Soft Robots with Plant‐Inspired Gravitropism Based on Fluidic Liquid Metal

Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herei...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 18; pp. e2306129 - n/a
Main Authors Chen, Gangsheng, Ma, Biao, Chen, Yi, Chen, Yanjie, Zhang, Jin, Liu, Hong
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.05.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration. Gravity‐responsive soft actuators are created using liquid metal and thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. A gravity‐adaptive actuator, a gravity‐interactive gripper, and a self‐regulated snapping oscillator or walker are also demonstrated.
AbstractList Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration.
Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.
Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration. Gravity‐responsive soft actuators are created using liquid metal and thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. A gravity‐adaptive actuator, a gravity‐interactive gripper, and a self‐regulated snapping oscillator or walker are also demonstrated.
Abstract Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration.
Author Chen, Yi
Chen, Gangsheng
Zhang, Jin
Ma, Biao
Liu, Hong
Chen, Yanjie
AuthorAffiliation 1 State Key Laboratory of Digital Medical Engineering School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Digital Medical Engineering School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China
Author_xml – sequence: 1
  givenname: Gangsheng
  surname: Chen
  fullname: Chen, Gangsheng
  organization: Southeast University
– sequence: 2
  givenname: Biao
  surname: Ma
  fullname: Ma, Biao
  email: biaom@seu.edu.cn
  organization: Southeast University
– sequence: 3
  givenname: Yi
  surname: Chen
  fullname: Chen, Yi
  organization: Southeast University
– sequence: 4
  givenname: Yanjie
  surname: Chen
  fullname: Chen, Yanjie
  organization: Southeast University
– sequence: 5
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: Southeast University
– sequence: 6
  givenname: Hong
  orcidid: 0000-0002-9841-1603
  surname: Liu
  fullname: Liu, Hong
  email: liuh@seu.edu.cn
  organization: Southeast University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38447146$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAQhiNUREvplSOKxIXLLh57HMcnVAotKy0CUeBq2Y7TepWNt7Z3q954BJ6RJyFh29JWQpw8mvn_T7_G87TY6UPviuI5kCkQQl_rZpOmlFBGKqDyUbFHQdYTViPu3Kl3i4OUFoQQ4Ewg1E-K3bEtAKu9Yn4a2lx-CSbkVF76fF5-7nSff_34OevTykfXlCdRb3yOYeXTsnyr09AKfXncrX3jbTn3F0NRfnRZd8-Kx63ukju4fveLb8fvvx59mMw_ncyODucTywXKSWNbIoEZbGkl0NRcG82Nlmg5SIECbYPQMnBWIq9JDUzb1hjRgERhDWf7xWzLbYJeqFX0Sx2vVNBe_WmEeKZ0zN52TlmODXLECniLglXSCNDWaqorR9taDKw3W9ZqbZausa7PUXf3oPcnvT9XZ2GjAIjkIOhAeHVNiOFi7VJWS5-s64Y9urBOikqkUEsqySB9-UC6COvYD7tSjHCsgbBqjPTibqTbLDe_NghwK7AxpBRdq6zPOvswJvSdAqLG-1Djfajb-xhs0we2G_I_DXJruPSdu_qPWh2--3761_sbD9vNaQ
CitedBy_id crossref_primary_10_1002_adma_202413648
crossref_primary_10_1039_D4MH01209G
crossref_primary_10_1002_adma_202404330
crossref_primary_10_3390_bioengineering11121211
crossref_primary_10_1002_ange_202416095
crossref_primary_10_1002_adma_202414519
crossref_primary_10_1002_adfm_202412222
crossref_primary_10_1002_adem_202401333
crossref_primary_10_1002_adfm_202424490
crossref_primary_10_1002_anie_202416095
crossref_primary_10_1007_s10118_025_3284_z
crossref_primary_10_1016_j_cej_2025_160261
crossref_primary_10_1360_nso_20240013
Cites_doi 10.1126/sciadv.aax5746
10.1016/j.tplants.2017.12.004
10.1002/adma.201804540
10.1002/advs.202205146
10.1016/j.cub.2003.09.016
10.1039/D0MH01406K
10.1146/annurev.arplant.043008.092042
10.1126/scirobotics.aaw5496
10.1364/JOSA.11.000233
10.1093/jxb/erz158
10.1038/ncomms13981
10.1002/advs.202101295
10.1002/adma.202103062
10.1002/adma.201905554
10.1126/scirobotics.aar2629
10.1002/adma.202300560
10.1002/adma.202205196
10.1021/acsami.9b20124
10.1016/j.eml.2021.101340
10.1039/D0NR09210J
10.1111/j.1469-8137.2004.01263.x
10.1126/scirobotics.aax7112
10.1002/adma.201706695
10.1038/s41586-022-05656-3
10.1088/2399-7532/ac55fd
10.1039/b805434g
10.1007/s10404-015-1676-z
10.1016/j.tplants.2021.11.006
10.1002/admt.202001095
10.1038/ncomms15546
10.1002/adma.202211437
10.1098/rstl.1883.0029
10.1021/acsami.1c09776
10.1038/s41565-022-01241-x
10.1002/adfm.202108919
10.1002/adma.202110384
10.1039/C7CS00309A
10.1021/acsami.0c20418
10.1038/nature22987
10.1002/adma.202302765
10.1039/C5RA01039J
10.1038/s41467-023-37964-1
10.1002/aelm.201900721
10.1016/j.tplants.2015.11.009
10.1126/scirobotics.adf4753
10.1002/adfm.201901370
10.1002/adfm.200701216
10.1109/JMEMS.2014.2307358
10.1038/nature03185
10.1002/advs.202104270
10.1038/s41565-019-0562-3
10.1088/1674-1056/26/4/048801
10.1002/adfm.202201884
10.1126/scirobotics.add2903
10.1039/C8SM01281D
ContentType Journal Article
Copyright 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202306129
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
MEDLINE


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c54d4544615f47369b71acca2a6e2f87
PMC11095172
38447146
10_1002_advs_202306129
ADVS202306129
Genre article
Journal Article
GrantInformation_xml – fundername: Science and Technology Development Program of Suzhou
  funderid: SYG202117
– fundername: China Postdoctoral Science Foundation
  funderid: 2022M710667
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20220859
– fundername: Key Research and Development Program of Jiangsu Province
  funderid: BE2021700
– fundername: Key Research and Development Program of Jiangsu Province
  grantid: BE2021700
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M710667
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220859
– fundername: Science and Technology Development Program of Suzhou
  grantid: SYG202117
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
EJD
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
WIN
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5749-dcf0913b4f2674b85aba5ba94c5197474cd41f31ec94580813acfbb7d1947cb53
IEDL.DBID BENPR
ISSN 2198-3844
IngestDate Wed Aug 27 01:31:42 EDT 2025
Thu Aug 21 18:35:46 EDT 2025
Fri Jul 11 02:21:06 EDT 2025
Wed Aug 13 04:13:31 EDT 2025
Mon Jul 21 06:01:11 EDT 2025
Tue Jul 01 04:00:05 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Sun Jul 06 04:45:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords electronics‐free robots
gravitropism
liquid metal
bioinspired soft robot
liquid crystal elastomer
Language English
License Attribution
2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5749-dcf0913b4f2674b85aba5ba94c5197474cd41f31ec94580813acfbb7d1947cb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9841-1603
OpenAccessLink https://www.proquest.com/docview/3054810367?pq-origsite=%requestingapplication%
PMID 38447146
PQID 3054810367
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c54d4544615f47369b71acca2a6e2f87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11095172
proquest_miscellaneous_2942189290
proquest_journals_3054810367
pubmed_primary_38447146
crossref_citationtrail_10_1002_advs_202306129
crossref_primary_10_1002_advs_202306129
wiley_primary_10_1002_advs_202306129_ADVS202306129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 8
2023; 35
2023; 8
2019; 14
2003; 13
2020; 12
2008; 4
2024; 36
2022; 27
2014; 23
2010; 61
2018; 47
2020; 6
2018; 3
1925; 11
2021; 33
2022; 34
2019; 29
2018; 30
2022; 32
2023; 614
2021; 9
2021; 46
2021; 8
2023; 10
2021; 6
2019; 4
2023; 14
2019; 70
2015; 5
2019; 5
2019; 31
2017; 26
1883; 174
2005; 433
2008; 18
2020; 32
2018; 23
2021; 13
2016; 7
2023
2005; 165
2022
2022; 5
2022; 7
2016; 21
2016; 20
2016
2022; 17
2018; 14
2017; 546
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
Saed M. O. (e_1_2_8_43_1) 2016
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Laake L. C. (e_1_2_8_54_1) 2022; 5
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
Deng Z. (e_1_2_8_14_1) 2022
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 1156
  year: 2014
  publication-title: J. Microelectromech. Syst.
– volume: 13
  start-page: R761
  year: 2003
  publication-title: Curr. Biol.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 5574
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– year: 2023
  publication-title: Adv. Mater.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 8
  year: 2023
  publication-title: Sci. Rob.
– volume: 4
  start-page: 1796
  year: 2008
  publication-title: Soft Matter
– volume: 433
  start-page: 421
  year: 2005
  publication-title: Nature
– volume: 14
  start-page: 7113
  year: 2018
  publication-title: Soft Matter
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– year: 2022
  publication-title: Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 546
  start-page: 632
  year: 2017
  publication-title: Nature
– volume: 5
  year: 2022
  publication-title: Multifunct. Mater.
– volume: 14
  start-page: 2287
  year: 2023
  publication-title: Nat. Commun.
– year: 2016
  publication-title: J Vis Exp
– volume: 5
  year: 2022
  publication-title: Matter
– volume: 7
  year: 2022
  publication-title: Sci. Rob.
– volume: 20
  start-page: 1
  year: 2016
  publication-title: Microfluid Nanofluidics
– volume: 4
  year: 2019
  publication-title: Sci. Robot.
– volume: 14
  start-page: 1048
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 47
  start-page: 2518
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 26
  year: 2017
  publication-title: Chin. Phys. B
– volume: 174
  start-page: 935
  year: 1883
  publication-title: Phil. Trans. R. Soc.
– volume: 13
  start-page: 6259
  year: 2021
  publication-title: Nanoscale
– volume: 27
  start-page: 440
  year: 2022
  publication-title: Trends Plant Sci.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 70
  start-page: 3495
  year: 2019
  publication-title: J. Exp. Bot.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 18
  start-page: 1097
  year: 2008
  publication-title: Adv. Function. Mater.
– volume: 17
  start-page: 1303
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 3
  year: 2018
  publication-title: Sci. Rob.
– volume: 21
  start-page: 286
  year: 2016
  publication-title: Trends Plant Sci.
– volume: 46
  year: 2021
  publication-title: Extreme Mechanics Letters
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  start-page: 728
  year: 2021
  publication-title: Mater. Horiz.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 11
  start-page: 233
  year: 1925
  publication-title: J. Opt. Soc. Am.
– volume: 3
  year: 2018
  publication-title: Sci. Robot.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 614
  start-page: 463
  year: 2023
  publication-title: Nature
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 23
  start-page: 220
  year: 2018
  publication-title: Trends Plant Sci.
– volume: 165
  start-page: 373
  year: 2005
  publication-title: New Phytol
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 61
  start-page: 705
  year: 2010
  publication-title: Annu. Rev. Plant Biol.
– volume: 9
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_26_1
  doi: 10.1126/sciadv.aax5746
– ident: e_1_2_8_3_1
  doi: 10.1016/j.tplants.2017.12.004
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201804540
– year: 2022
  ident: e_1_2_8_14_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_21_1
  doi: 10.1002/advs.202205146
– ident: e_1_2_8_1_1
  doi: 10.1016/j.cub.2003.09.016
– ident: e_1_2_8_46_1
  doi: 10.1039/D0MH01406K
– ident: e_1_2_8_29_1
  doi: 10.1146/annurev.arplant.043008.092042
– ident: e_1_2_8_55_1
  doi: 10.1126/scirobotics.aaw5496
– ident: e_1_2_8_45_1
  doi: 10.1364/JOSA.11.000233
– ident: e_1_2_8_30_1
  doi: 10.1093/jxb/erz158
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms13981
– ident: e_1_2_8_18_1
  doi: 10.1002/advs.202101295
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.202103062
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201905554
– ident: e_1_2_8_24_1
  doi: 10.1126/scirobotics.aar2629
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.202300560
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.202205196
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.9b20124
– ident: e_1_2_8_7_1
  doi: 10.1016/j.eml.2021.101340
– ident: e_1_2_8_48_1
  doi: 10.1039/D0NR09210J
– ident: e_1_2_8_32_1
  doi: 10.1002/adma.202205196
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1469-8137.2004.01263.x
– ident: e_1_2_8_16_1
  doi: 10.1126/scirobotics.aax7112
– ident: e_1_2_8_57_1
  doi: 10.1126/scirobotics.aar2629
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201706695
– ident: e_1_2_8_22_1
  doi: 10.1038/s41586-022-05656-3
– ident: e_1_2_8_58_1
  doi: 10.1088/2399-7532/ac55fd
– ident: e_1_2_8_11_1
  doi: 10.1039/b805434g
– ident: e_1_2_8_36_1
  doi: 10.1007/s10404-015-1676-z
– year: 2016
  ident: e_1_2_8_43_1
  publication-title: J Vis Exp
– ident: e_1_2_8_31_1
  doi: 10.1016/j.tplants.2021.11.006
– ident: e_1_2_8_27_1
  doi: 10.1002/admt.202001095
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms15546
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202211437
– ident: e_1_2_8_40_1
  doi: 10.1098/rstl.1883.0029
– ident: e_1_2_8_34_1
  doi: 10.1021/acsami.1c09776
– ident: e_1_2_8_12_1
  doi: 10.1038/s41565-022-01241-x
– ident: e_1_2_8_59_1
  doi: 10.1002/adfm.202108919
– ident: e_1_2_8_60_1
  doi: 10.1002/adma.202110384
– ident: e_1_2_8_33_1
  doi: 10.1039/C7CS00309A
– ident: e_1_2_8_9_1
  doi: 10.1021/acsami.0c20418
– ident: e_1_2_8_56_1
  doi: 10.1038/nature22987
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.202302765
– ident: e_1_2_8_42_1
  doi: 10.1039/C5RA01039J
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-023-37964-1
– ident: e_1_2_8_44_1
  doi: 10.1002/aelm.201900721
– ident: e_1_2_8_4_1
  doi: 10.1016/j.tplants.2015.11.009
– ident: e_1_2_8_17_1
  doi: 10.1126/scirobotics.adf4753
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201901370
– ident: e_1_2_8_37_1
  doi: 10.1002/adfm.200701216
– ident: e_1_2_8_41_1
  doi: 10.1109/JMEMS.2014.2307358
– volume: 5
  year: 2022
  ident: e_1_2_8_54_1
  publication-title: Matter
– ident: e_1_2_8_2_1
  doi: 10.1038/nature03185
– ident: e_1_2_8_23_1
  doi: 10.1002/advs.202104270
– ident: e_1_2_8_10_1
  doi: 10.1038/s41565-019-0562-3
– ident: e_1_2_8_47_1
  doi: 10.1088/1674-1056/26/4/048801
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202201884
– ident: e_1_2_8_49_1
  doi: 10.1126/scirobotics.add2903
– ident: e_1_2_8_51_1
  doi: 10.1039/C8SM01281D
SSID ssj0001537418
Score 2.395376
Snippet Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles....
Abstract Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2306129
SubjectTerms bioinspired soft robot
electronics‐free robots
Equipment Design - methods
gravitropism
Gravitropism - physiology
Heat
Homeostasis
liquid crystal elastomer
Liquid Crystals
liquid metal
Metals - chemistry
Oxidation
Phase transitions
Plants
Pneumatics
Robotics - instrumentation
Robotics - methods
Robots
Silicones
Skin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RlokZGQgEPUjTOO7SNFLAW1HCiVerP8FJFKUnazPfcn8Bv5JYyTbNgVoF64xbGVjMYzns-vbwh5EYTzFYaSnJsy5qDiLFeB4WAI0gbuZaVMWu84-VQdncHHc36-keornQkb6IEHxR04Dh44TloKHkGUlbKiMPhbZqrAouzvkWPM25hMDfeDy0TLsmZpnLED468SO3dC3EWPJ39HoZ6s_28I88-DkpsAto9A87vkzggd6ZtB5F1yKzT3yO7onEv6amSQfn2fHJ_i4Eo_t7btljSttNKUm6j7ef3jQ5N21oOn7xfmqu4W7WW9_EYPMZR52jZ0frGqfe3ocf0dH-hJQGj-gJzN3315e5SPaRNyxwWo3LuYyD4tRFYJsJIba7g1Cly6pAoCnIcilkVwCnhKvFEaF60VvlAgnOXlQ7LTtE14TCgPkeGUKrKZsCAN-rrkrvCcpe1AV4WM5Gs1ajdyiqfUFhd6YENmOqldT2rPyMup_eXApvHPloepV6ZWiQW7f4G2oUfb0DfZRkb21n2qR9dcahzgQBYYuLH6-VSNTpV2SkwT2hWKoQChDyLHWUYeDSYwSVJKwIAOVUbklnFsibpd09Rfe-LuxO7KETFmhPV2dIMONCKT06n05H9o5Cm5jR-E4cTmHtnpFquwj6iqs896B_oFxWYckw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwELWgbNggyjNQkJGQgEXUG2ccJ0uKuBTUIkSp1F3kJ0QqSbnJ7ZpP4Bv5EmaS3LQRICR2TuxElj2P47F9hrGnXlmXoSuJpU5DDEVYxIUXaAwhN166PCs0xTsO32f7x_DuRJ5cusU_8ENMATfSjN5ek4Jr0-5ekIZqd0502wSh0WddZdfofi2x5wv4cBFlkSnRs1CGOVxdx2kOsGFuXIjd-S9mnqkn8P8T6vz98ORlUNt7peVNdmOEk_zlMP_b7Iqvb7HtUWFb_nxklX5xmx0cocHlHxvTdC2n6CunfEXdz-8_3ta02-4df7PS51W3as6q9ivfQ_fmeFPz5em6cpXlB9U3LPBDj3D9Djtevv70aj8eUynEViooYmcDEYAaCCJTYHKpjZZGF2Dp4ioosA6SkCbeFiApGUeqbTBGuaQAZY1M77Ktuqn9fcalDwKXWUEslIFco_7n0iZOCtoitJmPWLwZxtKOPOOU7uK0HBiSRUnDXk7DHrFnU_uzgWHjry33aFamVsSM3b9oVp_LUdFKK8GBxEVuIgOoNCuMSjSKqdCZFyFXEdvZzGk5qmtbotGDPEFnjtVPpmpUNNo90bVv1tiNAhAOIZpcROzeIAJTT0iuFIpfxPKZcMy6Oq-pqy89mTcxvkpEkRETvRz9YwxKRCtH09OD__noIbuOZRhObe6wrW619o8QWXXmca88vwAPURnP
  priority: 102
  providerName: Wiley-Blackwell
Title Soft Robots with Plant‐Inspired Gravitropism Based on Fluidic Liquid Metal
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202306129
https://www.ncbi.nlm.nih.gov/pubmed/38447146
https://www.proquest.com/docview/3054810367
https://www.proquest.com/docview/2942189290
https://pubmed.ncbi.nlm.nih.gov/PMC11095172
https://doaj.org/article/c54d4544615f47369b71acca2a6e2f87
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo98IFtTxDy8pISMAh6sYZx8kJdaFLQbtV1aVSb5FfgUgl2e6jZ34Cv5FfwjjxZlnxuiWxD854Hl9mnG8IeWGFNgmGkpDLuAghKwZhZhk6Q0iV5SZNMunyHZOz5PQSPl7xK59wW_hjlWuf2DhqU2uXIz9CvYQ0Qn8r3sxuQtc1ylVXfQuNHdJDF5zix1dveHJ2frHJsvDY0bOs2RoH7EiaW8fS7ZB31ODKTTRqSPv_hDR_PzD5K5BtItFoj9zzEJIet3u-T-7Y6j7Z90a6oK88k_TrB2Q8RSdLL2pVLxfUZVyp61G0_PHt-4fKVditoe_n8rZczutZufhKhxjSDK0rOrpelabUdFze4AWdWIToD8nl6OTT29PQt08INReQhUYXjvRTQcESASrlUkmuZAba_awKArSBqIgjqzPgrgFHLHWhlDBRBkIrHj8iu1Vd2SeEclswFG_BBkJBKtHmU64jw5krC-rEBiRcizHXnlvctbi4zltWZJY7seed2APysps_a1k1_jpz6Halm-XYsJsH9fxz7o0r1xwMcPywjXgBIk4yJSKJqslkYlmRioAcrvc09ya6yDcKFZDn3TAal6uYyMrWK1xGBgiBEEEOAvK4VYFuJXEKGNghCUi6pRxbS90eqcovDYG3Y3nliBwDwho9-o8MckQo0-7u6b9f5oDcxanQnsk8JLvL-co-Q9y0VH2yw-C8T3rH7ybjad-bSr_JQvwEuGkZDA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL2q0gVsEOVpWmCQQMDCajye8WOBEIGGhCYR6kPqzszL1FKx0zyK2PEJfAkfxZdwx68Q8Vp1F8djaXzn3jPnzozPBXhsQqUDnEpcLvzUZXHadWNDEQxZJA3XURALu94xngSDY_buhJ9swPfmWxh7rLLBxBKodaHsGvku-iWLPMTb8OX03LVVo-zualNCo3KLffPlM6Zs8xfDNzi-Tyjt7x29Hrh1VQFX8ZDFrlap1cKULKVByGTEhRRcipgp-w0nC5nSzEt9z6iYcVuXwhcqlTLUmO6HStoqEQj5m8zHVKYDm729yfuD1aoO960cTKMO2aW7Ql9YVXDL9L2Sx65mv7JIwJ-Y7e8HNH8lzuXM178O12rKSl5VPrYFGya_AVs1KMzJs1q5-vlNGB0iqJODQhaLObErvMTWRFr8-PptmNsdfaPJ25m4yBazYprNP5EeTqGaFDnpny0znSkyys7xBxkbTAluwfGlGPY2dPIiN3eBcJNSTOVS2g0liwRiTMSVpzm125AqMA64jRkTVWuZ25IaZ0mlwkwTa_akNbsDT9v200rF468te3ZU2lZWfbv8o5h9TOpgThRnmnFMpD2estAPYhl6AkOBisDQNAod2GnGNKkhYZ6sHNiBR-1tDGa7QyNyUyyxGzFDyoWMtevAncoF2p74EUMiwQIHojXnWOvq-p08Oy0Fw62qLEem6gAt_eg_NkiQER22V_f-_TIP4crgaDxKRsPJ_jZcxcdYdR50BzqL2dLcR862kA_qQCHw4bJj8ydqEFJB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqqYTYIMoztICRQMAimoljx8kCIYZ26NDpqGqp1F3qJ0Rqk-k8itjxCXwPn8OXcJ3XMOK16m4ycSTn-t7jc23nXISeGq50BFOJz0RofZrYnp8YAmBIY2mYjqNEuPWO_XG0e0zfn7CTNfS9-RbGHatsMLEEal0ot0beBb-kcQB4y7u2PhZxsD14PbnwXQUpt9PalNOoXGTPfPkM6dvs1XAbxvoZIYOdD293_brCgK8Yp4mvlXW6mJJaEnEqYyakYFIkVLnvOSmnStPAhoFRCWWuRkUolJWSa0j9uZKuYgTA_zqHrKjXQev9nfHB4XKFh4VOGqZRiuyRrtCXTiHcsf6g5LTLmbAsGPAnlvv7Yc1fSXQ5Cw5uohs1fcVvKn_bQGsmv4U2aoCY4Re1ivXL22h0BACPDwtZzGfYrfZiVx9p_uPrt2HudveNxu-m4jKbT4tJNjvHfZhONS5yPDhbZDpTeJRdwA-8byA9uIOOr8Swd1EnL3JzH2FmLIG0zpIelzQWgDcxU4FmxG1Jqsh4yG_MmKpa19yV1zhLK0Vmkjqzp63ZPfS8bT-pFD3-2rLvRqVt5ZS4yz-K6ce0DuxUMaopg6Q6YJbyMEokDwSEBRGRITbmHtpqxjSt4WGWLp3ZQ0_a2xDYbrdG5KZYQDcSCvQL2GvPQ_cqF2h7EsYUSAWNPBSvOMdKV1fv5NmnUjzcKcwyYK0eIqUf_ccGKbCjo_bqwb9f5jG6BjGZjobjvU10HZ6i1dHQLdSZTxfmIdC3uXxUxwlGp1cdmj8BQUtWdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Robots+with+Plant-Inspired+Gravitropism+Based+on+Fluidic+Liquid+Metal&rft.jtitle=Advanced+science&rft.au=Chen%2C+Gangsheng&rft.au=Ma%2C+Biao&rft.au=Chen%2C+Yi&rft.au=Chen%2C+Yanjie&rft.date=2024-05-01&rft.eissn=2198-3844&rft.volume=11&rft.issue=18&rft.spage=e2306129&rft_id=info:doi/10.1002%2Fadvs.202306129&rft_id=info%3Apmid%2F38447146&rft.externalDocID=38447146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon