The calcium current in a myenteric neurone of the guinea-pig ileum

The active and passive electrical properties of the after-hyperpolarizing (AH) cell of the guinea-pig myenteric plexus were analysed using a single-electrode voltage or current clamp. Action potentials were compared under normal conditions, in the presence of tetrodotoxin (TTX) and in the presence o...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 361; no. 1; pp. 297 - 314
Main Authors Hirst, G D, Johnson, S M, van Helden, D F
Format Journal Article
LanguageEnglish
Published Oxford The Physiological Society 01.04.1985
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The active and passive electrical properties of the after-hyperpolarizing (AH) cell of the guinea-pig myenteric plexus were analysed using a single-electrode voltage or current clamp. Action potentials were compared under normal conditions, in the presence of tetrodotoxin (TTX) and in the presence of both TTX and tetraethylammonium chloride (TEA). Calcium action potentials were studied by examining their calcium dependence, the actions of manganese and the effect of substituting barium for calcium. The maximum rate of rise of the action potential did not increase in calcium concentrations above 10 mM. The half-saturation concentration was 2 mM-calcium. AH cells exhibited five predominant currents consisting of an inward sodium current, an inward calcium current and three outward currents. There was a transient outward current which was inactivated at holding potentials more positive than -65 mV and was suppressed by 4-aminopyridine and barium but not by external TEA. A second outward current observed in the presence of 10 mM-external TEA had properties consistent with that of the delayed rectifier (Hodgkin & Huxley, 1952). A third outward current was the calcium-dependent slow after-hyperpolarizing current (Hirst, Johnson & van Helden, 1985). The voltage dependence, the action of calcium antagonists, the effect of barium substitution and the temporal characteristics of calcium currents were studied. The peak calcium current density was in excess of 100 microA/cm2 in 2.5 mM-calcium solution at 35 degrees C for depolarizations to -10 mV. Calcium currents showed at least two phases of inactivation. Both calcium and barium currents showed early inactivation with decay occurring over the first 10-40 ms. The calcium-activated current precluded direct measurement of slow inactivation of the calcium current. Barium currents studied over the first 100-150 ms had a very slow inactivating component.
AbstractList The active and passive electrical properties of the after-hyperpolarizing (AH) cell of the guinea-pig myenteric plexus were analysed using a single-electrode voltage or current clamp. Action potentials were compared under normal conditions, in the presence of tetrodotoxin (TTX) and in the presence of both TTX and tetraethylammonium chloride (TEA). Calcium action potentials were studied by examining their calcium dependence, the actions of manganese and the effect of substituting barium for calcium. The maximum rate of rise of the action potential did not increase in calcium concentrations above 10 mM. The half-saturation concentration was 2 mM-calcium. AH cells exhibited five predominant currents consisting of an inward sodium current, an inward calcium current and three outward currents. There was a transient outward current which was inactivated at holding potentials more positive than -65 mV and was suppressed by 4-aminopyridine and barium but not by external TEA. A second outward current observed in the presence of 10 mM-external TEA had properties consistent with that of the delayed rectifier (Hodgkin & Huxley, 1952). A third outward current was the calcium-dependent slow after-hyperpolarizing current (Hirst, Johnson & van Helden, 1985). The voltage dependence, the action of calcium antagonists, the effect of barium substitution and the temporal characteristics of calcium currents were studied. The peak calcium current density was in excess of 100 microA/cm2 in 2.5 mM-calcium solution at 35 degrees C for depolarizations to -10 mV. Calcium currents showed at least two phases of inactivation. Both calcium and barium currents showed early inactivation with decay occurring over the first 10-40 ms. The calcium-activated current precluded direct measurement of slow inactivation of the calcium current. Barium currents studied over the first 100-150 ms had a very slow inactivating component.
The active and passive electrical properties of the after-hyperpolarizing (AH) cell of the guinea-pig myenteric plexus were analysed using a single-electrode voltage or current clamp. Action potentials were compared under normal conditions, in the presence of tetrodotoxin (TTX) and in the presence of both TTX and tetraethylammonium chloride (TEA). Calcium action potentials were studied by examining their calcium dependence, the actions of manganese and the effect of substituting barium for calcium. The maximum rate of rise of the action potential did not increase in calcium concentrations above 10 mM. The half-saturation concentration was 2 mM-calcium. AH cells exhibited five predominant currents consisting of an inward sodium current, an inward calcium current and three outward currents. There was a transient outward current which was inactivated at holding potentials more positive than -65 mV and was suppressed by 4-aminopyridine and barium but not by external TEA. A second outward current observed in the presence of 10 mM-external TEA had properties consistent with that of the delayed rectifier (Hodgkin & Huxley, 1952). A third outward current was the calcium-dependent slow after-hyperpolarizing current (Hirst, Johnson & van Helden, 1985). The voltage dependence, the action of calcium antagonists, the effect of barium substitution and the temporal characteristics of calcium currents were studied. The peak calcium current density was in excess of 100 microA/cm2 in 2.5 mM-calcium solution at 35 degrees C for depolarizations to -10 mV. Calcium currents showed at least two phases of inactivation. Both calcium and barium currents showed early inactivation with decay occurring over the first 10-40 ms. The calcium-activated current precluded direct measurement of slow inactivation of the calcium current. Barium currents studied over the first 100-150 ms had a very slow inactivating component.
The active and passive electrical properties of the after-hyperpolarizing (AH) cell of the guinea-pig myenteric plexus were analysed using a single-electrode voltage or current clamp. Action potentials were compared under normal conditions, in the presence of tetrodotoxin (TTX) and in the presence of both TTX and tetraethylammonium chloride (TEA). Calcium action potentials were studied by examining their calcium dependence, the actions of manganese and the effect of substituting barium for calcium. AH cells exhibited five predominant currents consisting of an inward sodium current, an inward calcium current and three outward currents.
Author S M Johnson
D F van Helden
G D Hirst
Author_xml – sequence: 1
  givenname: G D
  surname: Hirst
  fullname: Hirst, G D
– sequence: 2
  givenname: S M
  surname: Johnson
  fullname: Johnson, S M
– sequence: 3
  givenname: D F
  surname: van Helden
  fullname: van Helden, D F
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8420488$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/2580978$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1UVLaFnwDKAUEvWTx24o8LEq2ggCrBYTlbXu9k4ypf2Buq_HscZbuCC-Jky_PMO2M9F-Ss6zsk5BXQNQDwd_dDPUXfN2vQqlzHgUIpCvmErKAQOpdS8zOyopSxnMsSnpGLGO8pBU61PifnrFRUS7Ui15saM2cb58c2c2MI2B0y32U2a6d0xeBd1uEY0vCsr7JDovej79Dmg99nvsGxfU6eVraJ-OJ4XpIfnz5ubj7nd99uv9x8uMtdKQuZO7tDyiXsBOW2lJVSzjJXMqthC-gUMk6ZVm7HS40OVVmJbeVYumyFVFzzS_J-yR3GbYs7l9YLtjFD8K0Nk-mtN39XOl-bff_LAGimBKSAq2NA6H-OGA-m9dFh09gO-zEaEEIxSWUxo2_-jRaSCgUigWIBXehjDFid9gFqZlHmUZSZRZlHUanx5Z-_ObUdzaT662PdxuSnCrZzPp4wVTBaqBm7XrCH5GL6z-Fm8_X7_MAFANPzLm-XkNrv6wcf0CxtsXceD5NJnAEzk78B7rPD5A
CODEN JPHYA7
CitedBy_id crossref_primary_10_1016_0301_0082_93_90034_P
crossref_primary_10_1113_jphysiol_2001_012952
crossref_primary_10_1016_j_pneurobio_2003_12_004
crossref_primary_10_1152_ajpgi_2000_278_4_G644
crossref_primary_10_1016_S0306_4522_98_00337_6
crossref_primary_10_3389_fphys_2018_00097
crossref_primary_10_1016_j_phrs_2011_08_004
crossref_primary_10_1016_0163_7258_93_90024_8
crossref_primary_10_1016_S0165_0270_99_00180_6
crossref_primary_10_1016_0165_1838_93_90370_A
crossref_primary_10_1016_S0306_4522_03_00039_3
crossref_primary_10_1016_j_tins_2005_08_001
crossref_primary_10_1152_ajpgi_00532_2003
crossref_primary_10_1016_j_neuroscience_2004_06_025
crossref_primary_10_1152_ajpgi_1997_273_6_G1359
crossref_primary_10_1016_0306_4522_94_90217_8
crossref_primary_10_1111_j_0953_816X_2004_03369_x
crossref_primary_10_1007_BF00724511
crossref_primary_10_1177_1073858403253768
crossref_primary_10_1113_jphysiol_2007_135947
crossref_primary_10_1152_ajpgi_00162_2022
crossref_primary_10_1016_0006_8993_90_91751_2
crossref_primary_10_1111_j_1476_5381_1995_tb16677_x
crossref_primary_10_1016_j_peptides_2012_09_028
crossref_primary_10_1152_jn_2000_84_6_2777
crossref_primary_10_1016_S0306_4522_00_00545_5
crossref_primary_10_1111_j_1469_7793_1997_473bb_x
crossref_primary_10_1016_0165_1838_88_90087_2
crossref_primary_10_1152_jn_2000_84_1_102
crossref_primary_10_1016_0304_3940_94_11170_N
crossref_primary_10_1016_S0306_4522_99_00012_3
crossref_primary_10_1046_j_1365_2982_2002_00315_x
crossref_primary_10_1292_jvms_70_343
crossref_primary_10_1016_0165_1838_94_90155_4
crossref_primary_10_1016_S1566_0702_01_00364_2
crossref_primary_10_1016_0306_4522_86_90144_2
crossref_primary_10_1002_cne_903550406
crossref_primary_10_1016_0014_2999_91_90047_T
crossref_primary_10_1111_j_1476_5381_1988_tb11595_x
crossref_primary_10_1152_ajpgi_00234_2017
crossref_primary_10_1016_0024_3205_88_90411_0
crossref_primary_10_1152_jn_1997_77_4_1769
crossref_primary_10_1111_j_1440_1681_2004_04092_x
crossref_primary_10_1113_jphysiol_2001_013051
ContentType Journal Article
Copyright 1985 The Physiological Society
1986 INIST-CNRS
Copyright_xml – notice: 1985 The Physiological Society
– notice: 1986 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
8FD
FR3
M7Z
P64
5PM
DOI 10.1113/jphysiol.1985.sp015647
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE



Calcium & Calcified Tissue Abstracts
Biochemistry Abstracts 1
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 314
ExternalDocumentID 10_1113_jphysiol_1985_sp015647
2580978
8420488
TJP19853611297
361_1_297
Genre Journal Article
GroupedDBID -
08R
0YM
1OB
1OC
24P
29L
2WC
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52T
52U
52V
52W
52X
53G
55
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
AAESR
AAYJJ
ABFLS
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABUFD
ACGFS
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADZMN
AEUQT
AFBPY
AFFNX
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ATUGU
BAFTC
BAWUL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DR2
DRMAN
DZ
E3Z
EBS
EJD
F00
F01
F04
F20
F5P
FA8
FIJ
GA
GJ
GX1
H.X
H13
H~9
IX1
J0M
LATKE
LC2
LC3
LI0
LW6
LYRES
MK4
MRFUL
MVM
N04
N05
N9A
NEJ
NF
O0-
O66
OHM
OHT
OK1
P2P
P2W
P2X
P2Z
P4A
Q.N
RIG
RPM
RX1
SUPJJ
TLM
TN5
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIN
WNSPC
WOQ
WRC
WT
WXI
X
X7M
YZZ
ZA5
ZGI
ZXP
ZY4
---
-DZ
-~X
.55
.GJ
18M
36B
AAFWJ
ABCQN
ABEML
ABJNI
ACGFO
ACPOU
ACSCC
ADKYN
ADOZA
AEGXH
AFEBI
AI.
AIAGR
AOIJS
K48
LEEKS
NF~
OIG
SAMSI
TR2
W8F
WXSBR
XOL
YQT
YYP
~WT
.3N
.GA
.Y3
05W
0R~
10A
123
31~
3EH
52S
930
A01
A03
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAUGY
AAVGM
AAXRX
AAZKR
ABCUV
ABCVL
ABHUG
ABPVW
ABWRO
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGOF
ACMXC
ACXBN
ACXME
ACXQS
ADAWD
ADBTR
ADDAD
ADEOM
ADIZJ
ADMGS
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFGKR
AFMIJ
AFPWT
AFVGU
AFZJQ
AGJLS
AIACR
AIURR
AIWBW
AJBDE
ALUQN
AMYDB
AZBYB
AZVAB
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
C1A
C45
CAG
CHEAL
COF
DPXWK
DRFUL
DRSTM
EMOBN
EX3
FUBAC
G-S
G.N
GODZA
HF~
HZI
HZ~
IHE
IPNFZ
IQODW
KBYEO
LH4
LITHE
LOXES
LP6
LP7
LUTES
MEWTI
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
O9-
OVD
P4B
P4D
Q11
QB0
R.K
ROL
TEORI
UB1
UKR
WHG
WIK
WOHZO
WOW
WQJ
WYISQ
XG1
YBU
YHG
YKV
YSK
YXB
ZZTAW
~IA
ABQWH
AFFPM
AHBTC
AITYG
CGR
CUY
CVF
ECM
EIF
HGLYW
NPM
AAYXX
CITATION
7QP
7TK
8FD
FR3
M7Z
P64
5PM
ID FETCH-LOGICAL-c5747-cade0371d603a57f88ca2c52a91b1ec8e230298cd359ece85f6bfc2e85b678393
IEDL.DBID RPM
ISSN 0022-3751
IngestDate Tue Sep 17 21:07:00 EDT 2024
Fri Oct 25 01:41:17 EDT 2024
Fri Oct 25 00:32:37 EDT 2024
Fri Aug 23 00:58:27 EDT 2024
Sat Sep 28 08:35:49 EDT 2024
Sun Oct 29 17:09:08 EDT 2023
Sat Aug 24 00:56:51 EDT 2024
Fri Jan 15 01:58:52 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nervous plexus
Calcium
Digestive system
Rodentia
Gut
Electrophysiology
Action potential
Inorganic element
Ileum
Small intestine
Auerbach plexus
Vertebrata
Mammalia
Guinea pig
Sympathic nervous system
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5747-cade0371d603a57f88ca2c52a91b1ec8e230298cd359ece85f6bfc2e85b678393
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1192861
PMID 2580978
PQID 14706816
PQPubID 23462
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1192861
proquest_miscellaneous_1668270741
proquest_miscellaneous_14706816
crossref_primary_10_1113_jphysiol_1985_sp015647
pubmed_primary_2580978
pascalfrancis_primary_8420488
wiley_primary_10_1113_jphysiol_1985_sp015647_TJP19853611297
highwire_physiosociety_361_1_297
PublicationCentury 1900
PublicationDate April 1, 1985
PublicationDateYYYYMMDD 1985-04-01
PublicationDate_xml – month: 04
  year: 1985
  text: April 1, 1985
  day: 01
PublicationDecade 1980
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 1985
Publisher The Physiological Society
Blackwell
Publisher_xml – name: The Physiological Society
– name: Blackwell
SSID ssj0013099
Score 1.461998
Snippet The active and passive electrical properties of the after-hyperpolarizing (AH) cell of the guinea-pig myenteric plexus were analysed using a single-electrode...
The active and passive electrical properties of the after‐hyperpolarizing (AH) cell of the guinea‐pig myenteric plexus were analysed using a single‐electrode...
The active and passive electrical properties of the after-hyperpolarizing (AH) cell of the guinea-pig myenteric plexus were analysed using a single-electrode...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 297
SubjectTerms Action Potentials - drug effects
Animals
Barium - pharmacology
Biological and medical sciences
calcium
Calcium - pharmacology
Calcium - physiology
Fundamental and applied biological sciences. Psychology
Guinea Pigs
ileum
Ileum - drug effects
Ileum - innervation
In Vitro Techniques
Intestine. Mesentery
Ion Channels - drug effects
myenteric plexus
Myenteric Plexus - cytology
Myenteric Plexus - drug effects
neurons
Neurons - physiology
Tetraethylammonium
Tetraethylammonium Compounds - pharmacology
Tetrodotoxin - pharmacology
Time Factors
Vertebrates: digestive system
Title The calcium current in a myenteric neurone of the guinea-pig ileum
URI http://jp.physoc.org/content/361/1/297.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.1985.sp015647
https://www.ncbi.nlm.nih.gov/pubmed/2580978
https://search.proquest.com/docview/14706816
https://search.proquest.com/docview/1668270741
https://pubmed.ncbi.nlm.nih.gov/PMC1192861
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH5aJyHtgoAxEWDDSIhbmjiOY0ecxsSYJoF62KTerNhxSqclrehy6L_n2U6qVYCEuEWxZSd-z37fSz5_BvggBBOaWh4bbQwmKLgO6txmscXYVFPLbG082-J7cXWbX8_5_AD4uBfGk_aNXk67-3baLX94buW6NcnIE0tm3y4owhJZ0GQCE3TQMUUffx2kZbmTCBecDtuCKWXJnf9asLqfYqbNcca6bcS5OIInGZepP2ntcWwa9YIdXbLa4Ig14aiLP2HR3ymVj6Guj1WXz-DpADLJeXiZ53BguxdwfN5hgt1uyUcyCw-4WmyP4TM6CsFuzbJviQlqTWTZkYq0W6fXiesk8aKXnSWrhiBeJIseoWkVr5cLgr337Uu4vfxyc3EVDwcrxIZj-hA75r2T6quLlFVcNFKaKjM8q0qKdjPSYl6SldLUjJfWnWvaFLoxGV5ojG2sZCdw2GG3r4A0GM9YlbEm5TqvmlRXmhtTClNbUzCTR5CMQ6rWQT9DhbyDqdEcyplDjeaIgIwjr0KFTeCvKlZQRVVWYpXTPYvsWpa50yGWEbwbLaRwtrhfIFVnV_0GEx2RFpIWEbz_W42ikJlwQCuCk2DTXfODm0Qg9oy9K3dS3fsl6MFesnvw2Ag-ebf4x6FQN9czdwNfHGGZeP3f_b6BI9dOYBy9hcOHn709RTD1oM9g8nVOz_wU-gXqWSB1
link.rule.ids 230,315,730,783,787,888,27937,27938,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ4hdxo8xkcGYkRC3tHEcx4k4jYmpjG3qoUO7WbHjdIUlrWhzKH89z3FdrfyQgFsUW46e33Pe95LPnwHeCMGEooaHWmmNBQq-B1Vi4tBgbiqpYabUHdviMh1cJWfX_HoLuN8L05H2tZr0mtu610xuOm7lrNZ9zxPrDy9OKMKSLKX9e3Af12vEfZHufx5Eeb4WCRecrjYGU8r6X7rvBdPbHtbaHNes3UiciB14EPMs6s5au5udvGKwJUwWc5yzyh128Ts0-iup8i7Y7bLV6SP47O10JJWvvXahevr7TxKQ_zwRj2F3hV_JsWt-AlumeQp7xw3W7vWSvCVDZ_l0vNyD9xiDBO3Rk7Ym2glBkUlDClIvrRQovoJJp6fZGDKtCEJRMm4R9RbhbDImaFZbP4Or0w-jk0G4OrMh1Bwrk9CS-q0KYJlGrOCiyjJdxJrHRU4xJHRmsOSJ80yXjOfGHplaparSMV4oTJssZ_uw3eBjnwOpMFWyImZVxFVSVJEqFNc6F7o0OmU6CaDvfSVnTppDupKGSe9naf0svZ8DIN6l0nWYO2qsZCmVVMY5djnccPV65CyxEsdZAEfe9RIXov27UjRm2s6xhhJRmtE0gNd_6pGmWSwshgtg3wXLevhV_AUgNqJo3W5VwDdbMCY6NfBVDATwrou3v5wKOTob2htoOCI-cfDfzz2Ch4PRxbk8_3j56QXs2DEdseklbC--teYQMdtCvepW6A8PJkF3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BEagXvkpFgFIjIW7ZxHEcJ-JUCqtSoNpDK1VcrNhxtoEmu2I3h-XXM46T1S4fEuotSixH4xln3iQvbwBeC8GEoob7WmmNBQo-B1VsIt9gbiqoYabQHdviLDm5iE8v-eVGq6-OtK9VNWqu61FTXXXcynmtg4EnFky-HFOEJWlCg3lRBrfhDrei6UOhPnxACLNsLRQuOO1_DqaUBd-6dwaz6xHW2xz3rf2ZOBa7cDfiadj1W9vMUINqsCVN5gtct9I1vPgbIv2TWLkJeLuMNX4AXwdbHVHl-6hdqpH--ZsM5I0W4yHc73EsOXJDHsEt0zyGvaMGa_h6Rd6QibN-Nl3twTuMRYI26aqtiXaCUKRqSE7qlZUExUcx6XQ1G0NmJUFISqYtot_cn1dTgqa19RO4GH84Pz7x-94NvuZYofiW3G_VAIskZDkXZZrqPNI8yjOKoaFTg6VPlKW6YDwztnVqmahSR3igMH2yjO3DToO3fQqkxJTJ8oiVIVdxXoYqV1zrTOjC6ITp2INg8JecO4kO6UobJgdfS-trOfjaAzK4VboBC0eRlSyhksoowyEHW-5ez5zGVuo49eBwcL_EDWm_suSNmbULrKVEmKQ08eDVv0YkSRoJi-U82HcBs56-j0EPxFYkra9bNfDtKxgXnSp4HwcevO1i7j-XQp6fTuwJNByRn3h24_sewr3J-7H8_PHs03PYtVM6ftML2Fn-aM0BQreletlt0l8Hj0P3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+calcium+current+in+a+myenteric+neurone+of+the+guinea%E2%80%90pig+ileum&rft.jtitle=The+Journal+of+physiology&rft.au=Hirst%2C+G+D&rft.au=Johnson%2C+S+M&rft.au=van+Helden%2C+D+F&rft.date=1985-04-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=361&rft.issue=1&rft.spage=297&rft.epage=314&rft_id=info:doi/10.1113%2Fjphysiol.1985.sp015647&rft.externalDBID=10.1113%252Fjphysiol.1985.sp015647&rft.externalDocID=TJP19853611297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon