Unveiling heterogeneity of hysteresis in perovskite thin films
The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of...
Saved in:
Published in | Discover nano Vol. 19; no. 1; p. 48 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
18.03.2024
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized
I
–
V
curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells. |
---|---|
AbstractList | The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized
I
–
V
curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells. The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I–V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells. Abstract The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent–voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I–V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells. The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent-voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I-V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent-voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I-V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells. |
ArticleNumber | 48 |
Author | Shao, Zhibin Qiu, Haian Zou, Zhouyiao |
Author_xml | – sequence: 1 givenname: Zhouyiao surname: Zou fullname: Zou, Zhouyiao organization: Industrial Training Center, Shenzhen Polytechnic University – sequence: 2 givenname: Haian surname: Qiu fullname: Qiu, Haian email: qiu20210136@szpu.edu.cn organization: Physics Laboratory, School of Undergraduate Education, Shenzhen Polytechnic University – sequence: 3 givenname: Zhibin surname: Shao fullname: Shao, Zhibin email: zhibin_shao@szpu.edu.cn organization: Industrial Training Center, Shenzhen Polytechnic University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38499837$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstuFDEQHKEg8iA_wAGNxIXLgB_j1wWEIgKRInEhZ8vjae96mbUX27vS_j3eTAJJDuFku7uq3GXXaXMUYoCmeYPRB4wl_5gx5gJ3iPQdokrxTr1oToiguFOEqKMH--PmPOcVQohIQSRjr5pjKnulJBUnzaebsAM_-bBol1AgxQUE8GXfRtcu97lWIPvc-tBuanOXf_kCbVnWs_PTOr9uXjozZTi_W8-am8uvPy--d9c_vl1dfLnuLBN96YiTYoRxkGqwAI5x5zgHbCVyVAnF6UiQHTASyBFqiWCCWG6A9Zgyi7GjZ83VrDtGs9Kb5Ncm7XU0Xt8WYlpok4q3E-heUlpdOtkPld9TNQh6sO0YYgPCpmp9nrU222ENo4VQkpkeiT7uBL_Ui7jTGKleVrGq8P5OIcXfW8hFr322ME0mQNxmTTGjTCpWb_8flCguFcEY8Qp99wS6itsU6rMeUFSSHglWUW8fTv937PsvrQA5A2yKOSdw2vpiio8HM36qLvQhQHoOkK4B0rcB0qpSyRPqvfqzJDqTcgWHBaR_Yz_D-gPC9tY5 |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_4c04645 crossref_primary_10_1016_j_optmat_2024_115402 crossref_primary_10_1002_aelm_202400530 crossref_primary_10_1016_j_mtcomm_2024_111081 |
Cites_doi | 10.1039/C6EE00413J 10.1021/acs.nanolett.5b04157 10.1039/C8EE01447G 10.1038/nenergy.2016.93 10.1021/acsami.1c04806 10.1021/nl080155l 10.1038/ncomms11683 10.1002/admi.202001992 10.1063/1.3595669 10.1021/acsenergylett.8b01627 10.1016/j.joule.2019.09.001 10.1021/jz501392m 10.1021/nl062989e 10.1002/pip.2698 10.1021/acs.jpclett.5b00502 10.1021/jz501697b 10.1039/C4TA05309E 10.1021/acsenergylett.8b01606 10.1002/aenm.201703376 10.1002/adfm.201908920 10.1021/acsaem.8b01222 10.1039/C5TC03109E 10.1039/C5EE01265A 10.1021/jacs.5b03615 10.1063/1.5035351 10.1063/1.4899051 10.1021/acs.jpclett.7b00571 10.1126/science.aaa5333 10.1038/ncomms6784 10.1039/D0NR07476D 10.1021/acs.jpcc.8b06814 10.1021/acs.jpclett.6b00215 10.1039/C8EE01576G 10.1039/C4EE00942H 10.1002/adma.201503406 10.1016/j.mtener.2017.07.014 10.1002/tcr.202100150 10.1002/adma.201805214 10.1039/C4EE04064C 10.1021/nl901358v 10.1016/j.nanoen.2018.02.049 10.1002/anie.201405334 10.1021/acs.jpcc.9b04662 10.1038/ncomms10334 10.1002/adfm.201701924 10.1021/jz500113x 10.1021/acs.accounts.5b00420 10.1021/jz502666j 10.1021/acsami.8b07298 10.1038/ncomms8081 10.1002/adfm.202107823 10.1021/acsnano.6b05825 10.1039/C4NR00130C 10.1002/adma.201503832 10.1039/C6EE03352K 10.1038/ncomms8497 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | C6C AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s11671-024-03996-9 |
DatabaseName | Open Access Journals from Springer Nature CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Materials Science Database (NC LIVE) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2731-9229 1556-276X |
EndPage | 48 |
ExternalDocumentID | oai_doaj_org_article_4833855f84b541439b732855f505b01a PMC10948732 38499837 10_1186_s11671_024_03996_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12004234 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Shenzhen Polytechnic grantid: 6022312037K funderid: http://dx.doi.org/10.13039/100012840 – fundername: National Natural Science Foundation of China grantid: 12004234 – fundername: Shenzhen Polytechnic grantid: 6022312037K |
GroupedDBID | .4S 0R~ AAJSJ AAKKN ABEEZ ACACY ACULB ACVER AFGXO ALMA_UNASSIGNED_HOLDINGS ARCSS C24 C6C EBLON EBS EDO GROUPED_DOAJ MM. M~E PGMZT RPM RSV SOJ TUS AASML AAYXX CITATION NPM .86 .DC 123 29M 2WC 4.4 40G 5VS 6NX 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH AAFWJ ABJCF ABMNI ABUWG ACGFO ACGFS ACIWK ACPRK ADBBV ADRAZ AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHYZX AMKLP AMTXH AOIJS AZQEC BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI CAG CCPQU CS3 D1I DU5 DWQXO F28 F5P FR3 GNUQQ GX1 H8D H8G HCIFZ HH5 HYE HZ~ I09 IZQ JG9 JQ2 KB. KDC KQ8 KR7 L7M LK8 L~C L~D M7P O5R O5S OK1 OVT P2P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RNS RPX SCM SDH TR2 U2A ~KM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c574t-2f87dedb89bceef56ff66e1c80f397963d20cb1070f23c27572c6ae54135c11f3 |
IEDL.DBID | DOA |
ISSN | 2731-9229 1931-7573 |
IngestDate | Wed Aug 27 01:29:50 EDT 2025 Thu Aug 21 18:34:50 EDT 2025 Fri Jul 11 09:50:37 EDT 2025 Fri Jul 11 10:38:49 EDT 2025 Fri Jul 25 09:38:46 EDT 2025 Mon Jul 21 06:00:35 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Tue Jul 01 04:17:23 EDT 2025 Fri Feb 21 02:39:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Perovskite thin film Photoconductive atomic force microscopy Charge transport Ion migration Hysteresis |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c574t-2f87dedb89bceef56ff66e1c80f397963d20cb1070f23c27572c6ae54135c11f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/4833855f84b541439b732855f505b01a |
PMID | 38499837 |
PQID | 2963824075 |
PQPubID | 2034687 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4833855f84b541439b732855f505b01a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10948732 proquest_miscellaneous_3153589514 proquest_miscellaneous_2968921106 proquest_journals_2963824075 pubmed_primary_38499837 crossref_citationtrail_10_1186_s11671_024_03996_9 crossref_primary_10_1186_s11671_024_03996_9 springer_journals_10_1186_s11671_024_03996_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-18 |
PublicationDateYYYYMMDD | 2024-03-18 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Switzerland – name: Heidelberg |
PublicationTitle | Discover nano |
PublicationTitleAbbrev | Discover Nano |
PublicationTitleAlternate | Discov Nano |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | HaruyamaJSodeyamaKHanLTateyamaYFirst-principles study of ion diffusion in perovskite solar cell sensitizersJ Am Chem Soc201513710048100511:CAS:528:DC%2BC2MXhtlSmt7fP10.1021/jacs.5b0361526258577 PingreeLSCReidOGGingerDSImaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cellsNano Lett20099294629522009NanoL...9.2946P1:CAS:528:DC%2BD1MXot12mt7Y%3D10.1021/nl901358v19588929 QiuHMativetskyJMNanoscale light- and voltage-induced lattice strain in perovskite thin filmsNanoscale2021137461:CAS:528:DC%2BB3MXjtFCqtw%3D%3D10.1039/D0NR07476D33410853 BaiYYuHZhuZJiangKZhangTZhaoNYangSYanHHigh performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layerJ Mater Chem A20153909891021:CAS:528:DC%2BC2cXitFCrtbzK10.1039/C4TA05309E NREL Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 15 Oct 2023. KutesYZhouYBosseJLSteffesJPadtureNPHueyBDMapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscaleNano Lett201616343434412016NanoL..16.3434K1:CAS:528:DC%2BC28XmslGqsbc%3D10.1021/acs.nanolett.5b0415727116651 WuFPathakRChenKWangGBahramiBZhangWQiaoQInverted current–voltage hysteresis in perovskite solar cellsACS Energy Lett2018324571:CAS:528:DC%2BC1cXhslCmsbnP10.1021/acsenergylett.8b01606 GaoPGrätzelMNazeeruddinMKOrganohalide lead perovskites for photovoltaic applicationsEnergy Environ Sci20147244824631:CAS:528:DC%2BC2cXht1CltL3I10.1039/C4EE00942H QiuHDongXShimJHChoJMativetskyJMEffective charge collection area during conductive and photoconductive atomic force microscopy measurementsAppl Phys Lett20181122631022018ApPhL.112z3102Q1:CAS:528:DC%2BC1cXht1aksbnJ10.1063/1.5035351 DomanskiKRooseBMatsuiTSalibaMTurren-CruzSHCorrea-BaenaJPCarmonaCRRichardsonGFosterJMDe AngelisFBallJMPetrozzaAMineNNazeeruddinMKTressWGrätzelMSteinerUHagfeldtAAbateAMigration of cations induces reversible performance losses over day/night cycling in perovskite solar cellsEnergy Environ Sci2017106046131:CAS:528:DC%2BC2sXht1Kqsrw%3D10.1039/C6EE03352K LeeJWBaeSHDe MarcoNHsiehYTDaiZYangYThe role of grain boundaries in perovskite solar cellsMater Today Energy2018714916010.1016/j.mtener.2017.07.014 YuanYHuangJIon migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stabilityAcc Chem Res2016492862931:CAS:528:DC%2BC28XitVyhtLk%3D10.1021/acs.accounts.5b0042026820627 SnaithHJAbateABallJMEperonGELeijtensTNoelNKStranksSDWangJTWojciechowskiKZhangWAnomalous hysteresis in perovskite solar cellsJ Phys Chem Lett20145151115151:CAS:528:DC%2BC2cXkslSlur4%3D10.1021/jz500113x26270088 MeloniSMoehlTTressWFranckeviciusMSalibaMLeeYHGaoPNazeeruddinMKZakeeruddinSMRothlisbergerUGraetzelMIonic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cellsNat Commun20167103342016NatCo...710334M1:CAS:528:DC%2BC28XitlChsbc%3D10.1038/ncomms10334268526854748116 HamadaniBHGergel-HackettNHaneyPMZhitenevNBImaging of nanoscale charge transport in bulk heterojunction solar cellsJ Appl Phys20111091245012011JAP...109l4501H1:CAS:528:DC%2BC3MXns1Ohu7s%3D10.1063/1.3595669 WeberSALHermesIMTurren-CruzSHGortCBergmannVWGilsonLHagfeldtAGraetzelMTressWBergerRHow the formation of interfacial charge causes hysteresis in perovskite solar cellsEnergy Environ Sci201811240424131:CAS:528:DC%2BC1cXhtVKqs7jK10.1039/C8EE01447G EperonGEMoermanDGingerDSAnticorrelation between local photoluminescence and photocurrent suggests variability in contact to active layer in perovskite solar cellsACS Nano20161010258102661:CAS:528:DC%2BC28Xhs1yltbvK10.1021/acsnano.6b0582527749044 ChenBYangMPriyaSZhuKOrigin of J–V hysteresis in perovskite solar cellsJ Phys Chem Lett201679059171:CAS:528:DC%2BC28XislSnsL4%3D10.1021/acs.jpclett.6b0021526886052 KutesYYeLZhouYPangSHueyBDPadtureNPDirect observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin filmsJ Phys Chem Lett20145333533391:CAS:528:DC%2BC2cXhsFCjsbrO10.1021/jz501697b26278441 XuJBuinAIpAHLiWVoznyyOCominRYuanMJeonSNingZMcDowellJJKanjanaboosPSunJPLanXQuanLNKimDHHillIGMaksymovychPSargentEHPerovskite-fullerene hybrid materials suppress hysteresis in planar diodesNat Commun2015670812015NatCo...6.7081X1:CAS:528:DC%2BC2MXhtF2lurjE10.1038/ncomms808125953105 WaliQAamirMUllahAIftikharFJKhanMEAkhtarJYangSFundamentals of hysteresis in perovskite solar cells: from structure-property relationship to neoteric breakthroughsChem Rec202222e2021001501:CAS:528:DC%2BB3MXhvVOktbnN10.1002/tcr.20210015034418290 LiWWangDHouWLiRSunWWuJLanZHigh-efficiency, low-hysteresis planar perovskite solar cells by inserting the Nabr interlayerACS Appl Mater Interfaces202113202511:CAS:528:DC%2BB3MXpsFGgtLs%3D10.1021/acsami.1c0480633902287 HabisreutingerSNNoelNKSnaithHJHysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cellsACS Energy Lett20183247224761:CAS:528:DC%2BC1cXhslegsbnI10.1021/acsenergylett.8b01627 deQuilettesDWZhangWBurlakovVMGrahamDJLeijtensTOsherovABulovicVSnaithHJGingerDSStranksSDPhoto-induced halide redistribution in organic-inorganic perovskite filmsNat Commun20167116832016NatCo...711683D1:CAS:528:DC%2BC28Xos12lu7s%3D10.1038/ncomms11683272167034890321 CourtierNECaveJMFosterJMWalkerABRichardsonGHow transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration modelEnergy Environ Sci2019123964091:CAS:528:DC%2BC1cXisF2ht7%2FE10.1039/C8EE01576G JariwalaSSunHAdhyaksaGWPLofAGarnettECGingerDSLocal crystal misorientation influences non-radiative recombination in halide perovskitesJoule20193304830601:CAS:528:DC%2BC1MXisV2ktr7K10.1016/j.joule.2019.09.001 SenocrateAMoudrakovskiIAcartürkTMerkleRKimGYStarkeUGrätzelMMaierJSlow CH3NH3+ diffusion in CH3NH3PbI3 under light measured by solid-state NMR and tracer diffusionJ Phys Chem C201812221803218061:CAS:528:DC%2BC1cXhs1ChsLvF10.1021/acs.jpcc.8b06814 GuerreroABouAMattGAlmoraOHeumüllerTGarcia-BelmonteGBisquertJHouYBrabecCSwitching off hysteresis in perovskite solar cells by fine-tuning energy levels of extraction layersAdv Energy Mater2018817033761:CAS:528:DC%2BC1cXotVSnu70%3D10.1002/aenm.201703376 EamesCFrostJMBarnesPRO'ReganBCWalshAIslamMSIonic transport in hybrid lead iodide perovskite solar cellsNat Commun2015674972015NatCo...6.7497E1:CAS:528:DC%2BC2MXhtF2ktr3L10.1038/ncomms849726105623 ShaoYFangYLiTWangQDongQDengYYuanYWeiHWangMGruvermanAShieldJHuangJGrain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite filmsEnergy Environ Sci20169175217591:CAS:528:DC%2BC28XksFKmsrc%3D10.1039/C6EE00413J deQuilettesDWVorpahlSMStranksSDNagaokaHEperonGEZifferMESnaithHJGingerDSImpact of microstructure on local carrier lifetime in perovskite solar cellsScience20153486836862015Sci...348..683D1:CAS:528:DC%2BC2MXnslGjtL4%3D10.1126/science.aaa533325931446 AzpirozJMMosconiEBisquertJAngelisFDDefect migration in methylammonium lead iodide and its role in perovskite solar cell operationEnergy Environ Sci20158211821271:CAS:528:DC%2BC2MXpt1Sltb4%3D10.1039/C5EE01265A ShenHJacobsDAWuYDuongTPengJWenXFuXKaruturiSKWhiteTPWeberKCatchpoleKRInverted hysteresis in CH3NH3PbI3 solar cells: role of stoichiometry and band alignmentJ Phys Chem Lett20178267226801:CAS:528:DC%2BC2sXos1amsr4%3D10.1021/acs.jpclett.7b0057128557465 XiaoMHuangFHuangWDkhissiYZhuYEtheridgeJGray-WealeABachUChengYBSpicciaLA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew Chem201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334 LiuSZhengFKoocherNZTakenakaHWangFRappeAMFerroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskitesJ Phys Chem Lett201566936991:CAS:528:DC%2BC2MXhtlyqsrc%3D10.1021/jz502666j26262488 KangDHParkNGOn the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresisAdv Mater201931e18052141:CAS:528:DC%2BC1MXjt1Wjs78%3D10.1002/adma.20180521430773704 WenXFengYHuangSHuangFChengYGreenMHo-BaillieADefect trapping states and charge carrier recombination in organic–inorganic halide perovskitesJ Mater Chem C201647938001:CAS:528:DC%2BC2MXitVCqsr3O10.1039/C5TC03109E CollMGomezAMas-MarzaEAlmoraOGarcia-BelmonteGCampoy-QuilesMBisquertJPolarization switching and light-enhanced piezoelectricity in lead halide perovskitesJ Phys Chem Lett20156140814131:CAS:528:DC%2BC2MXlsFaktLg%3D10.1021/acs.jpclett.5b0050226263143 RossiDPecchiaAMaurMADLeonhardTRöhmHHoffmannMJColsmannACarloADOn the importance of ferroelectric domains for the performance of perovskite solar cellsNano Energy20184820261:CAS:528:DC%2BC1cXlt1Oms78%3D10.1016/j.nanoen.2018.02.049 SeolDJeongAHanMHSeoSYooTSChoiWSJungHSShinHKimYOrigin of hysteresis in CH3NH3PbI3 perovskite thin filmsAdv Funct Mater20172717019241:CAS:528:DC%2BC2sXht1Gku7%2FE10.1002/adfm.201701924 KimHBChoiHJeongJKimSWalkerBSongSKimJYMixed solvents for the optimization of morphology in solution-processedInvert Type Perovskite/Fullerene Hybrid Solar Cells Nanoscale20146667966831:CAS:528:DC%2BC2cXptVejtLw%3D10.1039/C4NR00130C QiuHShimJHChoJMativetskyJMNanoscale insight into performance loss mechanisms in P3HT:ZnO nanorod solar cellsACS Appl Energy Mater20181617261801:CAS:528:DC%2BC1cXhvVWit7jF10.1021/acsaem.8b01222 EmaraJSchnierTPourdavoudNRiedlTMeerholzKOlthofSImpact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskitesAdv Mater2016285535591:CAS:528:DC%2BC2MXhvFentrvK10.1002/adma.20150340626604080 KimHSParkNGParameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layerJ Phys Chem Lett20145292729341:CAS:528:DC%2BC2cXhtleqtrrM10.1021/jz501392m26278238 LeeHGaiaschiSChaponPTondelierDBouréeJEBonnassieuxYDeryckeVGeffroyBEffect of halide ion migration on the electrical properties of methylammonium lead tri-iodide perovskite solar cellsJ Phys Chem C201912317728177341 SY Leblebici (3996_CR32) 2016; 1 HB Kim (3996_CR45) 2014; 6 X Wen (3996_CR38) 2016; 4 H Qiu (3996_CR41) 2018; 1 F Wu (3996_CR53) 2018; 10 B Chen (3996_CR26) 2016; 7 Y Kutes (3996_CR42) 2016; 24 DW deQuilettes (3996_CR37) 2015; 348 K Domanski (3996_CR21) 2017; 10 S Liu (3996_CR9) 2015; 6 M Coll (3996_CR10) 2015; 6 H Lee (3996_CR17) 2019; 123 S Jariwala (3996_CR35) 2019; 3 A Senocrate (3996_CR23) 2018; 122 Q Xiong (3996_CR20) 2021; 32 Y Kutes (3996_CR33) 2016; 16 HJ Snaith (3996_CR3) 2014; 5 H Qiu (3996_CR49) 2018; 112 Q Wang (3996_CR51) 2014; 105 BH Hamadani (3996_CR47) 2011; 109 M Xiao (3996_CR36) 2014; 53 C Eames (3996_CR19) 2015; 6 J Haruyama (3996_CR24) 2015; 137 H Qiu (3996_CR54) 2021; 13 Y Bai (3996_CR46) 2015; 3 OG Reid (3996_CR48) 2008; 8 SN Habisreutinger (3996_CR2) 2018; 3 DC Coffey (3996_CR40) 2007; 7 Y Zhao (3996_CR15) 2015; 8 DW deQuilettes (3996_CR18) 2016; 7 LSC Pingree (3996_CR39) 2009; 9 JW Lee (3996_CR56) 2018; 7 NE Courtier (3996_CR28) 2019; 12 Y Shao (3996_CR6) 2014; 5 P Gao (3996_CR44) 2014; 7 HS Kim (3996_CR4) 2014; 5 Y Shao (3996_CR13) 2016; 9 F Wu (3996_CR52) 2018; 3 JM Azpiroz (3996_CR22) 2015; 8 S Meloni (3996_CR55) 2016; 7 C Li (3996_CR16) 2016; 28 H Qiu (3996_CR43) 2021; 8 Q Wali (3996_CR5) 2022; 22 J Xu (3996_CR7) 2015; 6 J Emara (3996_CR50) 2016; 28 Y Kutes (3996_CR12) 2014; 5 D Rossi (3996_CR11) 2018; 48 W Li (3996_CR27) 2021; 13 D Seol (3996_CR14) 2017; 27 3996_CR1 Y Yuan (3996_CR57) 2016; 49 A Guerrero (3996_CR25) 2018; 8 DH Kang (3996_CR30) 2019; 31 SAL Weber (3996_CR29) 2018; 11 GE Eperon (3996_CR34) 2016; 10 Y Zhong (3996_CR8) 2020; 30 H Shen (3996_CR31) 2017; 8 |
References_xml | – reference: ShenHJacobsDAWuYDuongTPengJWenXFuXKaruturiSKWhiteTPWeberKCatchpoleKRInverted hysteresis in CH3NH3PbI3 solar cells: role of stoichiometry and band alignmentJ Phys Chem Lett20178267226801:CAS:528:DC%2BC2sXos1amsr4%3D10.1021/acs.jpclett.7b0057128557465 – reference: EmaraJSchnierTPourdavoudNRiedlTMeerholzKOlthofSImpact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskitesAdv Mater2016285535591:CAS:528:DC%2BC2MXhvFentrvK10.1002/adma.20150340626604080 – reference: MeloniSMoehlTTressWFranckeviciusMSalibaMLeeYHGaoPNazeeruddinMKZakeeruddinSMRothlisbergerUGraetzelMIonic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cellsNat Commun20167103342016NatCo...710334M1:CAS:528:DC%2BC28XitlChsbc%3D10.1038/ncomms10334268526854748116 – reference: ShaoYFangYLiTWangQDongQDengYYuanYWeiHWangMGruvermanAShieldJHuangJGrain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite filmsEnergy Environ Sci20169175217591:CAS:528:DC%2BC28XksFKmsrc%3D10.1039/C6EE00413J – reference: XiongQWangCZhouQWangLWangXYangLDingJChenCWuJLiXGaoPRear interface engineering to suppress migration of iodide ions for efficient perovskite solar cells with minimized hysteresisAdv Funct Mater20213221078231:CAS:528:DC%2BB3MXisVehtr7E10.1002/adfm.202107823 – reference: deQuilettesDWZhangWBurlakovVMGrahamDJLeijtensTOsherovABulovicVSnaithHJGingerDSStranksSDPhoto-induced halide redistribution in organic-inorganic perovskite filmsNat Commun20167116832016NatCo...711683D1:CAS:528:DC%2BC28Xos12lu7s%3D10.1038/ncomms11683272167034890321 – reference: ReidOGMunechikaKGingerDSSpace charge limited current measurements on conjugated polymer films using conductive atomic force microscopyNano Lett2008816022008NanoL...8.1602R1:CAS:528:DC%2BD1cXltlWgtrs%3D10.1021/nl080155l18447400 – reference: WeberSALHermesIMTurren-CruzSHGortCBergmannVWGilsonLHagfeldtAGraetzelMTressWBergerRHow the formation of interfacial charge causes hysteresis in perovskite solar cellsEnergy Environ Sci201811240424131:CAS:528:DC%2BC1cXhtVKqs7jK10.1039/C8EE01447G – reference: QiuHMativetskyJMElucidating the role of ion migration and band bending in perovskite solar cell function at grain boundaries via multimodal nanoscale mappingAdv Mater Interfaces2021820019921:CAS:528:DC%2BB3MXhtVeisrfF10.1002/admi.202001992 – reference: DomanskiKRooseBMatsuiTSalibaMTurren-CruzSHCorrea-BaenaJPCarmonaCRRichardsonGFosterJMDe AngelisFBallJMPetrozzaAMineNNazeeruddinMKTressWGrätzelMSteinerUHagfeldtAAbateAMigration of cations induces reversible performance losses over day/night cycling in perovskite solar cellsEnergy Environ Sci2017106046131:CAS:528:DC%2BC2sXht1Kqsrw%3D10.1039/C6EE03352K – reference: GuerreroABouAMattGAlmoraOHeumüllerTGarcia-BelmonteGBisquertJHouYBrabecCSwitching off hysteresis in perovskite solar cells by fine-tuning energy levels of extraction layersAdv Energy Mater2018817033761:CAS:528:DC%2BC1cXotVSnu70%3D10.1002/aenm.201703376 – reference: LeblebiciSYLeppertLLiYReyes-LilloSEWickenburgSWongELeeJMelliMZieglerDAngellDKOgletreeDFAshbyPDTomaFMNeatonJBSharpIDWeber-BargioniAFacet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskiteNat Energy20161160932016NatEn...116093L1:CAS:528:DC%2BC2sXhtVersrs%3D10.1038/nenergy.2016.93 – reference: KimHSParkNGParameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layerJ Phys Chem Lett20145292729341:CAS:528:DC%2BC2cXhtleqtrrM10.1021/jz501392m26278238 – reference: WaliQAamirMUllahAIftikharFJKhanMEAkhtarJYangSFundamentals of hysteresis in perovskite solar cells: from structure-property relationship to neoteric breakthroughsChem Rec202222e2021001501:CAS:528:DC%2BB3MXhvVOktbnN10.1002/tcr.20210015034418290 – reference: RossiDPecchiaAMaurMADLeonhardTRöhmHHoffmannMJColsmannACarloADOn the importance of ferroelectric domains for the performance of perovskite solar cellsNano Energy20184820261:CAS:528:DC%2BC1cXlt1Oms78%3D10.1016/j.nanoen.2018.02.049 – reference: GaoPGrätzelMNazeeruddinMKOrganohalide lead perovskites for photovoltaic applicationsEnergy Environ Sci20147244824631:CAS:528:DC%2BC2cXht1CltL3I10.1039/C4EE00942H – reference: LiCTscheuschnerSPaulusFHopkinsonPEKiesslingJKohlerAVaynzofYHuettnerSIodine migration and its effect on hysteresis in perovskite solar cellsAdv Mater201628244624541:CAS:528:DC%2BC28XhslSqsLg%3D10.1002/adma.20150383226823239 – reference: LeeHGaiaschiSChaponPTondelierDBouréeJEBonnassieuxYDeryckeVGeffroyBEffect of halide ion migration on the electrical properties of methylammonium lead tri-iodide perovskite solar cellsJ Phys Chem C201912317728177341:CAS:528:DC%2BC1MXhtlSntbjE10.1021/acs.jpcc.9b04662 – reference: QiuHMativetskyJMNanoscale light- and voltage-induced lattice strain in perovskite thin filmsNanoscale2021137461:CAS:528:DC%2BB3MXjtFCqtw%3D%3D10.1039/D0NR07476D33410853 – reference: NREL Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 15 Oct 2023. – reference: KutesYZhouYBosseJLSteffesJPadtureNPHueyBDMapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscaleNano Lett201616343434412016NanoL..16.3434K1:CAS:528:DC%2BC28XmslGqsbc%3D10.1021/acs.nanolett.5b0415727116651 – reference: deQuilettesDWVorpahlSMStranksSDNagaokaHEperonGEZifferMESnaithHJGingerDSImpact of microstructure on local carrier lifetime in perovskite solar cellsScience20153486836862015Sci...348..683D1:CAS:528:DC%2BC2MXnslGjtL4%3D10.1126/science.aaa533325931446 – reference: KutesYYeLZhouYPangSHueyBDPadtureNPDirect observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin filmsJ Phys Chem Lett20145333533391:CAS:528:DC%2BC2cXhsFCjsbrO10.1021/jz501697b26278441 – reference: LiuSZhengFKoocherNZTakenakaHWangFRappeAMFerroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskitesJ Phys Chem Lett201566936991:CAS:528:DC%2BC2MXhtlyqsrc%3D10.1021/jz502666j26262488 – reference: LeeJWBaeSHDe MarcoNHsiehYTDaiZYangYThe role of grain boundaries in perovskite solar cellsMater Today Energy2018714916010.1016/j.mtener.2017.07.014 – reference: HabisreutingerSNNoelNKSnaithHJHysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cellsACS Energy Lett20183247224761:CAS:528:DC%2BC1cXhslegsbnI10.1021/acsenergylett.8b01627 – reference: WangQShaoYXieHLyuLLiuXGaoYHuangJQualifying composition dependent P and N self-doping in CH3NH3PbI3Appl Phys Lett20141051635082014ApPhL.105p3508W1:CAS:528:DC%2BC2cXhvVSqsL%2FJ10.1063/1.4899051 – reference: YuanYHuangJIon migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stabilityAcc Chem Res2016492862931:CAS:528:DC%2BC28XitVyhtLk%3D10.1021/acs.accounts.5b0042026820627 – reference: ZhongYHufnagelMThelakkatMLiCHuettnerSRole of PCBM in the suppression of hysteresis in perovskite solar cellsAdv Funct Mater20203019089201:CAS:528:DC%2BB3cXmvVSiur4%3D10.1002/adfm.201908920 – reference: EperonGEMoermanDGingerDSAnticorrelation between local photoluminescence and photocurrent suggests variability in contact to active layer in perovskite solar cellsACS Nano20161010258102661:CAS:528:DC%2BC28Xhs1yltbvK10.1021/acsnano.6b0582527749044 – reference: SnaithHJAbateABallJMEperonGELeijtensTNoelNKStranksSDWangJTWojciechowskiKZhangWAnomalous hysteresis in perovskite solar cellsJ Phys Chem Lett20145151115151:CAS:528:DC%2BC2cXkslSlur4%3D10.1021/jz500113x26270088 – reference: EamesCFrostJMBarnesPRO'ReganBCWalshAIslamMSIonic transport in hybrid lead iodide perovskite solar cellsNat Commun2015674972015NatCo...6.7497E1:CAS:528:DC%2BC2MXhtF2ktr3L10.1038/ncomms849726105623 – reference: CollMGomezAMas-MarzaEAlmoraOGarcia-BelmonteGCampoy-QuilesMBisquertJPolarization switching and light-enhanced piezoelectricity in lead halide perovskitesJ Phys Chem Lett20156140814131:CAS:528:DC%2BC2MXlsFaktLg%3D10.1021/acs.jpclett.5b0050226263143 – reference: ChenBYangMPriyaSZhuKOrigin of J–V hysteresis in perovskite solar cellsJ Phys Chem Lett201679059171:CAS:528:DC%2BC28XislSnsL4%3D10.1021/acs.jpclett.6b0021526886052 – reference: WuFBahramiBChenKMabroukSPathakRTongYLiXZhangTJianRQiaoQBias-dependent normal and inverted J–V hysteresis in perovskite solar cellsACS Appl Mater Interfaces20181025604256131:CAS:528:DC%2BC1cXht12mtrrM10.1021/acsami.8b0729829986137 – reference: SenocrateAMoudrakovskiIAcartürkTMerkleRKimGYStarkeUGrätzelMMaierJSlow CH3NH3+ diffusion in CH3NH3PbI3 under light measured by solid-state NMR and tracer diffusionJ Phys Chem C201812221803218061:CAS:528:DC%2BC1cXhs1ChsLvF10.1021/acs.jpcc.8b06814 – reference: QiuHDongXShimJHChoJMativetskyJMEffective charge collection area during conductive and photoconductive atomic force microscopy measurementsAppl Phys Lett20181122631022018ApPhL.112z3102Q1:CAS:528:DC%2BC1cXht1aksbnJ10.1063/1.5035351 – reference: PingreeLSCReidOGGingerDSImaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cellsNano Lett20099294629522009NanoL...9.2946P1:CAS:528:DC%2BD1MXot12mt7Y%3D10.1021/nl901358v19588929 – reference: ZhaoYLiangCZhangHLiDTianDLiGJingXZhangWXiaoWLiuQZhangFHeZAnomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskitesEnergy Environ Sci20158125612601:CAS:528:DC%2BC2MXislegsLw%3D10.1039/C4EE04064C – reference: XiaoMHuangFHuangWDkhissiYZhuYEtheridgeJGray-WealeABachUChengYBSpicciaLA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew Chem201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334 – reference: CourtierNECaveJMFosterJMWalkerABRichardsonGHow transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration modelEnergy Environ Sci2019123964091:CAS:528:DC%2BC1cXisF2ht7%2FE10.1039/C8EE01576G – reference: KangDHParkNGOn the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresisAdv Mater201931e18052141:CAS:528:DC%2BC1MXjt1Wjs78%3D10.1002/adma.20180521430773704 – reference: CoffeyDCReidOGRodovskyDBBartholomewGPGingerDSMapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopyNano Lett200777387442007NanoL...7..738C1:CAS:528:DC%2BD2sXhsFOrs7o%3D10.1021/nl062989e17295549 – reference: KimHBChoiHJeongJKimSWalkerBSongSKimJYMixed solvents for the optimization of morphology in solution-processedInvert Type Perovskite/Fullerene Hybrid Solar Cells Nanoscale20146667966831:CAS:528:DC%2BC2cXptVejtLw%3D10.1039/C4NR00130C – reference: WenXFengYHuangSHuangFChengYGreenMHo-BaillieADefect trapping states and charge carrier recombination in organic–inorganic halide perovskitesJ Mater Chem C201647938001:CAS:528:DC%2BC2MXitVCqsr3O10.1039/C5TC03109E – reference: KutesYAguirreBABosseJLCruz-CampaJLZubiaDHueyBDMapping photovoltaic performance with nanoscale resolutionProg Photovolt Res Appl2016243153251:CAS:528:DC%2BC28XisVCmtLg%3D10.1002/pip.2698 – reference: AzpirozJMMosconiEBisquertJAngelisFDDefect migration in methylammonium lead iodide and its role in perovskite solar cell operationEnergy Environ Sci20158211821271:CAS:528:DC%2BC2MXpt1Sltb4%3D10.1039/C5EE01265A – reference: BaiYYuHZhuZJiangKZhangTZhaoNYangSYanHHigh performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layerJ Mater Chem A20153909891021:CAS:528:DC%2BC2cXitFCrtbzK10.1039/C4TA05309E – reference: ShaoYXiaoZBiCYuanYHuangJOrigin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cellsNat Commun2014557842014NatCo...5.5784S1:CAS:528:DC%2BC2MXksVemt7c%3D10.1038/ncomms678425503258 – reference: JariwalaSSunHAdhyaksaGWPLofAGarnettECGingerDSLocal crystal misorientation influences non-radiative recombination in halide perovskitesJoule20193304830601:CAS:528:DC%2BC1MXisV2ktr7K10.1016/j.joule.2019.09.001 – reference: WuFPathakRChenKWangGBahramiBZhangWQiaoQInverted current–voltage hysteresis in perovskite solar cellsACS Energy Lett2018324571:CAS:528:DC%2BC1cXhslCmsbnP10.1021/acsenergylett.8b01606 – reference: XuJBuinAIpAHLiWVoznyyOCominRYuanMJeonSNingZMcDowellJJKanjanaboosPSunJPLanXQuanLNKimDHHillIGMaksymovychPSargentEHPerovskite-fullerene hybrid materials suppress hysteresis in planar diodesNat Commun2015670812015NatCo...6.7081X1:CAS:528:DC%2BC2MXhtF2lurjE10.1038/ncomms808125953105 – reference: QiuHShimJHChoJMativetskyJMNanoscale insight into performance loss mechanisms in P3HT:ZnO nanorod solar cellsACS Appl Energy Mater20181617261801:CAS:528:DC%2BC1cXhvVWit7jF10.1021/acsaem.8b01222 – reference: SeolDJeongAHanMHSeoSYooTSChoiWSJungHSShinHKimYOrigin of hysteresis in CH3NH3PbI3 perovskite thin filmsAdv Funct Mater20172717019241:CAS:528:DC%2BC2sXht1Gku7%2FE10.1002/adfm.201701924 – reference: HamadaniBHGergel-HackettNHaneyPMZhitenevNBImaging of nanoscale charge transport in bulk heterojunction solar cellsJ Appl Phys20111091245012011JAP...109l4501H1:CAS:528:DC%2BC3MXns1Ohu7s%3D10.1063/1.3595669 – reference: HaruyamaJSodeyamaKHanLTateyamaYFirst-principles study of ion diffusion in perovskite solar cell sensitizersJ Am Chem Soc201513710048100511:CAS:528:DC%2BC2MXhtlSmt7fP10.1021/jacs.5b0361526258577 – reference: LiWWangDHouWLiRSunWWuJLanZHigh-efficiency, low-hysteresis planar perovskite solar cells by inserting the Nabr interlayerACS Appl Mater Interfaces202113202511:CAS:528:DC%2BB3MXpsFGgtLs%3D10.1021/acsami.1c0480633902287 – volume: 9 start-page: 1752 year: 2016 ident: 3996_CR13 publication-title: Energy Environ Sci doi: 10.1039/C6EE00413J – volume: 16 start-page: 3434 year: 2016 ident: 3996_CR33 publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b04157 – volume: 11 start-page: 2404 year: 2018 ident: 3996_CR29 publication-title: Energy Environ Sci doi: 10.1039/C8EE01447G – volume: 1 start-page: 16093 year: 2016 ident: 3996_CR32 publication-title: Nat Energy doi: 10.1038/nenergy.2016.93 – volume: 13 start-page: 20251 year: 2021 ident: 3996_CR27 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c04806 – volume: 8 start-page: 1602 year: 2008 ident: 3996_CR48 publication-title: Nano Lett doi: 10.1021/nl080155l – volume: 7 start-page: 11683 year: 2016 ident: 3996_CR18 publication-title: Nat Commun doi: 10.1038/ncomms11683 – volume: 8 start-page: 2001992 year: 2021 ident: 3996_CR43 publication-title: Adv Mater Interfaces doi: 10.1002/admi.202001992 – volume: 109 start-page: 124501 year: 2011 ident: 3996_CR47 publication-title: J Appl Phys doi: 10.1063/1.3595669 – volume: 3 start-page: 2472 year: 2018 ident: 3996_CR2 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b01627 – volume: 3 start-page: 3048 year: 2019 ident: 3996_CR35 publication-title: Joule doi: 10.1016/j.joule.2019.09.001 – volume: 5 start-page: 2927 year: 2014 ident: 3996_CR4 publication-title: J Phys Chem Lett doi: 10.1021/jz501392m – volume: 7 start-page: 738 year: 2007 ident: 3996_CR40 publication-title: Nano Lett doi: 10.1021/nl062989e – volume: 24 start-page: 315 year: 2016 ident: 3996_CR42 publication-title: Prog Photovolt Res Appl doi: 10.1002/pip.2698 – volume: 6 start-page: 1408 year: 2015 ident: 3996_CR10 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b00502 – volume: 5 start-page: 3335 year: 2014 ident: 3996_CR12 publication-title: J Phys Chem Lett doi: 10.1021/jz501697b – volume: 3 start-page: 9098 year: 2015 ident: 3996_CR46 publication-title: J Mater Chem A doi: 10.1039/C4TA05309E – volume: 3 start-page: 2457 year: 2018 ident: 3996_CR52 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.8b01606 – volume: 8 start-page: 1703376 year: 2018 ident: 3996_CR25 publication-title: Adv Energy Mater doi: 10.1002/aenm.201703376 – volume: 30 start-page: 1908920 year: 2020 ident: 3996_CR8 publication-title: Adv Funct Mater doi: 10.1002/adfm.201908920 – volume: 1 start-page: 6172 year: 2018 ident: 3996_CR41 publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.8b01222 – volume: 4 start-page: 793 year: 2016 ident: 3996_CR38 publication-title: J Mater Chem C doi: 10.1039/C5TC03109E – volume: 8 start-page: 2118 year: 2015 ident: 3996_CR22 publication-title: Energy Environ Sci doi: 10.1039/C5EE01265A – volume: 137 start-page: 10048 year: 2015 ident: 3996_CR24 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b03615 – volume: 112 start-page: 263102 year: 2018 ident: 3996_CR49 publication-title: Appl Phys Lett doi: 10.1063/1.5035351 – volume: 105 start-page: 163508 year: 2014 ident: 3996_CR51 publication-title: Appl Phys Lett doi: 10.1063/1.4899051 – volume: 8 start-page: 2672 year: 2017 ident: 3996_CR31 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.7b00571 – volume: 348 start-page: 683 year: 2015 ident: 3996_CR37 publication-title: Science doi: 10.1126/science.aaa5333 – volume: 5 start-page: 5784 year: 2014 ident: 3996_CR6 publication-title: Nat Commun doi: 10.1038/ncomms6784 – volume: 13 start-page: 746 year: 2021 ident: 3996_CR54 publication-title: Nanoscale doi: 10.1039/D0NR07476D – volume: 122 start-page: 21803 year: 2018 ident: 3996_CR23 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b06814 – volume: 7 start-page: 905 year: 2016 ident: 3996_CR26 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.6b00215 – volume: 12 start-page: 396 year: 2019 ident: 3996_CR28 publication-title: Energy Environ Sci doi: 10.1039/C8EE01576G – volume: 7 start-page: 2448 year: 2014 ident: 3996_CR44 publication-title: Energy Environ Sci doi: 10.1039/C4EE00942H – volume: 28 start-page: 553 year: 2016 ident: 3996_CR50 publication-title: Adv Mater doi: 10.1002/adma.201503406 – ident: 3996_CR1 – volume: 7 start-page: 149 year: 2018 ident: 3996_CR56 publication-title: Mater Today Energy doi: 10.1016/j.mtener.2017.07.014 – volume: 22 start-page: e202100150 year: 2022 ident: 3996_CR5 publication-title: Chem Rec doi: 10.1002/tcr.202100150 – volume: 31 start-page: e1805214 year: 2019 ident: 3996_CR30 publication-title: Adv Mater doi: 10.1002/adma.201805214 – volume: 8 start-page: 1256 year: 2015 ident: 3996_CR15 publication-title: Energy Environ Sci doi: 10.1039/C4EE04064C – volume: 9 start-page: 2946 year: 2009 ident: 3996_CR39 publication-title: Nano Lett doi: 10.1021/nl901358v – volume: 48 start-page: 20 year: 2018 ident: 3996_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.049 – volume: 53 start-page: 9898 year: 2014 ident: 3996_CR36 publication-title: Angew Chem doi: 10.1002/anie.201405334 – volume: 123 start-page: 17728 year: 2019 ident: 3996_CR17 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b04662 – volume: 7 start-page: 10334 year: 2016 ident: 3996_CR55 publication-title: Nat Commun doi: 10.1038/ncomms10334 – volume: 27 start-page: 1701924 year: 2017 ident: 3996_CR14 publication-title: Adv Funct Mater doi: 10.1002/adfm.201701924 – volume: 5 start-page: 1511 year: 2014 ident: 3996_CR3 publication-title: J Phys Chem Lett doi: 10.1021/jz500113x – volume: 49 start-page: 286 year: 2016 ident: 3996_CR57 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.5b00420 – volume: 6 start-page: 693 year: 2015 ident: 3996_CR9 publication-title: J Phys Chem Lett doi: 10.1021/jz502666j – volume: 10 start-page: 25604 year: 2018 ident: 3996_CR53 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b07298 – volume: 6 start-page: 7081 year: 2015 ident: 3996_CR7 publication-title: Nat Commun doi: 10.1038/ncomms8081 – volume: 32 start-page: 2107823 year: 2021 ident: 3996_CR20 publication-title: Adv Funct Mater doi: 10.1002/adfm.202107823 – volume: 10 start-page: 10258 year: 2016 ident: 3996_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.6b05825 – volume: 6 start-page: 6679 year: 2014 ident: 3996_CR45 publication-title: Invert Type Perovskite/Fullerene Hybrid Solar Cells Nanoscale doi: 10.1039/C4NR00130C – volume: 28 start-page: 2446 year: 2016 ident: 3996_CR16 publication-title: Adv Mater doi: 10.1002/adma.201503832 – volume: 10 start-page: 604 year: 2017 ident: 3996_CR21 publication-title: Energy Environ Sci doi: 10.1039/C6EE03352K – volume: 6 start-page: 7497 year: 2015 ident: 3996_CR19 publication-title: Nat Commun doi: 10.1038/ncomms8497 |
SSID | ssj0002872855 ssj0047076 |
Score | 2.4053102 |
Snippet | The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment... The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment... Abstract The phenomenon of current–voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 48 |
SubjectTerms | Carrier mobility cations Charge transport Chemistry and Materials Science Crystal defects Current carriers Electric potential energy Energy charge Glass substrates Grain boundaries Heterogeneity Hysteresis Ion migration longevity Materials Science Microscopy Molecular Medicine Nanochemistry Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optoelectronic devices Perovskite thin film Perovskites Photoconductive atomic force microscopy Photoelectric effect Photovoltaic cells Physical characteristics Solar cells Thin films Voltage |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDeBgoLEDazacew4FxBFrSokKoRYqTcrcWw2UklKs-3vZ8ZJtizQHhM7kj1-9sx4Jm8A3gitaoXrzBq0RlieFxUzzmsWnKi5NmiSx-TxL8f6aJl_PlEn04XbMKVVzmdiPKib3tEd-V5GSCH3Q304-8WoahRFV6cSGrdhB49gYxaws39w_PXbfBbnBY_l5dBKEaxQhZx_mzF6b6AIBLrSWc64pFTccks1RQb__5md_2ZP_hVCjZrp8D7cm0zK9OOIgQdwy3cP4e4fRIOP4P2yu_Qt_Xmerij_pUfYeLS_0z6kK-JyRqe7HdK2S4k3_HKgK910vcLn0J7-HB7D8vDg-6cjNlVOYE4V-ZplwRSNb2pT1qgEg9IhaO2FMzxQHE_LJuOuRs-Ph0y6DCWTOV15hRpNOSGCfAKLru_8M0gLnQufhUq4siJ2-oo7h3q_MUp7HnhIQMxCs26iFafqFqc2uhdG21HQFgVto6BtmcDbzTdnI6nGjb33aS02PYkQO77oz3_YaX_Z3KCvrVQweU2FzWVZEwsRvkALr-aiSmB3Xkk77dLBXmEqgdebZtxfFDSpOt9fxD6mJC9ZX99HotpQhmCdwNMRHJvRSsR7aWSRgNmCzdZ0tlu6dhV5vgW63gankcC7GWFXY79eXs9vnuoLuJONoGfC7MJifX7hX6Jhta5fTbvnNxFuHSA priority: 102 providerName: ProQuest – databaseName: Open Access Journals from Springer Nature dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB1Be-GCQJSSUlCQegOrthM7zgUJVlQVEpxYqTcrdmxtpJKtmm2_nxknm7LQInGMPZbs8Tgzz2M_A5wIrZzCeWYtRiOsLKuGGR80i144rg2G5Onw-Lfv-nxZfr1QFxNNDt2F-T1_L4w-HShPgIBXlowXdGC2fgz7ShQVPdOw0It5PwUjf2mU2t6Lubfpju9JFP33xZV_H4_8I0eaXM_ZM3g6xYz5p3GSn8Oj0L-Aj8v-NnR0mTxf0ZGWNVpCwJA6X8d8RfTMiKO7Ie_6nKjAbwfapc03K_yO3eXP4QCWZ19-LM7Z9BgC86oqN0xGU7WhdaZ26Nei0jFqHYQ3PFJqThet5N4hmONRFl5WqpJeN0Ghk1JeiFi8hL1-3YdXkFe6FEHGRvi6IcL5hnuPrrw1SgceecxAbNVk_cQUTg9WXNqEGIy2o2otqtYm1do6g_dzm6uRJ-Of0p9J-7MkcVynApx6Oy0ZWxqEz0pFUzp6q7yoHRELYQEGbY6LJoPj7dzZaeENVtIPhVCqyuDdXI1LhvIgTR_WN0nG1AR89cMyBXoCZchSMzgczWHubYEmXCOwz8DsGMrOcHZr-m6VqLsFommDw8jgw9am7vr-sL6O_k_8NTyRo9kzYY5hb3N9E95g7LRxb9Oi-QVRPQ7a priority: 102 providerName: Springer Nature |
Title | Unveiling heterogeneity of hysteresis in perovskite thin films |
URI | https://link.springer.com/article/10.1186/s11671-024-03996-9 https://www.ncbi.nlm.nih.gov/pubmed/38499837 https://www.proquest.com/docview/2963824075 https://www.proquest.com/docview/2968921106 https://www.proquest.com/docview/3153589514 https://pubmed.ncbi.nlm.nih.gov/PMC10948732 https://doaj.org/article/4833855f84b541439b732855f505b01a |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEB70fNEH8bfVc6ngm4Zr0iZNXwRvub1D8BBxYd9CkyZs5eyK3bu_35m0u-6qpy--FNpOIZ186cyXTL8AvOJKWon9zBrMRlhRlDXTzisWHLeZ0piSx-LxD-fqbF68X8jFzlZfVBM2yAMPjjsqNJIoKYMuLO1YnVeW5GXwAoZum_GYGmHM2yFTX-KUUUlGm79ktDrqacEBmbMoWJZT5W21F4miYP-fsszfiyV_WTGNgWh2D-6OGWT6bmj5fbjhuwdwZ0dX8CG8nXdXvqUfzdMllbusECUe0-10FdIlSTcjx277tO1Skgm_6mkGN10v8Ty0F1_7RzCfnXyenrFxowTmZFmsmQi6bHxjdWUx5gWpQlDKc6ezQMt2Km9E5iwSvSyI3IlSlsKp2qM_c-k4D_ljOOhWnX8KaakK7kWouatqEqOvM-cwzDdaKp-FLCTAN04zblQRp80sLkxkE1qZwdEGHW2io02VwOvtM98GDY2_Wh9TX2wtSf86XkBUmBEV5l-oSOBw05NmHJS9EfSxIQYrE3i5vY3DidZI6s6vLqONrogUq-ttcowSUhOKE3gygGPb2hzhXSHpT0DvwWbvdfbvdO0yynpzZNoaXyOBNxuE_Wz79f569j_89Rxui2FoMK4P4WD9_dK_wGxrbSdwU89OJ3Dr-OT84yc8m4qCjmo6iUMOj6cLPonTZD8AsvAm-g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9QwDNaUcgAODG8CBcIMnMDT2Ikd5wAMr2VLH6d2pjeTODa7MyUpzbYMf4rfiORstizQ3npMomRiWZI_WbIE8IwrWUmcZ1YjGmFZlpdMW6eYt7xKlEZIHpLHt3fUeC_7vC_3V-DXcBaG0ioHmxgMdd1a2iNfFyQp5H7IN4ffGXWNoujq0EKjF4tN9_MHumzdq40POL_PhRh93H0_ZvOuAszKPJsx4XVeu7rSRYULhJfKe6UctzrxFONSaS0SW6FXlHiRWpHLXFhVOonWXlrOfYrfvQSXsxSp6WT66NNg-bM8Cc3sEBNxhu-lwyEdrdY7ineg4y4ylqSU-FssLYShX8D_QO6_uZp_BWzDOji6AdfnADZ-20vcTVhxzS249kdZw9vweq85cVM65x5PKNumRSF1iPbj1scTqhyNLv60i6dNTFXKTzraQI5nE7z204Nv3R3YuxCO3oXVpm3cfYhzlXEnfMltUVIt_DKxFlFGraVyiU98BHxgmrHzIubUS-PABGdGK9Mz2iCjTWC0KSJ4sXjnsC_hcS71O5qLBSWV3w432qOvZq7NJtPo2UvpdVZRG_W0qKjmEd5APFklvIxgbZhJM7cJnTmV4AieLh6jNlOIpmxcexxodEE-uTqbJsVFSmpSogju9cKx-NsUtavQaR6BXhKbpeEsP2mmk1BVnKOjr3EYEbwcJOz038_m14Pzh_oErox3t7fM1sbO5kO4KnoFYFyvwers6Ng9Qkg3qx4HPYrhy0Ur7m9B4Fji |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiTUiBIcIJoYyd2nAMgSrtqKawqxEq9uYljsyu1SWm2Rfw1fh0zeWxZoL31uImziscznu_LjGcAXjApcoHrHBSIRoI4TrJAGSsDZ1geSoWQvEke_zyW25P4477YX4Ff_VkYSqvs98Rmoy4qQ9_Ih5w0heiHGLouLWJvc_Tu-HtAHaQo0tq302hVZNf-_IH0rX6zs4lr_ZLz0dbXD9tB12EgMCKJ5wF3Kilskas0R2fhhHROSsuMCh3Fu2RU8NDkyJBCxyPDE5FwIzMrcOcXhjEX4f9eg9WEWNEAVje2xntfej8QJ2HT2g4REgvwyag_sqPksKboB9J4HgdhRGnA6ZJbbLoH_A_y_pu5-Vf4tvGKo9twq4Oz_vtW_-7Aii3vws0_ihzeg7eT8szO6NS7P6XcmwpV1iL29yvnT6mONBL-We3PSp9qlp_V9DnZn0_xt5sdHtX3YXIlMn0Ag7Iq7SPwExkzy13GTJpRZfwsNAYxR6GEtKELnQesF5o2XUlz6qxxqBtqo6RuBa1R0LoRtE49eLV45rgt6HHp6A1ai8VIKsbdXKhOvunOtnWskOcL4VScU1P1KM2pAhJeQHSZhyzzYL1fSd3tELU-12cPni9uo21TwCYrbXXajFEpMXR58ZgIXZZQZFIePGyVY_G2EdpaqqLEA7WkNkvTWb5TzqZNjXGGtF_hNDx43WvY-btfLK-1y6f6DK6j0epPO-Pdx3CDt_ofMLUOg_nJqX2C-G6eP-0MyYeDq7bd31w-XnQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+heterogeneity+of+hysteresis+in+perovskite+thin+films&rft.jtitle=Discover+nano&rft.au=Zou%2C+Zhouyiao&rft.au=Qiu%2C+Haian&rft.au=Shao%2C+Zhibin&rft.date=2024-03-18&rft.issn=2731-9229&rft.eissn=2731-9229&rft.volume=19&rft.issue=1&rft.spage=48&rft_id=info:doi/10.1186%2Fs11671-024-03996-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-9229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-9229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-9229&client=summon |