Rising temperature and development in dragonfly populations at different latitudes

1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of...

Full description

Saved in:
Bibliographic Details
Published inFreshwater biology Vol. 55; no. 2; pp. 397 - 410
Main Authors FLENNER, IDA, RICHTER, OTTO, SUHLING, FRANK
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.02.2010
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of a widespread European odonate, Orthetrum cancellatum. In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families. 3. The experiment was run outdoors at 52°N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 °C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve. 4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day-length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population. 5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe.
AbstractList Summary 1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of a widespread European odonate, Orthetrum cancellatum. In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families. 3. The experiment was run outdoors at 52°N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 °C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve. 4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day‐length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population. 5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe.
Summary 1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of a widespread European odonate, Orthetrum cancellatum . In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families. 3. The experiment was run outdoors at 52°N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 °C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve. 4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day‐length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population. 5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe.
1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of a widespread European odonate, Orthetrum cancellatum. In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families. 3. The experiment was run outdoors at 52°N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 °C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve. 4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day-length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population. 5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe.
1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediter- ranean and temperate populations of a widespread European odonate, Orthetrum cancellatum. In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families. 3. The experiment was run outdoors at 52°N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 °C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve. 4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day-length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population. 5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe.  
Summary 1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of a widespread European odonate, Orthetrum cancellatum. In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families. 3. The experiment was run outdoors at 52°N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 °C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve. 4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day-length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population. 5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe. [PUBLICATION ABSTRACT]
Summary1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required.2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of a widespread European odonate, Orthetrum cancellatum. In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families.3. The experiment was run outdoors at 52N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve.4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day-length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population.5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe.
1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different latitudes are required. 2. We examined life cycle regulation and growth responses to temperature in Mediterranean and temperate populations of a widespread European odonate, Orthetrum cancellatum. In an experiment, offspring from individual females from different parts of the range were kept separately to elucidate differences between families. 3. The experiment was run outdoors at 52 degrees N at a natural photoperiod for almost a year. We used four temperature regimes, ambient (i.e. following local air temperature) and ambient temperature increased by 2, 4 and 6 degrees C, to mimic future temperature rise. A mathematical model was used to categorise the type of seasonal regulation and estimate parameters of the temperature response curve. 4. Growth rate varied significantly with temperature sum, survival and geographic origin, as well as with family. Offspring of all females from the temperate part of the range had a life cycle with a 12 h day-length threshold necessary to induce diapause (i.e. diapause was induced once day length fell below 12 h). By contrast, Mediterranean families had a 10 h threshold or had an unregulated life cycle allowing winter growth. The temperature response did not significantly differ between populations, but varied between families with a greater variation in the optimum temperature for growth in the Mediterranean population. 5. The variation in seasonal regulation leads to a diversity in voltinism patterns within species, ranging from bivoltine to semivoltine along a latitudinal gradient. Given that the type of seasonal regulation is genetically fixed, rising temperatures will not allow faster than univoltine development in temperate populations. We discuss the consequences of our results in the light of rising temperature in central Europe.
Author RICHTER, OTTO
FLENNER, IDA
SUHLING, FRANK
Author_xml – sequence: 1
  fullname: FLENNER, IDA
– sequence: 2
  fullname: RICHTER, OTTO
– sequence: 3
  fullname: SUHLING, FRANK
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-14955$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-137915$$DView record from Swedish Publication Index
BookMark eNqNkc1u1DAURi1UJKaFZyASCxaQ4H_HCxZtYQpSBVKhdHnlxM7UQyYOdkJn3p6EoFmwgbvxlX3OtezvFJ10oXMIZQQXZKo324IwKXLKqSooxrrAlJa62D9Cq-PBCVphzGUusMJP0GlKW4xxKRRdoZsbn3y3yQa36100wxhdZjqbWffTtaHfuW7IfJfZaDaha9pD1od-bM3gQ5cyM2TWN42LMzVvDqN16Sl63Jg2uWd_1jN0u37_9fJDfv356uPl-XVeC8V1bomSVCurLDGcEWcpaWwjK2Mts4JVpRXUVKUWdWmswJYL40ypKq2dljU37Ay9XuamB9ePFfTR70w8QDAe3vlv5xDiBsYRCFOaiAl_9W_8_h4I12KmXy50H8OP0aUBdj7Vrm1N58KYQHFJJCsln8gXf5HbMMZuejkQweX00ZTgiSoXqo4hpeia4_0EwxwkbGHOC-a8YA4SfgcJ-0l9u6gPvnWH__ZgfXcxd5OfL75Pg9sffRO_g1RMCbj7dAVYl4Ku1QWoiX--8I0JYDbRJ7j9QjFhmCgqidDsF8q4vwY
CitedBy_id crossref_primary_10_1093_ee_nvz138
crossref_primary_10_4001_003_023_0120
crossref_primary_10_1080_13887890_2013_825937
crossref_primary_10_1111_een_13216
crossref_primary_10_1016_j_aquatox_2015_07_018
crossref_primary_10_1111_ddi_12007
crossref_primary_10_1899_12_092_1
crossref_primary_10_3390_biology1020411
crossref_primary_10_3390_insects11050273
crossref_primary_10_1080_13887890_2018_1563916
crossref_primary_10_1007_s00027_023_00995_3
crossref_primary_10_1007_s00227_012_2085_4
crossref_primary_10_1093_jee_toz095
crossref_primary_10_1111_phen_12146
crossref_primary_10_1038_hdy_2011_63
crossref_primary_10_7717_peerj_6472
crossref_primary_10_1002_ecs2_4732
crossref_primary_10_1111_icad_12464
crossref_primary_10_1603_EN12248
crossref_primary_10_1007_s13744_021_00890_2
crossref_primary_10_1111_j_1600_0706_2011_20015_x
crossref_primary_10_1111_j_1752_4598_2010_00083_x
crossref_primary_10_1080_13887890_2015_1082946
crossref_primary_10_1111_jeb_13493
crossref_primary_10_1093_biolinnean_blab059
crossref_primary_10_1371_journal_pone_0088958
crossref_primary_10_1080_13887890_2015_1009392
crossref_primary_10_1111_icad_12507
crossref_primary_10_1371_journal_pone_0087468
crossref_primary_10_48156_1388_2024_1917262
crossref_primary_10_1111_een_12175
crossref_primary_10_1007_s00027_017_0554_z
crossref_primary_10_1007_s00114_014_1194_y
crossref_primary_10_1007_s00227_012_1996_4
crossref_primary_10_1111_j_1752_4598_2011_00182_x
crossref_primary_10_3390_d14121066
crossref_primary_10_1111_fwb_12074
crossref_primary_10_1111_fwb_12690
crossref_primary_10_1007_s00442_018_4146_y
crossref_primary_10_1007_s10750_018_3600_5
crossref_primary_10_1111_eva_12108
crossref_primary_10_1111_icad_12034
crossref_primary_10_1111_ivb_12209
crossref_primary_10_1242_jeb_061945
crossref_primary_10_1007_s10841_018_0063_y
crossref_primary_10_1242_jeb_153569
Cites_doi 10.1046/j.1365-2699.2003.00796.x
10.1023/A:1004006422334
10.1046/j.1365-2427.2000.00605.x
10.1080/13887890.2008.9748319
10.1080/13887890.2006.9748261
10.1111/j.1365-2486.2005.00904.x
10.1111/j.1365-294X.2007.03413.x
10.1111/j.2007.0906-7590.05313.x
10.1046/j.1420-9101.1995.8030315.x
10.2307/1940838
10.1016/j.pocean.2008.03.015
10.1016/S0022-1910(01)00054-3
10.1086/419764
10.1139/z95-199
10.1007/s00484-003-0171-5
10.1111/j.0030-1299.2005.13471.x
10.1111/j.1365-2486.2007.01404.x
10.1046/j.1365-2540.2001.00829.x
10.1111/j.1365-2486.2007.01525.x
10.1073/pnas.212519399
10.1007/s10144-007-0055-3
10.1111/j.1558-5646.2007.00130.x
10.1139/z01-041
10.1111/j.1365-2427.1981.tb01252.x
10.1111/j.1752-4598.2008.00020.x
10.1080/13887890.1998.9748100
10.1073/pnas.241391498
10.1111/j.0014-3820.2000.tb00719.x
10.1111/j.1365-2311.2007.00982.x
10.1007/s10336-007-0158-9
10.1111/j.1439-0418.2006.01050.x
10.1111/j.1365-2656.2006.01137.x
10.1146/annurev.ecolsys.37.091305.110100
10.1016/j.tree.2008.04.005
10.1007/BF00317083
10.1111/j.0030-1299.2007.16047.x
10.1016/S0044-8486(98)00479-7
10.1111/j.1365-2427.2008.02012.x
10.1146/annurev.ecolsys.37.091305.110115
10.1111/j.1365-2486.2005.01038.x
10.1038/416389a
10.1111/j.1365-2486.2007.01318.x
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
7QH
7SN
7SS
7UA
C1K
F1W
H95
L.G
M7N
7ST
7U6
H97
SOI
ADTPV
AOWAS
D8Z
DF2
DOI 10.1111/j.1365-2427.2009.02289.x
DatabaseName AGRIS
Istex
CrossRef
Aqualine
Ecology Abstracts
Entomology Abstracts (Full archive)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environment Abstracts
Sustainability Science Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environment Abstracts
SwePub
SwePub Articles
SWEPUB Högskolan i Halmstad
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Entomology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Sustainability Science Abstracts
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList
CrossRef


Entomology Abstracts
Entomology Abstracts

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Oceanography
EISSN 1365-2427
EndPage 410
ExternalDocumentID oai_DiVA_org_uu_137915
oai_DiVA_org_hh_14955
3377861661
10_1111_j_1365_2427_2009_02289_x
FWB2289
ark_67375_WNG_09852F7B_7
US201301726159
Genre article
GeographicLocations MED
ANE, Europe
Europe
GeographicLocations_xml – name: MED
– name: Europe
– name: ANE, Europe
GroupedDBID -~X
..I
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QZG
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TWZ
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
YZZ
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAYXX
CITATION
7QH
7SN
7SS
7UA
C1K
F1W
H95
L.G
M7N
7ST
7U6
H97
SOI
ADTPV
AOWAS
D8Z
DF2
ID FETCH-LOGICAL-c5749-d176297d7d1a431ed21fdf6badd3d53b8d52ab895c8ad50d45aea87b99e96c4a3
IEDL.DBID DR2
ISSN 0046-5070
1365-2427
IngestDate Sat Aug 24 00:23:40 EDT 2024
Sat Aug 24 00:35:28 EDT 2024
Fri Aug 16 05:15:13 EDT 2024
Thu Oct 10 17:02:49 EDT 2024
Fri Aug 23 00:58:50 EDT 2024
Sat Aug 24 01:11:55 EDT 2024
Wed Oct 30 09:55:15 EDT 2024
Wed Dec 27 19:16:57 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5749-d176297d7d1a431ed21fdf6badd3d53b8d52ab895c8ad50d45aea87b99e96c4a3
Notes http://dx.doi.org/10.1111/j.1365-2427.2009.02289.x
ArticleID:FWB2289
istex:CEC2DF7937B9C2367FFF8946C3BEA0D79DA8B9BE
ark:/67375/WNG-09852F7B-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1546008210
PQPubID 36547
PageCount 14
ParticipantIDs swepub_primary_oai_DiVA_org_uu_137915
swepub_primary_oai_DiVA_org_hh_14955
proquest_miscellaneous_746163864
proquest_journals_1546008210
crossref_primary_10_1111_j_1365_2427_2009_02289_x
wiley_primary_10_1111_j_1365_2427_2009_02289_x_FWB2289
istex_primary_ark_67375_WNG_09852F7B_7
fao_agris_US201301726159
PublicationCentury 2000
PublicationDate February 2010
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: February 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Freshwater biology
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Norling U. (1984a) Life history patterns in the northern expansion of dragonflies. Advances in Odonatology, 2, 127-156.
Anholt B.R. (1994) Cannibalism and early instar survival in a larval damselfly. Oecologia, 99, 60-65.
Suwa A. & Gotoh T. (2006) Geographic variation in diapause induction and mode of diapause inheritance in Tetranychus pueraricola. Journal of Applied Entomology, 130, 329-335.
Norling U. (1984c) The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae). Odonatologica, 13, 429-449.
Arendt J.D. (1997) Adaptive intrinsic growth rates: an integration across taxa. The Quarterly Review of Biology, 72, 149-177.
Corbet P.S., Suhling F. & Söndgerath D. (2006) Voltinism of Odonata: a review. International Journal of Odonatology, 9, 1-44.
Reznick D.N. & Ghalambor C.K. (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica, 112-113, 183-198.
Hay D.E., Rose K.A., Schweigert J. & Megrey B.A. (2008) Geographic variation in North Pacific herring populations: Pan-Pacific comparisons and implications for climate change impacts. Progress in Oceanography, 77, 233-240.
Spekat A., Enke W. & Kreienkamp F. (2007) Neuentwicklung von Regional Hoch Aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010 bis 2100 für die SRESSzenarios B1, A1B und A2. Umweltbundesamt, Dessau.
Bradshaw W.E. & Holzapfel C.M. (2001a) Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Sciences, 98, 14509-14511.
Schaber J. & Badeck F.-W. (2003) Physiology-based phenology models for forest tree species in Germany. International Journal of Biometeorology, 47, 193-201.
Braune E., Richter O., Soendgerath D. & Suhling F. (2008) Voltinism flexibility of a riverine dragonfly along thermal gradients. Global Change Biology, 14, 470-482.
Coppack T. (2007) Experimental determination of the photoperiodic basis for geographic variation in avian seasonality. Journal of Ornithology, 148(Suppl. 2), S459-S467.
Yamahira K. & Takeshi K. (2008) Variation in juvenile growth rates among and within latitudinal populations of the medaka. Population Ecology, 50, 3-8.
Hickling R., Roy D.B., Hill J.K. & Thomas C.D. (2005) A northward shift of range margins in British Odonata. Global Change Biology, 11, 502-506.
Richter O., Suhling F., Müller O. & Kern D. (2008) A model for predicting the emergence of dragonflies in a changing climate. Freshwater Biology, 53, 1868-1880.
Suhling F. & Lepkojus S. (2001) Different growth and behaviour influences asymmetric predation among early instar dragonfly larvae. Canadian Journal of Zoology, 79, 854-860.
Martens A. (1986) Annual development of Libellula quadrimaculata L. in a newly setup pond (Anisoptera:Libellulidae). Notulae Odonatologicae, 2, 121-136.
Bradshaw W.E. & Holzapfel C.M. (2001b) Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement. Journal of Insect Physiology, 47, 809-820.
Johansson F. (2003) Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). Journal of Biogeography, 30, 29-34.
Spain J.D. (1982) BASIC Microcomputer Models in Biology. Addison Wesley, London.
Bradshaw W.E. & Holzapfel C.M. (2007) Evolution of animal photoperiodism. Annual Review of Ecology, Evolution, and Systematics, 38, 1-25.
Sutcliffe D.W., Carrick T.R. & Willoughby L.G. (1981) Effects of diet, body size, age and temperature on growth rates in the amphipod Gammarus pulex. Freshwater Biology, 11, 183-214.
Bronikowski A.M. (2000) Experimental evidence for the adaptive evolution of growth rate in the garter snake Thamnophis elegans. Evolution, 54, 1760-1767.
Dingemanse N.J. & Kalkman V.J. (2008) Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecological Entomology, 33, 394-402.
Flenner I. & Sahlén G. (2008) Dragonfly community re-organisation in boreal forest lakes: rapid species turnover driven by climate change? Insect Conservation and Diversity, 1, 169-179.
Both C. & Visser M.E. (2005) The effect of climate change on the correlation between avian life-history traits. Global Change Biology, 11, 1606-1613.
Biro P.A., Abrahams M.V., Post J.R. & Parkinson E.A. (2006) Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. Journal of Animal Ecology, 75, 1165-1171.
Herbinger C.M., O'reilly P.T., Doyle R.W., Wright J.M. & O'flynn F. (1999) Early growth performance of Atlantic salmon full-sib families reared in single family tanks versus in mixed family tanks. Aquaculture, 173, 105-116.
Corbet P.S. (1999) Dragonflies: Behaviour and Ecology of Odonata. Harley Books, Colchester.
Intergovernmental Panel on Climate Change (2007) Synthesis Report 2007, IPCC Secretariat, Geneva. Available at: http://www.ipcc.ch/ (last accessed on 28 January 2009).
Hassall C., Thompson D.J., French G.C. & Harvey I.F. (2007) Historical changes in the phenology of British Odonata are related to climate. Global Change Biology, 13, 933-941.
Stenseth N.C. & Mysterud A. (2002) Climate, changing phenology, and other life history traits: nonlinearity and match - mismatch to the environmeAQ _nt. Proceedings of the National Academy of Sciences, 99, 13379-13381.
Dijkstra K.-D.B. & Lewington R. (2006) Field Guide to the Dragonflies of Britain and Europe. British Wildlife Publishing, Gilingham.
De Block M., Slos S., Johansson F. & Stoks R. (2008) Integrating life history and physiology to understand latitudinal size variation in a damselfly. Ecography, 31, 115-123.
Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.-M., Hoegh-Guldberg O. & Bairlein F. (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
Gienapp P., Teplitsky C., Alho J.S., Mills J.A. & Merilä J. (2008) Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology, 17, 167-178.
Suhling F., Befeld S., Häusler M., Katzur K., Lepkojus S. & Mesléard F. (2000) Effects of insecticide applications on macroinvertebrate density and biomass in rice-fields in the Rhône-delta, France. Hydrobiologia, 431, 69-80.
Münchberg P. (1931) Beiträge zur Kenntnis der Odonatengenera Libellula L., Orthetrum New. und Leucorrhinia Britt. in Nordostdeutschland. Abhandlungen und Berichte der Naturwissenschaftlichen Abteilung der Grenzmärkischen Gesellschaft zur Erforschung und Pflege der Heimat, 6, 128-145.
Parmesan C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematic, 37, 637-669.
Yamahira K., Kawajiri M., Takeshi K. & Irie T. (2007) Inter- and intrapopulation variation in thermal reaction norms for growth rate: evolution of latitudinal compensation in ectotherms with a genetic constraint. Evolution, 61, 1577-1589.
Best A.S., Johst K., Münkemüller T. & Travis J.M.J. (2007) Which species will successfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics. Oikos, 116, 1531-1539.
Krishnaraj R. & Pritchard G. (1995) The influence of larval size, temperature, and components of the functional response to prey density on growth rates of the dragonflies Lestes disjunctus and Coenagrion resolutum (Insecta: Odonata). Canadian Journal of Zoology, 73, 1672-1680.
Parmesan C. (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1-13.
De Block M. & Stoks R. (2005) Pond drying and hatching date shape the tradeoff between age and size at emergence in a damselfly. Oikos, 108, 485-494.
Elliott J.M. & Hurley M.A. (2000) Optimum energy intake and gross efficiency of energy conversion for brown trout, Salmo trutta, feeding on invertebrates or fish. Freshwater Biology, 44, 605-615.
James A.C. & Partridge L. (1995) Thermal evolution of rate of larval development in Drosophila melanogaster in laboratory and field populations. Journal of Evolutionary Biology, 8, 315-330.
Samraoui B., Bouzid S., Boulahbal R. & Corbet P.S. (1998) Postponed reproductive maturation in upland refuges maintains life-cycle continuity during the hot, dry season in Algerian dragonflies. International Journal of Odonatology, 1, 119-135.
Uller T. (2008) Developmental plasticity and the evolution of parental effects. Trends in Ecology and Evolution, 23, 432-438.
Norling U. (1984b) Photoperiodic control of larval development in Leucorrhina dubia (vander Linden): a comparison between populatios from Northern and Southern Sweden (Anisoptera: Libellulidae). Odonatologica, 13, 529-550.
Van Buskirk J. (1993) Population consequences of larval crowding in the dragonfly Aeshna juncea. Ecology, 74, 1950-1958.
Hassall C. & Thompson D.J. (2008) The effects of environmental warming on Odonata: a review. International Journal of Odonatology, 11, 131-153.
2007; 148
1995; 73
2006; 75
1984c; 13
2000; 44
2006; 37
2002; 99
2006; 130
2008; 33
2008; 77
2008; 31
2008; 1
2007; 38
1986; 2
2001; 112–113
2000; 54
1993; 74
1984b; 13
2005; 108
2003; 47
1999; 173
2008; 23
1982
2007; 61
1984a; 2
2006; 9
2008; 17
2008; 14
1998
2007
2006
2001b; 47
2008; 11
2002; 416
2008; 53
2000; 431
2008; 50
2003; 30
2007; 13
1995; 8
1999
1997; 72
2007; 116
1931; 6
1994; 99
2001a; 98
1998; 1
2001; 79
2005; 11
1981; 11
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_19_1
Spain J.D. (e_1_2_6_44_1) 1982
Ott J. (e_1_2_6_37_1) 2007
Katzur K. (e_1_2_6_30_1) 1998
e_1_2_6_11_1
e_1_2_6_55_1
e_1_2_6_15_1
Intergovernmental Panel on Climate Change (e_1_2_6_27_1) 2007
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
Martens A. (e_1_2_6_32_1) 1986; 2
e_1_2_6_41_1
Dijkstra K.‐D.B. (e_1_2_6_17_1) 2006
e_1_2_6_9_1
Norling U. (e_1_2_6_35_1) 1984; 13
Corbet P.S. (e_1_2_6_13_1) 1999
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Spekat A. (e_1_2_6_45_1) 2007
e_1_2_6_50_1
Norling U. (e_1_2_6_36_1) 1984; 13
Norling U. (e_1_2_6_34_1) 1984; 2
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_42_1
Bradshaw W.E. (e_1_2_6_8_1) 2001; 47
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_46_1
Münchberg P. (e_1_2_6_33_1) 1931; 6
References_xml – volume: 130
  start-page: 329
  year: 2006
  end-page: 335
  article-title: Geographic variation in diapause induction and mode of diapause inheritance in
  publication-title: Journal of Applied Entomology
– volume: 31
  start-page: 115
  year: 2008
  end-page: 123
  article-title: Integrating life history and physiology to understand latitudinal size variation in a damselfly
  publication-title: Ecography
– volume: 13
  start-page: 933
  year: 2007
  end-page: 941
  article-title: Historical changes in the phenology of British Odonata are related to climate
  publication-title: Global Change Biology
– volume: 1
  start-page: 169
  year: 2008
  end-page: 179
  article-title: Dragonfly community re‐organisation in boreal forest lakes: rapid species turnover driven by climate change?
  publication-title: Insect Conservation and Diversity
– volume: 11
  start-page: 131
  year: 2008
  end-page: 153
  article-title: The effects of environmental warming on Odonata: a review
  publication-title: International Journal of Odonatology
– volume: 11
  start-page: 1606
  year: 2005
  end-page: 1613
  article-title: The effect of climate change on the correlation between avian life‐history traits
  publication-title: Global Change Biology
– volume: 13
  start-page: 429
  year: 1984c
  end-page: 449
  article-title: The life cycle and larval photoperiodic responses of (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae)
  publication-title: Odonatologica
– volume: 99
  start-page: 13379
  year: 2002
  end-page: 13381
  article-title: Climate, changing phenology, and other life history traits: nonlinearity and match – mismatch to the environmeAQ _nt
  publication-title: Proceedings of the National Academy of Sciences
– volume: 17
  start-page: 167
  year: 2008
  end-page: 178
  article-title: Climate change and evolution: disentangling environmental and genetic responses
  publication-title: Molecular Ecology
– volume: 30
  start-page: 29
  year: 2003
  end-page: 34
  article-title: Latitudinal shifts in body size of (Odonata)
  publication-title: Journal of Biogeography
– year: 1998
– volume: 173
  start-page: 105
  year: 1999
  end-page: 116
  article-title: Early growth performance of Atlantic salmon full‐sib families reared in single family tanks versus in mixed family tanks
  publication-title: Aquaculture
– volume: 38
  start-page: 1
  year: 2007
  end-page: 25
  article-title: Evolution of animal photoperiodism
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 9
  start-page: 1
  year: 2006
  end-page: 44
  article-title: Voltinism of Odonata: a review
  publication-title: International Journal of Odonatology
– volume: 44
  start-page: 605
  year: 2000
  end-page: 615
  article-title: Optimum energy intake and gross efficiency of energy conversion for brown trout, , feeding on invertebrates or fish
  publication-title: Freshwater Biology
– year: 1982
– volume: 13
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Influences of species, latitudes and methodologies on estimates of phenological response to global warming
  publication-title: Global Change Biology
– volume: 11
  start-page: 183
  year: 1981
  end-page: 214
  article-title: Effects of diet, body size, age and temperature on growth rates in the amphipod
  publication-title: Freshwater Biology
– volume: 112–113
  start-page: 183
  year: 2001
  end-page: 198
  article-title: The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution
  publication-title: Genetica
– volume: 99
  start-page: 60
  year: 1994
  end-page: 65
  article-title: Cannibalism and early instar survival in a larval damselfly
  publication-title: Oecologia
– volume: 61
  start-page: 1577
  year: 2007
  end-page: 1589
  article-title: Inter‐ and intrapopulation variation in thermal reaction norms for growth rate: evolution of latitudinal compensation in ectotherms with a genetic constraint
  publication-title: Evolution
– volume: 6
  start-page: 128
  year: 1931
  end-page: 145
  article-title: Beiträge zur Kenntnis der Odonatengenera L., New. und Britt. in Nordostdeutschland
  publication-title: Abhandlungen und Berichte der Naturwissenschaftlichen Abteilung der Grenzmärkischen Gesellschaft zur Erforschung und Pflege der Heimat
– volume: 431
  start-page: 69
  year: 2000
  end-page: 80
  article-title: Effects of insecticide applications on macroinvertebrate density and biomass in rice‐fields in the Rhône‐delta, France
  publication-title: Hydrobiologia
– volume: 74
  start-page: 1950
  year: 1993
  end-page: 1958
  article-title: Population consequences of larval crowding in the dragonfly
  publication-title: Ecology
– volume: 148
  start-page: S459
  issue: Suppl. 2
  year: 2007
  end-page: S467
  article-title: Experimental determination of the photoperiodic basis for geographic variation in avian seasonality
  publication-title: Journal of Ornithology
– volume: 14
  start-page: 470
  year: 2008
  end-page: 482
  article-title: Voltinism flexibility of a riverine dragonfly along thermal gradients
  publication-title: Global Change Biology
– volume: 47
  start-page: 193
  year: 2003
  end-page: 201
  article-title: Physiology‐based phenology models for forest tree species in Germany
  publication-title: International Journal of Biometeorology
– year: 2007
– volume: 8
  start-page: 315
  year: 1995
  end-page: 330
  article-title: Thermal evolution of rate of larval development in in laboratory and field populations
  publication-title: Journal of Evolutionary Biology
– volume: 79
  start-page: 854
  year: 2001
  end-page: 860
  article-title: Different growth and behaviour influences asymmetric predation among early instar dragonfly larvae
  publication-title: Canadian Journal of Zoology
– volume: 23
  start-page: 432
  year: 2008
  end-page: 438
  article-title: Developmental plasticity and the evolution of parental effects
  publication-title: Trends in Ecology and Evolution
– volume: 116
  start-page: 1531
  year: 2007
  end-page: 1539
  article-title: Which species will successfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics
  publication-title: Oikos
– volume: 47
  start-page: 809
  year: 2001b
  end-page: 820
  article-title: Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement
  publication-title: Journal of Insect Physiology
– volume: 11
  start-page: 502
  year: 2005
  end-page: 506
  article-title: A northward shift of range margins in British Odonata
  publication-title: Global Change Biology
– volume: 2
  start-page: 127
  year: 1984a
  end-page: 156
  article-title: Life history patterns in the northern expansion of dragonflies
  publication-title: Advances in Odonatology
– volume: 73
  start-page: 1672
  year: 1995
  end-page: 1680
  article-title: The influence of larval size, temperature, and components of the functional response to prey density on growth rates of the dragonflies and (Insecta: Odonata)
  publication-title: Canadian Journal of Zoology
– start-page: 201
  year: 2007
  end-page: 222
– volume: 75
  start-page: 1165
  year: 2006
  end-page: 1171
  article-title: Behavioural trade‐offs between growth and mortality explain evolution of submaximal growth rates
  publication-title: Journal of Animal Ecology
– volume: 2
  start-page: 121
  year: 1986
  end-page: 136
  article-title: Annual development of L. in a newly setup pond (Anisoptera:Libellulidae)
  publication-title: Notulae Odonatologicae
– volume: 13
  start-page: 529
  year: 1984b
  end-page: 550
  article-title: Photoperiodic control of larval development in (vander Linden): a comparison between populatios from Northern and Southern Sweden (Anisoptera: Libellulidae)
  publication-title: Odonatologica
– volume: 77
  start-page: 233
  year: 2008
  end-page: 240
  article-title: Geographic variation in North Pacific herring populations: Pan‐Pacific comparisons and implications for climate change impacts
  publication-title: Progress in Oceanography
– volume: 108
  start-page: 485
  year: 2005
  end-page: 494
  article-title: Pond drying and hatching date shape the tradeoff between age and size at emergence in a damselfly
  publication-title: Oikos
– volume: 54
  start-page: 1760
  year: 2000
  end-page: 1767
  article-title: Experimental evidence for the adaptive evolution of growth rate in the garter snake
  publication-title: Evolution
– year: 2006
– volume: 416
  start-page: 389
  year: 2002
  end-page: 395
  article-title: Ecological responses to recent climate change
  publication-title: Nature
– volume: 98
  start-page: 14509
  year: 2001a
  end-page: 14511
  article-title: Genetic shift in photoperiodic response correlated with global warming
  publication-title: Proceedings of the National Academy of Sciences
– volume: 33
  start-page: 394
  year: 2008
  end-page: 402
  article-title: Changing temperature regimes have advanced the phenology of Odonata in the Netherlands
  publication-title: Ecological Entomology
– volume: 37
  start-page: 637
  year: 2006
  end-page: 669
  article-title: Ecological and evolutionary responses to recent climate change
  publication-title: Annual Review of Ecology, Evolution and Systematic
– volume: 50
  start-page: 3
  year: 2008
  end-page: 8
  article-title: Variation in juvenile growth rates among and within latitudinal populations of the medaka
  publication-title: Population Ecology
– volume: 72
  start-page: 149
  year: 1997
  end-page: 177
  article-title: Adaptive intrinsic growth rates: an integration across taxa
  publication-title: The Quarterly Review of Biology
– volume: 1
  start-page: 119
  year: 1998
  end-page: 135
  article-title: Postponed reproductive maturation in upland refuges maintains life‐cycle continuity during the hot, dry season in Algerian dragonflies
  publication-title: International Journal of Odonatology
– volume: 53
  start-page: 1868
  year: 2008
  end-page: 1880
  article-title: A model for predicting the emergence of dragonflies in a changing climate
  publication-title: Freshwater Biology
– year: 1999
– ident: e_1_2_6_29_1
  doi: 10.1046/j.1365-2699.2003.00796.x
– ident: e_1_2_6_48_1
  doi: 10.1023/A:1004006422334
– ident: e_1_2_6_19_1
  doi: 10.1046/j.1365-2427.2000.00605.x
– ident: e_1_2_6_22_1
  doi: 10.1080/13887890.2008.9748319
– ident: e_1_2_6_14_1
  doi: 10.1080/13887890.2006.9748261
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1365-2486.2005.00904.x
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-294X.2007.03413.x
– volume-title: Field Guide to the Dragonflies of Britain and Europe
  year: 2006
  ident: e_1_2_6_17_1
  contributor:
    fullname: Dijkstra K.‐D.B.
– ident: e_1_2_6_16_1
  doi: 10.1111/j.2007.0906-7590.05313.x
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1420-9101.1995.8030315.x
– volume-title: BASIC Microcomputer Models in Biology
  year: 1982
  ident: e_1_2_6_44_1
  contributor:
    fullname: Spain J.D.
– ident: e_1_2_6_52_1
  doi: 10.2307/1940838
– volume: 2
  start-page: 127
  year: 1984
  ident: e_1_2_6_34_1
  article-title: Life history patterns in the northern expansion of dragonflies
  publication-title: Advances in Odonatology
  contributor:
    fullname: Norling U.
– volume-title: Neuentwicklung von Regional Hoch Aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI‐OM T63L31 2010 bis 2100 für die SRESSzenarios B1, A1B und A2
  year: 2007
  ident: e_1_2_6_45_1
  contributor:
    fullname: Spekat A.
– ident: e_1_2_6_24_1
  doi: 10.1016/j.pocean.2008.03.015
– volume: 6
  start-page: 128
  year: 1931
  ident: e_1_2_6_33_1
  article-title: Beiträge zur Kenntnis der Odonatengenera Libellula L., Orthetrum New. und Leucorrhinia Britt. in Nordostdeutschland
  publication-title: Abhandlungen und Berichte der Naturwissenschaftlichen Abteilung der Grenzmärkischen Gesellschaft zur Erforschung und Pflege der Heimat
  contributor:
    fullname: Münchberg P.
– volume: 47
  start-page: 809
  year: 2001
  ident: e_1_2_6_8_1
  article-title: Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement
  publication-title: Journal of Insect Physiology
  doi: 10.1016/S0022-1910(01)00054-3
  contributor:
    fullname: Bradshaw W.E.
– volume-title: Dragonflies: Behaviour and Ecology of Odonata
  year: 1999
  ident: e_1_2_6_13_1
  contributor:
    fullname: Corbet P.S.
– ident: e_1_2_6_3_1
  doi: 10.1086/419764
– ident: e_1_2_6_31_1
  doi: 10.1139/z95-199
– ident: e_1_2_6_43_1
  doi: 10.1007/s00484-003-0171-5
– ident: e_1_2_6_15_1
  doi: 10.1111/j.0030-1299.2005.13471.x
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1365-2486.2007.01404.x
– ident: e_1_2_6_40_1
  doi: 10.1046/j.1365-2540.2001.00829.x
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2486.2007.01525.x
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.212519399
– ident: e_1_2_6_54_1
  doi: 10.1007/s10144-007-0055-3
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1558-5646.2007.00130.x
– ident: e_1_2_6_47_1
  doi: 10.1139/z01-041
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1365-2427.1981.tb01252.x
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1752-4598.2008.00020.x
– volume: 2
  start-page: 121
  year: 1986
  ident: e_1_2_6_32_1
  article-title: Annual development of Libellula quadrimaculata L. in a newly setup pond (Anisoptera:Libellulidae)
  publication-title: Notulae Odonatologicae
  contributor:
    fullname: Martens A.
– ident: e_1_2_6_42_1
  doi: 10.1080/13887890.1998.9748100
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.241391498
– ident: e_1_2_6_11_1
  doi: 10.1111/j.0014-3820.2000.tb00719.x
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1365-2311.2007.00982.x
– volume-title: Synthesis Report 2007
  year: 2007
  ident: e_1_2_6_27_1
  contributor:
    fullname: Intergovernmental Panel on Climate Change
– ident: e_1_2_6_12_1
  doi: 10.1007/s10336-007-0158-9
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1439-0418.2006.01050.x
– volume: 13
  start-page: 429
  year: 1984
  ident: e_1_2_6_36_1
  article-title: The life cycle and larval photoperiodic responses of Coenagrion hastulatum (Charpentier) in two climatically different areas (Zygoptera: Coenagrionidae)
  publication-title: Odonatologica
  contributor:
    fullname: Norling U.
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1365-2656.2006.01137.x
– ident: e_1_2_6_38_1
  doi: 10.1146/annurev.ecolsys.37.091305.110100
– ident: e_1_2_6_51_1
  doi: 10.1016/j.tree.2008.04.005
– ident: e_1_2_6_2_1
  doi: 10.1007/BF00317083
– ident: e_1_2_6_4_1
  doi: 10.1111/j.0030-1299.2007.16047.x
– ident: e_1_2_6_25_1
  doi: 10.1016/S0044-8486(98)00479-7
– volume: 13
  start-page: 529
  year: 1984
  ident: e_1_2_6_35_1
  article-title: Photoperiodic control of larval development in Leucorrhina dubia (vander Linden): a comparison between populatios from Northern and Southern Sweden (Anisoptera: Libellulidae)
  publication-title: Odonatologica
  contributor:
    fullname: Norling U.
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1365-2427.2008.02012.x
– ident: e_1_2_6_9_1
  doi: 10.1146/annurev.ecolsys.37.091305.110115
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-2486.2005.01038.x
– ident: e_1_2_6_53_1
  doi: 10.1038/416389a
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2486.2007.01318.x
– volume-title: Untersuchungen zur Ei‐ und Larvalentwicklung einiger typischer Großlibellen (Odonata: Libellulidae) in Reisfeldern der Camargue
  year: 1998
  ident: e_1_2_6_30_1
  contributor:
    fullname: Katzur K.
– start-page: 201
  volume-title: Odonata: Biology of Dragonflies
  year: 2007
  ident: e_1_2_6_37_1
  contributor:
    fullname: Ott J.
SSID ssj0008572
Score 2.2310355
Snippet 1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from different...
Summary 1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from...
Summary 1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from...
Summary1. For modelling the future ecological responses to climate change, data on individual species and on variation within and between populations from...
SourceID swepub
proquest
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 397
SubjectTerms Biologi
Biology
climate change
Freshwater
growth rate
NATURAL SCIENCES
NATURVETENSKAP
Odonata
Orthetrum cancellatum
seasonal regulation
voltinism pattern
Title Rising temperature and development in dragonfly populations at different latitudes
URI https://api.istex.fr/ark:/67375/WNG-09852F7B-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2427.2009.02289.x
https://www.proquest.com/docview/1546008210
https://search.proquest.com/docview/746163864
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-14955
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-137915
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5aEESwXunYKnmovs0ytySTx9Z2LYIVVtf2LSSTzHZZmC07M9D66z1nMjt1RETEt8DcyMk5J18mX75DyCFzUWqQ3JrA_B1mOjWh1KkNDazFHCAMSJu4o_vpnJ_Ns4-X7LLnP-FZGK8PMfxww8jo8jUGuDb1OMg7hlaWiF52MoHFwwTxZJwKZHedzO6UpHImvHB4xkOAQNGY1PPbF41mqvulXgN-RdPfjMGoFxgdY9tucpruktW2W56Tspq0jZkU339RfPw__X5CHvcYlh55p3tK7rnqGXngq1reQuu06FuPPhdOV70o9nMymy3xzwRFOaxey5nqylJ7R1yiy4rajV7gYZVbej1UF6upbui2mEtDu_M3rXX1CzKfnn59fxb2NR3CgolMhjaG7CuFFTbWgF2cTeLSltxAmk0tS01uWaJNLlmRa8simzHtdC7AnZzkBfjSS7JTrSu3RyhjhpeRzQvc6i0cAI-YA_zLo5K7UmoekHg7furaS3eon5Y8YESFRsRCnFJ1RlQ3AdmDgVZ6ARlWzb8kuK8LEA9gnwzIu270h3fpzQpZcYKpi_MPKpI5S6biWImAHGzdQ_UJoVaAVDnCrTgKCB0uQyjj_oyu3Lqtlcg4omOeBeTQe9XwLRQBP1l-O1LrzUJdXSlc17KAvP3TbW0LnRQyhvt451B_bQU1vTjG1qt_fXCfPPQsC6T9HJCdZtO61wDeGvOmC8sf_BQy8w
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEAJN4hstY4AfBm-p8mU7edzYSoGtSGVle7Oc2OmqoXRqE2njr-cuSTOCEEKIN0tJHPl8d_7Zd_4dwC63XphScmuA67cb6TB1Ex0aN8W9mEWEgW6TIrrHYzGaRh_P-FlbDojuwjT8EN2BG1lG7a_JwOlAum_ldYpWFMiWdzLA3cMAAeUdtP6Q6jgcTG64pGIuG-rwSLgIgrx-Ws9ve-qtVbdzvUAES8K_6sPRhmK0j27r5Wn4EL6tB9ZkpVwMqjIdZN9_4Xz8TyN_BA9aGMv2Gr17DLds8QTuNoUtr7F1mLWtzc-Z1UXLi_0UJpM5HU4wYsRq6ZyZLgwzN7lLbF4ws9Qzuq9yzS67AmMrpku2rudSsvoKTmXs6hlMh4cn70ZuW9bBzbiMEtf46IATaaTxNcIXawI_N7lI0dOGhodpbHig0zjhWawN90zEtdWxRI2yichQnZ7DRrEo7BYwzlOReybOKNqbWcQevkAEGHu5sHmihQP-egLVZcPeoX7a9aAQFQmRanEmqhaiunJgC2da6Rk6WTX9ElBoF1EeIr_Egbf19Hd96eUFJcZJrk7H75WXxDwYyn0lHdhZ64dqfcJKIVgVhLh8zwHWPUZrphCNLuyiWikZCQLIInJgt1Gr7l_EA34w_7qnFsuZOj9XtLXlDrz502tVhYOUiY_viVqj_loKani6T63tf_3wNdwbnRwfqaMP408v4H6TdEFZQDuwUS4r-xKxXJm-qm30Bx8ANws
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BEQhV4lnUlAI-FG5Z5WU7Oba0obwWtLC0N8uJne1qpexqN5Fafj0zSTZlEUIIcbOUlzyeGX-OP38DcMCtF2ZEbg1w_nYjHWZuokPjZrgWs4gwMG3Sju7HoTgdR-_O-XnHf6KzMK0-RP_DjSKjydcU4AtTbAZ5w9CKAtnJTga4eBggnrwVCQTCBJBG11JSMZetcngkXMRA3iar57dv2piqbhZ6jgCWbH-5iUZbhdFNcNvMTul9mK371ZJSZoO6ygb5918kH_9Pxx_AvQ7EssPW6x7CDVs-gtttWcsrbJ3kXWv7U2512aliP4bRaEq_JhjpYXVizkyXhplr5hKblsws9YROq1yxRV9ebMV0xdbVXCrWHMCpjV3twDg9-fr61O2KOrg5l1HiGh_TbyKNNL5G8GJN4BemEBnm2dDwMIsND3QWJzyPteGeibi2OpboTzYROTrTE9gq56XdBcZ5JgrPxDnt9eYWkYcvEP_FXiFskWjhgL8eP7VotTvUT2seNKIiI1IlzkQ1RlSXDuziQCs9wRSrxl8C2thFjIe4L3HgVTP6_bv0cka0OMnV2fCN8pKYB6k8UtKB_bV7qC4jrBRCVUF4y_ccYP1ljGXaoNGlndcrJSNB8FhEDhy0XtV_i1TAj6ffDtV8OVEXF4oWttyBl3-6ra6xkzLx8T7RONRfW0GlZ0fU2vvXB1_Anc_Hqfrwdvj-KdxtGRdEAdqHrWpZ22cI5KrseROhPwA31zW6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rising+temperature+and+development+in+dragonfly+populations+at+different+latitudes&rft.jtitle=Freshwater+biology&rft.au=FLENNER%2C+IDA&rft.au=RICHTER%2C+OTTO&rft.au=SUHLING%2C+FRANK&rft.date=2010-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0046-5070&rft.eissn=1365-2427&rft.volume=55&rft.issue=2&rft.spage=397&rft.epage=410&rft_id=info:doi/10.1111%2Fj.1365-2427.2009.02289.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_09852F7B_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0046-5070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0046-5070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0046-5070&client=summon