Soft Robots with Plant‐Inspired Gravitropism Based on Fluidic Liquid Metal
Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herei...
Saved in:
Published in | Advanced science Vol. 11; no. 18; pp. e2306129 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.05.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration.
Gravity‐responsive soft actuators are created using liquid metal and thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. A gravity‐adaptive actuator, a gravity‐interactive gripper, and a self‐regulated snapping oscillator or walker are also demonstrated. |
---|---|
AbstractList | Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration. Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration. Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration. Gravity‐responsive soft actuators are created using liquid metal and thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. A gravity‐adaptive actuator, a gravity‐interactive gripper, and a self‐regulated snapping oscillator or walker are also demonstrated. Abstract Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self‐regulating systems free of electronics, but remains elusive. Herein, acceleration‐regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self‐limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity‐regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity‐interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self‐regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics‐free control of a bionic walker. This work paves the avenue for the development of liquid metal‐based reconfigurable electronics and electronics‐free soft robots that can perceive gravity or acceleration. |
Author | Chen, Yi Chen, Gangsheng Zhang, Jin Ma, Biao Liu, Hong Chen, Yanjie |
AuthorAffiliation | 1 State Key Laboratory of Digital Medical Engineering School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Digital Medical Engineering School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China |
Author_xml | – sequence: 1 givenname: Gangsheng surname: Chen fullname: Chen, Gangsheng organization: Southeast University – sequence: 2 givenname: Biao surname: Ma fullname: Ma, Biao email: biaom@seu.edu.cn organization: Southeast University – sequence: 3 givenname: Yi surname: Chen fullname: Chen, Yi organization: Southeast University – sequence: 4 givenname: Yanjie surname: Chen fullname: Chen, Yanjie organization: Southeast University – sequence: 5 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: Southeast University – sequence: 6 givenname: Hong orcidid: 0000-0002-9841-1603 surname: Liu fullname: Liu, Hong email: liuh@seu.edu.cn organization: Southeast University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38447146$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFu1DAQhiNUREvplSOKxIXLLh57HMcnVAotKy0CUeBq2Y7TepWNt7Z3q954BJ6RJyFh29JWQpw8mvn_T7_G87TY6UPviuI5kCkQQl_rZpOmlFBGKqDyUbFHQdYTViPu3Kl3i4OUFoQQ4Ewg1E-K3bEtAKu9Yn4a2lx-CSbkVF76fF5-7nSff_34OevTykfXlCdRb3yOYeXTsnyr09AKfXncrX3jbTn3F0NRfnRZd8-Kx63ukju4fveLb8fvvx59mMw_ncyODucTywXKSWNbIoEZbGkl0NRcG82Nlmg5SIECbYPQMnBWIq9JDUzb1hjRgERhDWf7xWzLbYJeqFX0Sx2vVNBe_WmEeKZ0zN52TlmODXLECniLglXSCNDWaqorR9taDKw3W9ZqbZausa7PUXf3oPcnvT9XZ2GjAIjkIOhAeHVNiOFi7VJWS5-s64Y9urBOikqkUEsqySB9-UC6COvYD7tSjHCsgbBqjPTibqTbLDe_NghwK7AxpBRdq6zPOvswJvSdAqLG-1Djfajb-xhs0we2G_I_DXJruPSdu_qPWh2--3761_sbD9vNaQ |
CitedBy_id | crossref_primary_10_1002_adma_202413648 crossref_primary_10_1039_D4MH01209G crossref_primary_10_1002_adma_202404330 crossref_primary_10_3390_bioengineering11121211 crossref_primary_10_1002_ange_202416095 crossref_primary_10_1002_adma_202414519 crossref_primary_10_1002_adfm_202412222 crossref_primary_10_1002_adem_202401333 crossref_primary_10_1002_adfm_202424490 crossref_primary_10_1002_anie_202416095 crossref_primary_10_1007_s10118_025_3284_z crossref_primary_10_1016_j_cej_2025_160261 crossref_primary_10_1360_nso_20240013 |
Cites_doi | 10.1126/sciadv.aax5746 10.1016/j.tplants.2017.12.004 10.1002/adma.201804540 10.1002/advs.202205146 10.1016/j.cub.2003.09.016 10.1039/D0MH01406K 10.1146/annurev.arplant.043008.092042 10.1126/scirobotics.aaw5496 10.1364/JOSA.11.000233 10.1093/jxb/erz158 10.1038/ncomms13981 10.1002/advs.202101295 10.1002/adma.202103062 10.1002/adma.201905554 10.1126/scirobotics.aar2629 10.1002/adma.202300560 10.1002/adma.202205196 10.1021/acsami.9b20124 10.1016/j.eml.2021.101340 10.1039/D0NR09210J 10.1111/j.1469-8137.2004.01263.x 10.1126/scirobotics.aax7112 10.1002/adma.201706695 10.1038/s41586-022-05656-3 10.1088/2399-7532/ac55fd 10.1039/b805434g 10.1007/s10404-015-1676-z 10.1016/j.tplants.2021.11.006 10.1002/admt.202001095 10.1038/ncomms15546 10.1002/adma.202211437 10.1098/rstl.1883.0029 10.1021/acsami.1c09776 10.1038/s41565-022-01241-x 10.1002/adfm.202108919 10.1002/adma.202110384 10.1039/C7CS00309A 10.1021/acsami.0c20418 10.1038/nature22987 10.1002/adma.202302765 10.1039/C5RA01039J 10.1038/s41467-023-37964-1 10.1002/aelm.201900721 10.1016/j.tplants.2015.11.009 10.1126/scirobotics.adf4753 10.1002/adfm.201901370 10.1002/adfm.200701216 10.1109/JMEMS.2014.2307358 10.1038/nature03185 10.1002/advs.202104270 10.1038/s41565-019-0562-3 10.1088/1674-1056/26/4/048801 10.1002/adfm.202201884 10.1126/scirobotics.add2903 10.1039/C8SM01281D |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202306129 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c54d4544615f47369b71acca2a6e2f87 PMC11095172 38447146 10_1002_advs_202306129 ADVS202306129 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Science and Technology Development Program of Suzhou funderid: SYG202117 – fundername: China Postdoctoral Science Foundation funderid: 2022M710667 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20220859 – fundername: Key Research and Development Program of Jiangsu Province funderid: BE2021700 – fundername: Key Research and Development Program of Jiangsu Province grantid: BE2021700 – fundername: China Postdoctoral Science Foundation grantid: 2022M710667 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20220859 – fundername: Science and Technology Development Program of Suzhou grantid: SYG202117 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION EJD CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U WIN 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5749-dcf0913b4f2674b85aba5ba94c5197474cd41f31ec94580813acfbb7d1947cb53 |
IEDL.DBID | BENPR |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Thu Aug 21 18:35:46 EDT 2025 Fri Jul 11 02:21:06 EDT 2025 Wed Aug 13 04:13:31 EDT 2025 Mon Jul 21 06:01:11 EDT 2025 Tue Jul 01 04:00:05 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Sun Jul 06 04:45:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | electronics‐free robots gravitropism liquid metal bioinspired soft robot liquid crystal elastomer |
Language | English |
License | Attribution 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5749-dcf0913b4f2674b85aba5ba94c5197474cd41f31ec94580813acfbb7d1947cb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9841-1603 |
OpenAccessLink | https://www.proquest.com/docview/3054810367?pq-origsite=%requestingapplication% |
PMID | 38447146 |
PQID | 3054810367 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c54d4544615f47369b71acca2a6e2f87 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11095172 proquest_miscellaneous_2942189290 proquest_journals_3054810367 pubmed_primary_38447146 crossref_citationtrail_10_1002_advs_202306129 crossref_primary_10_1002_advs_202306129 wiley_primary_10_1002_advs_202306129_ADVS202306129 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 8 2023; 35 2023; 8 2019; 14 2003; 13 2020; 12 2008; 4 2024; 36 2022; 27 2014; 23 2010; 61 2018; 47 2020; 6 2018; 3 1925; 11 2021; 33 2022; 34 2019; 29 2018; 30 2022; 32 2023; 614 2021; 9 2021; 46 2021; 8 2023; 10 2021; 6 2019; 4 2023; 14 2019; 70 2015; 5 2019; 5 2019; 31 2017; 26 1883; 174 2005; 433 2008; 18 2020; 32 2018; 23 2021; 13 2016; 7 2023 2005; 165 2022 2022; 5 2022; 7 2016; 21 2016; 20 2016 2022; 17 2018; 14 2017; 546 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 Saed M. O. (e_1_2_8_43_1) 2016 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Laake L. C. (e_1_2_8_54_1) 2022; 5 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 Deng Z. (e_1_2_8_14_1) 2022 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 1156 year: 2014 publication-title: J. Microelectromech. Syst. – volume: 13 start-page: R761 year: 2003 publication-title: Curr. Biol. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 5574 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – year: 2023 publication-title: Adv. Mater. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 8 year: 2023 publication-title: Sci. Rob. – volume: 4 start-page: 1796 year: 2008 publication-title: Soft Matter – volume: 433 start-page: 421 year: 2005 publication-title: Nature – volume: 14 start-page: 7113 year: 2018 publication-title: Soft Matter – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – year: 2022 publication-title: Adv. Mater. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 546 start-page: 632 year: 2017 publication-title: Nature – volume: 5 year: 2022 publication-title: Multifunct. Mater. – volume: 14 start-page: 2287 year: 2023 publication-title: Nat. Commun. – year: 2016 publication-title: J Vis Exp – volume: 5 year: 2022 publication-title: Matter – volume: 7 year: 2022 publication-title: Sci. Rob. – volume: 20 start-page: 1 year: 2016 publication-title: Microfluid Nanofluidics – volume: 4 year: 2019 publication-title: Sci. Robot. – volume: 14 start-page: 1048 year: 2019 publication-title: Nat. Nanotechnol. – volume: 47 start-page: 2518 year: 2018 publication-title: Chem. Soc. Rev. – volume: 26 year: 2017 publication-title: Chin. Phys. B – volume: 174 start-page: 935 year: 1883 publication-title: Phil. Trans. R. Soc. – volume: 13 start-page: 6259 year: 2021 publication-title: Nanoscale – volume: 27 start-page: 440 year: 2022 publication-title: Trends Plant Sci. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 70 start-page: 3495 year: 2019 publication-title: J. Exp. Bot. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 18 start-page: 1097 year: 2008 publication-title: Adv. Function. Mater. – volume: 17 start-page: 1303 year: 2022 publication-title: Nat. Nanotechnol. – volume: 3 year: 2018 publication-title: Sci. Rob. – volume: 21 start-page: 286 year: 2016 publication-title: Trends Plant Sci. – volume: 46 year: 2021 publication-title: Extreme Mechanics Letters – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 start-page: 728 year: 2021 publication-title: Mater. Horiz. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 11 start-page: 233 year: 1925 publication-title: J. Opt. Soc. Am. – volume: 3 year: 2018 publication-title: Sci. Robot. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 year: 2021 publication-title: Adv. Mater. Technol. – volume: 614 start-page: 463 year: 2023 publication-title: Nature – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 23 start-page: 220 year: 2018 publication-title: Trends Plant Sci. – volume: 165 start-page: 373 year: 2005 publication-title: New Phytol – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 61 start-page: 705 year: 2010 publication-title: Annu. Rev. Plant Biol. – volume: 9 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_26_1 doi: 10.1126/sciadv.aax5746 – ident: e_1_2_8_3_1 doi: 10.1016/j.tplants.2017.12.004 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201804540 – year: 2022 ident: e_1_2_8_14_1 publication-title: Adv. Mater. – ident: e_1_2_8_21_1 doi: 10.1002/advs.202205146 – ident: e_1_2_8_1_1 doi: 10.1016/j.cub.2003.09.016 – ident: e_1_2_8_46_1 doi: 10.1039/D0MH01406K – ident: e_1_2_8_29_1 doi: 10.1146/annurev.arplant.043008.092042 – ident: e_1_2_8_55_1 doi: 10.1126/scirobotics.aaw5496 – ident: e_1_2_8_45_1 doi: 10.1364/JOSA.11.000233 – ident: e_1_2_8_30_1 doi: 10.1093/jxb/erz158 – ident: e_1_2_8_15_1 doi: 10.1038/ncomms13981 – ident: e_1_2_8_18_1 doi: 10.1002/advs.202101295 – ident: e_1_2_8_50_1 doi: 10.1002/adma.202103062 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201905554 – ident: e_1_2_8_24_1 doi: 10.1126/scirobotics.aar2629 – ident: e_1_2_8_35_1 doi: 10.1002/adma.202300560 – ident: e_1_2_8_39_1 doi: 10.1002/adma.202205196 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.9b20124 – ident: e_1_2_8_7_1 doi: 10.1016/j.eml.2021.101340 – ident: e_1_2_8_48_1 doi: 10.1039/D0NR09210J – ident: e_1_2_8_32_1 doi: 10.1002/adma.202205196 – ident: e_1_2_8_53_1 doi: 10.1111/j.1469-8137.2004.01263.x – ident: e_1_2_8_16_1 doi: 10.1126/scirobotics.aax7112 – ident: e_1_2_8_57_1 doi: 10.1126/scirobotics.aar2629 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201706695 – ident: e_1_2_8_22_1 doi: 10.1038/s41586-022-05656-3 – ident: e_1_2_8_58_1 doi: 10.1088/2399-7532/ac55fd – ident: e_1_2_8_11_1 doi: 10.1039/b805434g – ident: e_1_2_8_36_1 doi: 10.1007/s10404-015-1676-z – year: 2016 ident: e_1_2_8_43_1 publication-title: J Vis Exp – ident: e_1_2_8_31_1 doi: 10.1016/j.tplants.2021.11.006 – ident: e_1_2_8_27_1 doi: 10.1002/admt.202001095 – ident: e_1_2_8_8_1 doi: 10.1038/ncomms15546 – ident: e_1_2_8_19_1 doi: 10.1002/adma.202211437 – ident: e_1_2_8_40_1 doi: 10.1098/rstl.1883.0029 – ident: e_1_2_8_34_1 doi: 10.1021/acsami.1c09776 – ident: e_1_2_8_12_1 doi: 10.1038/s41565-022-01241-x – ident: e_1_2_8_59_1 doi: 10.1002/adfm.202108919 – ident: e_1_2_8_60_1 doi: 10.1002/adma.202110384 – ident: e_1_2_8_33_1 doi: 10.1039/C7CS00309A – ident: e_1_2_8_9_1 doi: 10.1021/acsami.0c20418 – ident: e_1_2_8_56_1 doi: 10.1038/nature22987 – ident: e_1_2_8_52_1 doi: 10.1002/adma.202302765 – ident: e_1_2_8_42_1 doi: 10.1039/C5RA01039J – ident: e_1_2_8_20_1 doi: 10.1038/s41467-023-37964-1 – ident: e_1_2_8_44_1 doi: 10.1002/aelm.201900721 – ident: e_1_2_8_4_1 doi: 10.1016/j.tplants.2015.11.009 – ident: e_1_2_8_17_1 doi: 10.1126/scirobotics.adf4753 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201901370 – ident: e_1_2_8_37_1 doi: 10.1002/adfm.200701216 – ident: e_1_2_8_41_1 doi: 10.1109/JMEMS.2014.2307358 – volume: 5 year: 2022 ident: e_1_2_8_54_1 publication-title: Matter – ident: e_1_2_8_2_1 doi: 10.1038/nature03185 – ident: e_1_2_8_23_1 doi: 10.1002/advs.202104270 – ident: e_1_2_8_10_1 doi: 10.1038/s41565-019-0562-3 – ident: e_1_2_8_47_1 doi: 10.1088/1674-1056/26/4/048801 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202201884 – ident: e_1_2_8_49_1 doi: 10.1126/scirobotics.add2903 – ident: e_1_2_8_51_1 doi: 10.1039/C8SM01281D |
SSID | ssj0001537418 |
Score | 2.395376 |
Snippet | Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles.... Abstract Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2306129 |
SubjectTerms | bioinspired soft robot electronics‐free robots Equipment Design - methods gravitropism Gravitropism - physiology Heat Homeostasis liquid crystal elastomer Liquid Crystals liquid metal Metals - chemistry Oxidation Phase transitions Plants Pneumatics Robotics - instrumentation Robotics - methods Robots Silicones Skin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5RlokZGQgEPUjTOO7SNFLAW1HCiVerP8FJFKUnazPfcn8Bv5JYyTbNgVoF64xbGVjMYzns-vbwh5EYTzFYaSnJsy5qDiLFeB4WAI0gbuZaVMWu84-VQdncHHc36-keornQkb6IEHxR04Dh44TloKHkGUlbKiMPhbZqrAouzvkWPM25hMDfeDy0TLsmZpnLED468SO3dC3EWPJ39HoZ6s_28I88-DkpsAto9A87vkzggd6ZtB5F1yKzT3yO7onEv6amSQfn2fHJ_i4Eo_t7btljSttNKUm6j7ef3jQ5N21oOn7xfmqu4W7WW9_EYPMZR52jZ0frGqfe3ocf0dH-hJQGj-gJzN3315e5SPaRNyxwWo3LuYyD4tRFYJsJIba7g1Cly6pAoCnIcilkVwCnhKvFEaF60VvlAgnOXlQ7LTtE14TCgPkeGUKrKZsCAN-rrkrvCcpe1AV4WM5Gs1ajdyiqfUFhd6YENmOqldT2rPyMup_eXApvHPloepV6ZWiQW7f4G2oUfb0DfZRkb21n2qR9dcahzgQBYYuLH6-VSNTpV2SkwT2hWKoQChDyLHWUYeDSYwSVJKwIAOVUbklnFsibpd09Rfe-LuxO7KETFmhPV2dIMONCKT06n05H9o5Cm5jR-E4cTmHtnpFquwj6iqs896B_oFxWYckw priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwELWgbNggyjNQkJGQgEXUG2ccJ0uKuBTUIkSp1F3kJ0QqSbnJ7ZpP4Bv5EmaS3LQRICR2TuxElj2P47F9hrGnXlmXoSuJpU5DDEVYxIUXaAwhN166PCs0xTsO32f7x_DuRJ5cusU_8ENMATfSjN5ek4Jr0-5ekIZqd0502wSh0WddZdfofi2x5wv4cBFlkSnRs1CGOVxdx2kOsGFuXIjd-S9mnqkn8P8T6vz98ORlUNt7peVNdmOEk_zlMP_b7Iqvb7HtUWFb_nxklX5xmx0cocHlHxvTdC2n6CunfEXdz-8_3ta02-4df7PS51W3as6q9ivfQ_fmeFPz5em6cpXlB9U3LPBDj3D9Djtevv70aj8eUynEViooYmcDEYAaCCJTYHKpjZZGF2Dp4ioosA6SkCbeFiApGUeqbTBGuaQAZY1M77Ktuqn9fcalDwKXWUEslIFco_7n0iZOCtoitJmPWLwZxtKOPOOU7uK0HBiSRUnDXk7DHrFnU_uzgWHjry33aFamVsSM3b9oVp_LUdFKK8GBxEVuIgOoNCuMSjSKqdCZFyFXEdvZzGk5qmtbotGDPEFnjtVPpmpUNNo90bVv1tiNAhAOIZpcROzeIAJTT0iuFIpfxPKZcMy6Oq-pqy89mTcxvkpEkRETvRz9YwxKRCtH09OD__noIbuOZRhObe6wrW619o8QWXXmca88vwAPURnP priority: 102 providerName: Wiley-Blackwell |
Title | Soft Robots with Plant‐Inspired Gravitropism Based on Fluidic Liquid Metal |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202306129 https://www.ncbi.nlm.nih.gov/pubmed/38447146 https://www.proquest.com/docview/3054810367 https://www.proquest.com/docview/2942189290 https://pubmed.ncbi.nlm.nih.gov/PMC11095172 https://doaj.org/article/c54d4544615f47369b71acca2a6e2f87 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo98IFtTxDy8pISMAh6sYZx8kJdaFLQbtV1aVSb5FfgUgl2e6jZ34Cv5FfwjjxZlnxuiWxD854Hl9mnG8IeWGFNgmGkpDLuAghKwZhZhk6Q0iV5SZNMunyHZOz5PQSPl7xK59wW_hjlWuf2DhqU2uXIz9CvYQ0Qn8r3sxuQtc1ylVXfQuNHdJDF5zix1dveHJ2frHJsvDY0bOs2RoH7EiaW8fS7ZB31ODKTTRqSPv_hDR_PzD5K5BtItFoj9zzEJIet3u-T-7Y6j7Z90a6oK88k_TrB2Q8RSdLL2pVLxfUZVyp61G0_PHt-4fKVditoe_n8rZczutZufhKhxjSDK0rOrpelabUdFze4AWdWIToD8nl6OTT29PQt08INReQhUYXjvRTQcESASrlUkmuZAba_awKArSBqIgjqzPgrgFHLHWhlDBRBkIrHj8iu1Vd2SeEclswFG_BBkJBKtHmU64jw5krC-rEBiRcizHXnlvctbi4zltWZJY7seed2APysps_a1k1_jpz6Halm-XYsJsH9fxz7o0r1xwMcPywjXgBIk4yJSKJqslkYlmRioAcrvc09ya6yDcKFZDn3TAal6uYyMrWK1xGBgiBEEEOAvK4VYFuJXEKGNghCUi6pRxbS90eqcovDYG3Y3nliBwDwho9-o8MckQo0-7u6b9f5oDcxanQnsk8JLvL-co-Q9y0VH2yw-C8T3rH7ybjad-bSr_JQvwEuGkZDA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFL2q0gVsEOVpWmCQQMDCajye8WOBEIGGhCYR6kPqzszL1FKx0zyK2PEJfAkfxZdwx68Q8Vp1F8djaXzn3jPnzozPBXhsQqUDnEpcLvzUZXHadWNDEQxZJA3XURALu94xngSDY_buhJ9swPfmWxh7rLLBxBKodaHsGvku-iWLPMTb8OX03LVVo-zualNCo3KLffPlM6Zs8xfDNzi-Tyjt7x29Hrh1VQFX8ZDFrlap1cKULKVByGTEhRRcipgp-w0nC5nSzEt9z6iYcVuXwhcqlTLUmO6HStoqEQj5m8zHVKYDm729yfuD1aoO960cTKMO2aW7Ql9YVXDL9L2Sx65mv7JIwJ-Y7e8HNH8lzuXM178O12rKSl5VPrYFGya_AVs1KMzJs1q5-vlNGB0iqJODQhaLObErvMTWRFr8-PptmNsdfaPJ25m4yBazYprNP5EeTqGaFDnpny0znSkyys7xBxkbTAluwfGlGPY2dPIiN3eBcJNSTOVS2g0liwRiTMSVpzm125AqMA64jRkTVWuZ25IaZ0mlwkwTa_akNbsDT9v200rF468te3ZU2lZWfbv8o5h9TOpgThRnmnFMpD2estAPYhl6AkOBisDQNAod2GnGNKkhYZ6sHNiBR-1tDGa7QyNyUyyxGzFDyoWMtevAncoF2p74EUMiwQIHojXnWOvq-p08Oy0Fw62qLEem6gAt_eg_NkiQER22V_f-_TIP4crgaDxKRsPJ_jZcxcdYdR50BzqL2dLcR862kA_qQCHw4bJj8ydqEFJB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqqYTYIMoztICRQMAimoljx8kCIYZ26NDpqGqp1F3qJ0Rqk-k8itjxCXwPn8OXcJ3XMOK16m4ycSTn-t7jc23nXISeGq50BFOJz0RofZrYnp8YAmBIY2mYjqNEuPWO_XG0e0zfn7CTNfS9-RbGHatsMLEEal0ot0beBb-kcQB4y7u2PhZxsD14PbnwXQUpt9PalNOoXGTPfPkM6dvs1XAbxvoZIYOdD293_brCgK8Yp4mvlXW6mJJaEnEqYyakYFIkVLnvOSmnStPAhoFRCWWuRkUolJWSa0j9uZKuYgTA_zqHrKjXQev9nfHB4XKFh4VOGqZRiuyRrtCXTiHcsf6g5LTLmbAsGPAnlvv7Yc1fSXQ5Cw5uohs1fcVvKn_bQGsmv4U2aoCY4Re1ivXL22h0BACPDwtZzGfYrfZiVx9p_uPrt2HudveNxu-m4jKbT4tJNjvHfZhONS5yPDhbZDpTeJRdwA-8byA9uIOOr8Swd1EnL3JzH2FmLIG0zpIelzQWgDcxU4FmxG1Jqsh4yG_MmKpa19yV1zhLK0Vmkjqzp63ZPfS8bT-pFD3-2rLvRqVt5ZS4yz-K6ce0DuxUMaopg6Q6YJbyMEokDwSEBRGRITbmHtpqxjSt4WGWLp3ZQ0_a2xDYbrdG5KZYQDcSCvQL2GvPQ_cqF2h7EsYUSAWNPBSvOMdKV1fv5NmnUjzcKcwyYK0eIqUf_ccGKbCjo_bqwb9f5jG6BjGZjobjvU10HZ6i1dHQLdSZTxfmIdC3uXxUxwlGp1cdmj8BQUtWdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Robots+with+Plant-Inspired+Gravitropism+Based+on+Fluidic+Liquid+Metal&rft.jtitle=Advanced+science&rft.au=Chen%2C+Gangsheng&rft.au=Ma%2C+Biao&rft.au=Chen%2C+Yi&rft.au=Chen%2C+Yanjie&rft.date=2024-05-01&rft.eissn=2198-3844&rft.volume=11&rft.issue=18&rft.spage=e2306129&rft_id=info:doi/10.1002%2Fadvs.202306129&rft_id=info%3Apmid%2F38447146&rft.externalDocID=38447146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |