Unveiling heterogeneity of hysteresis in perovskite thin films

The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of...

Full description

Saved in:
Bibliographic Details
Published inDiscover nano Vol. 19; no. 1; p. 48
Main Authors Zou, Zhouyiao, Qiu, Haian, Shao, Zhibin
Format Journal Article
LanguageEnglish
Published New York Springer US 18.03.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I – V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
AbstractList The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I – V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I–V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
Abstract The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I–V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent-voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I-V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent-voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I-V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.
ArticleNumber 48
Author Shao, Zhibin
Qiu, Haian
Zou, Zhouyiao
Author_xml – sequence: 1
  givenname: Zhouyiao
  surname: Zou
  fullname: Zou, Zhouyiao
  organization: Industrial Training Center, Shenzhen Polytechnic University
– sequence: 2
  givenname: Haian
  surname: Qiu
  fullname: Qiu, Haian
  email: qiu20210136@szpu.edu.cn
  organization: Physics Laboratory, School of Undergraduate Education, Shenzhen Polytechnic University
– sequence: 3
  givenname: Zhibin
  surname: Shao
  fullname: Shao, Zhibin
  email: zhibin_shao@szpu.edu.cn
  organization: Industrial Training Center, Shenzhen Polytechnic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38499837$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuFDEQHKEg8iA_wAGNxIXLgB_j1wWEIgKRInEhZ8vjae96mbUX27vS_j3eTAJJDuFku7uq3GXXaXMUYoCmeYPRB4wl_5gx5gJ3iPQdokrxTr1oToiguFOEqKMH--PmPOcVQohIQSRjr5pjKnulJBUnzaebsAM_-bBol1AgxQUE8GXfRtcu97lWIPvc-tBuanOXf_kCbVnWs_PTOr9uXjozZTi_W8-am8uvPy--d9c_vl1dfLnuLBN96YiTYoRxkGqwAI5x5zgHbCVyVAnF6UiQHTASyBFqiWCCWG6A9Zgyi7GjZ83VrDtGs9Kb5Ncm7XU0Xt8WYlpok4q3E-heUlpdOtkPld9TNQh6sO0YYgPCpmp9nrU222ENo4VQkpkeiT7uBL_Ui7jTGKleVrGq8P5OIcXfW8hFr322ME0mQNxmTTGjTCpWb_8flCguFcEY8Qp99wS6itsU6rMeUFSSHglWUW8fTv937PsvrQA5A2yKOSdw2vpiio8HM36qLvQhQHoOkK4B0rcB0qpSyRPqvfqzJDqTcgWHBaR_Yz_D-gPC9tY5
CitedBy_id crossref_primary_10_1021_acs_jpcc_4c04645
crossref_primary_10_1016_j_optmat_2024_115402
crossref_primary_10_1002_aelm_202400530
crossref_primary_10_1016_j_mtcomm_2024_111081
Cites_doi 10.1039/C6EE00413J
10.1021/acs.nanolett.5b04157
10.1039/C8EE01447G
10.1038/nenergy.2016.93
10.1021/acsami.1c04806
10.1021/nl080155l
10.1038/ncomms11683
10.1002/admi.202001992
10.1063/1.3595669
10.1021/acsenergylett.8b01627
10.1016/j.joule.2019.09.001
10.1021/jz501392m
10.1021/nl062989e
10.1002/pip.2698
10.1021/acs.jpclett.5b00502
10.1021/jz501697b
10.1039/C4TA05309E
10.1021/acsenergylett.8b01606
10.1002/aenm.201703376
10.1002/adfm.201908920
10.1021/acsaem.8b01222
10.1039/C5TC03109E
10.1039/C5EE01265A
10.1021/jacs.5b03615
10.1063/1.5035351
10.1063/1.4899051
10.1021/acs.jpclett.7b00571
10.1126/science.aaa5333
10.1038/ncomms6784
10.1039/D0NR07476D
10.1021/acs.jpcc.8b06814
10.1021/acs.jpclett.6b00215
10.1039/C8EE01576G
10.1039/C4EE00942H
10.1002/adma.201503406
10.1016/j.mtener.2017.07.014
10.1002/tcr.202100150
10.1002/adma.201805214
10.1039/C4EE04064C
10.1021/nl901358v
10.1016/j.nanoen.2018.02.049
10.1002/anie.201405334
10.1021/acs.jpcc.9b04662
10.1038/ncomms10334
10.1002/adfm.201701924
10.1021/jz500113x
10.1021/acs.accounts.5b00420
10.1021/jz502666j
10.1021/acsami.8b07298
10.1038/ncomms8081
10.1002/adfm.202107823
10.1021/acsnano.6b05825
10.1039/C4NR00130C
10.1002/adma.201503832
10.1039/C6EE03352K
10.1038/ncomms8497
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s11671-024-03996-9
DatabaseName Open Access Journals from Springer Nature
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Materials Science Database (NC LIVE)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA
CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2731-9229
1556-276X
EndPage 48
ExternalDocumentID oai_doaj_org_article_4833855f84b541439b732855f505b01a
PMC10948732
38499837
10_1186_s11671_024_03996_9
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12004234
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Shenzhen Polytechnic
  grantid: 6022312037K
  funderid: http://dx.doi.org/10.13039/100012840
– fundername: National Natural Science Foundation of China
  grantid: 12004234
– fundername: Shenzhen Polytechnic
  grantid: 6022312037K
GroupedDBID .4S
0R~
AAJSJ
AAKKN
ABEEZ
ACACY
ACULB
ACVER
AFGXO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
C24
C6C
EBLON
EBS
EDO
GROUPED_DOAJ
MM.
M~E
PGMZT
RPM
RSV
SOJ
TUS
AASML
AAYXX
CITATION
NPM
.86
.DC
123
29M
2WC
4.4
40G
5VS
6NX
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
AAFWJ
ABJCF
ABMNI
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADRAZ
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHYZX
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CAG
CCPQU
CS3
D1I
DU5
DWQXO
F28
F5P
FR3
GNUQQ
GX1
H8D
H8G
HCIFZ
HH5
HYE
HZ~
I09
IZQ
JG9
JQ2
KB.
KDC
KQ8
KR7
L7M
LK8
L~C
L~D
M7P
O5R
O5S
OK1
OVT
P2P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RNS
RPX
SCM
SDH
TR2
U2A
~KM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c574t-2f87dedb89bceef56ff66e1c80f397963d20cb1070f23c27572c6ae54135c11f3
IEDL.DBID DOA
ISSN 2731-9229
1931-7573
IngestDate Wed Aug 27 01:29:50 EDT 2025
Thu Aug 21 18:34:50 EDT 2025
Fri Jul 11 09:50:37 EDT 2025
Fri Jul 11 10:38:49 EDT 2025
Fri Jul 25 09:38:46 EDT 2025
Mon Jul 21 06:00:35 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Tue Jul 01 04:17:23 EDT 2025
Fri Feb 21 02:39:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Perovskite thin film
Photoconductive atomic force microscopy
Charge transport
Ion migration
Hysteresis
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-2f87dedb89bceef56ff66e1c80f397963d20cb1070f23c27572c6ae54135c11f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/4833855f84b541439b732855f505b01a
PMID 38499837
PQID 2963824075
PQPubID 2034687
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_4833855f84b541439b732855f505b01a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10948732
proquest_miscellaneous_3153589514
proquest_miscellaneous_2968921106
proquest_journals_2963824075
pubmed_primary_38499837
crossref_citationtrail_10_1186_s11671_024_03996_9
crossref_primary_10_1186_s11671_024_03996_9
springer_journals_10_1186_s11671_024_03996_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-18
PublicationDateYYYYMMDD 2024-03-18
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-18
  day: 18
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Switzerland
– name: Heidelberg
PublicationTitle Discover nano
PublicationTitleAbbrev Discover Nano
PublicationTitleAlternate Discov Nano
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References HaruyamaJSodeyamaKHanLTateyamaYFirst-principles study of ion diffusion in perovskite solar cell sensitizersJ Am Chem Soc201513710048100511:CAS:528:DC%2BC2MXhtlSmt7fP10.1021/jacs.5b0361526258577
PingreeLSCReidOGGingerDSImaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cellsNano Lett20099294629522009NanoL...9.2946P1:CAS:528:DC%2BD1MXot12mt7Y%3D10.1021/nl901358v19588929
QiuHMativetskyJMNanoscale light- and voltage-induced lattice strain in perovskite thin filmsNanoscale2021137461:CAS:528:DC%2BB3MXjtFCqtw%3D%3D10.1039/D0NR07476D33410853
BaiYYuHZhuZJiangKZhangTZhaoNYangSYanHHigh performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layerJ Mater Chem A20153909891021:CAS:528:DC%2BC2cXitFCrtbzK10.1039/C4TA05309E
NREL Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 15 Oct 2023.
KutesYZhouYBosseJLSteffesJPadtureNPHueyBDMapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscaleNano Lett201616343434412016NanoL..16.3434K1:CAS:528:DC%2BC28XmslGqsbc%3D10.1021/acs.nanolett.5b0415727116651
WuFPathakRChenKWangGBahramiBZhangWQiaoQInverted current–voltage hysteresis in perovskite solar cellsACS Energy Lett2018324571:CAS:528:DC%2BC1cXhslCmsbnP10.1021/acsenergylett.8b01606
GaoPGrätzelMNazeeruddinMKOrganohalide lead perovskites for photovoltaic applicationsEnergy Environ Sci20147244824631:CAS:528:DC%2BC2cXht1CltL3I10.1039/C4EE00942H
QiuHDongXShimJHChoJMativetskyJMEffective charge collection area during conductive and photoconductive atomic force microscopy measurementsAppl Phys Lett20181122631022018ApPhL.112z3102Q1:CAS:528:DC%2BC1cXht1aksbnJ10.1063/1.5035351
DomanskiKRooseBMatsuiTSalibaMTurren-CruzSHCorrea-BaenaJPCarmonaCRRichardsonGFosterJMDe AngelisFBallJMPetrozzaAMineNNazeeruddinMKTressWGrätzelMSteinerUHagfeldtAAbateAMigration of cations induces reversible performance losses over day/night cycling in perovskite solar cellsEnergy Environ Sci2017106046131:CAS:528:DC%2BC2sXht1Kqsrw%3D10.1039/C6EE03352K
LeeJWBaeSHDe MarcoNHsiehYTDaiZYangYThe role of grain boundaries in perovskite solar cellsMater Today Energy2018714916010.1016/j.mtener.2017.07.014
YuanYHuangJIon migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stabilityAcc Chem Res2016492862931:CAS:528:DC%2BC28XitVyhtLk%3D10.1021/acs.accounts.5b0042026820627
SnaithHJAbateABallJMEperonGELeijtensTNoelNKStranksSDWangJTWojciechowskiKZhangWAnomalous hysteresis in perovskite solar cellsJ Phys Chem Lett20145151115151:CAS:528:DC%2BC2cXkslSlur4%3D10.1021/jz500113x26270088
MeloniSMoehlTTressWFranckeviciusMSalibaMLeeYHGaoPNazeeruddinMKZakeeruddinSMRothlisbergerUGraetzelMIonic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cellsNat Commun20167103342016NatCo...710334M1:CAS:528:DC%2BC28XitlChsbc%3D10.1038/ncomms10334268526854748116
HamadaniBHGergel-HackettNHaneyPMZhitenevNBImaging of nanoscale charge transport in bulk heterojunction solar cellsJ Appl Phys20111091245012011JAP...109l4501H1:CAS:528:DC%2BC3MXns1Ohu7s%3D10.1063/1.3595669
WeberSALHermesIMTurren-CruzSHGortCBergmannVWGilsonLHagfeldtAGraetzelMTressWBergerRHow the formation of interfacial charge causes hysteresis in perovskite solar cellsEnergy Environ Sci201811240424131:CAS:528:DC%2BC1cXhtVKqs7jK10.1039/C8EE01447G
EperonGEMoermanDGingerDSAnticorrelation between local photoluminescence and photocurrent suggests variability in contact to active layer in perovskite solar cellsACS Nano20161010258102661:CAS:528:DC%2BC28Xhs1yltbvK10.1021/acsnano.6b0582527749044
ChenBYangMPriyaSZhuKOrigin of J–V hysteresis in perovskite solar cellsJ Phys Chem Lett201679059171:CAS:528:DC%2BC28XislSnsL4%3D10.1021/acs.jpclett.6b0021526886052
KutesYYeLZhouYPangSHueyBDPadtureNPDirect observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin filmsJ Phys Chem Lett20145333533391:CAS:528:DC%2BC2cXhsFCjsbrO10.1021/jz501697b26278441
XuJBuinAIpAHLiWVoznyyOCominRYuanMJeonSNingZMcDowellJJKanjanaboosPSunJPLanXQuanLNKimDHHillIGMaksymovychPSargentEHPerovskite-fullerene hybrid materials suppress hysteresis in planar diodesNat Commun2015670812015NatCo...6.7081X1:CAS:528:DC%2BC2MXhtF2lurjE10.1038/ncomms808125953105
WaliQAamirMUllahAIftikharFJKhanMEAkhtarJYangSFundamentals of hysteresis in perovskite solar cells: from structure-property relationship to neoteric breakthroughsChem Rec202222e2021001501:CAS:528:DC%2BB3MXhvVOktbnN10.1002/tcr.20210015034418290
LiWWangDHouWLiRSunWWuJLanZHigh-efficiency, low-hysteresis planar perovskite solar cells by inserting the Nabr interlayerACS Appl Mater Interfaces202113202511:CAS:528:DC%2BB3MXpsFGgtLs%3D10.1021/acsami.1c0480633902287
HabisreutingerSNNoelNKSnaithHJHysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cellsACS Energy Lett20183247224761:CAS:528:DC%2BC1cXhslegsbnI10.1021/acsenergylett.8b01627
deQuilettesDWZhangWBurlakovVMGrahamDJLeijtensTOsherovABulovicVSnaithHJGingerDSStranksSDPhoto-induced halide redistribution in organic-inorganic perovskite filmsNat Commun20167116832016NatCo...711683D1:CAS:528:DC%2BC28Xos12lu7s%3D10.1038/ncomms11683272167034890321
CourtierNECaveJMFosterJMWalkerABRichardsonGHow transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration modelEnergy Environ Sci2019123964091:CAS:528:DC%2BC1cXisF2ht7%2FE10.1039/C8EE01576G
JariwalaSSunHAdhyaksaGWPLofAGarnettECGingerDSLocal crystal misorientation influences non-radiative recombination in halide perovskitesJoule20193304830601:CAS:528:DC%2BC1MXisV2ktr7K10.1016/j.joule.2019.09.001
SenocrateAMoudrakovskiIAcartürkTMerkleRKimGYStarkeUGrätzelMMaierJSlow CH3NH3+ diffusion in CH3NH3PbI3 under light measured by solid-state NMR and tracer diffusionJ Phys Chem C201812221803218061:CAS:528:DC%2BC1cXhs1ChsLvF10.1021/acs.jpcc.8b06814
GuerreroABouAMattGAlmoraOHeumüllerTGarcia-BelmonteGBisquertJHouYBrabecCSwitching off hysteresis in perovskite solar cells by fine-tuning energy levels of extraction layersAdv Energy Mater2018817033761:CAS:528:DC%2BC1cXotVSnu70%3D10.1002/aenm.201703376
EamesCFrostJMBarnesPRO'ReganBCWalshAIslamMSIonic transport in hybrid lead iodide perovskite solar cellsNat Commun2015674972015NatCo...6.7497E1:CAS:528:DC%2BC2MXhtF2ktr3L10.1038/ncomms849726105623
ShaoYFangYLiTWangQDongQDengYYuanYWeiHWangMGruvermanAShieldJHuangJGrain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite filmsEnergy Environ Sci20169175217591:CAS:528:DC%2BC28XksFKmsrc%3D10.1039/C6EE00413J
deQuilettesDWVorpahlSMStranksSDNagaokaHEperonGEZifferMESnaithHJGingerDSImpact of microstructure on local carrier lifetime in perovskite solar cellsScience20153486836862015Sci...348..683D1:CAS:528:DC%2BC2MXnslGjtL4%3D10.1126/science.aaa533325931446
AzpirozJMMosconiEBisquertJAngelisFDDefect migration in methylammonium lead iodide and its role in perovskite solar cell operationEnergy Environ Sci20158211821271:CAS:528:DC%2BC2MXpt1Sltb4%3D10.1039/C5EE01265A
ShenHJacobsDAWuYDuongTPengJWenXFuXKaruturiSKWhiteTPWeberKCatchpoleKRInverted hysteresis in CH3NH3PbI3 solar cells: role of stoichiometry and band alignmentJ Phys Chem Lett20178267226801:CAS:528:DC%2BC2sXos1amsr4%3D10.1021/acs.jpclett.7b0057128557465
XiaoMHuangFHuangWDkhissiYZhuYEtheridgeJGray-WealeABachUChengYBSpicciaLA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew Chem201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334
LiuSZhengFKoocherNZTakenakaHWangFRappeAMFerroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskitesJ Phys Chem Lett201566936991:CAS:528:DC%2BC2MXhtlyqsrc%3D10.1021/jz502666j26262488
KangDHParkNGOn the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresisAdv Mater201931e18052141:CAS:528:DC%2BC1MXjt1Wjs78%3D10.1002/adma.20180521430773704
WenXFengYHuangSHuangFChengYGreenMHo-BaillieADefect trapping states and charge carrier recombination in organic–inorganic halide perovskitesJ Mater Chem C201647938001:CAS:528:DC%2BC2MXitVCqsr3O10.1039/C5TC03109E
CollMGomezAMas-MarzaEAlmoraOGarcia-BelmonteGCampoy-QuilesMBisquertJPolarization switching and light-enhanced piezoelectricity in lead halide perovskitesJ Phys Chem Lett20156140814131:CAS:528:DC%2BC2MXlsFaktLg%3D10.1021/acs.jpclett.5b0050226263143
RossiDPecchiaAMaurMADLeonhardTRöhmHHoffmannMJColsmannACarloADOn the importance of ferroelectric domains for the performance of perovskite solar cellsNano Energy20184820261:CAS:528:DC%2BC1cXlt1Oms78%3D10.1016/j.nanoen.2018.02.049
SeolDJeongAHanMHSeoSYooTSChoiWSJungHSShinHKimYOrigin of hysteresis in CH3NH3PbI3 perovskite thin filmsAdv Funct Mater20172717019241:CAS:528:DC%2BC2sXht1Gku7%2FE10.1002/adfm.201701924
KimHBChoiHJeongJKimSWalkerBSongSKimJYMixed solvents for the optimization of morphology in solution-processedInvert Type Perovskite/Fullerene Hybrid Solar Cells Nanoscale20146667966831:CAS:528:DC%2BC2cXptVejtLw%3D10.1039/C4NR00130C
QiuHShimJHChoJMativetskyJMNanoscale insight into performance loss mechanisms in P3HT:ZnO nanorod solar cellsACS Appl Energy Mater20181617261801:CAS:528:DC%2BC1cXhvVWit7jF10.1021/acsaem.8b01222
EmaraJSchnierTPourdavoudNRiedlTMeerholzKOlthofSImpact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskitesAdv Mater2016285535591:CAS:528:DC%2BC2MXhvFentrvK10.1002/adma.20150340626604080
KimHSParkNGParameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layerJ Phys Chem Lett20145292729341:CAS:528:DC%2BC2cXhtleqtrrM10.1021/jz501392m26278238
LeeHGaiaschiSChaponPTondelierDBouréeJEBonnassieuxYDeryckeVGeffroyBEffect of halide ion migration on the electrical properties of methylammonium lead tri-iodide perovskite solar cellsJ Phys Chem C201912317728177341
SY Leblebici (3996_CR32) 2016; 1
HB Kim (3996_CR45) 2014; 6
X Wen (3996_CR38) 2016; 4
H Qiu (3996_CR41) 2018; 1
F Wu (3996_CR53) 2018; 10
B Chen (3996_CR26) 2016; 7
Y Kutes (3996_CR42) 2016; 24
DW deQuilettes (3996_CR37) 2015; 348
K Domanski (3996_CR21) 2017; 10
S Liu (3996_CR9) 2015; 6
M Coll (3996_CR10) 2015; 6
H Lee (3996_CR17) 2019; 123
S Jariwala (3996_CR35) 2019; 3
A Senocrate (3996_CR23) 2018; 122
Q Xiong (3996_CR20) 2021; 32
Y Kutes (3996_CR33) 2016; 16
HJ Snaith (3996_CR3) 2014; 5
H Qiu (3996_CR49) 2018; 112
Q Wang (3996_CR51) 2014; 105
BH Hamadani (3996_CR47) 2011; 109
M Xiao (3996_CR36) 2014; 53
C Eames (3996_CR19) 2015; 6
J Haruyama (3996_CR24) 2015; 137
H Qiu (3996_CR54) 2021; 13
Y Bai (3996_CR46) 2015; 3
OG Reid (3996_CR48) 2008; 8
SN Habisreutinger (3996_CR2) 2018; 3
DC Coffey (3996_CR40) 2007; 7
Y Zhao (3996_CR15) 2015; 8
DW deQuilettes (3996_CR18) 2016; 7
LSC Pingree (3996_CR39) 2009; 9
JW Lee (3996_CR56) 2018; 7
NE Courtier (3996_CR28) 2019; 12
Y Shao (3996_CR6) 2014; 5
P Gao (3996_CR44) 2014; 7
HS Kim (3996_CR4) 2014; 5
Y Shao (3996_CR13) 2016; 9
F Wu (3996_CR52) 2018; 3
JM Azpiroz (3996_CR22) 2015; 8
S Meloni (3996_CR55) 2016; 7
C Li (3996_CR16) 2016; 28
H Qiu (3996_CR43) 2021; 8
Q Wali (3996_CR5) 2022; 22
J Xu (3996_CR7) 2015; 6
J Emara (3996_CR50) 2016; 28
Y Kutes (3996_CR12) 2014; 5
D Rossi (3996_CR11) 2018; 48
W Li (3996_CR27) 2021; 13
D Seol (3996_CR14) 2017; 27
3996_CR1
Y Yuan (3996_CR57) 2016; 49
A Guerrero (3996_CR25) 2018; 8
DH Kang (3996_CR30) 2019; 31
SAL Weber (3996_CR29) 2018; 11
GE Eperon (3996_CR34) 2016; 10
Y Zhong (3996_CR8) 2020; 30
H Shen (3996_CR31) 2017; 8
References_xml – reference: ShenHJacobsDAWuYDuongTPengJWenXFuXKaruturiSKWhiteTPWeberKCatchpoleKRInverted hysteresis in CH3NH3PbI3 solar cells: role of stoichiometry and band alignmentJ Phys Chem Lett20178267226801:CAS:528:DC%2BC2sXos1amsr4%3D10.1021/acs.jpclett.7b0057128557465
– reference: EmaraJSchnierTPourdavoudNRiedlTMeerholzKOlthofSImpact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskitesAdv Mater2016285535591:CAS:528:DC%2BC2MXhvFentrvK10.1002/adma.20150340626604080
– reference: MeloniSMoehlTTressWFranckeviciusMSalibaMLeeYHGaoPNazeeruddinMKZakeeruddinSMRothlisbergerUGraetzelMIonic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cellsNat Commun20167103342016NatCo...710334M1:CAS:528:DC%2BC28XitlChsbc%3D10.1038/ncomms10334268526854748116
– reference: ShaoYFangYLiTWangQDongQDengYYuanYWeiHWangMGruvermanAShieldJHuangJGrain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite filmsEnergy Environ Sci20169175217591:CAS:528:DC%2BC28XksFKmsrc%3D10.1039/C6EE00413J
– reference: XiongQWangCZhouQWangLWangXYangLDingJChenCWuJLiXGaoPRear interface engineering to suppress migration of iodide ions for efficient perovskite solar cells with minimized hysteresisAdv Funct Mater20213221078231:CAS:528:DC%2BB3MXisVehtr7E10.1002/adfm.202107823
– reference: deQuilettesDWZhangWBurlakovVMGrahamDJLeijtensTOsherovABulovicVSnaithHJGingerDSStranksSDPhoto-induced halide redistribution in organic-inorganic perovskite filmsNat Commun20167116832016NatCo...711683D1:CAS:528:DC%2BC28Xos12lu7s%3D10.1038/ncomms11683272167034890321
– reference: ReidOGMunechikaKGingerDSSpace charge limited current measurements on conjugated polymer films using conductive atomic force microscopyNano Lett2008816022008NanoL...8.1602R1:CAS:528:DC%2BD1cXltlWgtrs%3D10.1021/nl080155l18447400
– reference: WeberSALHermesIMTurren-CruzSHGortCBergmannVWGilsonLHagfeldtAGraetzelMTressWBergerRHow the formation of interfacial charge causes hysteresis in perovskite solar cellsEnergy Environ Sci201811240424131:CAS:528:DC%2BC1cXhtVKqs7jK10.1039/C8EE01447G
– reference: QiuHMativetskyJMElucidating the role of ion migration and band bending in perovskite solar cell function at grain boundaries via multimodal nanoscale mappingAdv Mater Interfaces2021820019921:CAS:528:DC%2BB3MXhtVeisrfF10.1002/admi.202001992
– reference: DomanskiKRooseBMatsuiTSalibaMTurren-CruzSHCorrea-BaenaJPCarmonaCRRichardsonGFosterJMDe AngelisFBallJMPetrozzaAMineNNazeeruddinMKTressWGrätzelMSteinerUHagfeldtAAbateAMigration of cations induces reversible performance losses over day/night cycling in perovskite solar cellsEnergy Environ Sci2017106046131:CAS:528:DC%2BC2sXht1Kqsrw%3D10.1039/C6EE03352K
– reference: GuerreroABouAMattGAlmoraOHeumüllerTGarcia-BelmonteGBisquertJHouYBrabecCSwitching off hysteresis in perovskite solar cells by fine-tuning energy levels of extraction layersAdv Energy Mater2018817033761:CAS:528:DC%2BC1cXotVSnu70%3D10.1002/aenm.201703376
– reference: LeblebiciSYLeppertLLiYReyes-LilloSEWickenburgSWongELeeJMelliMZieglerDAngellDKOgletreeDFAshbyPDTomaFMNeatonJBSharpIDWeber-BargioniAFacet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskiteNat Energy20161160932016NatEn...116093L1:CAS:528:DC%2BC2sXhtVersrs%3D10.1038/nenergy.2016.93
– reference: KimHSParkNGParameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layerJ Phys Chem Lett20145292729341:CAS:528:DC%2BC2cXhtleqtrrM10.1021/jz501392m26278238
– reference: WaliQAamirMUllahAIftikharFJKhanMEAkhtarJYangSFundamentals of hysteresis in perovskite solar cells: from structure-property relationship to neoteric breakthroughsChem Rec202222e2021001501:CAS:528:DC%2BB3MXhvVOktbnN10.1002/tcr.20210015034418290
– reference: RossiDPecchiaAMaurMADLeonhardTRöhmHHoffmannMJColsmannACarloADOn the importance of ferroelectric domains for the performance of perovskite solar cellsNano Energy20184820261:CAS:528:DC%2BC1cXlt1Oms78%3D10.1016/j.nanoen.2018.02.049
– reference: GaoPGrätzelMNazeeruddinMKOrganohalide lead perovskites for photovoltaic applicationsEnergy Environ Sci20147244824631:CAS:528:DC%2BC2cXht1CltL3I10.1039/C4EE00942H
– reference: LiCTscheuschnerSPaulusFHopkinsonPEKiesslingJKohlerAVaynzofYHuettnerSIodine migration and its effect on hysteresis in perovskite solar cellsAdv Mater201628244624541:CAS:528:DC%2BC28XhslSqsLg%3D10.1002/adma.20150383226823239
– reference: LeeHGaiaschiSChaponPTondelierDBouréeJEBonnassieuxYDeryckeVGeffroyBEffect of halide ion migration on the electrical properties of methylammonium lead tri-iodide perovskite solar cellsJ Phys Chem C201912317728177341:CAS:528:DC%2BC1MXhtlSntbjE10.1021/acs.jpcc.9b04662
– reference: QiuHMativetskyJMNanoscale light- and voltage-induced lattice strain in perovskite thin filmsNanoscale2021137461:CAS:528:DC%2BB3MXjtFCqtw%3D%3D10.1039/D0NR07476D33410853
– reference: NREL Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 15 Oct 2023.
– reference: KutesYZhouYBosseJLSteffesJPadtureNPHueyBDMapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscaleNano Lett201616343434412016NanoL..16.3434K1:CAS:528:DC%2BC28XmslGqsbc%3D10.1021/acs.nanolett.5b0415727116651
– reference: deQuilettesDWVorpahlSMStranksSDNagaokaHEperonGEZifferMESnaithHJGingerDSImpact of microstructure on local carrier lifetime in perovskite solar cellsScience20153486836862015Sci...348..683D1:CAS:528:DC%2BC2MXnslGjtL4%3D10.1126/science.aaa533325931446
– reference: KutesYYeLZhouYPangSHueyBDPadtureNPDirect observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin filmsJ Phys Chem Lett20145333533391:CAS:528:DC%2BC2cXhsFCjsbrO10.1021/jz501697b26278441
– reference: LiuSZhengFKoocherNZTakenakaHWangFRappeAMFerroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskitesJ Phys Chem Lett201566936991:CAS:528:DC%2BC2MXhtlyqsrc%3D10.1021/jz502666j26262488
– reference: LeeJWBaeSHDe MarcoNHsiehYTDaiZYangYThe role of grain boundaries in perovskite solar cellsMater Today Energy2018714916010.1016/j.mtener.2017.07.014
– reference: HabisreutingerSNNoelNKSnaithHJHysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cellsACS Energy Lett20183247224761:CAS:528:DC%2BC1cXhslegsbnI10.1021/acsenergylett.8b01627
– reference: WangQShaoYXieHLyuLLiuXGaoYHuangJQualifying composition dependent P and N self-doping in CH3NH3PbI3Appl Phys Lett20141051635082014ApPhL.105p3508W1:CAS:528:DC%2BC2cXhvVSqsL%2FJ10.1063/1.4899051
– reference: YuanYHuangJIon migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stabilityAcc Chem Res2016492862931:CAS:528:DC%2BC28XitVyhtLk%3D10.1021/acs.accounts.5b0042026820627
– reference: ZhongYHufnagelMThelakkatMLiCHuettnerSRole of PCBM in the suppression of hysteresis in perovskite solar cellsAdv Funct Mater20203019089201:CAS:528:DC%2BB3cXmvVSiur4%3D10.1002/adfm.201908920
– reference: EperonGEMoermanDGingerDSAnticorrelation between local photoluminescence and photocurrent suggests variability in contact to active layer in perovskite solar cellsACS Nano20161010258102661:CAS:528:DC%2BC28Xhs1yltbvK10.1021/acsnano.6b0582527749044
– reference: SnaithHJAbateABallJMEperonGELeijtensTNoelNKStranksSDWangJTWojciechowskiKZhangWAnomalous hysteresis in perovskite solar cellsJ Phys Chem Lett20145151115151:CAS:528:DC%2BC2cXkslSlur4%3D10.1021/jz500113x26270088
– reference: EamesCFrostJMBarnesPRO'ReganBCWalshAIslamMSIonic transport in hybrid lead iodide perovskite solar cellsNat Commun2015674972015NatCo...6.7497E1:CAS:528:DC%2BC2MXhtF2ktr3L10.1038/ncomms849726105623
– reference: CollMGomezAMas-MarzaEAlmoraOGarcia-BelmonteGCampoy-QuilesMBisquertJPolarization switching and light-enhanced piezoelectricity in lead halide perovskitesJ Phys Chem Lett20156140814131:CAS:528:DC%2BC2MXlsFaktLg%3D10.1021/acs.jpclett.5b0050226263143
– reference: ChenBYangMPriyaSZhuKOrigin of J–V hysteresis in perovskite solar cellsJ Phys Chem Lett201679059171:CAS:528:DC%2BC28XislSnsL4%3D10.1021/acs.jpclett.6b0021526886052
– reference: WuFBahramiBChenKMabroukSPathakRTongYLiXZhangTJianRQiaoQBias-dependent normal and inverted J–V hysteresis in perovskite solar cellsACS Appl Mater Interfaces20181025604256131:CAS:528:DC%2BC1cXht12mtrrM10.1021/acsami.8b0729829986137
– reference: SenocrateAMoudrakovskiIAcartürkTMerkleRKimGYStarkeUGrätzelMMaierJSlow CH3NH3+ diffusion in CH3NH3PbI3 under light measured by solid-state NMR and tracer diffusionJ Phys Chem C201812221803218061:CAS:528:DC%2BC1cXhs1ChsLvF10.1021/acs.jpcc.8b06814
– reference: QiuHDongXShimJHChoJMativetskyJMEffective charge collection area during conductive and photoconductive atomic force microscopy measurementsAppl Phys Lett20181122631022018ApPhL.112z3102Q1:CAS:528:DC%2BC1cXht1aksbnJ10.1063/1.5035351
– reference: PingreeLSCReidOGGingerDSImaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cellsNano Lett20099294629522009NanoL...9.2946P1:CAS:528:DC%2BD1MXot12mt7Y%3D10.1021/nl901358v19588929
– reference: ZhaoYLiangCZhangHLiDTianDLiGJingXZhangWXiaoWLiuQZhangFHeZAnomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskitesEnergy Environ Sci20158125612601:CAS:528:DC%2BC2MXislegsLw%3D10.1039/C4EE04064C
– reference: XiaoMHuangFHuangWDkhissiYZhuYEtheridgeJGray-WealeABachUChengYBSpicciaLA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew Chem201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334
– reference: CourtierNECaveJMFosterJMWalkerABRichardsonGHow transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration modelEnergy Environ Sci2019123964091:CAS:528:DC%2BC1cXisF2ht7%2FE10.1039/C8EE01576G
– reference: KangDHParkNGOn the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresisAdv Mater201931e18052141:CAS:528:DC%2BC1MXjt1Wjs78%3D10.1002/adma.20180521430773704
– reference: CoffeyDCReidOGRodovskyDBBartholomewGPGingerDSMapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopyNano Lett200777387442007NanoL...7..738C1:CAS:528:DC%2BD2sXhsFOrs7o%3D10.1021/nl062989e17295549
– reference: KimHBChoiHJeongJKimSWalkerBSongSKimJYMixed solvents for the optimization of morphology in solution-processedInvert Type Perovskite/Fullerene Hybrid Solar Cells Nanoscale20146667966831:CAS:528:DC%2BC2cXptVejtLw%3D10.1039/C4NR00130C
– reference: WenXFengYHuangSHuangFChengYGreenMHo-BaillieADefect trapping states and charge carrier recombination in organic–inorganic halide perovskitesJ Mater Chem C201647938001:CAS:528:DC%2BC2MXitVCqsr3O10.1039/C5TC03109E
– reference: KutesYAguirreBABosseJLCruz-CampaJLZubiaDHueyBDMapping photovoltaic performance with nanoscale resolutionProg Photovolt Res Appl2016243153251:CAS:528:DC%2BC28XisVCmtLg%3D10.1002/pip.2698
– reference: AzpirozJMMosconiEBisquertJAngelisFDDefect migration in methylammonium lead iodide and its role in perovskite solar cell operationEnergy Environ Sci20158211821271:CAS:528:DC%2BC2MXpt1Sltb4%3D10.1039/C5EE01265A
– reference: BaiYYuHZhuZJiangKZhangTZhaoNYangSYanHHigh performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layerJ Mater Chem A20153909891021:CAS:528:DC%2BC2cXitFCrtbzK10.1039/C4TA05309E
– reference: ShaoYXiaoZBiCYuanYHuangJOrigin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cellsNat Commun2014557842014NatCo...5.5784S1:CAS:528:DC%2BC2MXksVemt7c%3D10.1038/ncomms678425503258
– reference: JariwalaSSunHAdhyaksaGWPLofAGarnettECGingerDSLocal crystal misorientation influences non-radiative recombination in halide perovskitesJoule20193304830601:CAS:528:DC%2BC1MXisV2ktr7K10.1016/j.joule.2019.09.001
– reference: WuFPathakRChenKWangGBahramiBZhangWQiaoQInverted current–voltage hysteresis in perovskite solar cellsACS Energy Lett2018324571:CAS:528:DC%2BC1cXhslCmsbnP10.1021/acsenergylett.8b01606
– reference: XuJBuinAIpAHLiWVoznyyOCominRYuanMJeonSNingZMcDowellJJKanjanaboosPSunJPLanXQuanLNKimDHHillIGMaksymovychPSargentEHPerovskite-fullerene hybrid materials suppress hysteresis in planar diodesNat Commun2015670812015NatCo...6.7081X1:CAS:528:DC%2BC2MXhtF2lurjE10.1038/ncomms808125953105
– reference: QiuHShimJHChoJMativetskyJMNanoscale insight into performance loss mechanisms in P3HT:ZnO nanorod solar cellsACS Appl Energy Mater20181617261801:CAS:528:DC%2BC1cXhvVWit7jF10.1021/acsaem.8b01222
– reference: SeolDJeongAHanMHSeoSYooTSChoiWSJungHSShinHKimYOrigin of hysteresis in CH3NH3PbI3 perovskite thin filmsAdv Funct Mater20172717019241:CAS:528:DC%2BC2sXht1Gku7%2FE10.1002/adfm.201701924
– reference: HamadaniBHGergel-HackettNHaneyPMZhitenevNBImaging of nanoscale charge transport in bulk heterojunction solar cellsJ Appl Phys20111091245012011JAP...109l4501H1:CAS:528:DC%2BC3MXns1Ohu7s%3D10.1063/1.3595669
– reference: HaruyamaJSodeyamaKHanLTateyamaYFirst-principles study of ion diffusion in perovskite solar cell sensitizersJ Am Chem Soc201513710048100511:CAS:528:DC%2BC2MXhtlSmt7fP10.1021/jacs.5b0361526258577
– reference: LiWWangDHouWLiRSunWWuJLanZHigh-efficiency, low-hysteresis planar perovskite solar cells by inserting the Nabr interlayerACS Appl Mater Interfaces202113202511:CAS:528:DC%2BB3MXpsFGgtLs%3D10.1021/acsami.1c0480633902287
– volume: 9
  start-page: 1752
  year: 2016
  ident: 3996_CR13
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE00413J
– volume: 16
  start-page: 3434
  year: 2016
  ident: 3996_CR33
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b04157
– volume: 11
  start-page: 2404
  year: 2018
  ident: 3996_CR29
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE01447G
– volume: 1
  start-page: 16093
  year: 2016
  ident: 3996_CR32
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.93
– volume: 13
  start-page: 20251
  year: 2021
  ident: 3996_CR27
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c04806
– volume: 8
  start-page: 1602
  year: 2008
  ident: 3996_CR48
  publication-title: Nano Lett
  doi: 10.1021/nl080155l
– volume: 7
  start-page: 11683
  year: 2016
  ident: 3996_CR18
  publication-title: Nat Commun
  doi: 10.1038/ncomms11683
– volume: 8
  start-page: 2001992
  year: 2021
  ident: 3996_CR43
  publication-title: Adv Mater Interfaces
  doi: 10.1002/admi.202001992
– volume: 109
  start-page: 124501
  year: 2011
  ident: 3996_CR47
  publication-title: J Appl Phys
  doi: 10.1063/1.3595669
– volume: 3
  start-page: 2472
  year: 2018
  ident: 3996_CR2
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b01627
– volume: 3
  start-page: 3048
  year: 2019
  ident: 3996_CR35
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.001
– volume: 5
  start-page: 2927
  year: 2014
  ident: 3996_CR4
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz501392m
– volume: 7
  start-page: 738
  year: 2007
  ident: 3996_CR40
  publication-title: Nano Lett
  doi: 10.1021/nl062989e
– volume: 24
  start-page: 315
  year: 2016
  ident: 3996_CR42
  publication-title: Prog Photovolt Res Appl
  doi: 10.1002/pip.2698
– volume: 6
  start-page: 1408
  year: 2015
  ident: 3996_CR10
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b00502
– volume: 5
  start-page: 3335
  year: 2014
  ident: 3996_CR12
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz501697b
– volume: 3
  start-page: 9098
  year: 2015
  ident: 3996_CR46
  publication-title: J Mater Chem A
  doi: 10.1039/C4TA05309E
– volume: 3
  start-page: 2457
  year: 2018
  ident: 3996_CR52
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.8b01606
– volume: 8
  start-page: 1703376
  year: 2018
  ident: 3996_CR25
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201703376
– volume: 30
  start-page: 1908920
  year: 2020
  ident: 3996_CR8
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201908920
– volume: 1
  start-page: 6172
  year: 2018
  ident: 3996_CR41
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.8b01222
– volume: 4
  start-page: 793
  year: 2016
  ident: 3996_CR38
  publication-title: J Mater Chem C
  doi: 10.1039/C5TC03109E
– volume: 8
  start-page: 2118
  year: 2015
  ident: 3996_CR22
  publication-title: Energy Environ Sci
  doi: 10.1039/C5EE01265A
– volume: 137
  start-page: 10048
  year: 2015
  ident: 3996_CR24
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b03615
– volume: 112
  start-page: 263102
  year: 2018
  ident: 3996_CR49
  publication-title: Appl Phys Lett
  doi: 10.1063/1.5035351
– volume: 105
  start-page: 163508
  year: 2014
  ident: 3996_CR51
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4899051
– volume: 8
  start-page: 2672
  year: 2017
  ident: 3996_CR31
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.7b00571
– volume: 348
  start-page: 683
  year: 2015
  ident: 3996_CR37
  publication-title: Science
  doi: 10.1126/science.aaa5333
– volume: 5
  start-page: 5784
  year: 2014
  ident: 3996_CR6
  publication-title: Nat Commun
  doi: 10.1038/ncomms6784
– volume: 13
  start-page: 746
  year: 2021
  ident: 3996_CR54
  publication-title: Nanoscale
  doi: 10.1039/D0NR07476D
– volume: 122
  start-page: 21803
  year: 2018
  ident: 3996_CR23
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b06814
– volume: 7
  start-page: 905
  year: 2016
  ident: 3996_CR26
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.6b00215
– volume: 12
  start-page: 396
  year: 2019
  ident: 3996_CR28
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE01576G
– volume: 7
  start-page: 2448
  year: 2014
  ident: 3996_CR44
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE00942H
– volume: 28
  start-page: 553
  year: 2016
  ident: 3996_CR50
  publication-title: Adv Mater
  doi: 10.1002/adma.201503406
– ident: 3996_CR1
– volume: 7
  start-page: 149
  year: 2018
  ident: 3996_CR56
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2017.07.014
– volume: 22
  start-page: e202100150
  year: 2022
  ident: 3996_CR5
  publication-title: Chem Rec
  doi: 10.1002/tcr.202100150
– volume: 31
  start-page: e1805214
  year: 2019
  ident: 3996_CR30
  publication-title: Adv Mater
  doi: 10.1002/adma.201805214
– volume: 8
  start-page: 1256
  year: 2015
  ident: 3996_CR15
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE04064C
– volume: 9
  start-page: 2946
  year: 2009
  ident: 3996_CR39
  publication-title: Nano Lett
  doi: 10.1021/nl901358v
– volume: 48
  start-page: 20
  year: 2018
  ident: 3996_CR11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.049
– volume: 53
  start-page: 9898
  year: 2014
  ident: 3996_CR36
  publication-title: Angew Chem
  doi: 10.1002/anie.201405334
– volume: 123
  start-page: 17728
  year: 2019
  ident: 3996_CR17
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b04662
– volume: 7
  start-page: 10334
  year: 2016
  ident: 3996_CR55
  publication-title: Nat Commun
  doi: 10.1038/ncomms10334
– volume: 27
  start-page: 1701924
  year: 2017
  ident: 3996_CR14
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201701924
– volume: 5
  start-page: 1511
  year: 2014
  ident: 3996_CR3
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz500113x
– volume: 49
  start-page: 286
  year: 2016
  ident: 3996_CR57
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.5b00420
– volume: 6
  start-page: 693
  year: 2015
  ident: 3996_CR9
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz502666j
– volume: 10
  start-page: 25604
  year: 2018
  ident: 3996_CR53
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b07298
– volume: 6
  start-page: 7081
  year: 2015
  ident: 3996_CR7
  publication-title: Nat Commun
  doi: 10.1038/ncomms8081
– volume: 32
  start-page: 2107823
  year: 2021
  ident: 3996_CR20
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202107823
– volume: 10
  start-page: 10258
  year: 2016
  ident: 3996_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05825
– volume: 6
  start-page: 6679
  year: 2014
  ident: 3996_CR45
  publication-title: Invert Type Perovskite/Fullerene Hybrid Solar Cells Nanoscale
  doi: 10.1039/C4NR00130C
– volume: 28
  start-page: 2446
  year: 2016
  ident: 3996_CR16
  publication-title: Adv Mater
  doi: 10.1002/adma.201503832
– volume: 10
  start-page: 604
  year: 2017
  ident: 3996_CR21
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE03352K
– volume: 6
  start-page: 7497
  year: 2015
  ident: 3996_CR19
  publication-title: Nat Commun
  doi: 10.1038/ncomms8497
SSID ssj0002872855
ssj0047076
Score 2.4053102
Snippet The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment...
The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment...
Abstract The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 48
SubjectTerms Carrier mobility
cations
Charge transport
Chemistry and Materials Science
Crystal defects
Current carriers
Electric potential
energy
Energy charge
Glass substrates
Grain boundaries
Heterogeneity
Hysteresis
Ion migration
longevity
Materials Science
Microscopy
Molecular Medicine
Nanochemistry
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optoelectronic devices
Perovskite thin film
Perovskites
Photoconductive atomic force microscopy
Photoelectric effect
Photovoltaic cells
Physical characteristics
Solar cells
Thin films
Voltage
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDeBgoLEDazacew4FxBFrSokKoRYqTcrcWw2UklKs-3vZ8ZJtizQHhM7kj1-9sx4Jm8A3gitaoXrzBq0RlieFxUzzmsWnKi5NmiSx-TxL8f6aJl_PlEn04XbMKVVzmdiPKib3tEd-V5GSCH3Q304-8WoahRFV6cSGrdhB49gYxaws39w_PXbfBbnBY_l5dBKEaxQhZx_mzF6b6AIBLrSWc64pFTccks1RQb__5md_2ZP_hVCjZrp8D7cm0zK9OOIgQdwy3cP4e4fRIOP4P2yu_Qt_Xmerij_pUfYeLS_0z6kK-JyRqe7HdK2S4k3_HKgK910vcLn0J7-HB7D8vDg-6cjNlVOYE4V-ZplwRSNb2pT1qgEg9IhaO2FMzxQHE_LJuOuRs-Ph0y6DCWTOV15hRpNOSGCfAKLru_8M0gLnQufhUq4siJ2-oo7h3q_MUp7HnhIQMxCs26iFafqFqc2uhdG21HQFgVto6BtmcDbzTdnI6nGjb33aS02PYkQO77oz3_YaX_Z3KCvrVQweU2FzWVZEwsRvkALr-aiSmB3Xkk77dLBXmEqgdebZtxfFDSpOt9fxD6mJC9ZX99HotpQhmCdwNMRHJvRSsR7aWSRgNmCzdZ0tlu6dhV5vgW63gankcC7GWFXY79eXs9vnuoLuJONoGfC7MJifX7hX6Jhta5fTbvnNxFuHSA
  priority: 102
  providerName: ProQuest
– databaseName: Open Access Journals from Springer Nature
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB1Be-GCQJSSUlCQegOrthM7zgUJVlQVEpxYqTcrdmxtpJKtmm2_nxknm7LQInGMPZbs8Tgzz2M_A5wIrZzCeWYtRiOsLKuGGR80i144rg2G5Onw-Lfv-nxZfr1QFxNNDt2F-T1_L4w-HShPgIBXlowXdGC2fgz7ShQVPdOw0It5PwUjf2mU2t6Lubfpju9JFP33xZV_H4_8I0eaXM_ZM3g6xYz5p3GSn8Oj0L-Aj8v-NnR0mTxf0ZGWNVpCwJA6X8d8RfTMiKO7Ie_6nKjAbwfapc03K_yO3eXP4QCWZ19-LM7Z9BgC86oqN0xGU7WhdaZ26Nei0jFqHYQ3PFJqThet5N4hmONRFl5WqpJeN0Ghk1JeiFi8hL1-3YdXkFe6FEHGRvi6IcL5hnuPrrw1SgceecxAbNVk_cQUTg9WXNqEGIy2o2otqtYm1do6g_dzm6uRJ-Of0p9J-7MkcVynApx6Oy0ZWxqEz0pFUzp6q7yoHRELYQEGbY6LJoPj7dzZaeENVtIPhVCqyuDdXI1LhvIgTR_WN0nG1AR89cMyBXoCZchSMzgczWHubYEmXCOwz8DsGMrOcHZr-m6VqLsFommDw8jgw9am7vr-sL6O_k_8NTyRo9kzYY5hb3N9E95g7LRxb9Oi-QVRPQ7a
  priority: 102
  providerName: Springer Nature
Title Unveiling heterogeneity of hysteresis in perovskite thin films
URI https://link.springer.com/article/10.1186/s11671-024-03996-9
https://www.ncbi.nlm.nih.gov/pubmed/38499837
https://www.proquest.com/docview/2963824075
https://www.proquest.com/docview/2968921106
https://www.proquest.com/docview/3153589514
https://pubmed.ncbi.nlm.nih.gov/PMC10948732
https://doaj.org/article/4833855f84b541439b732855f505b01a
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEB70fNEH8bfVc6ngm4Zr0iZNXwRvub1D8BBxYd9CkyZs5eyK3bu_35m0u-6qpy--FNpOIZ186cyXTL8AvOJKWon9zBrMRlhRlDXTzisWHLeZ0piSx-LxD-fqbF68X8jFzlZfVBM2yAMPjjsqNJIoKYMuLO1YnVeW5GXwAoZum_GYGmHM2yFTX-KUUUlGm79ktDrqacEBmbMoWJZT5W21F4miYP-fsszfiyV_WTGNgWh2D-6OGWT6bmj5fbjhuwdwZ0dX8CG8nXdXvqUfzdMllbusECUe0-10FdIlSTcjx277tO1Skgm_6mkGN10v8Ty0F1_7RzCfnXyenrFxowTmZFmsmQi6bHxjdWUx5gWpQlDKc6ezQMt2Km9E5iwSvSyI3IlSlsKp2qM_c-k4D_ljOOhWnX8KaakK7kWouatqEqOvM-cwzDdaKp-FLCTAN04zblQRp80sLkxkE1qZwdEGHW2io02VwOvtM98GDY2_Wh9TX2wtSf86XkBUmBEV5l-oSOBw05NmHJS9EfSxIQYrE3i5vY3DidZI6s6vLqONrogUq-ttcowSUhOKE3gygGPb2hzhXSHpT0DvwWbvdfbvdO0yynpzZNoaXyOBNxuE_Wz79f569j_89Rxui2FoMK4P4WD9_dK_wGxrbSdwU89OJ3Dr-OT84yc8m4qCjmo6iUMOj6cLPonTZD8AsvAm-g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9QwDNaUcgAODG8CBcIMnMDT2Ikd5wAMr2VLH6d2pjeTODa7MyUpzbYMf4rfiORstizQ3npMomRiWZI_WbIE8IwrWUmcZ1YjGmFZlpdMW6eYt7xKlEZIHpLHt3fUeC_7vC_3V-DXcBaG0ioHmxgMdd1a2iNfFyQp5H7IN4ffGXWNoujq0EKjF4tN9_MHumzdq40POL_PhRh93H0_ZvOuAszKPJsx4XVeu7rSRYULhJfKe6UctzrxFONSaS0SW6FXlHiRWpHLXFhVOonWXlrOfYrfvQSXsxSp6WT66NNg-bM8Cc3sEBNxhu-lwyEdrdY7ineg4y4ylqSU-FssLYShX8D_QO6_uZp_BWzDOji6AdfnADZ-20vcTVhxzS249kdZw9vweq85cVM65x5PKNumRSF1iPbj1scTqhyNLv60i6dNTFXKTzraQI5nE7z204Nv3R3YuxCO3oXVpm3cfYhzlXEnfMltUVIt_DKxFlFGraVyiU98BHxgmrHzIubUS-PABGdGK9Mz2iCjTWC0KSJ4sXjnsC_hcS71O5qLBSWV3w432qOvZq7NJtPo2UvpdVZRG_W0qKjmEd5APFklvIxgbZhJM7cJnTmV4AieLh6jNlOIpmxcexxodEE-uTqbJsVFSmpSogju9cKx-NsUtavQaR6BXhKbpeEsP2mmk1BVnKOjr3EYEbwcJOz038_m14Pzh_oErox3t7fM1sbO5kO4KnoFYFyvwers6Ng9Qkg3qx4HPYrhy0Ur7m9B4Fji
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiTUiBIcIJoYyd2nAMgSrtqKawqxEq9uYljsyu1SWm2Rfw1fh0zeWxZoL31uImziscznu_LjGcAXjApcoHrHBSIRoI4TrJAGSsDZ1geSoWQvEke_zyW25P4477YX4Ff_VkYSqvs98Rmoy4qQ9_Ih5w0heiHGLouLWJvc_Tu-HtAHaQo0tq302hVZNf-_IH0rX6zs4lr_ZLz0dbXD9tB12EgMCKJ5wF3Kilskas0R2fhhHROSsuMCh3Fu2RU8NDkyJBCxyPDE5FwIzMrcOcXhjEX4f9eg9WEWNEAVje2xntfej8QJ2HT2g4REgvwyag_sqPksKboB9J4HgdhRGnA6ZJbbLoH_A_y_pu5-Vf4tvGKo9twq4Oz_vtW_-7Aii3vws0_ihzeg7eT8szO6NS7P6XcmwpV1iL29yvnT6mONBL-We3PSp9qlp_V9DnZn0_xt5sdHtX3YXIlMn0Ag7Iq7SPwExkzy13GTJpRZfwsNAYxR6GEtKELnQesF5o2XUlz6qxxqBtqo6RuBa1R0LoRtE49eLV45rgt6HHp6A1ai8VIKsbdXKhOvunOtnWskOcL4VScU1P1KM2pAhJeQHSZhyzzYL1fSd3tELU-12cPni9uo21TwCYrbXXajFEpMXR58ZgIXZZQZFIePGyVY_G2EdpaqqLEA7WkNkvTWb5TzqZNjXGGtF_hNDx43WvY-btfLK-1y6f6DK6j0epPO-Pdx3CDt_ofMLUOg_nJqX2C-G6eP-0MyYeDq7bd31w-XnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+heterogeneity+of+hysteresis+in+perovskite+thin+films&rft.jtitle=Discover+nano&rft.au=Zou%2C+Zhouyiao&rft.au=Qiu%2C+Haian&rft.au=Shao%2C+Zhibin&rft.date=2024-03-18&rft.issn=2731-9229&rft.eissn=2731-9229&rft.volume=19&rft.issue=1&rft.spage=48&rft_id=info:doi/10.1186%2Fs11671-024-03996-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-9229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-9229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-9229&client=summon