In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions
Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H 2 -rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons’ most common allotropes...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 6387 - 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.11.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H
2
-rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons’ most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth’s upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H
2
yielding methane (CH
4
), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C
2
H
6
) emerge. These results suggest that the interaction between deep H
2
-rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle.
Using diamond anvil cell and high temperature experiments, this work proves that the interaction between deep hydrogen rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle’s pressures and temperatures. |
---|---|
AbstractList | Using diamond anvil cell and high temperature experiments, this work proves that the interaction between deep hydrogen rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle’s pressures and temperatures. Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H2-rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons' most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth's upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H2 yielding methane (CH4), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C2H6) emerge. These results suggest that the interaction between deep H2-rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle.Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H2-rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons' most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth's upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H2 yielding methane (CH4), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C2H6) emerge. These results suggest that the interaction between deep H2-rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle. Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H2-rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons’ most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth’s upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H2 yielding methane (CH4), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C2H6) emerge. These results suggest that the interaction between deep H2-rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle.Using diamond anvil cell and high temperature experiments, this work proves that the interaction between deep hydrogen rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle’s pressures and temperatures. Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H 2 -rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons’ most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth’s upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H 2 yielding methane (CH 4 ), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C 2 H 6 ) emerge. These results suggest that the interaction between deep H 2 -rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle. Using diamond anvil cell and high temperature experiments, this work proves that the interaction between deep hydrogen rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle’s pressures and temperatures. Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H 2 -rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons’ most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth’s upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H 2 yielding methane (CH 4 ), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C 2 H 6 ) emerge. These results suggest that the interaction between deep H 2 -rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle. Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H 2 -rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons’ most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth’s upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H 2 yielding methane (CH 4 ), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C 2 H 6 ) emerge. These results suggest that the interaction between deep H 2 -rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle. Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H -rich fluids present at these depths may represent the key to unravelling deep abiotic hydrocarbon formation. We demonstrate an unexpected high reactivity between carbons' most common allotropes, diamond and graphite, with hydrogen at conditions comparable with those in the Earth's upper mantle along subduction zone thermal gradients. Between 0.5-3 GPa and at temperatures as low as 300 °C, carbon reacts readily with H yielding methane (CH ), whilst at higher temperatures (500 °C and above), additional light hydrocarbons such as ethane (C H ) emerge. These results suggest that the interaction between deep H -rich fluids and reduced carbon minerals may be an efficient mechanism for producing abiotic hydrocarbons at the upper mantle. |
ArticleNumber | 6387 |
Author | Donnelly, Mary-Ellen Howie, Ross Peña-Alvarez, Miriam Dalladay-Simpson, Philip Brovarone, Alberto Vitale Gregoryanz, Eugene Wang, Mengnan |
Author_xml | – sequence: 1 givenname: Miriam surname: Peña-Alvarez fullname: Peña-Alvarez, Miriam organization: Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh – sequence: 2 givenname: Alberto Vitale surname: Brovarone fullname: Brovarone, Alberto Vitale organization: Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Alma Mater Studiorum Università di Bologna, Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Mináralogie, de Physique des Matáriaux et de Cosmochimie, IMPMC – sequence: 3 givenname: Mary-Ellen surname: Donnelly fullname: Donnelly, Mary-Ellen organization: Center for High Pressure Science and Technology Advanced Research (HPSTAR) – sequence: 4 givenname: Mengnan surname: Wang fullname: Wang, Mengnan organization: Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh – sequence: 5 givenname: Philip surname: Dalladay-Simpson fullname: Dalladay-Simpson, Philip organization: Center for High Pressure Science and Technology Advanced Research (HPSTAR) – sequence: 6 givenname: Ross surname: Howie fullname: Howie, Ross organization: Center for High Pressure Science and Technology Advanced Research (HPSTAR) – sequence: 7 givenname: Eugene surname: Gregoryanz fullname: Gregoryanz, Eugene email: e.gregoryanz@ed.ac.uk organization: Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Center for High Pressure Science and Technology Advanced Research (HPSTAR), Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34737292$$D View this record in MEDLINE/PubMed https://hal.sorbonne-universite.fr/hal-03449139$$DView record in HAL |
BookMark | eNp9ksFu3CAQhq0qVZOmeYEeKku9tAe3hsHYXCpFUdustFIvuSMMYy8rG7Zgr7RvHzZO2mQPQUKg4fv_AWbeZ2fOO8yyj6T8RkpovkdGGK-LkpKCcs5ZAW-yC1oyUpCawtmz_Xl2FeO2TAMEaRh7l50Dq6Gmgl5kZuWKaKc5V631PTqr8xGnjXKYx4ObNhhtzLvgx9xYNXpncpVmH9RuYyfMZ2cw5D36wfdWq2E45AEH3Cs35TrRdrLexQ_Z204NEa8e18vs7tfPu5vbYv3n9-rmel3oqmZTAU2JAlA0NWrVaUE0ZZ3QbcO7tmuBU6AIBkFrwytFamyg6mrWNaxFwzVcZqvF1ni1lbtgRxUO0isrHwI-9FKFyeoBJeWVMS00houaVdQ0pOyUbusU0ZyLMnn9WLx2czui0eimoIYXpi9PnN3I3u9lU3FBRJ0Mvi4GmxPZ7fVaHmMlMCYIiD1J7JfHZMH_nTFOcrRR4zCkMvg5SloJRgWA4An9fIJu_Rxc-tUjBcAJIVWiPj2__b_8T3VPQLMAOvgYA3ZS20kdi5UeYwdJSnnsMrl0mUxdJh-6TEKS0hPpk_urIlhEMcGux_D_2q-o7gGvGOVd |
CitedBy_id | crossref_primary_10_1103_PhysRevB_110_224109 crossref_primary_10_1038_s41467_023_40915_5 crossref_primary_10_1103_PhysRevLett_128_215702 crossref_primary_10_1016_j_icarus_2024_116217 crossref_primary_10_1093_petrology_egac070 crossref_primary_10_1007_s00170_022_10463_1 crossref_primary_10_1016_j_epsl_2024_118672 crossref_primary_10_3389_fchem_2023_1306495 crossref_primary_10_2205_2022ES000807 crossref_primary_10_1111_1755_6724_15045 crossref_primary_10_1016_j_lithos_2024_107498 crossref_primary_10_1016_j_matchemphys_2024_130232 crossref_primary_10_1093_nsr_nwac207 |
Cites_doi | 10.1002/jrs.1250261007 10.1093/petrology/egr060 10.1038/nature11908 10.1143/JJAP.28.1632 10.1126/science.286.5437.100 10.1073/pnas.1611843113 10.1016/S0009-2541(02)00134-1 10.1016/j.gca.2009.07.028 10.1038/nmat4213 10.1016/j.gca.2020.01.030 10.1002/rog.20011 10.1046/j.1525-1314.2002.00408.x 10.1016/j.gca.2020.07.033 10.1063/1.5139023 10.2138/am.2011.3763 10.2138/am-2019-6833 10.1073/pnas.1102760108 10.1007/s00710-018-0575-x 10.1021/acs.jpca.7b05492 10.1093/nsr/nwx109 10.1063/1.91909 10.1080/00206810903557761 10.1063/1.5070113 10.1016/j.gca.2021.07.033 10.1073/pnas.1014804108 10.2138/rmg.2013.75.14 10.2138/rmg.2013.75.15 10.1016/0031-9201(81)90046-7 10.1103/PhysRevLett.90.175701 10.1016/j.epsl.2015.07.031 10.1016/j.gca.2016.12.041 10.1126/science.271.5254.1400 10.1016/j.lithos.2016.03.015 10.1016/0016-7037(85)90059-6 10.1038/ngeo591 10.1098/rstb.2006.1840 10.1016/j.gca.2009.01.021 10.1038/s41598-017-06155-6 10.1038/s41467-020-17442-8 10.1146/annurev.earth.36.031207.124322 10.1038/s41586-018-0334-5 10.1073/pnas.89.13.6045 10.1126/science.aal1303 10.1016/j.pepi.2008.06.011 10.1038/ncomms14134 10.1063/1.5049481 10.1016/j.lithos.2021.106190 10.1038/s41467-020-17342-x 10.1038/ngeo1827 10.1038/s41467-016-0009-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41467-021-26664-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 5 |
ExternalDocumentID | oai_doaj_org_article_265ddb38d697452d810facb738dc6690 PMC8569197 oai_HAL_hal_03449139v1 34737292 10_1038_s41467_021_26664_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/T043733/1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 1XC 4.4 ABAWZ BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH PMFND VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c574t-380e93e987ecafc91c24f9cb86fbfb36232e3de3ccd65a17e835f74f84bed6c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:56 EDT 2025 Thu Aug 21 13:57:39 EDT 2025 Thu May 29 05:52:59 EDT 2025 Tue Aug 05 10:22:59 EDT 2025 Wed Aug 13 09:29:03 EDT 2025 Mon Jul 21 06:03:18 EDT 2025 Tue Jul 01 04:17:37 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Fri Feb 21 02:39:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Geochemistry Mineralogy |
Language | English |
License | 2021. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-380e93e987ecafc91c24f9cb86fbfb36232e3de3ccd65a17e835f74f84bed6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC8569197 |
ORCID | 0000-0002-7835-5050 0000-0002-7013-8211 0000-0001-7056-7158 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-26664-3 |
PMID | 34737292 |
PQID | 2593361115 |
PQPubID | 546298 |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_265ddb38d697452d810facb738dc6690 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8569197 hal_primary_oai_HAL_hal_03449139v1 proquest_miscellaneous_2594293396 proquest_journals_2593361115 pubmed_primary_34737292 crossref_citationtrail_10_1038_s41467_021_26664_3 crossref_primary_10_1038_s41467_021_26664_3 springer_journals_10_1038_s41467_021_26664_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-04 |
PublicationDateYYYYMMDD | 2021-11-04 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Moine (CR34) 2020; 11 Mao, Mao (CR31) 2020; 5 Galvez (CR33) 2013; 6 McCollom (CR11) 2013; 75 Smit, Shirey, Stern, Steele, Wang (CR9) 2016; 265 Tumiati (CR46) 2020; 273 Ferrando, Frezzotti, Orione, Conte, Compagnoni (CR27) 2010; 52 Penniston-Dorland, Kohn, Manning (CR35) 2015; 428 Zhang, Duan (CR16) 2009; 73 Griffin (CR26) 2018; 112 Smith (CR7) 2016; 354 Spanu, Donadio, Hohl, Schwegler, Galli (CR13) 2011; 108 Tollan, Gurenko, Hermann (CR47) 2020; 286 Shimizu, Shimazaki, Sasaki (CR37) 1989; 28 Vitale-Brovarone (CR25) 2017; 8 Mukhina, Kolesnikov, Kutcherov (CR48) 2017; 7 Charlou, Donval, Fouquet, Jean-Baptiste, Holm (CR3) 2002; 191 Sephton, Hazen (CR2) 2013; 75 Buseck, Huang (CR15) 1985; 49 Dziewonski, Anderson (CR36) 1981; 25 Hayes, Waldbauer (CR45) 2006; 361 Etiope, Sherwood Lollar (CR4) 2013; 51 Smith (CR8) 2018; 560 Kudryavtsev, Kutcherov, Dubrovinsky (CR39) 2018; 8 Somayazulu, Finger, Hemley, Mao (CR41) 1996; 271 Subramanian, Goncharov, Struzhkin, Somayazulu, Hemley (CR42) 2011; 108 Hirai, Konagai, Kawamura, Yamamoto, Yagi (CR20) 2009; 174 CR10 Vitale-Brovarone (CR6) 2020; 11 Malvoisin, Chopin, Brunet, Galvez (CR32) 2012; 53 Benedetti (CR18) 1999; 286 Wu, Sasaki, Shimizu (CR40) 1995; 26 Day (CR17) 2012; 97 Young (CR5) 2017; 203 Boutier, Vitale-Brovarone, Martinez, Sissmann, Mana (CR28) 2021; 396 Frost, McCammon (CR14) 2008; 36 Mao (CR30) 2017; 4 Kudryavtsev (CR38) 2017; 121 Chou, Anderson (CR43) 2009; 73 Peña-Alvarez (CR51) 2019; 125 McCollom (CR12) 2016; 113 Kolesnikov, Kutcherov, Goncharov (CR19) 2009; 2 Li, Redfern, Giovannelli (CR52) 2019; 104 Hazen, Mao, Finger, Bell (CR21) 1980; 37 Huang, Daniel, Cardon, Montagnac, Sverjensky (CR23) 2017; 8 Peng (CR29) 2021; 311 Beyssac, Goffé, Chopin, Rouzaud (CR44) 2002; 20 Gold (CR1) 1992; 89 Li (CR24) 2017; 3 Gregoryanz, Goncharov, Matsuishi, Mao, Hemley (CR49) 2003; 90 Howie, Dalladay-Simpson, Gregoryanz (CR50) 2015; 14 Bali, Audétat, Keppler (CR22) 2013; 495 TM McCollom (26664_CR12) 2016; 113 G Etiope (26664_CR4) 2013; 51 C Zhang (26664_CR16) 2009; 73 TM McCollom (26664_CR11) 2013; 75 MS Somayazulu (26664_CR41) 1996; 271 HK Mao (26664_CR30) 2017; 4 26664_CR10 H Shimizu (26664_CR37) 1989; 28 J Charlou (26664_CR3) 2002; 191 EM Smith (26664_CR8) 2018; 560 A Vitale-Brovarone (26664_CR25) 2017; 8 HW Day (26664_CR17) 2012; 97 DJ Frost (26664_CR14) 2008; 36 E Bali (26664_CR22) 2013; 495 SC Penniston-Dorland (26664_CR35) 2015; 428 RT Howie (26664_CR50) 2015; 14 E Mukhina (26664_CR48) 2017; 7 W Peng (26664_CR29) 2021; 311 B Moine (26664_CR34) 2020; 11 MA Sephton (26664_CR2) 2013; 75 KV Smit (26664_CR9) 2016; 265 A Vitale-Brovarone (26664_CR6) 2020; 11 A Kolesnikov (26664_CR19) 2009; 2 A Boutier (26664_CR28) 2021; 396 P Tollan (26664_CR47) 2020; 286 R Hazen (26664_CR21) 1980; 37 I-M Chou (26664_CR43) 2009; 73 M Peña-Alvarez (26664_CR51) 2019; 125 H Hirai (26664_CR20) 2009; 174 AM Dziewonski (26664_CR36) 1981; 25 Y Li (26664_CR24) 2017; 3 LR Benedetti (26664_CR18) 1999; 286 JM Hayes (26664_CR45) 2006; 361 H-K Mao (26664_CR31) 2020; 5 N Subramanian (26664_CR42) 2011; 108 S Ferrando (26664_CR27) 2010; 52 E Young (26664_CR5) 2017; 203 Y Wu (26664_CR40) 1995; 26 J Li (26664_CR52) 2019; 104 O Beyssac (26664_CR44) 2002; 20 PR Buseck (26664_CR15) 1985; 49 B Malvoisin (26664_CR32) 2012; 53 T Gold (26664_CR1) 1992; 89 WL Griffin (26664_CR26) 2018; 112 L Spanu (26664_CR13) 2011; 108 EM Smith (26664_CR7) 2016; 354 D Kudryavtsev (26664_CR38) 2017; 121 E Gregoryanz (26664_CR49) 2003; 90 F Huang (26664_CR23) 2017; 8 ME Galvez (26664_CR33) 2013; 6 S Tumiati (26664_CR46) 2020; 273 DA Kudryavtsev (26664_CR39) 2018; 8 |
References_xml | – volume: 26 start-page: 963 year: 1995 end-page: 967 ident: CR40 article-title: High-pressure Raman study of dense methane: CH and CD publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1250261007 – volume: 8 start-page: 1 year: 2017 end-page: 8 ident: CR23 article-title: Immiscible hydrocarbon fluids in the deep carbon cycle publication-title: Nat. Commun. – volume: 53 start-page: 159 year: 2012 end-page: 176 ident: CR32 article-title: Low-temperature wollastonite formed by carbonate reduction: a marker of serpentinite redox conditions publication-title: J. Petrol. doi: 10.1093/petrology/egr060 – volume: 495 start-page: 220 year: 2013 end-page: 222 ident: CR22 article-title: Water and hydrogen are immiscible in Earth’s mantle publication-title: Nature doi: 10.1038/nature11908 – volume: 28 start-page: 1632 year: 1989 ident: CR37 article-title: High-pressure Raman study of liquid and molecular crystal ethane up to 8 GPa publication-title: Jpn J. Appl. Phys. doi: 10.1143/JJAP.28.1632 – volume: 286 start-page: 100 year: 1999 end-page: 102 ident: CR18 article-title: Dissociation of CH at high pressures and temperatures: diamond formation in Giant planet interiors? publication-title: Science doi: 10.1126/science.286.5437.100 – volume: 113 start-page: 13965 year: 2016 end-page: 13970 ident: CR12 article-title: Abiotic methane formation during experimental serpentinization of olivine publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1611843113 – volume: 191 start-page: 345 year: 2002 end-page: 359 ident: CR3 article-title: Geochemistry of high h and ch vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field publication-title: Chem. Geo. doi: 10.1016/S0009-2541(02)00134-1 – volume: 73 start-page: 6360 year: 2009 end-page: 6366 ident: CR43 article-title: Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.07.028 – volume: 14 start-page: 495 year: 2015 end-page: 499 ident: CR50 article-title: Raman spectroscopy of hot hydrogen above 200 GPa publication-title: Nat. Mater. doi: 10.1038/nmat4213 – volume: 273 start-page: 383 year: 2020 end-page: 402 ident: CR46 article-title: Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2020.01.030 – volume: 51 start-page: 276 year: 2013 end-page: 299 ident: CR4 article-title: Abiotic methane on earth publication-title: Rev. Geophys. doi: 10.1002/rog.20011 – volume: 20 start-page: 859 year: 2002 end-page: 871 ident: CR44 article-title: Raman spectra of carbonaceous material in metasediments: a new geothermometer publication-title: J. Metamorph. Geol. doi: 10.1046/j.1525-1314.2002.00408.x – volume: 286 start-page: 441 year: 2020 end-page: 460 ident: CR47 article-title: Elucidating the processes affecting highly primitive lavas of the Borgarhraun flow (Northern Iceland) using trace elements in olivine publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2020.07.033 – volume: 5 start-page: 038102 year: 2020 ident: CR31 article-title: Key problems of the four-dimensional Earth system publication-title: Matter Radiat. Extremes doi: 10.1063/1.5139023 – volume: 97 start-page: 52 year: 2012 end-page: 62 ident: CR17 article-title: A revised diamond-graphite transition curve publication-title: Am. Mineral. doi: 10.2138/am.2011.3763 – volume: 104 start-page: 465 year: 2019 end-page: 467 ident: CR52 article-title: Introduction: deep carbon cycle though five reactions publication-title: Am. Mineral. doi: 10.2138/am-2019-6833 – volume: 108 start-page: 6014 year: 2011 end-page: 6019 ident: CR42 article-title: Bonding changes in hot fluid hydrogen at megabar pressures publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1102760108 – volume: 112 start-page: 101 year: 2018 end-page: 114 ident: CR26 article-title: Super-reducing conditions in ancient and modern volcanic systems: sources and behaviour of carbon-rich fluids in the lithospheric mantle publication-title: Mineral. Petrol. doi: 10.1007/s00710-018-0575-x – volume: 121 start-page: 6004 year: 2017 end-page: 6011 ident: CR38 article-title: Raman and IR spectroscopy studies on propane at pressures of up to 40 GPa publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b05492 – volume: 4 start-page: 870 year: 2017 end-page: 878 ident: CR30 article-title: When water meets iron at Earth’s core–mantle boundary publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwx109 – volume: 37 start-page: 288 year: 1980 end-page: 289 ident: CR21 article-title: Structure and compression of crystalline methane at high pressure and room temperature publication-title: Appl. Phys. Lett. doi: 10.1063/1.91909 – volume: 52 start-page: 1220 year: 2010 end-page: 1243 ident: CR27 article-title: Late-alpine rodingitization in the bellecombe meta-ophiolites (Aosta Valley, Italian Western Alps): evidence from mineral assemblages and serpentinization-derived H -bearing brine publication-title: Int. Geol. Rev. doi: 10.1080/00206810903557761 – volume: 125 start-page: 025901 year: 2019 ident: CR51 article-title: Intensity of Raman modes as a temperature gauge in fluid hydrogen and deuterium publication-title: J. Appl. Phys. doi: 10.1063/1.5070113 – volume: 311 start-page: 119 year: 2021 end-page: 140 ident: CR29 article-title: Abiotic methane generation through reduction of serpentinite-hosted dolomite: implications for carbon mobility in subduction zones publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2021.07.033 – volume: 108 start-page: 6843 year: 2011 end-page: 6846 ident: CR13 article-title: Stability of hydrocarbons at deep earth pressures and temperatures publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1014804108 – volume: 3 start-page: 12 year: 2017 end-page: 21 ident: CR24 article-title: Immiscible CHO fluids formed at subduction zone conditions publication-title: Geochem. Perspect. Lett. – volume: 75 start-page: 449 year: 2013 end-page: 465 ident: CR2 article-title: On the origins of deep hydrocarbons publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2013.75.14 – volume: 75 start-page: 467 year: 2013 end-page: 494 ident: CR11 article-title: Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2013.75.15 – volume: 25 start-page: 297 year: 1981 end-page: 356 ident: CR36 article-title: Preliminary reference earth model publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(81)90046-7 – volume: 90 start-page: 4 year: 2003 ident: CR49 article-title: Raman spectroscopy of hot dense hydrogen publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.175701 – volume: 428 start-page: 243 year: 2015 end-page: 254 ident: CR35 article-title: The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.07.031 – ident: CR10 – volume: 203 start-page: 235 year: 2017 end-page: 264 ident: CR5 article-title: The relative abundances of resolved CH D and CH D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.12.041 – volume: 271 start-page: 1400 year: 1996 end-page: 1402 ident: CR41 article-title: High-pressure compounds in methane-hydrogen mixtures publication-title: Science doi: 10.1126/science.271.5254.1400 – volume: 265 start-page: 68 year: 2016 end-page: 81 ident: CR9 article-title: Diamond growth from C–H–N–O recycled fluids in the lithosphere: evidence from CH micro-inclusions and C– N–N content in marange mixed-habit diamonds publication-title: Lithos doi: 10.1016/j.lithos.2016.03.015 – volume: 49 start-page: 2003 year: 1985 end-page: 2016 ident: CR15 article-title: Conversion of carbonaceous material to graphite during metamorphism publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(85)90059-6 – volume: 2 start-page: 566 year: 2009 ident: CR19 article-title: Methane-derived hydrocarbons produced under upper-mantle conditions publication-title: Nat. Geosci. doi: 10.1038/ngeo591 – volume: 361 start-page: 931 year: 2006 end-page: 950 ident: CR45 article-title: The carbon cycle and associated redox processes through time publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2006.1840 – volume: 73 start-page: 2089 year: 2009 end-page: 2102 ident: CR16 article-title: A model for C–O–H fluid in the Earth’s mantle publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.01.021 – volume: 7 start-page: 1 year: 2017 end-page: 5 ident: CR48 article-title: The lower limit of deep hydrocarbon synthesis by CaCO aqueous reduction publication-title: Sci. Rep. doi: 10.1038/s41598-017-06155-6 – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: CR34 article-title: Molecular hydrogen in minerals as a clue to interpret ∂D variations in the mantle publication-title: Nat. Commun. doi: 10.1038/s41467-020-17442-8 – volume: 36 start-page: 389 year: 2008 end-page: 420 ident: CR14 article-title: The redox state of Earth’s mantle publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.36.031207.124322 – volume: 560 start-page: 84 year: 2018 end-page: 87 ident: CR8 article-title: Blue boron-bearing diamonds from Earth’s lower mantle publication-title: Nature doi: 10.1038/s41586-018-0334-5 – volume: 89 start-page: 6045 year: 1992 end-page: 6049 ident: CR1 article-title: The deep, hot biosphere publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.89.13.6045 – volume: 354 start-page: 1403 year: 2016 end-page: 1405 ident: CR7 article-title: Large gem diamonds from metallic liquid in Earth’s deep mantle publication-title: Science doi: 10.1126/science.aal1303 – volume: 174 start-page: 242–246 year: 2009 ident: CR20 article-title: Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2008.06.011 – volume: 8 start-page: 1 year: 2017 end-page: 13 ident: CR25 article-title: Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps publication-title: Nat. Commun. doi: 10.1038/ncomms14134 – volume: 8 start-page: 115104 year: 2018 ident: CR39 article-title: Raman high-pressure study of butane isomers up to 40 GPa publication-title: AIP Adv. doi: 10.1063/1.5049481 – volume: 396 start-page: 106190 year: 2021 ident: CR28 article-title: High-pressure serpentinization and abiotic methane formation in metaperidotite from the Appalachian Subduction, Northern Vermont publication-title: Lithos doi: 10.1016/j.lithos.2021.106190 – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: CR6 article-title: Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere publication-title: Nat. Commun. doi: 10.1038/s41467-020-17342-x – volume: 6 start-page: 473 year: 2013 end-page: 477 ident: CR33 article-title: Graphite formation by carbonate reduction during subduction publication-title: Nat. Geosci. doi: 10.1038/ngeo1827 – volume: 20 start-page: 859 year: 2002 ident: 26664_CR44 publication-title: J. Metamorph. Geol. doi: 10.1046/j.1525-1314.2002.00408.x – volume: 11 start-page: 1 year: 2020 ident: 26664_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17342-x – volume: 8 start-page: 1 year: 2017 ident: 26664_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms14134 – volume: 89 start-page: 6045 year: 1992 ident: 26664_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.89.13.6045 – volume: 2 start-page: 566 year: 2009 ident: 26664_CR19 publication-title: Nat. Geosci. doi: 10.1038/ngeo591 – volume: 286 start-page: 100 year: 1999 ident: 26664_CR18 publication-title: Science doi: 10.1126/science.286.5437.100 – volume: 8 start-page: 115104 year: 2018 ident: 26664_CR39 publication-title: AIP Adv. doi: 10.1063/1.5049481 – volume: 11 start-page: 1 year: 2020 ident: 26664_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17442-8 – volume: 396 start-page: 106190 year: 2021 ident: 26664_CR28 publication-title: Lithos doi: 10.1016/j.lithos.2021.106190 – volume: 121 start-page: 6004 year: 2017 ident: 26664_CR38 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b05492 – volume: 73 start-page: 6360 year: 2009 ident: 26664_CR43 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.07.028 – volume: 191 start-page: 345 year: 2002 ident: 26664_CR3 publication-title: Chem. Geo. doi: 10.1016/S0009-2541(02)00134-1 – volume: 286 start-page: 441 year: 2020 ident: 26664_CR47 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2020.07.033 – volume: 37 start-page: 288 year: 1980 ident: 26664_CR21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.91909 – volume: 354 start-page: 1403 year: 2016 ident: 26664_CR7 publication-title: Science doi: 10.1126/science.aal1303 – volume: 108 start-page: 6014 year: 2011 ident: 26664_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1102760108 – volume: 53 start-page: 159 year: 2012 ident: 26664_CR32 publication-title: J. Petrol. doi: 10.1093/petrology/egr060 – volume: 428 start-page: 243 year: 2015 ident: 26664_CR35 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2015.07.031 – volume: 361 start-page: 931 year: 2006 ident: 26664_CR45 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2006.1840 – volume: 90 start-page: 4 year: 2003 ident: 26664_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.175701 – volume: 495 start-page: 220 year: 2013 ident: 26664_CR22 publication-title: Nature doi: 10.1038/nature11908 – volume: 273 start-page: 383 year: 2020 ident: 26664_CR46 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2020.01.030 – volume: 14 start-page: 495 year: 2015 ident: 26664_CR50 publication-title: Nat. Mater. doi: 10.1038/nmat4213 – volume: 73 start-page: 2089 year: 2009 ident: 26664_CR16 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.01.021 – volume: 28 start-page: 1632 year: 1989 ident: 26664_CR37 publication-title: Jpn J. Appl. Phys. doi: 10.1143/JJAP.28.1632 – ident: 26664_CR10 – volume: 112 start-page: 101 year: 2018 ident: 26664_CR26 publication-title: Mineral. Petrol. doi: 10.1007/s00710-018-0575-x – volume: 75 start-page: 467 year: 2013 ident: 26664_CR11 publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2013.75.15 – volume: 104 start-page: 465 year: 2019 ident: 26664_CR52 publication-title: Am. Mineral. doi: 10.2138/am-2019-6833 – volume: 7 start-page: 1 year: 2017 ident: 26664_CR48 publication-title: Sci. Rep. doi: 10.1038/s41598-017-06155-6 – volume: 560 start-page: 84 year: 2018 ident: 26664_CR8 publication-title: Nature doi: 10.1038/s41586-018-0334-5 – volume: 49 start-page: 2003 year: 1985 ident: 26664_CR15 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(85)90059-6 – volume: 271 start-page: 1400 year: 1996 ident: 26664_CR41 publication-title: Science doi: 10.1126/science.271.5254.1400 – volume: 52 start-page: 1220 year: 2010 ident: 26664_CR27 publication-title: Int. Geol. Rev. doi: 10.1080/00206810903557761 – volume: 4 start-page: 870 year: 2017 ident: 26664_CR30 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwx109 – volume: 25 start-page: 297 year: 1981 ident: 26664_CR36 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/0031-9201(81)90046-7 – volume: 75 start-page: 449 year: 2013 ident: 26664_CR2 publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2013.75.14 – volume: 203 start-page: 235 year: 2017 ident: 26664_CR5 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2016.12.041 – volume: 97 start-page: 52 year: 2012 ident: 26664_CR17 publication-title: Am. Mineral. doi: 10.2138/am.2011.3763 – volume: 36 start-page: 389 year: 2008 ident: 26664_CR14 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.36.031207.124322 – volume: 8 start-page: 1 year: 2017 ident: 26664_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 – volume: 51 start-page: 276 year: 2013 ident: 26664_CR4 publication-title: Rev. Geophys. doi: 10.1002/rog.20011 – volume: 174 start-page: 242–246 year: 2009 ident: 26664_CR20 publication-title: Phys. Earth Planet. Inter. doi: 10.1016/j.pepi.2008.06.011 – volume: 26 start-page: 963 year: 1995 ident: 26664_CR40 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1250261007 – volume: 3 start-page: 12 year: 2017 ident: 26664_CR24 publication-title: Geochem. Perspect. Lett. – volume: 125 start-page: 025901 year: 2019 ident: 26664_CR51 publication-title: J. Appl. Phys. doi: 10.1063/1.5070113 – volume: 108 start-page: 6843 year: 2011 ident: 26664_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1014804108 – volume: 311 start-page: 119 year: 2021 ident: 26664_CR29 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2021.07.033 – volume: 113 start-page: 13965 year: 2016 ident: 26664_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1611843113 – volume: 5 start-page: 038102 year: 2020 ident: 26664_CR31 publication-title: Matter Radiat. Extremes doi: 10.1063/1.5139023 – volume: 265 start-page: 68 year: 2016 ident: 26664_CR9 publication-title: Lithos doi: 10.1016/j.lithos.2016.03.015 – volume: 6 start-page: 473 year: 2013 ident: 26664_CR33 publication-title: Nat. Geosci. doi: 10.1038/ngeo1827 |
SSID | ssj0000391844 |
Score | 2.4764225 |
Snippet | Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H
2
-rich fluids present at these depths may represent... Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H -rich fluids present at these depths may represent the... Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H2-rich fluids present at these depths may represent the... Diamond and graphite are fundamental sources of carbon in the upper mantle, and their reactivity with H 2 -rich fluids present at these depths may represent... Using diamond anvil cell and high temperature experiments, this work proves that the interaction between deep hydrogen rich fluids and reduced carbon minerals... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6387 |
SubjectTerms | 704/2151/209 704/2151/330 Allotropy Carbon Carbon sources Diamond anvil cells Earth mantle Earth Sciences Ethane Geochemistry Graphite High temperature High temperature effects Humanities and Social Sciences Hydrocarbons Methane Mineralogy Minerals multidisciplinary Science Science (multidisciplinary) Sciences of the Universe Subduction (geology) Upper mantle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CBRnEDaJuMrZjHwuiWhBwKlJvVvyiK1VZ1GSR9t8zdrJLQwVcOOTiOInl-TyPePwNwKtQxVC1BF4da1lyK7G0KChK8YlaRpI2zMVgPn-Ry6_845k4u1LqK-WEjfTA48Qd1VJ4b1F5SZ6vqL2qFrF1tqEWJym0S9qXbN6VYCrrYNQUuvDplMwC1VHPs05IGQlkkyQvcWaJMmE_2ZfzlA553de8njL5275pNkcnd-D25Eey43H8d-FG6O7BzbGy5PY--A9d2a-GDWvtak0YWTmWakW3XWD9tiOnr1_1LB0tYYQPQqJnLV2ZvZp8UJZOll2yb2GnGS-2LBVXIa97YBRA-zHP6wGcnrw_fbcsp4IKpRMNH0pUi6AxaNUE10anK1fzqJ1VMtpoyZRhHdAHdM5L0VZNIPcsNjwqboOXDh_CQbfuwmNglkwf922srGq4i9hG1WgbhV8I4aR1BVS7uTVuIhtPNS8uTN70RmVGeRiSh8nyMFjA6_0z30eqjb_2fptEtu-ZaLJzA4HHTOAx_wJPAS9J4LN3LI8_mdSWqBATZeqPqoDDHR7MtMB7Q1EjoiRDIQp4sb9NSzPtt5Aw15vch6w9opYFPBrhs_8U8lQfSNcFNDNgzcYyv9OtzjP9txJSV7op4M0Ogr-G9ef5evI_5usp3KrTCkq_1fkhHAyXm_CMnLLBPs_r7yeQhTJT priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t3QggziBlGT-BH7hApiWRBwKlJvUfxqV6qSstlF2n_fGedRhYoecnEmiZ152h5_Q8g7nwef1yC8OhQy5Uay1DABsxSH0DISrGEsBvPzl1z-5t9Pxemw4NYNaZWjTYyG2rUW18iPIExnTIJmio-Xf1KsGoW7q0MJjbvkXg6eBlO61OLrtMaC6OeK8-GsTMbUUcejZcC8BKCXPGUzfxRh-8HLnGNS5M2I82bi5D-7p9EpLR6Rh0M0SY979j8md3zzhNzv60vunhL3rUmh_1tam1ULkrKyFCtG142n3a6B0K9bdRQPmFCQEhigozVcEcMaRk3xfNmanvnRPl7sKJZYgdh7Q2Ea7fpsr2fkZPHl5PMyHcoqpFaUfJMylXnNvFalt3WwOrcFD9oaJYMJBhwaKzxznlnrpKjz0kOQFkoeFDfeScuek72mbfw-oQYcIHd1yI0quQ2sDqrUJgiXCWGlsQnJx39b2QFyHCtfXFRx65upqudHBfyoIj8qlpD30zOXPeDGrdSfkGUTJYJlx4Z2fVYNuge0wjnDlJMweRKFU3kWamtKaLFS6iwhb4Hhs3csj39U2IaAiAic-jdPyOEoD9Wg5l11LZQJeTPdBgXFXRdgZruNNODzGdMyIS968Zk-xThWCdJFQsqZYM36Mr_TrM4jCLgSUue6TMiHUQSvu_X___Xy9lEckAcF6gYum_NDsrdZb_0rCLo25nXUrCvbYyn3 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG9SCjKIG0Rs4kfs44KolhVwoUi9RfGrjVRl0SaLtP--Y-eBQgGJQy7OJLE833jG8fgbgNcu8y6rELzK5yJlWtBUU46rFBuoZQTOhrEYzJevYvWdrc_5-QHk41mYmLQfKS3jND1mh71rWTTpkFCALkWwlN6Co0DVjtg-Wi7X39bTn5XAeS4ZG07ILKj8w8MzLxTJ-tG3XIZUyJtx5s10yd_2TKMrOr0Hd4cYkiz7Xt-HA9c8gNt9Vcn9Q7CfmrStux2pdL1BfNSGhDrRVeNIu28w4GvrloRjJQSxgSi0pMIrMldj_EnCqbItuXDjrHi1J6GwCkbcHcHFs-1zvB7B2enHsw-rdCimkBpesC6lcuEUdUoWzlTeqMzkzCujpfDaa3RjNHfUOmqMFbzKCoehmS-Yl0w7Kwx9DIfNpnFPgWh0e8xWPtM4_sbTystCac_tgnMjtEkgG8e2NAPReKh3cVXGDW8qy14fJeqjjPooaQJvpmd-9DQb_5R-H1Q2SQaK7Niw2V6UA2RQllurqbQCl0w8tzJb-MroAluMEGqRwCtU-Owdq-XnMrQFGsRAl_ozS-BkxEM5GHdb4oqRUoFOgifwcrqNZhn2WlCZm12UQU9PqRIJPOnhM32KslAbSOUJFDNgzfoyv9PUl5H6W3KhMlUk8HaE4K9u_X28jv9P_BncyYOthJ_n7AQOu-3OPcfQq9MvBlu7BvYiKSo priority: 102 providerName: Springer Nature |
Title | In-situ abiogenic methane synthesis from diamond and graphite under geologically relevant conditions |
URI | https://link.springer.com/article/10.1038/s41467-021-26664-3 https://www.ncbi.nlm.nih.gov/pubmed/34737292 https://www.proquest.com/docview/2593361115 https://www.proquest.com/docview/2594293396 https://hal.sorbonne-universite.fr/hal-03449139 https://pubmed.ncbi.nlm.nih.gov/PMC8569197 https://doaj.org/article/265ddb38d697452d810facb738dc6690 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEF71EBIviLuGEi2INzDE3vsBoTRqCBGtELRS3yzv1UaKHIgTRP49s2s7KLQg8RBHWo8P7XyzM-PdnQ-hly7zLisBvMrnPKWak1QTBlmKDaVlOIyGkQzm5JSPz-nkgl3soI7uqO3A-sbULvBJnS9mb35-X78Hg3_XbBmXb2sazT0sNgB3w2lKdtE-eCYRGA1O2nA_jsxEQUITJprzPs1SECDtPpqbb7Plq2JJf_BAV2HB5PVo9Pqiyj9mVqPDGt1Fd9pIEw8aaNxDO666j2413JPrB8h-rNJ6ulzhUk_ngKKpwYFNuqwcrtcVhIX1tMZh8wkGBAFWLS7hF-tbQ5SKw96zBb503dg5W-NAvwJx-RJDim2blWAP0dno-Gw4TlvKhdQwQZcpkX2niFNSOFN6ozKTU6-Mltxrr8HZkdwR64gxlrMyEw4COC-ol1Q7yw15hPaqeeUOENbgHKktfaaloMaT0kuhtGe2z5jh2iQo6_q2MG058sCKMSvitDiRRaOPAvRRRH0UJEGvNtd8a4px_FP6KKhsIxkKaceG-eKyaO0SZJm1mkjLIbFiuZVZ35dGC2gxnKt-gl6AwrfuMR58KkJbKJYYiqr-yBJ02OGh6BBcQF5JCAdXwhL0fHMajDfMyIAy56soA_EAIYon6HEDn82jCA0MQipPkNgC1ta7bJ-pplexQLhkXGVKJOh1B8Hfr_X3_nryX737FN3Og6mEL-z0EO0tFyv3DOKzpe6hXXEh4ChHH3pofzCYfJ3A_9Hx6ecv0Drkw1788tGLxvkL1n45lA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxLMYCiwITmA19q7X9gGh8ggJTXsKUm8r76uNVDklD1B-FP-RmbWdKlT01oMv643tzHt2d-YDeOMS75IKhbf0qYyFljzWPMMsxVJrGYnWMIDBHB7JwQ_x_Tg73oI_XS0MHavsbGIw1HZqaI18D8N0ziVqZvbx_GdMqFG0u9pBaDRiceBWvzFlm38YfkH-vk3T_tfx50HcogrEJsvFIuZFz5XcYa7tTOVNmZhU-NLoQnrtNdpznjpuHTfGyqxKcocxis-FL4R2VhqOj70BNwVHR06F6f1v6yUdarZeCNGW5vR4sTcXwRDRMQh0hFLEfMP9BZQAdGqndAbzcoB7-ZzmP5u1wQf278HdNnhl-4203YctVz-AWw2c5eoh2GEdI7mWrNKTKQrmxDACqK5qx-arGiPN-WTOqJ6FoVAiPS2r8Aots5HIjMrZZuzEdeb4bMUI0QVD_QXDrN02h8sewfg66P0Ytutp7Z4A0-hvha18ootcGM8rX-Sl9pntZZmR2kSQdLRVpu1wTkAbZyrstPNCNfxQyA8V-KF4BO_Wvzlv-ntcOfsTsWw9k3pzh4Hp7ES1qo5zM2s1L6zEXC1LbZH0fGV0jiNGyrIXwWtk-MYzBvsjRWPUf5H6tP5KItjt5EG1VmWuLnQgglfr22gPaJMHmTldhjkYYqB0ygh2GvFZv4oLAiUq0wjyDcHa-JbNO_XkNPQcLzJZJmUewftOBC8-6__0enr1v3gJtwfjw5EaDY8OnsGdlPSEVuzFLmwvZkv3HOO9hX4RtIyBumat_gtxDGhb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAguCE1iJveu1fUCopY0SWqoKFam3lffVRqqcEieg_DT-HTN-pAoVvfXgy3pjO_Oe3dn5AN65yLuoQOHNfSxDoSUPNU8wS7HUWkaiNazBYL4dytEP8fUkOdmAP91ZGCqr7Gxibajt1NAaeR_DdM4lambS921ZxNHu8PPFz5AQpGintYPTaERk3y1_Y_pWfRrvIq_fx_Fw7_jLKGwRBkKTpGIe8mzgcu4w73am8CaPTCx8bnQmvfYabTuPHbeOG2NlUkSpw3jFp8JnQjsrDcfH3oLNlJKiHmzu7B0efV8t8FDr9UyI9qDOgGf9StRmiYoi0C1KEfI1Z1hjBqCLO6OKzKvh7tWqzX-2bmuPOLwP99pQlm03svcANlz5EG434JbLR2DHZYgEW7BCT6YophPDCK66KB2rliXGndWkYnS6haGIIkUtK_CqG2gjmRkdbpuxU9cZ5_MlI3wXDPznDHN425SaPYbjm6D4E-iV09I9A6bR-wpb-EhnqTCeFz5Lc-0TO0gSI7UJIOpoq0zb75xgN85Vve_OM9XwQyE_VM0PxQP4sPrNRdPt49rZO8Sy1Uzq1F0PTGenqlV8nJtYq3lmJWZuSWyzaOALo1McMVLmgwDeIsPXnjHaPlA0Rt0YqWvrryiArU4eVGtjKnWpEQG8Wd1G60BbPsjM6aKegwEH57kM4GkjPqtXcUEQRXkcQLomWGvfsn6nnJzVHcizROZRngbwsRPBy8_6P72eX_8vXsMd1Gh1MD7cfwF3Y1ITWr4XW9CbzxbuJQZ_c_2qVTMG6oYV-y8tuG3t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+abiogenic+methane+synthesis+from+diamond+and+graphite+under+geologically+relevant+conditions&rft.jtitle=Nature+communications&rft.au=Pe%C3%B1a-Alvarez%2C+Miriam&rft.au=Brovarone%2C+Alberto+Vitale&rft.au=Donnelly%2C+Mary-Ellen&rft.au=Wang%2C+Mengnan&rft.date=2021-11-04&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26664-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_26664_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |