Predicting molecular mechanisms of hereditary diseases by using their tissue‐selective manifestation

How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE)...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 19; no. 8; pp. e11407 - n/a
Main Authors Simonovsky, Eyal, Sharon, Moran, Ziv, Maya, Mauer, Omry, Hekselman, Idan, Jubran, Juman, Vinogradov, Ekaterina, Argov, Chanan M, Basha, Omer, Kerber, Lior, Yogev, Yuval, Segrè, Ayellet V, Im, Hae Kyung, Birk, Ohad, Rokach, Lior, Yeger‐Lotem, Esti
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.08.2023
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Synopsis An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes. ML models highlight known and novel tissue‐selectivity mechanisms. An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented. The framework and catalogue enhance genetic diagnosis of rare‐disease patients. Graphical Abstract An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients.
AbstractList How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.
Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Synopsis image An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes. ML models highlight known and novel tissue‐selectivity mechanisms. An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented. The framework and catalogue enhance genetic diagnosis of rare‐disease patients.
How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients.
Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.
How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes (https://netbio.bgu.ac.il/trace/). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Synopsis An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes. ML models highlight known and novel tissue‐selectivity mechanisms. An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented. The framework and catalogue enhance genetic diagnosis of rare‐disease patients. An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients.
How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Synopsis An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes. ML models highlight known and novel tissue‐selectivity mechanisms. An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented. The framework and catalogue enhance genetic diagnosis of rare‐disease patients. Graphical Abstract An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients.
Author Yogev, Yuval
Jubran, Juman
Rokach, Lior
Vinogradov, Ekaterina
Sharon, Moran
Im, Hae Kyung
Kerber, Lior
Segrè, Ayellet V
Birk, Ohad
Simonovsky, Eyal
Basha, Omer
Yeger‐Lotem, Esti
Ziv, Maya
Hekselman, Idan
Argov, Chanan M
Mauer, Omry
AuthorAffiliation 4 The Broad Institute of MIT and Harvard Cambridge MA USA
7 Department of Software & Information Systems Engineering Ben‐Gurion University of the Negev Beer Sheva Israel
5 Section of Genetic Medicine, Department of Medicine The University of Chicago Chicago IL USA
6 The National Institute for Biotechnology in the Negev Ben‐Gurion University of the Negev Beer Sheva Israel
3 Ocular Genomics Institute, Massachusetts Eye and Ear Harvard Medical School Boston MA USA
1 Department of Clinical Biochemistry and Pharmacology Ben‐Gurion University of the Negev Beer Sheva Israel
2 Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences Ben Gurion University of the Negev Beer Sheva Israel
AuthorAffiliation_xml – name: 2 Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences Ben Gurion University of the Negev Beer Sheva Israel
– name: 3 Ocular Genomics Institute, Massachusetts Eye and Ear Harvard Medical School Boston MA USA
– name: 7 Department of Software & Information Systems Engineering Ben‐Gurion University of the Negev Beer Sheva Israel
– name: 1 Department of Clinical Biochemistry and Pharmacology Ben‐Gurion University of the Negev Beer Sheva Israel
– name: 4 The Broad Institute of MIT and Harvard Cambridge MA USA
– name: 5 Section of Genetic Medicine, Department of Medicine The University of Chicago Chicago IL USA
– name: 6 The National Institute for Biotechnology in the Negev Ben‐Gurion University of the Negev Beer Sheva Israel
Author_xml – sequence: 1
  givenname: Eyal
  orcidid: 0000-0001-7461-5102
  surname: Simonovsky
  fullname: Simonovsky, Eyal
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 2
  givenname: Moran
  surname: Sharon
  fullname: Sharon, Moran
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 3
  givenname: Maya
  surname: Ziv
  fullname: Ziv, Maya
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 4
  givenname: Omry
  surname: Mauer
  fullname: Mauer, Omry
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 5
  givenname: Idan
  surname: Hekselman
  fullname: Hekselman, Idan
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 6
  givenname: Juman
  surname: Jubran
  fullname: Jubran, Juman
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 7
  givenname: Ekaterina
  surname: Vinogradov
  fullname: Vinogradov, Ekaterina
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 8
  givenname: Chanan M
  surname: Argov
  fullname: Argov, Chanan M
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 9
  givenname: Omer
  surname: Basha
  fullname: Basha, Omer
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 10
  givenname: Lior
  surname: Kerber
  fullname: Kerber, Lior
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev
– sequence: 11
  givenname: Yuval
  orcidid: 0000-0002-2218-9938
  surname: Yogev
  fullname: Yogev, Yuval
  organization: Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev
– sequence: 12
  givenname: Ayellet V
  surname: Segrè
  fullname: Segrè, Ayellet V
  organization: Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, The Broad Institute of MIT and Harvard
– sequence: 13
  givenname: Hae Kyung
  orcidid: 0000-0003-0333-5685
  surname: Im
  fullname: Im, Hae Kyung
  organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago
– sequence: 15
  givenname: Ohad
  surname: Birk
  fullname: Birk, Ohad
  organization: Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, The National Institute for Biotechnology in the Negev, Ben‐Gurion University of the Negev
– sequence: 16
  givenname: Lior
  surname: Rokach
  fullname: Rokach, Lior
  organization: Department of Software & Information Systems Engineering, Ben‐Gurion University of the Negev
– sequence: 17
  givenname: Esti
  orcidid: 0000-0002-8279-7898
  surname: Yeger‐Lotem
  fullname: Yeger‐Lotem, Esti
  email: estiyl@bgu.ac.il
  organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev, The National Institute for Biotechnology in the Negev, Ben‐Gurion University of the Negev
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37232043$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiF5gyxKNxIZNUl_HnhWiFYVKRSABa8uXM4mjGbvYM0XZ8Qh9Rp4EpykhRUKsbNnf-fT7-BxXByEGqKrnGM0xJ5ycDtnMCSIEY4bEo-oIC8ZmjLTkYG9_WB3nvEKISizJk-qQCkIJYvSo6j4lcN6OPizqIfZgp16negC71MHnIdexq5ewYUad1rXzGXSGXJt1PeVN0bgEn-rR5zzBzx-3GYpj9DdQD0XQQR716GN4Wj3udJ_h2f16Un29ePvl_P3s6uO7y_M3VzPLBROzVlLmOmlbQRoKRiKNOZZWW42Q4wQZ0vK2MUS3QmBoLQfddNhagxgizlB6Ul1uvS7qlbpOfiipVdRe3R3EtFA6jd72oEgnqXGSUo4axiUzkjW8c442jjTc2OJ6vXVdT2YAZyGMSfcPpA9vgl-qRbxRuKQRgm3SvLo3pPhtKr1Qg88W-l4HiFNWRJLyJwg1vKAv_0JXcUqh9KpQTBCy-bBCzbeUTTHnBN0uDUbqbh5UmQe1m4dS8GL_DTv89wAUQG6B776H9X906sPns3336bY0l6qwgPQn8j_S_ALMVNR7
CitedBy_id crossref_primary_10_1093_nar_gkad421
crossref_primary_10_1186_s13059_024_03225_7
Cites_doi 10.48550/arXiv.1802.03888
10.1101/814350
10.1093/bioinformatics/bty079
10.1371/journal.pcbi.1002690
10.1093/nar/gky1079
10.1007/978-94-017-9214-1_6
10.1093/nar/gku1179
10.18637/jss.v045.i03
10.1038/s41586-020-2308-7
10.3233/JPD-179005
10.1126/sciadv.abh1275
10.1371/journal.pgen.1007327
10.1126/science.aaz1776
10.1016/j.jmb.2022.167619
10.1038/nature22366
10.1186/s13059-017-1160-z
10.1126/scitranslmed.aal5209
10.1161/CIRCGEN.118.002293
10.1023/A:1019956318069
10.1093/nar/gkv515
10.1016/j.ajhg.2015.06.009
10.1038/s41586-020-2188-x
10.1038/s41467-020-14666-6
10.1038/s41467-019-08797-8
10.1002/humu.23310
10.1093/bioinformatics/btaa034
10.1093/nar/gkx1081
10.1038/nrg.2017.52
10.1038/s41576-019-0200-9
10.1038/ejhg.2017.85
10.1093/bioinformatics/btz023
10.1016/j.csbj.2020.10.030
10.1038/s41588-019-0409-8
10.1038/s41467-017-00141-2
10.1056/NEJMoa2035790
10.1093/biomet/87.4.954
10.3389/fncom.2016.00016
10.1371/journal.pcbi.1009194
10.1145/2939672.2939785
10.1038/s41431-019-0347-z
10.1038/nbt1203
10.1038/s41586-020-2329-2
10.1038/s42256-019-0138-9
10.1038/ng.3259
10.1371/journal.pcbi.1003632
10.1038/s41576-021-00389-x
10.1126/science.1260419
10.1093/nar/gky1055
10.1093/nar/gkw1088
10.1093/bioinformatics/btp616
10.1002/mus.21302
10.1093/nar/gky1151
10.1093/nar/gkv1222
10.1098/rsif.2015.0571
10.1093/bioinformatics/btab883
10.1111/jnc.13593
10.1038/s41467-019-10649-4
10.1186/1472-6947-11-51
10.1093/bioinformatics/btq257
10.1038/nprot.2015.124
10.1038/s41588-018-0154-4
10.1038/s41467-018-03621-1
10.7554/eLife.51503
10.1038/nmeth.3799
10.1136/jmedgenet-2018-105503
10.1016/j.celrep.2017.10.001
10.1038/s41586-019-1338-5
10.1038/srep35241
10.1038/s41588-020-0625-2
10.1073/pnas.0810772105
10.1093/hmg/ddx261
10.1093/nar/gkx981
10.1093/nar/gky1016
ContentType Journal Article
Copyright The Author(s) 2023
2023 The Authors. Published under the terms of the CC BY 4.0 license.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor GTEx Consortium
CorporateAuthor_xml – name: GTEx Consortium
DBID C6C
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.15252/msb.202211407
DatabaseName SpringerOpen website
Wiley Online Library website
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest Medical & Health Databases)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest research library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Publicly Available Content database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef




MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen website
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library website
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Eyal Simonovsky et al
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2f83bd8335064584b8465fdd36d265bc
10_15252_msb_202211407
37232043
MSB202211407
Genre article
Journal Article
GrantInformation_xml – fundername: Ben‐Gurion University
  funderid: 10.13039/501100005005
– fundername: Israel Science Foundation (ISF)
  grantid: 317/19; 401/22
  funderid: 10.13039/501100003977
– fundername: Israel Science Foundation (ISF)
  funderid: 317/19; 401/22
– fundername: Ben‐Gurion University
– fundername: Israel Science Foundation (ISF)
  grantid: 401/22
– fundername: Israel Science Foundation (ISF)
  grantid: 317/19
– fundername: Ben-Gurion University
– fundername: ;
– fundername: ;
  grantid: 317/19; 401/22
GroupedDBID ---
0R~
123
1OC
24P
29M
2WC
39C
3V.
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAHHS
ABDBF
ABUWG
ACCFJ
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IGS
IHR
INH
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
O5R
O5S
O9-
OK1
P2P
PADUT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7TM
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PQEST
PQUKI
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c5747-9834df8c97263eb80a1518caca00d520b29596b2a9771e9c5ea6f1ccb0402db33
IEDL.DBID RPM
ISSN 1744-4292
IngestDate Mon Nov 04 19:59:32 EST 2024
Tue Sep 17 21:31:59 EDT 2024
Sat Oct 05 04:40:58 EDT 2024
Thu Oct 10 19:10:47 EDT 2024
Thu Sep 26 17:04:46 EDT 2024
Wed Oct 16 00:39:11 EDT 2024
Sat Aug 24 00:59:18 EDT 2024
Tue Nov 05 01:38:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords genomic medicine
omics
machine learning
tissue selectivity
data integration
Language English
License Attribution
2023 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5747-9834df8c97263eb80a1518caca00d520b29596b2a9771e9c5ea6f1ccb0402db33
Notes Membership of the GTEx Consortium appears in the Appendix
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2218-9938
0000-0001-7461-5102
0000-0002-8279-7898
0000-0003-0333-5685
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407743/
PMID 37232043
PQID 2847222320
PQPubID 29031
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_2f83bd8335064584b8465fdd36d265bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10407743
proquest_miscellaneous_2820030065
proquest_journals_2847222320
crossref_primary_10_15252_msb_202211407
pubmed_primary_37232043
wiley_primary_10_15252_msb_202211407_MSB202211407
springer_journals_10_15252_msb_202211407
PublicationCentury 2000
PublicationDate 8 August 2023
PublicationDateYYYYMMDD 2023-08-08
PublicationDate_xml – month: 08
  year: 2023
  text: 8 August 2023
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2023
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References Kitsak, Sharma, Menche, Guney, Ghiassian, Loscalzo, Barabasi (CR44) 2016; 6
Grover, Leskovec (CR32) 2016; 2016
Wesolowska‐Andersen, Zhuo, Nylander, Abaitua, Thurner, Torres, Mahajan, Gloyn, McCarthy (CR73) 2020; 9
Sonawane, Platig, Fagny, Chen, Paulson, Lopes‐Ramos, DeMeo, Quackenbush, Glass, Kuijjer (CR68) 2017; 21
Cardoso‐Moreira, Halbert, Valloton, Velten, Chen, Shao, Liechti, Ascencao, Rummel, Ovchinnikova (CR13) 2019; 571
Deelen, van Dam, Herkert, Karjalainen, Brugge, Abbott, van Diemen, van der Zwaag, Gerkes, Zonneveld‐Huijssoon (CR20) 2019; 10
Luck, Kim, Lambourne, Spirohn, Begg, Bian, Brignall, Cafarelli, Campos‐Laborie, Charloteaux (CR48) 2020; 580
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR59) 2011; 12
Chong, Buckingham, Jhangiani, Boehm, Sobreira, Smith, Harrell, McMillin, Wiszniewski, Gambin (CR16) 2015; 97
Amberger, Bocchini, Scott, Hamosh (CR3) 2019; 47
Halperin, Kadir, Perez, Drabkin, Yogev, Wormser, Berman, Eremenko, Rotblat, Shorer (CR34) 2019; 56
Sharon, Vinogradov, Argov, Lazarescu, Zoabi, Hekselman, Yeger‐Lotem (CR64) 2022; 38
Chiu, Zheng, Wang, Iskra, Rao, Houghton, Huang, Chen (CR15) 2021; 7
Kumar, Van Laer, Alaerts, Ardeshirdavani, Moreau, Laukens, Loeys, Vandeweyer (CR45) 2018; 34
Lage, Hansen, Karlberg, Eklund, Roque, Donahoe, Szallasi, Jensen, Brunak (CR46) 2008; 105
Wong, Sealfon, Theesfeld, Troyanskaya (CR74) 2021; 22
Fernandez‐Delgado, Cernadas, Barro, Amorim (CR24) 2014; 15
Hekselman, Kerber, Ziv, Gruber, Yeger‐Lotem (CR36) 2022; 434
Canepari, Rossi, Pansarasa, Maffei, Bottinelli (CR12) 2009; 40
Smedley, Smith, Martin, Thomas, McDonagh, Cipriani, Ellingford, Arno, Tucci (CR40) 2021; 385
(CR69) 2019; 47
Gamazon, Segre, van de Bunt, Wen, Xi, Hormozdiari, Ongen, Konkashbaev, Derks, Aguet (CR25) 2018; 50
Huttlin, Bruckner, Paulo, Cannon, Ting, Baltier, Colby, Gebreab, Gygi, Parzen (CR39) 2017; 545
Basha, Argov, Artzy, Zoabi, Hekselman, Alfandari, Chalifa‐Caspi, Yeger‐Lotem (CR11) 2020; 36
Goedert, Jakes, Spillantini (CR30) 2017; 7
Magger, Waldman, Ruppin, Sharan (CR51) 2012; 8
Rentzsch, Witten, Cooper, Shendure, Kircher (CR61) 2019; 47
Basha, Barshir, Sharon, Lerman, Kirson, Hekselman, Yeger‐Lotem (CR9) 2017; 45
Yao, O'Connor, Price, Gusev (CR76) 2020; 52
Gligorijevic, Przulj (CR29) 2015; 12
van Buuren, Groothuis‐Oudshoorn (CR71) 2011; 45
Hekselman, Yeger‐Lotem (CR35) 2020; 21
Vilalta, Drissi (CR72) 2002; 18
Cummings, Karczewski, Kosmicki, Seaby, Watts, Singer‐Berk, Mudge, Karjalainen, Satterstrom, O'Donnell‐Luria (CR18) 2020; 581
Simonovsky, Schuster, Yeger‐Lotem (CR65) 2019; 35
Barshir, Hekselman, Shemesh, Sharon, Novack, Yeger‐Lotem (CR7) 2018; 14
Barbeira, Bonazzola, Gamazon, Liang, Park, Kim‐Hellmuth, Wang, Jiang, Zhou, Hormozdiari (CR5) 2019
Schwarz, Konig, Ziegler (CR63) 2010; 26
Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjostedt, Asplund (CR70) 2015; 347
McCarthy, MacArthur (CR54) 2017; 18
Basha, Shpringer, Argov, Yeger‐Lotem (CR10) 2018; 46
Drabkin, Zilberberg, Menahem, Mulla, Halperin, Yogev, Wormser, Perez, Kadir, Etzion (CR21) 2018; 11
Cummings, Marshall, Tukiainen, Lek, Donkervoort, Foley, Bolduc, Waddell, Sandaradura, O'Grady (CR17) 2017; 9
Malod‐Dognin, Petschnigg, Windels, Povh, Hemingway, Ketteler, Przulj (CR52) 2019; 10
Somepalli, Sahoo, Singh, Hannenhalli (CR67) 2021; 17
Aerts, Lambrechts, Maity, Van Loo, Coessens, De Smet, Tranchevent, De Moor, Marynen, Hassan (CR2) 2006; 24
Oughtred, Stark, Breitkreutz, Rust, Boucher, Chang, Kolas, O'Donnell, Leung, McAdam (CR58) 2019; 47
Basha, Flom, Barshir, Smoly, Tirman, Yeger‐Lotem (CR8) 2015; 43
CR14
Greene, Krishnan, Wong, Ricciotti, Zelaya, Himmelstein, Zhang, Hartmann, Zaslavsky, Sealfon (CR31) 2015; 47
Lundberg, Erion, Lee (CR49) 2018
Barbeira, Dickinson, Bonazzola, Zheng, Wheeler, Torres, Torstenson, Shah, Garcia, Edwards (CR4) 2018; 9
Karczewski, Francioli, Tiao, Cummings, Alföldi, Wang, Collins, Laricchia, Ganna, Birnbaum (CR42) 2020; 581
Khalilia, Chakraborty, Popescu (CR43) 2011; 11
Robinson, McCarthy, Smyth (CR62) 2010; 26
CR55
Dwivedi, Tjarnberg, Tegner, Gustafsson (CR22) 2020; 11
(CR33) 2020; 369
Wormser, Gradstein, Yogev, Perez, Kadir, Goliand, Sadka, El Riati, Flusser, Nachmias (CR75) 2019; 27
Hernandez, Reed, Singleton (CR37) 2016; 139
Jubran, Hekselman, Novack, Yeger‐Lotem (CR41) 2020; 18
Gamazon, Zwinderman, Cox, Denys, Derks (CR26) 2019; 51
Barshir, Shwartz, Smoly, Yeger‐Lotem (CR6) 2014; 10
Proskorovski‐Ohayon, Kadir, Michalowski, Flusser, Perez, Hershkovitz, Sivan, Birk (CR60) 2017; 38
Eilbeck, Quinlan, Yandell (CR23) 2017; 18
Moustafa, Phillips, Keri, Misiak, Frydecka (CR57) 2016; 10
Landrum, Lee, Benson, Brown, Chao, Chitipiralla, Gu, Hart, Hoffman, Hoover (CR47) 2016; 44
Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (CR50) 2020; 2
Holmans, Massey, Jones (CR38) 2017; 26
Smedley, Jacobsen, Jager, Kohler, Holtgrewe, Schubach, Siragusa, Zemojtel, Buske, Washington (CR66) 2015; 10
Yogev, Perez, Noyman, Madegem, Flusser, Shorer, Cohen, Kachko, Michaelovsky, Birk (CR78) 2017; 25
Adzhubei, Jordan, Sunyaev (CR1) 2013; Chapter 7
Davis, Hitz, Sloan, Chan, Davidson, Gabdank, Hilton, Jain, Baymuradov, Narayanan (CR19) 2018; 46
(CR28) 2015; 43
Marbach, Lamparter, Quon, Kellis, Kutalik, Bergmann (CR53) 2016; 13
Gelfman, Wang, McSweeney, Ren, La Carpia, Halvorsen, Schoch, Ratzon, Heinzen, Boland (CR27) 2017; 8
Moaven, Tayebi, Goldin, Sidransky (CR56) 2015
Yeo, Johnson (CR77) 2000; 87
2017; 7
2017; 8
2009; 40
2019; 51
2002; 18
2021; 22
2015; 347
2019; 10
2000; 87
2019; 56
2017; 45
2020; 369
2011; 11
2016; 2016
2008; 105
2011; 12
2020; 11
2017; 9
2018; 46
2020; 18
2018; 9
2015; 47
2010; 26
2020; 2
2006; 24
2020; 52
2017; 38
2015; 43
2020; 9
2014; 15
2019; 27
2018; 34
2022; 38
2014; 10
2016; 44
2015; 12
2021; 7
2020; 581
2017; 26
2020; 580
2017; 25
2015; 97
2019; 35
2017; 21
2015; 10
2016; 10
2020; 36
2021; 385
2022; 434
2016; 13
2016; 6
2013; Chapter 7
2021; 17
2019; 47
2019
2018
2016
2016; 139
2017; 18
2015
2011; 45
2018; 50
2020; 21
2018; 11
2017; 545
2018; 14
2019; 571
2012; 8
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_54_1
Fernandez‐Delgado M (e_1_2_9_25_1) 2014; 15
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
Adzhubei I (e_1_2_9_2_1) 2013; 7
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
McKusick‐Nathans Institute of Genetic Medicine (JHUB, MD) (e_1_2_9_56_1)
Grover A (e_1_2_9_33_1) 2016; 2016
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
Pedregosa F (e_1_2_9_60_1) 2011; 12
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 10
  start-page: 2837
  year: 2019
  ident: CR20
  article-title: Improving the diagnostic yield of exome‐sequencing by predicting gene‐phenotype associations using large‐scale gene expression analysis
  publication-title: Nat Commun
  contributor:
    fullname: Zonneveld‐Huijssoon
– volume: 45
  start-page: D427
  year: 2017
  end-page: D431
  ident: CR9
  article-title: The TissueNet v.2 database: a quantitative view of protein‐protein interactions across human tissues
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Yeger‐Lotem
– volume: 24
  start-page: 537
  year: 2006
  end-page: 544
  ident: CR2
  article-title: Gene prioritization through genomic data fusion
  publication-title: Nat Biotechnol
  contributor:
    fullname: Hassan
– volume: 7
  start-page: S51
  year: 2017
  end-page: S69
  ident: CR30
  article-title: The Synucleinopathies: twenty years on
  publication-title: J Parkinsons Dis
  contributor:
    fullname: Spillantini
– volume: 18
  start-page: 599
  year: 2017
  end-page: 612
  ident: CR23
  article-title: Settling the score: variant prioritization and mendelian disease
  publication-title: Nat Rev Genet
  contributor:
    fullname: Yandell
– volume: 46
  start-page: D794
  year: 2018
  end-page: D801
  ident: CR19
  article-title: The encyclopedia of DNA elements (ENCODE): data portal update
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Narayanan
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: CR50
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
  contributor:
    fullname: Lee
– volume: 51
  start-page: 933
  year: 2019
  end-page: 940
  ident: CR26
  article-title: Multi‐tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits
  publication-title: Nat Genet
  contributor:
    fullname: Derks
– volume: 38
  start-page: 1584
  year: 2022
  end-page: 1592
  ident: CR64
  article-title: The differential activity of biological processes in tissues and cell subsets can illuminate disease‐related processes and cell type identities
  publication-title: Bioinformatics
  contributor:
    fullname: Yeger‐Lotem
– volume: 26
  start-page: R83
  year: 2017
  end-page: R90
  ident: CR38
  article-title: Genetic modifiers of mendelian disease: Huntington's disease and the trinucleotide repeat disorders
  publication-title: Hum Mol Genet
  contributor:
    fullname: Jones
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: CR24
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Mach Learn Res
  contributor:
    fullname: Amorim
– year: 2018
  ident: CR49
  article-title: Consistent individualized feature attribution for tree ensembles
  publication-title: arXiv
  doi: 10.48550/arXiv.1802.03888
  contributor:
    fullname: Lee
– volume: 14
  year: 2018
  ident: CR7
  article-title: Role of duplicate genes in determining the tissue‐selectivity of hereditary diseases
  publication-title: PLoS Genet
  contributor:
    fullname: Yeger‐Lotem
– volume: 18
  start-page: 4024
  year: 2020
  end-page: 4032
  ident: CR41
  article-title: Dosage‐sensitive molecular mechanisms are associated with the tissue‐specificity of traits and diseases
  publication-title: Comput Struct Biotechnol J
  contributor:
    fullname: Yeger‐Lotem
– volume: 2016
  start-page: 855
  year: 2016
  end-page: 864
  ident: CR32
  article-title: node2vec: scalable feature learning for networks
  publication-title: KDD
  contributor:
    fullname: Leskovec
– volume: 8
  year: 2012
  ident: CR51
  article-title: Enhancing the prioritization of disease‐causing genes through tissue specific protein interaction networks
  publication-title: PLoS Comput Biol
  contributor:
    fullname: Sharan
– volume: 25
  start-page: 966
  year: 2017
  end-page: 972
  ident: CR78
  article-title: Progressive hereditary spastic paraplegia caused by a homozygous KY mutation
  publication-title: Eur J Hum Genet
  contributor:
    fullname: Birk
– volume: 139
  start-page: 59
  year: 2016
  end-page: 74
  ident: CR37
  article-title: Genetics in Parkinson disease: mendelian versus non‐mendelian inheritance
  publication-title: J Neurochem
  contributor:
    fullname: Singleton
– volume: 47
  start-page: D529
  year: 2019
  end-page: D541
  ident: CR58
  article-title: The BioGRID interaction database: 2019 update
  publication-title: Nucleic Acids Res
  contributor:
    fullname: McAdam
– volume: 11
  year: 2018
  ident: CR21
  article-title: Nocturnal atrial fibrillation caused by mutation in KCND2, encoding pore‐forming (alpha) subunit of the cardiac Kv4.2 Potassium Channel
  publication-title: Circ Genom Precis Med
  contributor:
    fullname: Etzion
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  ident: CR71
  article-title: Mice: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
  contributor:
    fullname: Groothuis‐Oudshoorn
– volume: 50
  start-page: 956
  year: 2018
  end-page: 967
  ident: CR25
  article-title: Using an atlas of gene regulation across 44 human tissues to inform complex disease‐ and trait‐associated variation
  publication-title: Nat Genet
  contributor:
    fullname: Aguet
– volume: 47
  start-page: D886
  year: 2019
  end-page: D894
  ident: CR61
  article-title: CADD: predicting the deleteriousness of variants throughout the human genome
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Kircher
– volume: 87
  start-page: 954
  year: 2000
  end-page: 959
  ident: CR77
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
  contributor:
    fullname: Johnson
– volume: 56
  start-page: 139
  year: 2019
  end-page: 148
  ident: CR34
  article-title: SEC31A mutation affects ER homeostasis, causing a neurological syndrome
  publication-title: J Med Genet
  contributor:
    fullname: Shorer
– volume: 10
  year: 2014
  ident: CR6
  article-title: Comparative analysis of human tissue interactomes reveals factors leading to tissue‐specific manifestation of hereditary diseases
  publication-title: PLoS Comput Biol
  contributor:
    fullname: Yeger‐Lotem
– volume: 9
  start-page: 1825
  year: 2018
  ident: CR4
  article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics
  publication-title: Nat Commun
  contributor:
    fullname: Edwards
– volume: 38
  start-page: 1671
  year: 2017
  end-page: 1683
  ident: CR60
  article-title: PAX7 mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay
  publication-title: Hum Mutat
  contributor:
    fullname: Birk
– volume: 97
  start-page: 199
  year: 2015
  end-page: 215
  ident: CR16
  article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities
  publication-title: Am J Hum Genet
  contributor:
    fullname: Gambin
– volume: 9
  year: 2020
  ident: CR73
  article-title: Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
  publication-title: Elife
  contributor:
    fullname: McCarthy
– volume: 47
  start-page: D330
  year: 2019
  end-page: D338
  ident: CR69
  article-title: The Gene Ontology resource: 20 years and still GOing strong
  publication-title: Nucleic Acids Res
– volume: 9
  year: 2017
  ident: CR17
  article-title: Improving genetic diagnosis in mendelian disease with transcriptome sequencing
  publication-title: Sci Transl Med
  contributor:
    fullname: O'Grady
– volume: 52
  start-page: 626
  year: 2020
  end-page: 633
  ident: CR76
  article-title: Quantifying genetic effects on disease mediated by assayed gene expression levels
  publication-title: Nat Genet
  contributor:
    fullname: Gusev
– volume: 43
  start-page: W258
  year: 2015
  end-page: W263
  ident: CR8
  article-title: MyProteinNet: build up‐to‐date protein interaction networks for organisms, tissues and user‐defined contexts
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Yeger‐Lotem
– volume: 6
  year: 2016
  ident: CR44
  article-title: Tissue specificity of human disease module
  publication-title: Sci Rep
  contributor:
    fullname: Barabasi
– volume: 18
  start-page: 77
  year: 2002
  end-page: 95
  ident: CR72
  article-title: A perspective view and survey of meta‐learning
  publication-title: Artif Intell Rev
  contributor:
    fullname: Drissi
– volume: 571
  start-page: 505
  year: 2019
  end-page: 509
  ident: CR13
  article-title: Gene expression across mammalian organ development
  publication-title: Nature
  contributor:
    fullname: Ovchinnikova
– volume: 10
  start-page: 2004
  year: 2015
  end-page: 2015
  ident: CR66
  article-title: Next‐generation diagnostics and disease‐gene discovery with the exomiser
  publication-title: Nat Protoc
  contributor:
    fullname: Washington
– volume: 40
  start-page: 249
  year: 2009
  end-page: 256
  ident: CR12
  article-title: Actin sliding velocity on pure myosin isoforms from dystrophic mouse muscles
  publication-title: Muscle Nerve
  contributor:
    fullname: Bottinelli
– volume: 47
  start-page: D1038
  year: 2019
  end-page: D1043
  ident: CR3
  article-title: OMIM.Org: leveraging knowledge across phenotype‐gene relationships
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Hamosh
– start-page: 69
  year: 2015
  end-page: 90
  ident: CR56
  article-title: Complexity of genotype‐phenotype correlations in mendelian disorders: lessons from Gaucher disease
  publication-title: Rare diseases
  contributor:
    fullname: Sidransky
– volume: 545
  start-page: 505
  year: 2017
  end-page: 509
  ident: CR39
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
  contributor:
    fullname: Parzen
– volume: 27
  start-page: 928
  year: 2019
  end-page: 940
  ident: CR75
  article-title: SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet‐Biedl syndrome
  publication-title: Eur J Hum Genet
  contributor:
    fullname: Nachmias
– volume: 34
  start-page: 2254
  year: 2018
  end-page: 2262
  ident: CR45
  article-title: pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion
  publication-title: Bioinformatics
  contributor:
    fullname: Vandeweyer
– volume: 11
  start-page: 856
  year: 2020
  ident: CR22
  article-title: Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
  publication-title: Nat Commun
  contributor:
    fullname: Gustafsson
– volume: 10
  start-page: 805
  year: 2019
  ident: CR52
  article-title: Towards a data‐integrated cell
  publication-title: Nat Commun
  contributor:
    fullname: Przulj
– volume: 580
  start-page: 402
  year: 2020
  end-page: 408
  ident: CR48
  article-title: A reference map of the human binary protein interactome
  publication-title: Nature
  contributor:
    fullname: Charloteaux
– volume: 581
  start-page: 434
  year: 2020
  end-page: 443
  ident: CR42
  article-title: The mutational constraint spectrum quantified from variation in 141,456 humans
  publication-title: Nature
  contributor:
    fullname: Birnbaum
– volume: 369
  start-page: 1318
  year: 2020
  end-page: 1330
  ident: CR33
  article-title: The GTEx consortium atlas of genetic regulatory effects across human tissues
  publication-title: Science
– volume: Chapter 7
  year: 2013
  ident: CR1
  article-title: Predicting functional effect of human missense mutations using PolyPhen‐2
  publication-title: Curr Protoc Hum Genet
  contributor:
    fullname: Sunyaev
– volume: 47
  start-page: 569
  year: 2015
  end-page: 576
  ident: CR31
  article-title: Understanding multicellular function and disease with human tissue‐specific networks
  publication-title: Nat Genet
  contributor:
    fullname: Sealfon
– volume: 8
  start-page: 236
  year: 2017
  ident: CR27
  article-title: Annotating pathogenic non‐coding variants in genic regions
  publication-title: Nat Commun
  contributor:
    fullname: Boland
– ident: CR14
– volume: 22
  start-page: 774
  year: 2021
  end-page: 790
  ident: CR74
  article-title: Decoding disease: from genomes to networks to phenotypes
  publication-title: Nat Rev Genet
  contributor:
    fullname: Troyanskaya
– volume: 581
  start-page: 452
  year: 2020
  end-page: 458
  ident: CR18
  article-title: Transcript expression‐aware annotation improves rare variant interpretation
  publication-title: Nature
  contributor:
    fullname: O'Donnell‐Luria
– volume: 44
  start-page: D862
  year: 2016
  end-page: D868
  ident: CR47
  article-title: ClinVar: public archive of interpretations of clinically relevant variants
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Hoover
– volume: 10
  year: 2016
  ident: CR57
  article-title: On the complexity of brain disorders: a symptom‐based approach
  publication-title: Front Comput Neurosci
  contributor:
    fullname: Frydecka
– year: 2019
  ident: CR5
  article-title: Widespread dose‐dependent effects of RNA expression and splicing on complex diseases and traits
  publication-title: bioRxiv
  doi: 10.1101/814350
  contributor:
    fullname: Hormozdiari
– volume: 36
  start-page: 2821
  year: 2020
  end-page: 2828
  ident: CR11
  article-title: Differential network analysis of multiple human tissue interactomes highlights tissue‐selective processes and genetic disorder genes
  publication-title: Bioinformatics
  contributor:
    fullname: Yeger‐Lotem
– volume: 7
  year: 2021
  ident: CR15
  article-title: Predicting and characterizing a cancer dependency map of tumors with deep learning
  publication-title: Sci Adv
  contributor:
    fullname: Chen
– volume: 35
  start-page: 3028
  year: 2019
  end-page: 3037
  ident: CR65
  article-title: Large‐scale analysis of human gene expression variability associates highly variable drug targets with lower drug effectiveness and safety
  publication-title: Bioinformatics
  contributor:
    fullname: Yeger‐Lotem
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: CR62
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  contributor:
    fullname: Smyth
– volume: 17
  year: 2021
  ident: CR67
  article-title: Prioritizing and characterizing functionally relevant genes across human tissues
  publication-title: PLoS Comput Biol
  contributor:
    fullname: Hannenhalli
– volume: 434
  year: 2022
  ident: CR36
  article-title: The organ‐disease annotations (ODiseA) database of hereditary diseases and inflicted tissues
  publication-title: J Mol Biol
  contributor:
    fullname: Yeger‐Lotem
– volume: 385
  start-page: 1868
  year: 2021
  end-page: 1880
  ident: CR40
  article-title: 100,000 genomes pilot on rare‐disease diagnosis in health care – preliminary report
  publication-title: N Engl J Med
  contributor:
    fullname: Tucci
– volume: 18
  start-page: 20
  year: 2017
  ident: CR54
  article-title: Human disease genomics: from variants to biology
  publication-title: Genome Biol
  contributor:
    fullname: MacArthur
– volume: 12
  year: 2015
  ident: CR29
  article-title: Methods for biological data integration: perspectives and challenges
  publication-title: J R Soc Interface
  contributor:
    fullname: Przulj
– volume: 26
  start-page: 1752
  year: 2010
  end-page: 1758
  ident: CR63
  article-title: On safari to random jungle: a fast implementation of random forests for high‐dimensional data
  publication-title: Bioinformatics
  contributor:
    fullname: Ziegler
– volume: 46
  start-page: D522
  year: 2018
  end-page: D526
  ident: CR10
  article-title: The DifferentialNet database of differential protein‐protein interactions in human tissues
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Yeger‐Lotem
– volume: 11
  year: 2011
  ident: CR43
  article-title: Predicting disease risks from highly imbalanced data using random forest
  publication-title: BMC Med Inform Decis Mak
  contributor:
    fullname: Popescu
– volume: 347
  year: 2015
  ident: CR70
  article-title: Proteomics. tissue‐based map of the human proteome
  publication-title: Science
  contributor:
    fullname: Asplund
– volume: 21
  start-page: 137
  year: 2020
  end-page: 150
  ident: CR35
  article-title: Mechanisms of tissue and cell‐type specificity in heritable traits and diseases
  publication-title: Nat Rev Genet
  contributor:
    fullname: Yeger‐Lotem
– volume: 105
  start-page: 20870
  year: 2008
  end-page: 20875
  ident: CR46
  article-title: A large‐scale analysis of tissue‐specific pathology and gene expression of human disease genes and complexes
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Brunak
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR59
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
  contributor:
    fullname: Dubourg
– ident: CR55
– volume: 13
  start-page: 366
  year: 2016
  end-page: 370
  ident: CR53
  article-title: Tissue‐specific regulatory circuits reveal variable modular perturbations across complex diseases
  publication-title: Nat Methods
  contributor:
    fullname: Bergmann
– volume: 21
  start-page: 1077
  year: 2017
  end-page: 1088
  ident: CR68
  article-title: Understanding tissue‐specific gene regulation
  publication-title: Cell Rep
  contributor:
    fullname: Kuijjer
– volume: 43
  start-page: D1049
  year: 2015
  end-page: D1056
  ident: CR28
  article-title: Gene Ontology consortium: going forward
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 1077
  year: 2017
  end-page: 1088
  article-title: Understanding tissue‐specific gene regulation
  publication-title: Cell Rep
– volume: 9
  start-page: 1825
  year: 2018
  article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics
  publication-title: Nat Commun
– volume: 21
  start-page: 137
  year: 2020
  end-page: 150
  article-title: Mechanisms of tissue and cell‐type specificity in heritable traits and diseases
  publication-title: Nat Rev Genet
– volume: 44
  start-page: D862
  year: 2016
  end-page: D868
  article-title: ClinVar: public archive of interpretations of clinically relevant variants
  publication-title: Nucleic Acids Res
– volume: 47
  start-page: D1038
  year: 2019
  end-page: D1043
  article-title: OMIM.Org: leveraging knowledge across phenotype‐gene relationships
  publication-title: Nucleic Acids Res
– volume: 27
  start-page: 928
  year: 2019
  end-page: 940
  article-title: SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet‐Biedl syndrome
  publication-title: Eur J Hum Genet
– volume: 434
  year: 2022
  article-title: The organ‐disease annotations (ODiseA) database of hereditary diseases and inflicted tissues
  publication-title: J Mol Biol
– volume: 22
  start-page: 774
  year: 2021
  end-page: 790
  article-title: Decoding disease: from genomes to networks to phenotypes
  publication-title: Nat Rev Genet
– volume: 45
  start-page: D427
  year: 2017
  end-page: D431
  article-title: The TissueNet v.2 database: a quantitative view of protein‐protein interactions across human tissues
  publication-title: Nucleic Acids Res
– volume: 47
  start-page: D886
  year: 2019
  end-page: D894
  article-title: CADD: predicting the deleteriousness of variants throughout the human genome
  publication-title: Nucleic Acids Res
– volume: 581
  start-page: 452
  year: 2020
  end-page: 458
  article-title: Transcript expression‐aware annotation improves rare variant interpretation
  publication-title: Nature
– volume: 36
  start-page: 2821
  year: 2020
  end-page: 2828
  article-title: Differential network analysis of multiple human tissue interactomes highlights tissue‐selective processes and genetic disorder genes
  publication-title: Bioinformatics
– volume: 38
  start-page: 1584
  year: 2022
  end-page: 1592
  article-title: The differential activity of biological processes in tissues and cell subsets can illuminate disease‐related processes and cell type identities
  publication-title: Bioinformatics
– volume: 46
  start-page: D794
  year: 2018
  end-page: D801
  article-title: The encyclopedia of DNA elements (ENCODE): data portal update
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 77
  year: 2002
  end-page: 95
  article-title: A perspective view and survey of meta‐learning
  publication-title: Artif Intell Rev
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  article-title: Mice: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
– volume: 18
  start-page: 20
  year: 2017
  article-title: Human disease genomics: from variants to biology
  publication-title: Genome Biol
– start-page: 69
  year: 2015
  end-page: 90
– volume: 9
  year: 2017
  article-title: Improving genetic diagnosis in mendelian disease with transcriptome sequencing
  publication-title: Sci Transl Med
– volume: 87
  start-page: 954
  year: 2000
  end-page: 959
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
– volume: 56
  start-page: 139
  year: 2019
  end-page: 148
  article-title: SEC31A mutation affects ER homeostasis, causing a neurological syndrome
  publication-title: J Med Genet
– volume: 25
  start-page: 966
  year: 2017
  end-page: 972
  article-title: Progressive hereditary spastic paraplegia caused by a homozygous KY mutation
  publication-title: Eur J Hum Genet
– volume: 97
  start-page: 199
  year: 2015
  end-page: 215
  article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities
  publication-title: Am J Hum Genet
– volume: 11
  start-page: 856
  year: 2020
  article-title: Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
  publication-title: Nat Commun
– volume: Chapter 7
  year: 2013
  article-title: Predicting functional effect of human missense mutations using PolyPhen‐2
  publication-title: Curr Protoc Hum Genet
– volume: 13
  start-page: 366
  year: 2016
  end-page: 370
  article-title: Tissue‐specific regulatory circuits reveal variable modular perturbations across complex diseases
  publication-title: Nat Methods
– volume: 10
  year: 2016
  article-title: On the complexity of brain disorders: a symptom‐based approach
  publication-title: Front Comput Neurosci
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
– volume: 580
  start-page: 402
  year: 2020
  end-page: 408
  article-title: A reference map of the human binary protein interactome
  publication-title: Nature
– volume: 571
  start-page: 505
  year: 2019
  end-page: 509
  article-title: Gene expression across mammalian organ development
  publication-title: Nature
– volume: 8
  year: 2012
  article-title: Enhancing the prioritization of disease‐causing genes through tissue specific protein interaction networks
  publication-title: PLoS Comput Biol
– volume: 10
  start-page: 805
  year: 2019
  article-title: Towards a data‐integrated cell
  publication-title: Nat Commun
– volume: 40
  start-page: 249
  year: 2009
  end-page: 256
  article-title: Actin sliding velocity on pure myosin isoforms from dystrophic mouse muscles
  publication-title: Muscle Nerve
– volume: 347
  year: 2015
  article-title: Proteomics. tissue‐based map of the human proteome
  publication-title: Science
– volume: 9
  year: 2020
  article-title: Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals
  publication-title: Elife
– volume: 34
  start-page: 2254
  year: 2018
  end-page: 2262
  article-title: pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion
  publication-title: Bioinformatics
– volume: 6
  year: 2016
  article-title: Tissue specificity of human disease module
  publication-title: Sci Rep
– volume: 26
  start-page: 1752
  year: 2010
  end-page: 1758
  article-title: On safari to random jungle: a fast implementation of random forests for high‐dimensional data
  publication-title: Bioinformatics
– volume: 10
  start-page: 2837
  year: 2019
  article-title: Improving the diagnostic yield of exome‐sequencing by predicting gene‐phenotype associations using large‐scale gene expression analysis
  publication-title: Nat Commun
– volume: 385
  start-page: 1868
  year: 2021
  end-page: 1880
  article-title: 100,000 genomes pilot on rare‐disease diagnosis in health care – preliminary report
  publication-title: N Engl J Med
– volume: 581
  start-page: 434
  year: 2020
  end-page: 443
  article-title: The mutational constraint spectrum quantified from variation in 141,456 humans
  publication-title: Nature
– volume: 50
  start-page: 956
  year: 2018
  end-page: 967
  article-title: Using an atlas of gene regulation across 44 human tissues to inform complex disease‐ and trait‐associated variation
  publication-title: Nat Genet
– volume: 545
  start-page: 505
  year: 2017
  end-page: 509
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
– volume: 10
  start-page: 2004
  year: 2015
  end-page: 2015
  article-title: Next‐generation diagnostics and disease‐gene discovery with the exomiser
  publication-title: Nat Protoc
– volume: 51
  start-page: 933
  year: 2019
  end-page: 940
  article-title: Multi‐tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits
  publication-title: Nat Genet
– volume: 12
  year: 2015
  article-title: Methods for biological data integration: perspectives and challenges
  publication-title: J R Soc Interface
– year: 2016
– volume: 8
  start-page: 236
  year: 2017
  article-title: Annotating pathogenic non‐coding variants in genic regions
  publication-title: Nat Commun
– volume: 18
  start-page: 4024
  year: 2020
  end-page: 4032
  article-title: Dosage‐sensitive molecular mechanisms are associated with the tissue‐specificity of traits and diseases
  publication-title: Comput Struct Biotechnol J
– volume: 17
  year: 2021
  article-title: Prioritizing and characterizing functionally relevant genes across human tissues
  publication-title: PLoS Comput Biol
– volume: 14
  year: 2018
  article-title: Role of duplicate genes in determining the tissue‐selectivity of hereditary diseases
  publication-title: PLoS Genet
– volume: 11
  year: 2011
  article-title: Predicting disease risks from highly imbalanced data using random forest
  publication-title: BMC Med Inform Decis Mak
– volume: 47
  start-page: D330
  year: 2019
  end-page: D338
  article-title: The Gene Ontology resource: 20 years and still GOing strong
  publication-title: Nucleic Acids Res
– volume: 26
  start-page: R83
  year: 2017
  end-page: R90
  article-title: Genetic modifiers of mendelian disease: Huntington's disease and the trinucleotide repeat disorders
  publication-title: Hum Mol Genet
– volume: 43
  start-page: D1049
  year: 2015
  end-page: D1056
  article-title: Gene Ontology consortium: going forward
  publication-title: Nucleic Acids Res
– volume: 7
  year: 2021
  article-title: Predicting and characterizing a cancer dependency map of tumors with deep learning
  publication-title: Sci Adv
– volume: 35
  start-page: 3028
  year: 2019
  end-page: 3037
  article-title: Large‐scale analysis of human gene expression variability associates highly variable drug targets with lower drug effectiveness and safety
  publication-title: Bioinformatics
– volume: 10
  year: 2014
  article-title: Comparative analysis of human tissue interactomes reveals factors leading to tissue‐specific manifestation of hereditary diseases
  publication-title: PLoS Comput Biol
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Mach Learn Res
– volume: 369
  start-page: 1318
  year: 2020
  end-page: 1330
  article-title: The GTEx consortium atlas of genetic regulatory effects across human tissues
  publication-title: Science
– volume: 139
  start-page: 59
  year: 2016
  end-page: 74
  article-title: Genetics in Parkinson disease: mendelian versus non‐mendelian inheritance
  publication-title: J Neurochem
– volume: 11
  year: 2018
  article-title: Nocturnal atrial fibrillation caused by mutation in KCND2, encoding pore‐forming (alpha) subunit of the cardiac Kv4.2 Potassium Channel
  publication-title: Circ Genom Precis Med
– volume: 52
  start-page: 626
  year: 2020
  end-page: 633
  article-title: Quantifying genetic effects on disease mediated by assayed gene expression levels
  publication-title: Nat Genet
– volume: 2016
  start-page: 855
  year: 2016
  end-page: 864
  article-title: node2vec: scalable feature learning for networks
  publication-title: KDD
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 24
  start-page: 537
  year: 2006
  end-page: 544
  article-title: Gene prioritization through genomic data fusion
  publication-title: Nat Biotechnol
– volume: 46
  start-page: D522
  year: 2018
  end-page: D526
  article-title: The DifferentialNet database of differential protein‐protein interactions in human tissues
  publication-title: Nucleic Acids Res
– year: 2019
  article-title: Widespread dose‐dependent effects of RNA expression and splicing on complex diseases and traits
  publication-title: bioRxiv
– year: 2018
  article-title: Consistent individualized feature attribution for tree ensembles
  publication-title: arXiv
– volume: 38
  start-page: 1671
  year: 2017
  end-page: 1683
  article-title: PAX7 mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay
  publication-title: Hum Mutat
– volume: 47
  start-page: D529
  year: 2019
  end-page: D541
  article-title: The BioGRID interaction database: 2019 update
  publication-title: Nucleic Acids Res
– volume: 43
  start-page: W258
  year: 2015
  end-page: W263
  article-title: MyProteinNet: build up‐to‐date protein interaction networks for organisms, tissues and user‐defined contexts
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 599
  year: 2017
  end-page: 612
  article-title: Settling the score: variant prioritization and mendelian disease
  publication-title: Nat Rev Genet
– volume: 105
  start-page: 20870
  year: 2008
  end-page: 20875
  article-title: A large‐scale analysis of tissue‐specific pathology and gene expression of human disease genes and complexes
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: S51
  year: 2017
  end-page: S69
  article-title: The Synucleinopathies: twenty years on
  publication-title: J Parkinsons Dis
– volume: 47
  start-page: 569
  year: 2015
  end-page: 576
  article-title: Understanding multicellular function and disease with human tissue‐specific networks
  publication-title: Nat Genet
– volume: 7
  year: 2013
  ident: e_1_2_9_2_1
  article-title: Predicting functional effect of human missense mutations using PolyPhen‐2
  publication-title: Curr Protoc Hum Genet
  contributor:
    fullname: Adzhubei I
– ident: e_1_2_9_46_1
  doi: 10.1093/bioinformatics/bty079
– ident: e_1_2_9_52_1
  doi: 10.1371/journal.pcbi.1002690
– ident: e_1_2_9_59_1
  doi: 10.1093/nar/gky1079
– ident: e_1_2_9_57_1
  doi: 10.1007/978-94-017-9214-1_6
– ident: e_1_2_9_29_1
  doi: 10.1093/nar/gku1179
– ident: e_1_2_9_72_1
  doi: 10.18637/jss.v045.i03
– ident: e_1_2_9_43_1
  doi: 10.1038/s41586-020-2308-7
– ident: e_1_2_9_31_1
  doi: 10.3233/JPD-179005
– ident: e_1_2_9_16_1
  doi: 10.1126/sciadv.abh1275
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pgen.1007327
– ident: e_1_2_9_34_1
  doi: 10.1126/science.aaz1776
– ident: e_1_2_9_50_1
  doi: 10.48550/arXiv.1802.03888
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jmb.2022.167619
– ident: e_1_2_9_40_1
  doi: 10.1038/nature22366
– ident: e_1_2_9_55_1
  doi: 10.1186/s13059-017-1160-z
– ident: e_1_2_9_18_1
  doi: 10.1126/scitranslmed.aal5209
– ident: e_1_2_9_22_1
  doi: 10.1161/CIRCGEN.118.002293
– ident: e_1_2_9_73_1
  doi: 10.1023/A:1019956318069
– ident: e_1_2_9_9_1
  doi: 10.1093/nar/gkv515
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ajhg.2015.06.009
– ident: e_1_2_9_49_1
  doi: 10.1038/s41586-020-2188-x
– ident: e_1_2_9_23_1
  doi: 10.1038/s41467-020-14666-6
– ident: e_1_2_9_53_1
  doi: 10.1038/s41467-019-08797-8
– ident: e_1_2_9_61_1
  doi: 10.1002/humu.23310
– ident: e_1_2_9_12_1
  doi: 10.1093/bioinformatics/btaa034
– ident: e_1_2_9_20_1
  doi: 10.1093/nar/gkx1081
– ident: e_1_2_9_24_1
  doi: 10.1038/nrg.2017.52
– ident: e_1_2_9_36_1
  doi: 10.1038/s41576-019-0200-9
– ident: e_1_2_9_79_1
  doi: 10.1038/ejhg.2017.85
– ident: e_1_2_9_66_1
  doi: 10.1093/bioinformatics/btz023
– ident: e_1_2_9_42_1
  doi: 10.1016/j.csbj.2020.10.030
– ident: e_1_2_9_27_1
  doi: 10.1038/s41588-019-0409-8
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-017-00141-2
– ident: e_1_2_9_41_1
  doi: 10.1056/NEJMoa2035790
– ident: e_1_2_9_78_1
  doi: 10.1093/biomet/87.4.954
– ident: e_1_2_9_58_1
  doi: 10.3389/fncom.2016.00016
– ident: e_1_2_9_68_1
  doi: 10.1371/journal.pcbi.1009194
– ident: e_1_2_9_15_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_9_6_1
  doi: 10.1101/814350
– ident: e_1_2_9_76_1
  doi: 10.1038/s41431-019-0347-z
– ident: e_1_2_9_3_1
  doi: 10.1038/nbt1203
– ident: e_1_2_9_19_1
  doi: 10.1038/s41586-020-2329-2
– ident: e_1_2_9_51_1
  doi: 10.1038/s42256-019-0138-9
– ident: e_1_2_9_32_1
  doi: 10.1038/ng.3259
– ident: e_1_2_9_7_1
  doi: 10.1371/journal.pcbi.1003632
– ident: e_1_2_9_75_1
  doi: 10.1038/s41576-021-00389-x
– ident: e_1_2_9_71_1
  doi: 10.1126/science.1260419
– volume: 15
  start-page: 3133
  year: 2014
  ident: e_1_2_9_25_1
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Mach Learn Res
  contributor:
    fullname: Fernandez‐Delgado M
– ident: e_1_2_9_70_1
  doi: 10.1093/nar/gky1055
– ident: e_1_2_9_10_1
  doi: 10.1093/nar/gkw1088
– ident: e_1_2_9_63_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_9_13_1
  doi: 10.1002/mus.21302
– ident: e_1_2_9_4_1
  doi: 10.1093/nar/gky1151
– ident: e_1_2_9_48_1
  doi: 10.1093/nar/gkv1222
– ident: e_1_2_9_30_1
  doi: 10.1098/rsif.2015.0571
– ident: e_1_2_9_65_1
  doi: 10.1093/bioinformatics/btab883
– volume: 2016
  start-page: 855
  year: 2016
  ident: e_1_2_9_33_1
  article-title: node2vec: scalable feature learning for networks
  publication-title: KDD
  contributor:
    fullname: Grover A
– ident: e_1_2_9_38_1
  doi: 10.1111/jnc.13593
– volume-title: Online mendelian inheritance in man, OMIM®
  ident: e_1_2_9_56_1
  contributor:
    fullname: McKusick‐Nathans Institute of Genetic Medicine (JHUB, MD)
– ident: e_1_2_9_21_1
  doi: 10.1038/s41467-019-10649-4
– ident: e_1_2_9_44_1
  doi: 10.1186/1472-6947-11-51
– ident: e_1_2_9_64_1
  doi: 10.1093/bioinformatics/btq257
– ident: e_1_2_9_67_1
  doi: 10.1038/nprot.2015.124
– ident: e_1_2_9_26_1
  doi: 10.1038/s41588-018-0154-4
– ident: e_1_2_9_5_1
  doi: 10.1038/s41467-018-03621-1
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_9_60_1
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
  contributor:
    fullname: Pedregosa F
– ident: e_1_2_9_74_1
  doi: 10.7554/eLife.51503
– ident: e_1_2_9_54_1
  doi: 10.1038/nmeth.3799
– ident: e_1_2_9_35_1
  doi: 10.1136/jmedgenet-2018-105503
– ident: e_1_2_9_69_1
  doi: 10.1016/j.celrep.2017.10.001
– ident: e_1_2_9_14_1
  doi: 10.1038/s41586-019-1338-5
– ident: e_1_2_9_45_1
  doi: 10.1038/srep35241
– ident: e_1_2_9_77_1
  doi: 10.1038/s41588-020-0625-2
– ident: e_1_2_9_47_1
  doi: 10.1073/pnas.0810772105
– ident: e_1_2_9_39_1
  doi: 10.1093/hmg/ddx261
– ident: e_1_2_9_11_1
  doi: 10.1093/nar/gkx981
– ident: e_1_2_9_62_1
  doi: 10.1093/nar/gky1016
SSID ssj0038182
Score 2.4609551
Snippet How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a...
How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a...
Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to...
Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e11407
SubjectTerms Consortia
data integration
Datasets
Decision trees
Deep learning
Disease
EMBO10
EMBO16
EMBO22
Gene expression
Genes
Genetic disorders
genomic medicine
Hereditary diseases
Humans
Learning algorithms
Life Sciences
Machine Learning
Molecular modelling
Mutation
omics
Ontology
Physiology
Proteins
Questions
Risk assessment
Selectivity
Systems Biology
tissue selectivity
Tissues
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6CIHiRxBgzRkMHAsllcKZ7erb7GCUiAUMgEbw1_Yx72FnZWQ978yf4G_0lqep5xEWDlxxnpnpo6tH1FVVdRcjHCUeQHGOuTDHJK25FLk1QuQ3gTSBojlW6KHz-vT67qL5dissHo76wJqxrD9wx7ohFya3Hq0HYWU1WFhymiN7z2rNaWJdO30INwVR3BqMbYn2LRsEEO5q1FmJBBtFOhYNjH7ig1Kn_KXj5uEpyTJWuA9nkiU5fku0eQtIv3dZfkReh2SGb3VDJ1WsSfyww-YLlzHQ2DL-ls4BXfKftrKXzSK9wQud0aRYr2mdoWmpXFIvgf9OUO6DLJJH727s2TcqBQ5Fiq4wY2i55v0suTr_-OjnL-2kKuRMQM-RK8spH6dSE1TxYWRhw9tIZZ4rCC1ZYpoSqLTOACMugnAimjqVzFsycecv5G7LRzJvwltASyBwz1hrlKy-ddEBXCscsCzbWJiOfBgbr665phsZgA0WhQRR6FEVGjpH_IxU2u04vQAV0rwL6ORXIyMEgPd1bYKvR7SL2YUVGPoyfwXYwIWKaML9BGizNQxSWkb1O2ONO-ATXVjwjck0N1ra6_qWZXqX-3BDhFoCqYennQWP-7utffCiTRj3DLn3-83h82P8fvHtHtuCHPJU0ygOysVzchEOAWUv7PlnUH1NHJKI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest Medical & Health Databases)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLKs-GFmQkJLhYTew4cU6IIqoKqQgJKu0t8rPdwyZlsz3sv2fGcVJWvI5JxpLjmfF84xnPEPKmFgiSQ2CNzmtWCiOZ0r5hxoM1Aac5lPGi8PmX6uyi_LyQi3TgNqS0ymlPjBu16y2ekR_jNoq2jOfvr38w7BqF0dXUQuMuuVfwvEKprhezw4XGiKdCjZJLfrwaDHiEHHyeEtvH_mKIYr3-P4HM33Ml54DpLpyN9uh0nzxMQJJ-GDn_iNzx3WNyf2wtuX1C3Nc1hmAwqZmupha4dOXxou9yWA20D_QK-3QuN3q9pSlOM1CzpZgKf0ljBIFuIl_YELvlwMZIsVxG8MMYwH9KLk4_ff94xlJHBWYl-A2sUaJ0Qdmm5pXwRuUaDL6y2uo8d5LnhjeyqQzXgAoL31jpdRUKaw2oOndGiGdkr-s7f0BoAWSWa2N040qnrLJAV0jLDfcmVDojb6flba_HwhktOhzIiBYY0c6MyMgJrv5MhQWv44t-fdkm_Wl5UMI4vCGGBfZUaQA3yeCcqByvpLEZOZp41yYtHNpbmcnI6_kz6A8GRXTn-xukwfQ8RGIZeT6yep6JqHFsKTKidoRgZ6q7X7rlVazRDV5uDsgahr6b5OV2Xn9bhyLK03-Wqz3_djI_vPj3bx-SB0AqYsKiOiJ7m_WNfwkgamNeRU35CY_4GtY
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9RAFB6kIvgi3o1WGUHQl2gyl-zkQcSKpQgVQRf6Nsy1XehmNdmC--89Z3IpoVUfszkDk3PZ8x3OjZBXC44gOca8NsUiF9zKXJlQ5zaAN4GgOYrUKHz8tTpaii8n8uSy_mlgYHdtaIf7pJbt-dvfv3YfwODfD9t72Lt1ZyHSYxDLCGwsv8mwDQjL-MSUUUDHxIahjVfPzJxSmt1_HeC8Wjc5JU_n0Db5psO75M4AKunHXgvukRuhuU9u9Wsmdw-I_9ZiOgYLnOl6XIdL1wGbflfduqObSM9wZ-dqa9odHXI2HbU7imXxpzRlE-g2ySjv0uYc-JOkODojhq5P5j8ky8PPPz4d5cN2hdxJiCHyWnHho3L1glU8WFUYcP7KGWeKwktWWFbLurLMAEIsQ-1kMFUsnbNg9sxbzh-RvWbThCeElkDmmLHW1F545ZQDulI6ZlmwsTIZeT2yV__sh2hoDD5QEBoEoSdBZOQAuT9R4fDr9MOmPdWDLWkWFbceu8Vw2J4SFjCUjN7zyrNKWpeR_VF2elQojW4YsRArMvJyeg22hAkS04TNBdJgqR6isow87kU93YQv8KzgGVEzJZhddf6mWZ2led0Q8RaAsuHom1FfLu_1Nz6USZ_-wy59_P1genj6789-Rm4DKU_Fi2qf7G3bi_AcANXWvkiW8geeAx2i
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen website
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC5kRfAivo2u0oKgl2DSnc50ju7gsggrgi7sremnO4fJLJPZw9z8Cf5Gf4lVnYeGVfSWpLtDU9XV9RX1Ani1EASSY8wbUyzySliZKxOa3AbUJmg0xyolCp9-rE_Oqg_n8nwIkKVcmN_995JL_nbdWbTiONopFSWN30T9q-j0LuvleOOS0uFDQcbra2YKJ9Xl_xOYvB4TOTlG57A16Z3ju3BnAIzsXc_he3AjtPfhVt9Ccv8A4qctuVooeJmtx1a3bB0ooXfVrTu2ieyC-nGudma7Z4M_pmN2zyjk_StLngK2S_T_8e17l_ri4BXIqDBGDF3vqn8IZ8fvvyxP8qF3Qu4kWgh5o0Tlo3LNgtciWFUYVO3KGWeKwkteWN7IprbcIP4rQ-NkMHUsnbMo1NxbIR7BQbtpwxNgJU5z3FhrGl955ZTDeaV03PJgY20yeD0SWF_2JTI0mRbECo2s0BMrMjgi-k-zqLR1-oAc14OkaB6VsJ5ywaiUnqosIiQZvRe157W0LoPDkXt6kLdOk5IlpMOLDF5Owygp5P4wbdhc0RwKxCPMlcHjntnTTsSC1lYiAzU7BrOtzkfa1UWqxo32bIEYGpe-GU_Mr339jQ5lOlH_IJc-_Xw0vTz9_98_g9v4LFKYojqEg932KjxH6LSzL5Lc_ATQExRg
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library website
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG4kIngR345JpAVBL4Mz3T2zPcckGIIQCWggt6arH8kedjbsbA65-RP8jf4Sq3oeOqgI3nZ3upemqqv7q6mqrxh7s5AEkmPMG1ssciWhyrUNTQ4BbxN0mqNKhcKnn-qTc_Xxorr4pYq_54eYXriRZaTzmgzcQjd27CHW0FUH6N8J9GAUlZPfJdoYSuoT6mw8i-k6En1JpMqpMdNA20j_8H42f3YtJfb-P0HO3zMnp_DpHNym2-n4IXswwEp-0O-DR-xOaB-ze32jydsnLJ5tKCBDKc58NTbE5atAZb_LbtXxdeRX1LVzuUWB8CFq03G45ZQYf8lTPIFvk5a-f_3Wpe45eFByos-IoesD-k_Z-fGHL0cn-dBhIXcV-hF5o6XyUbtmIWoZQBcWAYB21tmi8JUoQDRVU4OwiBLL0Lgq2DqWzgGavvAg5TO2067b8ILxEoc5YQFs45XXTjscV1ZOgAgQa5uxt6OAzXVPpGHIASFVGFSFmVSRsUOS_zSKCLDTD-vNpRnsyYioJXiqGCPCPa0AcVQVvZe1F3UFLmN7o_bMYJWdoauY8JAoMvZ6eoz2REES24b1DY2hdD1CZhl73it7Wolc0FwlM6Zn22C21PmTdnmVOLvR6y0QaePUd-OO-bmuv8mhTDvqH-Iyp58Ppy8v_2POLruPn2XKatR7bGe7uQn7iLS28CoZ0w8GXSFw
  priority: 102
  providerName: Wiley-Blackwell
Title Predicting molecular mechanisms of hereditary diseases by using their tissue‐selective manifestation
URI https://link.springer.com/article/10.15252/msb.202211407
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.202211407
https://www.ncbi.nlm.nih.gov/pubmed/37232043
https://www.proquest.com/docview/2847222320
https://search.proquest.com/docview/2820030065
https://pubmed.ncbi.nlm.nih.gov/PMC10407743
https://doaj.org/article/2f83bd8335064584b8465fdd36d265bc
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-ajo2-jP2fty5oMNhe3DiSZcuPS2gpg5SwrZA3I8lSG6idEqcPedtH2GfcJ9lJ_jPMNgZ7EdiWzXF30v3Od7oDeJcyB5KtDTMZpWHMFA-FNFmoDFoTdJpt7A8KLy6S88v404qvDiDpzsL4pH2t1ifVTXlSra99buVtqSddnthkuZijCxEhbGGTEYxQQzsfvdl_nQmibXlGTjmdlLVCP5Cip4NvHcEDliKKiGI2sES-YP-fUObvyZJ9xHSIZ71BOnsED1skST42FD-GA1M9gftNb8n9U7DLrYvBuKxmUnY9cElp3EnfdV3WZGPJtWvUud7J7Z60gZqaqD1xufBXxIcQyM4L5se377VvmIN7I3EVM6ypmxj-M7g8O_06Pw_bpgqh5ug6hJlgcWGFzlKaMKNEJNHmCy21jKKC00jRjGeJohKB4dRkmhuZ2KnWCnlOC8XYczisNpV5CWSK0zSVSsmsiAuhhcZ5U66pokbZRAbwvmNwftvUzsidz-GkkqNU8l4qAcwc__tZrua1v7HZXuWt5HNqBVOFOyTmauyJWCF04rYoWFLQhCsdwHEnvbxdiHXurK-DQDQK4G3_GJeQi4vIymzu3ByXoefAWAAvGmH3lHTKEoAYqMGA1OET1FpfprvT0gA-dBrzi66_8WHqNeof7MoXX2b9xav_p-w1HOFnmM9nFMdwuNvemTeIsXZqDCMaL3FMV-kY7s1OL5af8WqezMf-rwWOi1iM_cL7CYYRK_c
link.rule.ids 230,315,730,783,787,867,888,2109,11575,12069,21401,24331,27937,27938,31732,31733,33757,33758,41133,42202,43323,43818,46065,46489,50827,50936,51589,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCMGl4lkCBYyEBJeoiR0nzglRRLVAt0KilfZm-dnuYZOy2R7233fGyaaseB2T2JIzD883nvEMIW8rjiA5hLTWWZUW3IhUal-nxoM1Aac5FPGi8PSknJwVX2diNhy4dUNa5WZPjBu1ay2ekR_gNoq2jGUfLn-m2DUKo6tDC43b5A7W4UI5r2ajw4XGiA2FGgUT7GDRGfAIGfg8BbaP_cUQxXr9fwKZv-dKjgHTbTgb7dHRA7I7AEn6sef8Q3LLN4_I3b615Poxcd-XGILBpGa62LTApQuPF33n3aKjbaAX2KdzvtLLNR3iNB01a4qp8Oc0RhDoKvIl7WK3HNgYKZbLCL7rA_hPyNnR59NPk3ToqJBaAX5DWkteuCBtXbGSeyMzDQZfWm11ljnBMsNqUZeGaUCFua-t8LoMubUGVJ05w_lTstO0jX9GaA7DLNPG6NoVTlppYVwuLDPMm1DqhLzbkFdd9oUzFDocyAgFjFAjIxJyiNQfR2HB6_iiXZ6rQX8UC5IbhzfEsMCeLAzgJhGc46VjpTA2Ifsb3qlBCzt1IzMJeTN-Bv3BoIhufHuFYzA9D5FYQvZ6Vo8r4RXOLXhC5JYQbC11-0szv4g1usHLzQBZw9T3G3m5Wdff6JBHefoPudT0x-H48Pzfv_2a3JucTo_V8ZeTby_IfZjGY_Ki3Cc7q-WVfwmAamVeRa25BunvHb0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQEYgL4t1AASMhwSUi8SPrHCmwKo9WK0Gl3iw_2z1sttpsD73xE_iN_BJmnAdEgJA4xrEja8bj-SbzIuT5jCNIjjGvTTHLBbcyVybUuQ2gTcBojiIlCh8eVQfH4sOJPPkli7-rDzH-cEPJSPc1Cvi5j0PHHqwaumot2HcMLBiB6eRXBWBxDOpjYjHcxaiOWJcSKXJszNSXbcQvvJqsn6ilVL3_T5Dz98jJ0X06BbdJO81vkZs9rKSvu3Nwm1wJzR1yrWs0eXmXxMUGHTIY4kxXQ0NcugqY9rtsVy1dR3qGXTuXWyAI7b02LbWXFAPjT2nyJ9Bt4tL3r9_a1D0HLkqK5TNiaDuH_j1yPH_35c1B3ndYyJ0EOyKvFRc-KlfPWMWDVYUBAKCccaYovGSFZbWsK8sMoMQy1E4GU8XSOQuiz7zl_D7ZadZN2CW0hGmOGWtN7YVXTjmYV0rHLAs2ViYjLwYC6_OukIZGAwRZoYEVemRFRvaR_uMsLICdBtabU93Lk2ZRcesxYwwL7ilhAUfJ6D2vPKukdRnZG7ine6lsNapixEOsyMiz8TXIEzpJTBPWFzgHw_UQmWXkQcfscSd8hmsFz4iaHIPJVqdvmuVZqtkNVm8BSBuWvhxOzM99_Y0OZTpR_yCXPvy8Pz48_I81T8n1xdu5_vT-6OMjcgOGeQpwVHtkZ7u5CI8BdG3tkyRXPwCk7CQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+molecular+mechanisms+of+hereditary+diseases+by+using+their+tissue-selective+manifestation&rft.jtitle=Molecular+systems+biology&rft.au=Simonovsky%2C+Eyal&rft.au=Moran%2C+Sharon&rft.au=Ziv%2C+Maya&rft.au=Mauer%2C+Omry&rft.date=2023-08-08&rft.pub=EMBO+Press&rft.eissn=1744-4292&rft.volume=19&rft.issue=8&rft_id=info:doi/10.15252%2Fmsb.202211407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon