098_rsif_2015_0075
crossref_primary_10_1017_aer_2022_71
crossref_primary_10_1103_PhysRevLett_123_157801
crossref_primary_10_2514_1_J062223
crossref_primary_10_1098_rsif_2016_0730
crossref_primary_10_1080_19768354_2019_1592020
crossref_primary_10_1088_1748_3190_ab2dbc
crossref_primary_10_3390_aerospace5030083
crossref_primary_10_1017_jfm_2011_82
crossref_primary_10_1098_rsif_2014_0541
crossref_primary_10_3390_insects13111018
crossref_primary_10_4236_mme_2018_84017
crossref_primary_10_1088_1748_3190_aa8447
crossref_primary_10_1177_0954410016671343
crossref_primary_10_1260_1756_8293_7_2_159
crossref_primary_10_1016_j_ast_2019_01_013
crossref_primary_10_1038_s42003_021_02263_2
crossref_primary_10_1016_j_jfluidstructs_2017_08_011
crossref_primary_10_1016_j_paerosci_2010_01_001
crossref_primary_10_1016_j_jfluidstructs_2017_08_006
crossref_primary_10_1016_j_compbiomed_2022_105421
crossref_primary_10_1063_5_0029806
crossref_primary_10_1098_rsif_2013_0361
crossref_primary_10_1007_s11431_022_2142_9
crossref_primary_10_1007_s10409_014_0095_9
crossref_primary_10_1016_j_jinsphys_2021_104293
crossref_primary_10_1371_journal_pone_0048909
crossref_primary_10_1371_journal_pone_0116813
crossref_primary_10_1088_1748_3190_10_3_036007
crossref_primary_10_1016_j_jfluidstructs_2023_104006
crossref_primary_10_1021_ma502563q
crossref_primary_10_3390_insects11070446
crossref_primary_10_1016_j_jfluidstructs_2013_04_003
crossref_primary_10_1093_icb_icaa114
crossref_primary_10_1016_S1672_6529_14_60133_5
crossref_primary_10_1063_1_4998202
crossref_primary_10_3390_mi13111995
crossref_primary_10_1098_rspa_2018_0519
crossref_primary_10_1007_s00348_011_1145_8
crossref_primary_10_1103_RevModPhys_86_615
crossref_primary_10_1088_1748_3190_ac42e2
crossref_primary_10_1016_S1672_6529_14_60058_5
crossref_primary_10_1146_annurev_fluid_120821_032304
crossref_primary_10_1017_jfm_2023_821
crossref_primary_10_1088_1748_3190_ab3d55
crossref_primary_10_3390_insects11040220
crossref_primary_10_1098_rsif_2012_0418
crossref_primary_10_1242_jeb_225599
crossref_primary_10_1016_j_jfluidstructs_2016_10_005
crossref_primary_10_5802_crmeca_129
crossref_primary_10_1242_jeb_215194
crossref_primary_10_1126_science_abb0064
crossref_primary_10_1016_S1672_6529_16_60439_0
crossref_primary_10_1088_1748_3182_6_4_045002
crossref_primary_10_2514_1_J053706
crossref_primary_10_1016_j_matdes_2022_110709
crossref_primary_10_1016_j_compbiomed_2021_104397
crossref_primary_10_1016_j_ast_2018_06_009
crossref_primary_10_1299_jbse_2014jbse0004
crossref_primary_10_1016_j_cois_2018_09_001
crossref_primary_10_1242_jeb_040295
crossref_primary_10_1080_19942060_2023_2194359
crossref_primary_10_1098_rsif_2021_0103
crossref_primary_10_1177_1464419315624852
crossref_primary_10_1186_s12862_022_01993_z
crossref_primary_10_1098_rsif_2021_0222
crossref_primary_10_1088_1748_3190_aaaac1
crossref_primary_10_2514_1_G003293
crossref_primary_10_1111_brv_12500
crossref_primary_10_1242_jeb_040857
crossref_primary_10_1016_j_proeng_2014_12_671
crossref_primary_10_1016_j_paerosci_2013_11_001
crossref_primary_10_1093_icb_icv031
crossref_primary_10_1088_1748_3182_7_2_025002
crossref_primary_10_1371_journal_pone_0160610
crossref_primary_10_1016_j_jinsphys_2019_103936
crossref_primary_10_1098_rsos_200277
crossref_primary_10_1155_2018_1308465
crossref_primary_10_3788_LOP223457
crossref_primary_10_1016_j_jfluidstructs_2020_103208
crossref_primary_10_1098_rsfs_2023_0068
crossref_primary_10_1242_jeb_245409
crossref_primary_10_1242_jeb_051177
crossref_primary_10_1098_rsos_171152
crossref_primary_10_1088_1748_3190_ab597e
crossref_primary_10_1089_soro_2016_0040
crossref_primary_10_3390_insects11080466
crossref_primary_10_3390_fluids3040087
crossref_primary_10_3390_app12094501
crossref_primary_10_1242_jeb_092916
crossref_primary_10_1371_journal_pone_0080689
crossref_primary_10_1039_C5NR08542J
crossref_primary_10_1007_s00466_013_0875_2
crossref_primary_10_1088_1748_3190_ac9fb1
crossref_primary_10_3389_fbioe_2021_612183
crossref_primary_10_1038_s41598_017_17453_4
crossref_primary_10_1016_j_compfluid_2020_104426
crossref_primary_10_1109_TMECH_2020_3034659
crossref_primary_10_1242_jeb_050716
crossref_primary_10_1017_jfm_2013_335
crossref_primary_10_1063_1_4979212
crossref_primary_10_5194_ms_10_355_2019
crossref_primary_10_1115_1_4001460
crossref_primary_10_1063_1_3499739
crossref_primary_10_1063_1_4997200
crossref_primary_10_2514_1_G002503
crossref_primary_10_1017_S002211201000265X
crossref_primary_10_1088_1748_3190_10_4_046005
crossref_primary_10_1063_1_4790882
crossref_primary_10_1016_j_jfluidstructs_2021_103458
crossref_primary_10_15748_jasse_8_163
crossref_primary_10_1098_rsif_2022_0765
crossref_primary_10_1371_journal_pone_0130064
crossref_primary_10_2514_1_J051510
crossref_primary_10_1007_s00359_014_0962_7
crossref_primary_10_1073_pnas_1308650111
crossref_primary_10_1088_1748_3182_9_4_046009
crossref_primary_10_1016_j_jtbi_2012_01_010
crossref_primary_10_5194_ms_12_603_2021
crossref_primary_10_3390_fluids7010026
crossref_primary_10_1088_1748_3182_9_4_046001
crossref_primary_10_1016_j_cja_2021_09_020
crossref_primary_10_1371_journal_pone_0053060
crossref_primary_10_1007_s10409_017_0677_4
crossref_primary_10_1007_s00348_011_1128_9
crossref_primary_10_1088_1748_3182_6_3_036009
crossref_primary_10_1088_1748_3182_6_3_036008
crossref_primary_10_3390_aerospace4030037
crossref_primary_10_1177_09544100221091322
crossref_primary_10_1242_jeb_133157
crossref_primary_10_1016_j_jcp_2011_11_005
crossref_primary_10_1103_PhysRevE_92_022712
crossref_primary_10_1242_jeb_117325
crossref_primary_10_1016_j_ibmb_2024_104089
crossref_primary_10_1039_D0LC00465K
crossref_primary_10_1088_1748_3190_ac8632
crossref_primary_10_1242_jeb_044180
crossref_primary_10_1299_jbse_17_00666
crossref_primary_10_1002_jemt_23258
crossref_primary_10_3390_app11041546
crossref_primary_10_1016_j_jfluidstructs_2011_10_005
crossref_primary_10_1016_j_jfluidstructs_2021_103317
crossref_primary_10_1242_jeb_211466
crossref_primary_10_2514_1_J056622
crossref_primary_10_1242_jeb_042317
crossref_primary_10_1049_iet_nbt_2018_5409
crossref_primary_10_1242_jeb_062018
crossref_primary_10_1016_S1672_6529_16_60392_X
crossref_primary_10_1177_1756829317708318
crossref_primary_10_1098_rsif_2015_0119
crossref_primary_10_1088_1748_3190_12_1_016006
crossref_primary_10_1016_j_compfluid_2015_06_029
crossref_primary_10_1016_S1672_6529_11_60023_1
crossref_primary_10_1016_S1672_6529_14_60144_X
crossref_primary_10_1063_5_0191111
crossref_primary_10_2514_1_C032053
crossref_primary_10_1088_1748_3182_6_4_046003
crossref_primary_10_1063_1_5090878
crossref_primary_10_1088_0960_1317_20_7_075008
crossref_primary_10_1098_rsos_202253
crossref_primary_10_1016_j_jfluidstructs_2015_12_008
crossref_primary_10_1088_1748_3190_ad253b
crossref_primary_10_1107_S0909049513004056
crossref_primary_10_1111_jeb_12523
crossref_primary_10_1016_j_isci_2022_104150
crossref_primary_10_1186_s42774_020_0029_0
crossref_primary_10_1016_j_cja_2017_02_011
Cites_doi 10.1017/S0022112007009172
10.1242/jeb.201.4.461
10.1098/rsif.2008.0245
10.1242/jeb.016428
10.1242/jeb.02704
10.1242/jeb.203.19.2921
10.1242/jeb.020404
10.2514/1.31610
10.1098/rsif.2008.0435
10.1017/S0022112004008468
10.1038/384626a0
10.1146/annurev.en.37.010192.000553
10.1242/jeb.013797
10.2514/1.6274
10.1242/jeb.00739
10.1098/rsif.2005.0090
10.1242/jeb.008649
10.1242/jeb.00969
10.2514/1.33205
10.1007/s10483-008-0605-9
10.1242/jeb.01262
ContentType Journal Article
Copyright Copyright 2009 American Association for the Advancement of Science
2009 INIST-CNRS
Copyright © 2009, American Association for the Advancement of Science
Copyright_xml – notice: Copyright 2009 American Association for the Advancement of Science
– notice: 2009 INIST-CNRS
– notice: Copyright © 2009, American Association for the Advancement of Science
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.1175928
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database

Entomology Abstracts
CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Anatomy & Physiology
EISSN 1095-9203
EndPage 1552
ExternalDocumentID 1859258301
10_1126_science_1175928
19762645
21970490
40301834
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: European Research Council
  grantid: 204513
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.GJ
.HR
08G
0B8
0R~
0WA
123
186
18M
2FS
2KS
2WC
34G
36B
39C
3R3
4.4
42X
4R4
53G
5RE
63O
68V
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
AAYOK
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ADDRP
ADULT
ADZCM
ADZLD
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFCHL
AFDAS
AFFDN
AFFNX
AFOSN
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AHPSJ
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ANJGP
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C2-
C45
CS3
DB2
DCCCD
DNJUQ
DOOOF
DU5
DWIUU
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HTVGU
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHF
RHI
RXW
SA0
SC5
SJN
SKT
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7L
X7M
XFK
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YV5
YWH
YYP
YYQ
YZZ
ZA5
ZCA
ZKG
ZXP
~02
~H1
~KM
~ZZ
.GO
0-V
08R
2XV
3EH
3V.
41~
66.
692
6OB
79B
7X7
7XC
88A
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAUGY
ABJCF
ABPTK
ABTAH
ABUWG
ADBBV
ADMHC
AFHKK
AFKRA
AGCDD
AJUXI
ALSLI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
F20
FYUFA
G8K
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HQ3
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ISR
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
M0K
M0L
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
P62
PATMY
PCBAR
PDBOC
PK8
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
UBY
UHU
UKHRP
VOH
WOQ
WOW
XIH
XKJ
XOL
YJ6
YSQ
YXB
ZCF
ZCG
ZE2
ZGI
ZVL
ZVM
ZY4
~G0
ADACV
ADQXQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ADUKH
AFRQD
ALIPV
CITATION
IPSME
UIG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c574t-490285656039a2b0316a2919b861b6e3e670192beb65f1ef90b36c2043118df83
ISSN 0036-8075
IngestDate Thu Aug 15 22:44:40 EDT 2024
Fri Aug 16 07:52:44 EDT 2024
Fri Aug 16 04:11:10 EDT 2024
Tue Sep 24 23:52:30 EDT 2024
Fri Aug 23 01:07:55 EDT 2024
Thu May 23 23:13:01 EDT 2024
Sun Oct 29 17:07:56 EDT 2023
Fri Feb 02 07:02:59 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5947
Keywords Animal model
Wing
Deformation
Computational fluid dynamics
Orthoptera
Insecta
Flight
Aerodynamics
Acrididae
Design
Locomotion
Engineering
Arthropoda
Morphology
Kinematics
Acridoidea
Schistocerca gregaria
Invertebrata
Performance
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c574t-490285656039a2b0316a2919b861b6e3e670192beb65f1ef90b36c2043118df83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://rvc-repository.worktribe.com/preview/1583417/Improving%20Anthelmintic%20Treatment%20For%20Schistosomiasis%20And%20Soil-transmitted%20Helminthiases%20Through%20Sharing%20And%20Reuse%20Of%20Individual%20Participant%20Data.pdf
PMID 19762645
PQID 213615385
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_67653585
proquest_miscellaneous_34861405
proquest_miscellaneous_20840678
proquest_journals_213615385
crossref_primary_10_1126_science_1175928
pubmed_primary_19762645
pascalfrancis_primary_21970490
jstor_primary_40301834
PublicationCentury 2000
PublicationDate 2009-09-18
PublicationDateYYYYMMDD 2009-09-18
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-18
  day: 18
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2009
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_9_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_23_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_14_2
  doi: 10.1017/S0022112007009172
– ident: e_1_3_2_10_2
  doi: 10.1242/jeb.201.4.461
– ident: e_1_3_2_16_2
  doi: 10.1098/rsif.2008.0245
– ident: e_1_3_2_7_2
  doi: 10.1242/jeb.016428
– ident: e_1_3_2_11_2
  doi: 10.1242/jeb.02704
– ident: e_1_3_2_17_2
  doi: 10.1242/jeb.203.19.2921
– ident: e_1_3_2_6_2
  doi: 10.1242/jeb.020404
– ident: e_1_3_2_12_2
  doi: 10.2514/1.31610
– ident: e_1_3_2_3_2
  doi: 10.1098/rsif.2008.0435
– ident: e_1_3_2_23_2
  doi: 10.1017/S0022112004008468
– ident: e_1_3_2_20_2
  doi: 10.1038/384626a0
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev.en.37.010192.000553
– ident: e_1_3_2_4_2
  doi: 10.1242/jeb.013797
– ident: e_1_3_2_9_2
  doi: 10.2514/1.6274
– ident: e_1_3_2_5_2
  doi: 10.1242/jeb.00739
– ident: e_1_3_2_19_2
  doi: 10.1098/rsif.2005.0090
– ident: e_1_3_2_8_2
  doi: 10.1242/jeb.008649
– ident: e_1_3_2_18_2
  doi: 10.1242/jeb.00969
– ident: e_1_3_2_21_2
  doi: 10.2514/1.33205
– ident: e_1_3_2_13_2
  doi: 10.1007/s10483-008-0605-9
– ident: e_1_3_2_22_2
  doi: 10.1242/jeb.01262
SSID ssj0009593
Score 2.5102983
Snippet Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a...
Locust Wing Aerodynamics Insect wings function as deformable aerofoils, but the precise aerodynamic benefits of the observed deformations have remained...
SourceID proquest
crossref
pubmed
pascalfrancis
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 1549
SubjectTerms Aerodynamic lift
Aerodynamics
Airfoil camber
Anatomy & physiology
Animals
Biological and medical sciences
Biomechanical Phenomena
Biomechanics. Biorheology
Charge flow devices
Computer Simulation
Deformation
Economic modeling
Economic models
Flight, Animal - physiology
Flow distribution
Fundamental and applied biological sciences. Psychology
Grasshoppers - anatomy & histology
Grasshoppers - physiology
Insecta
Insects
Invertebrates
Kinematics
Locusts
Models, Biological
Movement
Simulation
Tissues, organs and organisms biophysics
Vehicular flight
Wings, Animal - anatomy & histology
Wings, Animal - physiology
Title Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency
URI https://www.jstor.org/stable/40301834
https://www.ncbi.nlm.nih.gov/pubmed/19762645
https://www.proquest.com/docview/213615385/abstract/
https://search.proquest.com/docview/20840678
https://search.proquest.com/docview/34861405
https://search.proquest.com/docview/67653585
Volume 325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIvExsMwmD4gYehKFUa_0j8WLGVaWi8sGl9C07jaEhTimj7MP5A_i7uYsd10SoNXqIqdpPW9_nOZ393R8h7WZiCMTZLhNJFwiWrEg3QSYzIOddFqrXGE92LL_Lsip9PxXQw-B2wllbLajj7dW9cyf9IFe6BXDFK9h8k6x8KN-AzyBeuIGG4PkjGJx3_c2HDQRaYhfgaPf-TjpXhSMY-OjE-bW-6-ICxAaVpC9HHEzBry56RPLlFTx2LLX_vZvzGiW-vBGBF6k95Atl6uuLYkgp6joH7WrDh4PVLyAK-1reO3vEVwNPGF0O_TzC3eAuyAMTnvnW94WBDvuPPw419jI6oFapenxrZWiarjlOsJJmlLNTXzEZKO2AKZTN2OgWMGecCY44J5u43FEFpS4Mn10K5IPWNlNx_mUpPYOxcp0yW7gGle8Aj8jjLlcBNgE_T0dbkzy7FVBC81f-CjdWRJcgiW1cvYMI2ttLKdleoWxJdPiO7zpehYwvMPTIw7T55Yqub3u2TPSf7BT12yc0_PCffHGbpvKEWsxQxSy1mKcCQBpilDrM0wCztMdt1tpila8y-IFeT08uPZ4mr8pHMQB8sE475g9CtSJnSWQVGRupMjVRVyFElDTMSKwZklamkaEamUWnF5AxDusE3rpuCHZCddt6aV4RqxVmtGl1BCxd1ocHfFrXWmc41V3UakeN-dMsfNplLuUWSETnoRt_347h3UDAekaMNcfgOYPpzPEaPyGEvn9LpigU0MvSsChGRd74VFDmezunWzFfQJS04Lh2392AchgQcrO09ZC4FE_iWlxYY678Jbgf4PuL1w4fgkDxdz9M3ZGf5c2Xewgp8WR118P4DFb_aJA
link.rule.ids 315,786,790,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Details+of+Insect+Wing+Design+and+Deformation+Enhance+Aerodynamic+Function+and+Flight+Efficiency&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Young%2C+John&rft.au=Walker%2C+Simon+M.&rft.au=Bomphrey%2C+Richard+J.&rft.au=Taylor%2C+Graham+K.&rft.date=2009-09-18&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=325&rft.issue=5947&rft.spage=1549&rft.epage=1552&rft_id=info:doi/10.1126%2Fscience.1175928&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_1175928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon