Predicting molecular mechanisms of hereditary diseases by using their tissue‐selective manifestation
How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE)...
Saved in:
Published in | Molecular systems biology Vol. 19; no. 8; pp. e11407 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.08.2023
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes (
https://netbio.bgu.ac.il/trace/
). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.
Synopsis
An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients.
An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes.
ML models highlight known and novel tissue‐selectivity mechanisms.
An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented.
The framework and catalogue enhance genetic diagnosis of rare‐disease patients.
Graphical Abstract
An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. |
---|---|
AbstractList | How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Synopsis image An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes. ML models highlight known and novel tissue‐selectivity mechanisms. An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented. The framework and catalogue enhance genetic diagnosis of rare‐disease patients. How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes (https://netbio.bgu.ac.il/trace/). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Synopsis An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes. ML models highlight known and novel tissue‐selectivity mechanisms. An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented. The framework and catalogue enhance genetic diagnosis of rare‐disease patients. An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed “Tissue Risk Assessment of Causality by Expression” (TRACE), a machine learning approach to predict genes that underlie tissue‐selective diseases and selectivity‐related features. TRACE utilized 4,744 biologically interpretable tissue‐specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity‐related features, the most common of which was previously overlooked. Next, we created a catalog of tissue‐associated risks for 18,927 protein‐coding genes ( https://netbio.bgu.ac.il/trace/ ). As proof‐of‐concept, we prioritized candidate disease genes identified in 48 rare‐disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases. Synopsis An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. An interpretable machine‐learning (ML) framework uses thousands of gene features to predict tissue‐associated disease genes. ML models highlight known and novel tissue‐selectivity mechanisms. An online catalogue of tissue‐associated risks for 18,927 protein‐coding genes in eight tissues is presented. The framework and catalogue enhance genetic diagnosis of rare‐disease patients. Graphical Abstract An interpretable machine‐learning framework predicts disease genes for tissue‐selective hereditary diseases. The framework highlights known and novel tissue‐selectivity features and enhances genetic diagnosis of rare‐disease patients. |
Author | Yogev, Yuval Jubran, Juman Rokach, Lior Vinogradov, Ekaterina Sharon, Moran Im, Hae Kyung Kerber, Lior Segrè, Ayellet V Birk, Ohad Simonovsky, Eyal Basha, Omer Yeger‐Lotem, Esti Ziv, Maya Hekselman, Idan Argov, Chanan M Mauer, Omry |
AuthorAffiliation | 4 The Broad Institute of MIT and Harvard Cambridge MA USA 7 Department of Software & Information Systems Engineering Ben‐Gurion University of the Negev Beer Sheva Israel 5 Section of Genetic Medicine, Department of Medicine The University of Chicago Chicago IL USA 6 The National Institute for Biotechnology in the Negev Ben‐Gurion University of the Negev Beer Sheva Israel 3 Ocular Genomics Institute, Massachusetts Eye and Ear Harvard Medical School Boston MA USA 1 Department of Clinical Biochemistry and Pharmacology Ben‐Gurion University of the Negev Beer Sheva Israel 2 Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences Ben Gurion University of the Negev Beer Sheva Israel |
AuthorAffiliation_xml | – name: 2 Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences Ben Gurion University of the Negev Beer Sheva Israel – name: 3 Ocular Genomics Institute, Massachusetts Eye and Ear Harvard Medical School Boston MA USA – name: 7 Department of Software & Information Systems Engineering Ben‐Gurion University of the Negev Beer Sheva Israel – name: 1 Department of Clinical Biochemistry and Pharmacology Ben‐Gurion University of the Negev Beer Sheva Israel – name: 4 The Broad Institute of MIT and Harvard Cambridge MA USA – name: 5 Section of Genetic Medicine, Department of Medicine The University of Chicago Chicago IL USA – name: 6 The National Institute for Biotechnology in the Negev Ben‐Gurion University of the Negev Beer Sheva Israel |
Author_xml | – sequence: 1 givenname: Eyal orcidid: 0000-0001-7461-5102 surname: Simonovsky fullname: Simonovsky, Eyal organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 2 givenname: Moran surname: Sharon fullname: Sharon, Moran organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 3 givenname: Maya surname: Ziv fullname: Ziv, Maya organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 4 givenname: Omry surname: Mauer fullname: Mauer, Omry organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 5 givenname: Idan surname: Hekselman fullname: Hekselman, Idan organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 6 givenname: Juman surname: Jubran fullname: Jubran, Juman organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 7 givenname: Ekaterina surname: Vinogradov fullname: Vinogradov, Ekaterina organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 8 givenname: Chanan M surname: Argov fullname: Argov, Chanan M organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 9 givenname: Omer surname: Basha fullname: Basha, Omer organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 10 givenname: Lior surname: Kerber fullname: Kerber, Lior organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev – sequence: 11 givenname: Yuval orcidid: 0000-0002-2218-9938 surname: Yogev fullname: Yogev, Yuval organization: Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev – sequence: 12 givenname: Ayellet V surname: Segrè fullname: Segrè, Ayellet V organization: Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, The Broad Institute of MIT and Harvard – sequence: 13 givenname: Hae Kyung orcidid: 0000-0003-0333-5685 surname: Im fullname: Im, Hae Kyung organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago – sequence: 15 givenname: Ohad surname: Birk fullname: Birk, Ohad organization: Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, The National Institute for Biotechnology in the Negev, Ben‐Gurion University of the Negev – sequence: 16 givenname: Lior surname: Rokach fullname: Rokach, Lior organization: Department of Software & Information Systems Engineering, Ben‐Gurion University of the Negev – sequence: 17 givenname: Esti orcidid: 0000-0002-8279-7898 surname: Yeger‐Lotem fullname: Yeger‐Lotem, Esti email: estiyl@bgu.ac.il organization: Department of Clinical Biochemistry and Pharmacology, Ben‐Gurion University of the Negev, The National Institute for Biotechnology in the Negev, Ben‐Gurion University of the Negev |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37232043$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiF5gyxKNxIZNUl_HnhWiFYVKRSABa8uXM4mjGbvYM0XZ8Qh9Rp4EpykhRUKsbNnf-fT7-BxXByEGqKrnGM0xJ5ycDtnMCSIEY4bEo-oIC8ZmjLTkYG9_WB3nvEKISizJk-qQCkIJYvSo6j4lcN6OPizqIfZgp16negC71MHnIdexq5ewYUad1rXzGXSGXJt1PeVN0bgEn-rR5zzBzx-3GYpj9DdQD0XQQR716GN4Wj3udJ_h2f16Un29ePvl_P3s6uO7y_M3VzPLBROzVlLmOmlbQRoKRiKNOZZWW42Q4wQZ0vK2MUS3QmBoLQfddNhagxgizlB6Ul1uvS7qlbpOfiipVdRe3R3EtFA6jd72oEgnqXGSUo4axiUzkjW8c442jjTc2OJ6vXVdT2YAZyGMSfcPpA9vgl-qRbxRuKQRgm3SvLo3pPhtKr1Qg88W-l4HiFNWRJLyJwg1vKAv_0JXcUqh9KpQTBCy-bBCzbeUTTHnBN0uDUbqbh5UmQe1m4dS8GL_DTv89wAUQG6B776H9X906sPns3336bY0l6qwgPQn8j_S_ALMVNR7 |
CitedBy_id | crossref_primary_10_1093_nar_gkad421 crossref_primary_10_1186_s13059_024_03225_7 |
Cites_doi | 10.48550/arXiv.1802.03888 10.1101/814350 10.1093/bioinformatics/bty079 10.1371/journal.pcbi.1002690 10.1093/nar/gky1079 10.1007/978-94-017-9214-1_6 10.1093/nar/gku1179 10.18637/jss.v045.i03 10.1038/s41586-020-2308-7 10.3233/JPD-179005 10.1126/sciadv.abh1275 10.1371/journal.pgen.1007327 10.1126/science.aaz1776 10.1016/j.jmb.2022.167619 10.1038/nature22366 10.1186/s13059-017-1160-z 10.1126/scitranslmed.aal5209 10.1161/CIRCGEN.118.002293 10.1023/A:1019956318069 10.1093/nar/gkv515 10.1016/j.ajhg.2015.06.009 10.1038/s41586-020-2188-x 10.1038/s41467-020-14666-6 10.1038/s41467-019-08797-8 10.1002/humu.23310 10.1093/bioinformatics/btaa034 10.1093/nar/gkx1081 10.1038/nrg.2017.52 10.1038/s41576-019-0200-9 10.1038/ejhg.2017.85 10.1093/bioinformatics/btz023 10.1016/j.csbj.2020.10.030 10.1038/s41588-019-0409-8 10.1038/s41467-017-00141-2 10.1056/NEJMoa2035790 10.1093/biomet/87.4.954 10.3389/fncom.2016.00016 10.1371/journal.pcbi.1009194 10.1145/2939672.2939785 10.1038/s41431-019-0347-z 10.1038/nbt1203 10.1038/s41586-020-2329-2 10.1038/s42256-019-0138-9 10.1038/ng.3259 10.1371/journal.pcbi.1003632 10.1038/s41576-021-00389-x 10.1126/science.1260419 10.1093/nar/gky1055 10.1093/nar/gkw1088 10.1093/bioinformatics/btp616 10.1002/mus.21302 10.1093/nar/gky1151 10.1093/nar/gkv1222 10.1098/rsif.2015.0571 10.1093/bioinformatics/btab883 10.1111/jnc.13593 10.1038/s41467-019-10649-4 10.1186/1472-6947-11-51 10.1093/bioinformatics/btq257 10.1038/nprot.2015.124 10.1038/s41588-018-0154-4 10.1038/s41467-018-03621-1 10.7554/eLife.51503 10.1038/nmeth.3799 10.1136/jmedgenet-2018-105503 10.1016/j.celrep.2017.10.001 10.1038/s41586-019-1338-5 10.1038/srep35241 10.1038/s41588-020-0625-2 10.1073/pnas.0810772105 10.1093/hmg/ddx261 10.1093/nar/gkx981 10.1093/nar/gky1016 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023 The Authors. Published under the terms of the CC BY 4.0 license. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | GTEx Consortium |
CorporateAuthor_xml | – name: GTEx Consortium |
DBID | C6C 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PIMPY PQEST PQQKQ PQUKI Q9U RC3 7X8 5PM DOA |
DOI | 10.15252/msb.202211407 |
DatabaseName | SpringerOpen website Wiley Online Library website Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection (ProQuest Medical & Health Databases) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest research library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen website url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library website url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Eyal Simonovsky et al |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2f83bd8335064584b8465fdd36d265bc 10_15252_msb_202211407 37232043 MSB202211407 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ben‐Gurion University funderid: 10.13039/501100005005 – fundername: Israel Science Foundation (ISF) grantid: 317/19; 401/22 funderid: 10.13039/501100003977 – fundername: Israel Science Foundation (ISF) funderid: 317/19; 401/22 – fundername: Ben‐Gurion University – fundername: Israel Science Foundation (ISF) grantid: 401/22 – fundername: Israel Science Foundation (ISF) grantid: 317/19 – fundername: Ben-Gurion University – fundername: ; – fundername: ; grantid: 317/19; 401/22 |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 2WC 39C 3V. 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAHHS ABDBF ABUWG ACCFJ ACGFO ACPRK ACXQS ADBBV ADKYN ADZMN AEEZP AEGXH AENEX AEQDE AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IGS IHR INH KQ8 LK8 M1P M2O M48 M7P ML0 M~E O5R O5S O9- OK1 P2P PADUT PIMPY PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7TM 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PQEST PQUKI Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5747-9834df8c97263eb80a1518caca00d520b29596b2a9771e9c5ea6f1ccb0402db33 |
IEDL.DBID | RPM |
ISSN | 1744-4292 |
IngestDate | Mon Nov 04 19:59:32 EST 2024 Tue Sep 17 21:31:59 EDT 2024 Sat Oct 05 04:40:58 EDT 2024 Thu Oct 10 19:10:47 EDT 2024 Thu Sep 26 17:04:46 EDT 2024 Wed Oct 16 00:39:11 EDT 2024 Sat Aug 24 00:59:18 EDT 2024 Tue Nov 05 01:38:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | genomic medicine omics machine learning tissue selectivity data integration |
Language | English |
License | Attribution 2023 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5747-9834df8c97263eb80a1518caca00d520b29596b2a9771e9c5ea6f1ccb0402db33 |
Notes | Membership of the GTEx Consortium appears in the Appendix ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2218-9938 0000-0001-7461-5102 0000-0002-8279-7898 0000-0003-0333-5685 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407743/ |
PMID | 37232043 |
PQID | 2847222320 |
PQPubID | 29031 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2f83bd8335064584b8465fdd36d265bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_10407743 proquest_miscellaneous_2820030065 proquest_journals_2847222320 crossref_primary_10_15252_msb_202211407 pubmed_primary_37232043 wiley_primary_10_15252_msb_202211407_MSB202211407 springer_journals_10_15252_msb_202211407 |
PublicationCentury | 2000 |
PublicationDate | 8 August 2023 |
PublicationDateYYYYMMDD | 2023-08-08 |
PublicationDate_xml | – month: 08 year: 2023 text: 8 August 2023 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | Kitsak, Sharma, Menche, Guney, Ghiassian, Loscalzo, Barabasi (CR44) 2016; 6 Grover, Leskovec (CR32) 2016; 2016 Wesolowska‐Andersen, Zhuo, Nylander, Abaitua, Thurner, Torres, Mahajan, Gloyn, McCarthy (CR73) 2020; 9 Sonawane, Platig, Fagny, Chen, Paulson, Lopes‐Ramos, DeMeo, Quackenbush, Glass, Kuijjer (CR68) 2017; 21 Cardoso‐Moreira, Halbert, Valloton, Velten, Chen, Shao, Liechti, Ascencao, Rummel, Ovchinnikova (CR13) 2019; 571 Deelen, van Dam, Herkert, Karjalainen, Brugge, Abbott, van Diemen, van der Zwaag, Gerkes, Zonneveld‐Huijssoon (CR20) 2019; 10 Luck, Kim, Lambourne, Spirohn, Begg, Bian, Brignall, Cafarelli, Campos‐Laborie, Charloteaux (CR48) 2020; 580 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR59) 2011; 12 Chong, Buckingham, Jhangiani, Boehm, Sobreira, Smith, Harrell, McMillin, Wiszniewski, Gambin (CR16) 2015; 97 Amberger, Bocchini, Scott, Hamosh (CR3) 2019; 47 Halperin, Kadir, Perez, Drabkin, Yogev, Wormser, Berman, Eremenko, Rotblat, Shorer (CR34) 2019; 56 Sharon, Vinogradov, Argov, Lazarescu, Zoabi, Hekselman, Yeger‐Lotem (CR64) 2022; 38 Chiu, Zheng, Wang, Iskra, Rao, Houghton, Huang, Chen (CR15) 2021; 7 Kumar, Van Laer, Alaerts, Ardeshirdavani, Moreau, Laukens, Loeys, Vandeweyer (CR45) 2018; 34 Lage, Hansen, Karlberg, Eklund, Roque, Donahoe, Szallasi, Jensen, Brunak (CR46) 2008; 105 Wong, Sealfon, Theesfeld, Troyanskaya (CR74) 2021; 22 Fernandez‐Delgado, Cernadas, Barro, Amorim (CR24) 2014; 15 Hekselman, Kerber, Ziv, Gruber, Yeger‐Lotem (CR36) 2022; 434 Canepari, Rossi, Pansarasa, Maffei, Bottinelli (CR12) 2009; 40 Smedley, Smith, Martin, Thomas, McDonagh, Cipriani, Ellingford, Arno, Tucci (CR40) 2021; 385 (CR69) 2019; 47 Gamazon, Segre, van de Bunt, Wen, Xi, Hormozdiari, Ongen, Konkashbaev, Derks, Aguet (CR25) 2018; 50 Huttlin, Bruckner, Paulo, Cannon, Ting, Baltier, Colby, Gebreab, Gygi, Parzen (CR39) 2017; 545 Basha, Argov, Artzy, Zoabi, Hekselman, Alfandari, Chalifa‐Caspi, Yeger‐Lotem (CR11) 2020; 36 Goedert, Jakes, Spillantini (CR30) 2017; 7 Magger, Waldman, Ruppin, Sharan (CR51) 2012; 8 Rentzsch, Witten, Cooper, Shendure, Kircher (CR61) 2019; 47 Basha, Barshir, Sharon, Lerman, Kirson, Hekselman, Yeger‐Lotem (CR9) 2017; 45 Yao, O'Connor, Price, Gusev (CR76) 2020; 52 Gligorijevic, Przulj (CR29) 2015; 12 van Buuren, Groothuis‐Oudshoorn (CR71) 2011; 45 Hekselman, Yeger‐Lotem (CR35) 2020; 21 Vilalta, Drissi (CR72) 2002; 18 Cummings, Karczewski, Kosmicki, Seaby, Watts, Singer‐Berk, Mudge, Karjalainen, Satterstrom, O'Donnell‐Luria (CR18) 2020; 581 Simonovsky, Schuster, Yeger‐Lotem (CR65) 2019; 35 Barshir, Hekselman, Shemesh, Sharon, Novack, Yeger‐Lotem (CR7) 2018; 14 Barbeira, Bonazzola, Gamazon, Liang, Park, Kim‐Hellmuth, Wang, Jiang, Zhou, Hormozdiari (CR5) 2019 Schwarz, Konig, Ziegler (CR63) 2010; 26 Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjostedt, Asplund (CR70) 2015; 347 McCarthy, MacArthur (CR54) 2017; 18 Basha, Shpringer, Argov, Yeger‐Lotem (CR10) 2018; 46 Drabkin, Zilberberg, Menahem, Mulla, Halperin, Yogev, Wormser, Perez, Kadir, Etzion (CR21) 2018; 11 Cummings, Marshall, Tukiainen, Lek, Donkervoort, Foley, Bolduc, Waddell, Sandaradura, O'Grady (CR17) 2017; 9 Malod‐Dognin, Petschnigg, Windels, Povh, Hemingway, Ketteler, Przulj (CR52) 2019; 10 Somepalli, Sahoo, Singh, Hannenhalli (CR67) 2021; 17 Aerts, Lambrechts, Maity, Van Loo, Coessens, De Smet, Tranchevent, De Moor, Marynen, Hassan (CR2) 2006; 24 Oughtred, Stark, Breitkreutz, Rust, Boucher, Chang, Kolas, O'Donnell, Leung, McAdam (CR58) 2019; 47 Basha, Flom, Barshir, Smoly, Tirman, Yeger‐Lotem (CR8) 2015; 43 CR14 Greene, Krishnan, Wong, Ricciotti, Zelaya, Himmelstein, Zhang, Hartmann, Zaslavsky, Sealfon (CR31) 2015; 47 Lundberg, Erion, Lee (CR49) 2018 Barbeira, Dickinson, Bonazzola, Zheng, Wheeler, Torres, Torstenson, Shah, Garcia, Edwards (CR4) 2018; 9 Karczewski, Francioli, Tiao, Cummings, Alföldi, Wang, Collins, Laricchia, Ganna, Birnbaum (CR42) 2020; 581 Khalilia, Chakraborty, Popescu (CR43) 2011; 11 Robinson, McCarthy, Smyth (CR62) 2010; 26 CR55 Dwivedi, Tjarnberg, Tegner, Gustafsson (CR22) 2020; 11 (CR33) 2020; 369 Wormser, Gradstein, Yogev, Perez, Kadir, Goliand, Sadka, El Riati, Flusser, Nachmias (CR75) 2019; 27 Hernandez, Reed, Singleton (CR37) 2016; 139 Jubran, Hekselman, Novack, Yeger‐Lotem (CR41) 2020; 18 Gamazon, Zwinderman, Cox, Denys, Derks (CR26) 2019; 51 Barshir, Shwartz, Smoly, Yeger‐Lotem (CR6) 2014; 10 Proskorovski‐Ohayon, Kadir, Michalowski, Flusser, Perez, Hershkovitz, Sivan, Birk (CR60) 2017; 38 Eilbeck, Quinlan, Yandell (CR23) 2017; 18 Moustafa, Phillips, Keri, Misiak, Frydecka (CR57) 2016; 10 Landrum, Lee, Benson, Brown, Chao, Chitipiralla, Gu, Hart, Hoffman, Hoover (CR47) 2016; 44 Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (CR50) 2020; 2 Holmans, Massey, Jones (CR38) 2017; 26 Smedley, Jacobsen, Jager, Kohler, Holtgrewe, Schubach, Siragusa, Zemojtel, Buske, Washington (CR66) 2015; 10 Yogev, Perez, Noyman, Madegem, Flusser, Shorer, Cohen, Kachko, Michaelovsky, Birk (CR78) 2017; 25 Adzhubei, Jordan, Sunyaev (CR1) 2013; Chapter 7 Davis, Hitz, Sloan, Chan, Davidson, Gabdank, Hilton, Jain, Baymuradov, Narayanan (CR19) 2018; 46 (CR28) 2015; 43 Marbach, Lamparter, Quon, Kellis, Kutalik, Bergmann (CR53) 2016; 13 Gelfman, Wang, McSweeney, Ren, La Carpia, Halvorsen, Schoch, Ratzon, Heinzen, Boland (CR27) 2017; 8 Moaven, Tayebi, Goldin, Sidransky (CR56) 2015 Yeo, Johnson (CR77) 2000; 87 2017; 7 2017; 8 2009; 40 2019; 51 2002; 18 2021; 22 2015; 347 2019; 10 2000; 87 2019; 56 2017; 45 2020; 369 2011; 11 2016; 2016 2008; 105 2011; 12 2020; 11 2017; 9 2018; 46 2020; 18 2018; 9 2015; 47 2010; 26 2020; 2 2006; 24 2020; 52 2017; 38 2015; 43 2020; 9 2014; 15 2019; 27 2018; 34 2022; 38 2014; 10 2016; 44 2015; 12 2021; 7 2020; 581 2017; 26 2020; 580 2017; 25 2015; 97 2019; 35 2017; 21 2015; 10 2016; 10 2020; 36 2021; 385 2022; 434 2016; 13 2016; 6 2013; Chapter 7 2021; 17 2019; 47 2019 2018 2016 2016; 139 2017; 18 2015 2011; 45 2018; 50 2020; 21 2018; 11 2017; 545 2018; 14 2019; 571 2012; 8 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_54_1 Fernandez‐Delgado M (e_1_2_9_25_1) 2014; 15 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 Adzhubei I (e_1_2_9_2_1) 2013; 7 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 McKusick‐Nathans Institute of Genetic Medicine (JHUB, MD) (e_1_2_9_56_1) Grover A (e_1_2_9_33_1) 2016; 2016 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 Pedregosa F (e_1_2_9_60_1) 2011; 12 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 10 start-page: 2837 year: 2019 ident: CR20 article-title: Improving the diagnostic yield of exome‐sequencing by predicting gene‐phenotype associations using large‐scale gene expression analysis publication-title: Nat Commun contributor: fullname: Zonneveld‐Huijssoon – volume: 45 start-page: D427 year: 2017 end-page: D431 ident: CR9 article-title: The TissueNet v.2 database: a quantitative view of protein‐protein interactions across human tissues publication-title: Nucleic Acids Res contributor: fullname: Yeger‐Lotem – volume: 24 start-page: 537 year: 2006 end-page: 544 ident: CR2 article-title: Gene prioritization through genomic data fusion publication-title: Nat Biotechnol contributor: fullname: Hassan – volume: 7 start-page: S51 year: 2017 end-page: S69 ident: CR30 article-title: The Synucleinopathies: twenty years on publication-title: J Parkinsons Dis contributor: fullname: Spillantini – volume: 18 start-page: 599 year: 2017 end-page: 612 ident: CR23 article-title: Settling the score: variant prioritization and mendelian disease publication-title: Nat Rev Genet contributor: fullname: Yandell – volume: 46 start-page: D794 year: 2018 end-page: D801 ident: CR19 article-title: The encyclopedia of DNA elements (ENCODE): data portal update publication-title: Nucleic Acids Res contributor: fullname: Narayanan – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: CR50 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat Mach Intell contributor: fullname: Lee – volume: 51 start-page: 933 year: 2019 end-page: 940 ident: CR26 article-title: Multi‐tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits publication-title: Nat Genet contributor: fullname: Derks – volume: 38 start-page: 1584 year: 2022 end-page: 1592 ident: CR64 article-title: The differential activity of biological processes in tissues and cell subsets can illuminate disease‐related processes and cell type identities publication-title: Bioinformatics contributor: fullname: Yeger‐Lotem – volume: 26 start-page: R83 year: 2017 end-page: R90 ident: CR38 article-title: Genetic modifiers of mendelian disease: Huntington's disease and the trinucleotide repeat disorders publication-title: Hum Mol Genet contributor: fullname: Jones – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: CR24 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Mach Learn Res contributor: fullname: Amorim – year: 2018 ident: CR49 article-title: Consistent individualized feature attribution for tree ensembles publication-title: arXiv doi: 10.48550/arXiv.1802.03888 contributor: fullname: Lee – volume: 14 year: 2018 ident: CR7 article-title: Role of duplicate genes in determining the tissue‐selectivity of hereditary diseases publication-title: PLoS Genet contributor: fullname: Yeger‐Lotem – volume: 18 start-page: 4024 year: 2020 end-page: 4032 ident: CR41 article-title: Dosage‐sensitive molecular mechanisms are associated with the tissue‐specificity of traits and diseases publication-title: Comput Struct Biotechnol J contributor: fullname: Yeger‐Lotem – volume: 2016 start-page: 855 year: 2016 end-page: 864 ident: CR32 article-title: node2vec: scalable feature learning for networks publication-title: KDD contributor: fullname: Leskovec – volume: 8 year: 2012 ident: CR51 article-title: Enhancing the prioritization of disease‐causing genes through tissue specific protein interaction networks publication-title: PLoS Comput Biol contributor: fullname: Sharan – volume: 25 start-page: 966 year: 2017 end-page: 972 ident: CR78 article-title: Progressive hereditary spastic paraplegia caused by a homozygous KY mutation publication-title: Eur J Hum Genet contributor: fullname: Birk – volume: 139 start-page: 59 year: 2016 end-page: 74 ident: CR37 article-title: Genetics in Parkinson disease: mendelian versus non‐mendelian inheritance publication-title: J Neurochem contributor: fullname: Singleton – volume: 47 start-page: D529 year: 2019 end-page: D541 ident: CR58 article-title: The BioGRID interaction database: 2019 update publication-title: Nucleic Acids Res contributor: fullname: McAdam – volume: 11 year: 2018 ident: CR21 article-title: Nocturnal atrial fibrillation caused by mutation in KCND2, encoding pore‐forming (alpha) subunit of the cardiac Kv4.2 Potassium Channel publication-title: Circ Genom Precis Med contributor: fullname: Etzion – volume: 45 start-page: 1 year: 2011 end-page: 67 ident: CR71 article-title: Mice: multivariate imputation by chained equations in R publication-title: J Stat Softw contributor: fullname: Groothuis‐Oudshoorn – volume: 50 start-page: 956 year: 2018 end-page: 967 ident: CR25 article-title: Using an atlas of gene regulation across 44 human tissues to inform complex disease‐ and trait‐associated variation publication-title: Nat Genet contributor: fullname: Aguet – volume: 47 start-page: D886 year: 2019 end-page: D894 ident: CR61 article-title: CADD: predicting the deleteriousness of variants throughout the human genome publication-title: Nucleic Acids Res contributor: fullname: Kircher – volume: 87 start-page: 954 year: 2000 end-page: 959 ident: CR77 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika contributor: fullname: Johnson – volume: 56 start-page: 139 year: 2019 end-page: 148 ident: CR34 article-title: SEC31A mutation affects ER homeostasis, causing a neurological syndrome publication-title: J Med Genet contributor: fullname: Shorer – volume: 10 year: 2014 ident: CR6 article-title: Comparative analysis of human tissue interactomes reveals factors leading to tissue‐specific manifestation of hereditary diseases publication-title: PLoS Comput Biol contributor: fullname: Yeger‐Lotem – volume: 9 start-page: 1825 year: 2018 ident: CR4 article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics publication-title: Nat Commun contributor: fullname: Edwards – volume: 38 start-page: 1671 year: 2017 end-page: 1683 ident: CR60 article-title: PAX7 mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay publication-title: Hum Mutat contributor: fullname: Birk – volume: 97 start-page: 199 year: 2015 end-page: 215 ident: CR16 article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities publication-title: Am J Hum Genet contributor: fullname: Gambin – volume: 9 year: 2020 ident: CR73 article-title: Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals publication-title: Elife contributor: fullname: McCarthy – volume: 47 start-page: D330 year: 2019 end-page: D338 ident: CR69 article-title: The Gene Ontology resource: 20 years and still GOing strong publication-title: Nucleic Acids Res – volume: 9 year: 2017 ident: CR17 article-title: Improving genetic diagnosis in mendelian disease with transcriptome sequencing publication-title: Sci Transl Med contributor: fullname: O'Grady – volume: 52 start-page: 626 year: 2020 end-page: 633 ident: CR76 article-title: Quantifying genetic effects on disease mediated by assayed gene expression levels publication-title: Nat Genet contributor: fullname: Gusev – volume: 43 start-page: W258 year: 2015 end-page: W263 ident: CR8 article-title: MyProteinNet: build up‐to‐date protein interaction networks for organisms, tissues and user‐defined contexts publication-title: Nucleic Acids Res contributor: fullname: Yeger‐Lotem – volume: 6 year: 2016 ident: CR44 article-title: Tissue specificity of human disease module publication-title: Sci Rep contributor: fullname: Barabasi – volume: 18 start-page: 77 year: 2002 end-page: 95 ident: CR72 article-title: A perspective view and survey of meta‐learning publication-title: Artif Intell Rev contributor: fullname: Drissi – volume: 571 start-page: 505 year: 2019 end-page: 509 ident: CR13 article-title: Gene expression across mammalian organ development publication-title: Nature contributor: fullname: Ovchinnikova – volume: 10 start-page: 2004 year: 2015 end-page: 2015 ident: CR66 article-title: Next‐generation diagnostics and disease‐gene discovery with the exomiser publication-title: Nat Protoc contributor: fullname: Washington – volume: 40 start-page: 249 year: 2009 end-page: 256 ident: CR12 article-title: Actin sliding velocity on pure myosin isoforms from dystrophic mouse muscles publication-title: Muscle Nerve contributor: fullname: Bottinelli – volume: 47 start-page: D1038 year: 2019 end-page: D1043 ident: CR3 article-title: OMIM.Org: leveraging knowledge across phenotype‐gene relationships publication-title: Nucleic Acids Res contributor: fullname: Hamosh – start-page: 69 year: 2015 end-page: 90 ident: CR56 article-title: Complexity of genotype‐phenotype correlations in mendelian disorders: lessons from Gaucher disease publication-title: Rare diseases contributor: fullname: Sidransky – volume: 545 start-page: 505 year: 2017 end-page: 509 ident: CR39 article-title: Architecture of the human interactome defines protein communities and disease networks publication-title: Nature contributor: fullname: Parzen – volume: 27 start-page: 928 year: 2019 end-page: 940 ident: CR75 article-title: SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet‐Biedl syndrome publication-title: Eur J Hum Genet contributor: fullname: Nachmias – volume: 34 start-page: 2254 year: 2018 end-page: 2262 ident: CR45 article-title: pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion publication-title: Bioinformatics contributor: fullname: Vandeweyer – volume: 11 start-page: 856 year: 2020 ident: CR22 article-title: Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder publication-title: Nat Commun contributor: fullname: Gustafsson – volume: 10 start-page: 805 year: 2019 ident: CR52 article-title: Towards a data‐integrated cell publication-title: Nat Commun contributor: fullname: Przulj – volume: 580 start-page: 402 year: 2020 end-page: 408 ident: CR48 article-title: A reference map of the human binary protein interactome publication-title: Nature contributor: fullname: Charloteaux – volume: 581 start-page: 434 year: 2020 end-page: 443 ident: CR42 article-title: The mutational constraint spectrum quantified from variation in 141,456 humans publication-title: Nature contributor: fullname: Birnbaum – volume: 369 start-page: 1318 year: 2020 end-page: 1330 ident: CR33 article-title: The GTEx consortium atlas of genetic regulatory effects across human tissues publication-title: Science – volume: Chapter 7 year: 2013 ident: CR1 article-title: Predicting functional effect of human missense mutations using PolyPhen‐2 publication-title: Curr Protoc Hum Genet contributor: fullname: Sunyaev – volume: 47 start-page: 569 year: 2015 end-page: 576 ident: CR31 article-title: Understanding multicellular function and disease with human tissue‐specific networks publication-title: Nat Genet contributor: fullname: Sealfon – volume: 8 start-page: 236 year: 2017 ident: CR27 article-title: Annotating pathogenic non‐coding variants in genic regions publication-title: Nat Commun contributor: fullname: Boland – ident: CR14 – volume: 22 start-page: 774 year: 2021 end-page: 790 ident: CR74 article-title: Decoding disease: from genomes to networks to phenotypes publication-title: Nat Rev Genet contributor: fullname: Troyanskaya – volume: 581 start-page: 452 year: 2020 end-page: 458 ident: CR18 article-title: Transcript expression‐aware annotation improves rare variant interpretation publication-title: Nature contributor: fullname: O'Donnell‐Luria – volume: 44 start-page: D862 year: 2016 end-page: D868 ident: CR47 article-title: ClinVar: public archive of interpretations of clinically relevant variants publication-title: Nucleic Acids Res contributor: fullname: Hoover – volume: 10 year: 2016 ident: CR57 article-title: On the complexity of brain disorders: a symptom‐based approach publication-title: Front Comput Neurosci contributor: fullname: Frydecka – year: 2019 ident: CR5 article-title: Widespread dose‐dependent effects of RNA expression and splicing on complex diseases and traits publication-title: bioRxiv doi: 10.1101/814350 contributor: fullname: Hormozdiari – volume: 36 start-page: 2821 year: 2020 end-page: 2828 ident: CR11 article-title: Differential network analysis of multiple human tissue interactomes highlights tissue‐selective processes and genetic disorder genes publication-title: Bioinformatics contributor: fullname: Yeger‐Lotem – volume: 7 year: 2021 ident: CR15 article-title: Predicting and characterizing a cancer dependency map of tumors with deep learning publication-title: Sci Adv contributor: fullname: Chen – volume: 35 start-page: 3028 year: 2019 end-page: 3037 ident: CR65 article-title: Large‐scale analysis of human gene expression variability associates highly variable drug targets with lower drug effectiveness and safety publication-title: Bioinformatics contributor: fullname: Yeger‐Lotem – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: CR62 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics contributor: fullname: Smyth – volume: 17 year: 2021 ident: CR67 article-title: Prioritizing and characterizing functionally relevant genes across human tissues publication-title: PLoS Comput Biol contributor: fullname: Hannenhalli – volume: 434 year: 2022 ident: CR36 article-title: The organ‐disease annotations (ODiseA) database of hereditary diseases and inflicted tissues publication-title: J Mol Biol contributor: fullname: Yeger‐Lotem – volume: 385 start-page: 1868 year: 2021 end-page: 1880 ident: CR40 article-title: 100,000 genomes pilot on rare‐disease diagnosis in health care – preliminary report publication-title: N Engl J Med contributor: fullname: Tucci – volume: 18 start-page: 20 year: 2017 ident: CR54 article-title: Human disease genomics: from variants to biology publication-title: Genome Biol contributor: fullname: MacArthur – volume: 12 year: 2015 ident: CR29 article-title: Methods for biological data integration: perspectives and challenges publication-title: J R Soc Interface contributor: fullname: Przulj – volume: 26 start-page: 1752 year: 2010 end-page: 1758 ident: CR63 article-title: On safari to random jungle: a fast implementation of random forests for high‐dimensional data publication-title: Bioinformatics contributor: fullname: Ziegler – volume: 46 start-page: D522 year: 2018 end-page: D526 ident: CR10 article-title: The DifferentialNet database of differential protein‐protein interactions in human tissues publication-title: Nucleic Acids Res contributor: fullname: Yeger‐Lotem – volume: 11 year: 2011 ident: CR43 article-title: Predicting disease risks from highly imbalanced data using random forest publication-title: BMC Med Inform Decis Mak contributor: fullname: Popescu – volume: 347 year: 2015 ident: CR70 article-title: Proteomics. tissue‐based map of the human proteome publication-title: Science contributor: fullname: Asplund – volume: 21 start-page: 137 year: 2020 end-page: 150 ident: CR35 article-title: Mechanisms of tissue and cell‐type specificity in heritable traits and diseases publication-title: Nat Rev Genet contributor: fullname: Yeger‐Lotem – volume: 105 start-page: 20870 year: 2008 end-page: 20875 ident: CR46 article-title: A large‐scale analysis of tissue‐specific pathology and gene expression of human disease genes and complexes publication-title: Proc Natl Acad Sci USA contributor: fullname: Brunak – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR59 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res contributor: fullname: Dubourg – ident: CR55 – volume: 13 start-page: 366 year: 2016 end-page: 370 ident: CR53 article-title: Tissue‐specific regulatory circuits reveal variable modular perturbations across complex diseases publication-title: Nat Methods contributor: fullname: Bergmann – volume: 21 start-page: 1077 year: 2017 end-page: 1088 ident: CR68 article-title: Understanding tissue‐specific gene regulation publication-title: Cell Rep contributor: fullname: Kuijjer – volume: 43 start-page: D1049 year: 2015 end-page: D1056 ident: CR28 article-title: Gene Ontology consortium: going forward publication-title: Nucleic Acids Res – volume: 21 start-page: 1077 year: 2017 end-page: 1088 article-title: Understanding tissue‐specific gene regulation publication-title: Cell Rep – volume: 9 start-page: 1825 year: 2018 article-title: Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics publication-title: Nat Commun – volume: 21 start-page: 137 year: 2020 end-page: 150 article-title: Mechanisms of tissue and cell‐type specificity in heritable traits and diseases publication-title: Nat Rev Genet – volume: 44 start-page: D862 year: 2016 end-page: D868 article-title: ClinVar: public archive of interpretations of clinically relevant variants publication-title: Nucleic Acids Res – volume: 47 start-page: D1038 year: 2019 end-page: D1043 article-title: OMIM.Org: leveraging knowledge across phenotype‐gene relationships publication-title: Nucleic Acids Res – volume: 27 start-page: 928 year: 2019 end-page: 940 article-title: SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet‐Biedl syndrome publication-title: Eur J Hum Genet – volume: 434 year: 2022 article-title: The organ‐disease annotations (ODiseA) database of hereditary diseases and inflicted tissues publication-title: J Mol Biol – volume: 22 start-page: 774 year: 2021 end-page: 790 article-title: Decoding disease: from genomes to networks to phenotypes publication-title: Nat Rev Genet – volume: 45 start-page: D427 year: 2017 end-page: D431 article-title: The TissueNet v.2 database: a quantitative view of protein‐protein interactions across human tissues publication-title: Nucleic Acids Res – volume: 47 start-page: D886 year: 2019 end-page: D894 article-title: CADD: predicting the deleteriousness of variants throughout the human genome publication-title: Nucleic Acids Res – volume: 581 start-page: 452 year: 2020 end-page: 458 article-title: Transcript expression‐aware annotation improves rare variant interpretation publication-title: Nature – volume: 36 start-page: 2821 year: 2020 end-page: 2828 article-title: Differential network analysis of multiple human tissue interactomes highlights tissue‐selective processes and genetic disorder genes publication-title: Bioinformatics – volume: 38 start-page: 1584 year: 2022 end-page: 1592 article-title: The differential activity of biological processes in tissues and cell subsets can illuminate disease‐related processes and cell type identities publication-title: Bioinformatics – volume: 46 start-page: D794 year: 2018 end-page: D801 article-title: The encyclopedia of DNA elements (ENCODE): data portal update publication-title: Nucleic Acids Res – volume: 18 start-page: 77 year: 2002 end-page: 95 article-title: A perspective view and survey of meta‐learning publication-title: Artif Intell Rev – volume: 45 start-page: 1 year: 2011 end-page: 67 article-title: Mice: multivariate imputation by chained equations in R publication-title: J Stat Softw – volume: 18 start-page: 20 year: 2017 article-title: Human disease genomics: from variants to biology publication-title: Genome Biol – start-page: 69 year: 2015 end-page: 90 – volume: 9 year: 2017 article-title: Improving genetic diagnosis in mendelian disease with transcriptome sequencing publication-title: Sci Transl Med – volume: 87 start-page: 954 year: 2000 end-page: 959 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika – volume: 56 start-page: 139 year: 2019 end-page: 148 article-title: SEC31A mutation affects ER homeostasis, causing a neurological syndrome publication-title: J Med Genet – volume: 25 start-page: 966 year: 2017 end-page: 972 article-title: Progressive hereditary spastic paraplegia caused by a homozygous KY mutation publication-title: Eur J Hum Genet – volume: 97 start-page: 199 year: 2015 end-page: 215 article-title: The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities publication-title: Am J Hum Genet – volume: 11 start-page: 856 year: 2020 article-title: Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder publication-title: Nat Commun – volume: Chapter 7 year: 2013 article-title: Predicting functional effect of human missense mutations using PolyPhen‐2 publication-title: Curr Protoc Hum Genet – volume: 13 start-page: 366 year: 2016 end-page: 370 article-title: Tissue‐specific regulatory circuits reveal variable modular perturbations across complex diseases publication-title: Nat Methods – volume: 10 year: 2016 article-title: On the complexity of brain disorders: a symptom‐based approach publication-title: Front Comput Neurosci – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res – volume: 2 start-page: 56 year: 2020 end-page: 67 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat Mach Intell – volume: 580 start-page: 402 year: 2020 end-page: 408 article-title: A reference map of the human binary protein interactome publication-title: Nature – volume: 571 start-page: 505 year: 2019 end-page: 509 article-title: Gene expression across mammalian organ development publication-title: Nature – volume: 8 year: 2012 article-title: Enhancing the prioritization of disease‐causing genes through tissue specific protein interaction networks publication-title: PLoS Comput Biol – volume: 10 start-page: 805 year: 2019 article-title: Towards a data‐integrated cell publication-title: Nat Commun – volume: 40 start-page: 249 year: 2009 end-page: 256 article-title: Actin sliding velocity on pure myosin isoforms from dystrophic mouse muscles publication-title: Muscle Nerve – volume: 347 year: 2015 article-title: Proteomics. tissue‐based map of the human proteome publication-title: Science – volume: 9 year: 2020 article-title: Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals publication-title: Elife – volume: 34 start-page: 2254 year: 2018 end-page: 2262 article-title: pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion publication-title: Bioinformatics – volume: 6 year: 2016 article-title: Tissue specificity of human disease module publication-title: Sci Rep – volume: 26 start-page: 1752 year: 2010 end-page: 1758 article-title: On safari to random jungle: a fast implementation of random forests for high‐dimensional data publication-title: Bioinformatics – volume: 10 start-page: 2837 year: 2019 article-title: Improving the diagnostic yield of exome‐sequencing by predicting gene‐phenotype associations using large‐scale gene expression analysis publication-title: Nat Commun – volume: 385 start-page: 1868 year: 2021 end-page: 1880 article-title: 100,000 genomes pilot on rare‐disease diagnosis in health care – preliminary report publication-title: N Engl J Med – volume: 581 start-page: 434 year: 2020 end-page: 443 article-title: The mutational constraint spectrum quantified from variation in 141,456 humans publication-title: Nature – volume: 50 start-page: 956 year: 2018 end-page: 967 article-title: Using an atlas of gene regulation across 44 human tissues to inform complex disease‐ and trait‐associated variation publication-title: Nat Genet – volume: 545 start-page: 505 year: 2017 end-page: 509 article-title: Architecture of the human interactome defines protein communities and disease networks publication-title: Nature – volume: 10 start-page: 2004 year: 2015 end-page: 2015 article-title: Next‐generation diagnostics and disease‐gene discovery with the exomiser publication-title: Nat Protoc – volume: 51 start-page: 933 year: 2019 end-page: 940 article-title: Multi‐tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits publication-title: Nat Genet – volume: 12 year: 2015 article-title: Methods for biological data integration: perspectives and challenges publication-title: J R Soc Interface – year: 2016 – volume: 8 start-page: 236 year: 2017 article-title: Annotating pathogenic non‐coding variants in genic regions publication-title: Nat Commun – volume: 18 start-page: 4024 year: 2020 end-page: 4032 article-title: Dosage‐sensitive molecular mechanisms are associated with the tissue‐specificity of traits and diseases publication-title: Comput Struct Biotechnol J – volume: 17 year: 2021 article-title: Prioritizing and characterizing functionally relevant genes across human tissues publication-title: PLoS Comput Biol – volume: 14 year: 2018 article-title: Role of duplicate genes in determining the tissue‐selectivity of hereditary diseases publication-title: PLoS Genet – volume: 11 year: 2011 article-title: Predicting disease risks from highly imbalanced data using random forest publication-title: BMC Med Inform Decis Mak – volume: 47 start-page: D330 year: 2019 end-page: D338 article-title: The Gene Ontology resource: 20 years and still GOing strong publication-title: Nucleic Acids Res – volume: 26 start-page: R83 year: 2017 end-page: R90 article-title: Genetic modifiers of mendelian disease: Huntington's disease and the trinucleotide repeat disorders publication-title: Hum Mol Genet – volume: 43 start-page: D1049 year: 2015 end-page: D1056 article-title: Gene Ontology consortium: going forward publication-title: Nucleic Acids Res – volume: 7 year: 2021 article-title: Predicting and characterizing a cancer dependency map of tumors with deep learning publication-title: Sci Adv – volume: 35 start-page: 3028 year: 2019 end-page: 3037 article-title: Large‐scale analysis of human gene expression variability associates highly variable drug targets with lower drug effectiveness and safety publication-title: Bioinformatics – volume: 10 year: 2014 article-title: Comparative analysis of human tissue interactomes reveals factors leading to tissue‐specific manifestation of hereditary diseases publication-title: PLoS Comput Biol – volume: 15 start-page: 3133 year: 2014 end-page: 3181 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Mach Learn Res – volume: 369 start-page: 1318 year: 2020 end-page: 1330 article-title: The GTEx consortium atlas of genetic regulatory effects across human tissues publication-title: Science – volume: 139 start-page: 59 year: 2016 end-page: 74 article-title: Genetics in Parkinson disease: mendelian versus non‐mendelian inheritance publication-title: J Neurochem – volume: 11 year: 2018 article-title: Nocturnal atrial fibrillation caused by mutation in KCND2, encoding pore‐forming (alpha) subunit of the cardiac Kv4.2 Potassium Channel publication-title: Circ Genom Precis Med – volume: 52 start-page: 626 year: 2020 end-page: 633 article-title: Quantifying genetic effects on disease mediated by assayed gene expression levels publication-title: Nat Genet – volume: 2016 start-page: 855 year: 2016 end-page: 864 article-title: node2vec: scalable feature learning for networks publication-title: KDD – volume: 26 start-page: 139 year: 2010 end-page: 140 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 24 start-page: 537 year: 2006 end-page: 544 article-title: Gene prioritization through genomic data fusion publication-title: Nat Biotechnol – volume: 46 start-page: D522 year: 2018 end-page: D526 article-title: The DifferentialNet database of differential protein‐protein interactions in human tissues publication-title: Nucleic Acids Res – year: 2019 article-title: Widespread dose‐dependent effects of RNA expression and splicing on complex diseases and traits publication-title: bioRxiv – year: 2018 article-title: Consistent individualized feature attribution for tree ensembles publication-title: arXiv – volume: 38 start-page: 1671 year: 2017 end-page: 1683 article-title: PAX7 mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay publication-title: Hum Mutat – volume: 47 start-page: D529 year: 2019 end-page: D541 article-title: The BioGRID interaction database: 2019 update publication-title: Nucleic Acids Res – volume: 43 start-page: W258 year: 2015 end-page: W263 article-title: MyProteinNet: build up‐to‐date protein interaction networks for organisms, tissues and user‐defined contexts publication-title: Nucleic Acids Res – volume: 18 start-page: 599 year: 2017 end-page: 612 article-title: Settling the score: variant prioritization and mendelian disease publication-title: Nat Rev Genet – volume: 105 start-page: 20870 year: 2008 end-page: 20875 article-title: A large‐scale analysis of tissue‐specific pathology and gene expression of human disease genes and complexes publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: S51 year: 2017 end-page: S69 article-title: The Synucleinopathies: twenty years on publication-title: J Parkinsons Dis – volume: 47 start-page: 569 year: 2015 end-page: 576 article-title: Understanding multicellular function and disease with human tissue‐specific networks publication-title: Nat Genet – volume: 7 year: 2013 ident: e_1_2_9_2_1 article-title: Predicting functional effect of human missense mutations using PolyPhen‐2 publication-title: Curr Protoc Hum Genet contributor: fullname: Adzhubei I – ident: e_1_2_9_46_1 doi: 10.1093/bioinformatics/bty079 – ident: e_1_2_9_52_1 doi: 10.1371/journal.pcbi.1002690 – ident: e_1_2_9_59_1 doi: 10.1093/nar/gky1079 – ident: e_1_2_9_57_1 doi: 10.1007/978-94-017-9214-1_6 – ident: e_1_2_9_29_1 doi: 10.1093/nar/gku1179 – ident: e_1_2_9_72_1 doi: 10.18637/jss.v045.i03 – ident: e_1_2_9_43_1 doi: 10.1038/s41586-020-2308-7 – ident: e_1_2_9_31_1 doi: 10.3233/JPD-179005 – ident: e_1_2_9_16_1 doi: 10.1126/sciadv.abh1275 – ident: e_1_2_9_8_1 doi: 10.1371/journal.pgen.1007327 – ident: e_1_2_9_34_1 doi: 10.1126/science.aaz1776 – ident: e_1_2_9_50_1 doi: 10.48550/arXiv.1802.03888 – ident: e_1_2_9_37_1 doi: 10.1016/j.jmb.2022.167619 – ident: e_1_2_9_40_1 doi: 10.1038/nature22366 – ident: e_1_2_9_55_1 doi: 10.1186/s13059-017-1160-z – ident: e_1_2_9_18_1 doi: 10.1126/scitranslmed.aal5209 – ident: e_1_2_9_22_1 doi: 10.1161/CIRCGEN.118.002293 – ident: e_1_2_9_73_1 doi: 10.1023/A:1019956318069 – ident: e_1_2_9_9_1 doi: 10.1093/nar/gkv515 – ident: e_1_2_9_17_1 doi: 10.1016/j.ajhg.2015.06.009 – ident: e_1_2_9_49_1 doi: 10.1038/s41586-020-2188-x – ident: e_1_2_9_23_1 doi: 10.1038/s41467-020-14666-6 – ident: e_1_2_9_53_1 doi: 10.1038/s41467-019-08797-8 – ident: e_1_2_9_61_1 doi: 10.1002/humu.23310 – ident: e_1_2_9_12_1 doi: 10.1093/bioinformatics/btaa034 – ident: e_1_2_9_20_1 doi: 10.1093/nar/gkx1081 – ident: e_1_2_9_24_1 doi: 10.1038/nrg.2017.52 – ident: e_1_2_9_36_1 doi: 10.1038/s41576-019-0200-9 – ident: e_1_2_9_79_1 doi: 10.1038/ejhg.2017.85 – ident: e_1_2_9_66_1 doi: 10.1093/bioinformatics/btz023 – ident: e_1_2_9_42_1 doi: 10.1016/j.csbj.2020.10.030 – ident: e_1_2_9_27_1 doi: 10.1038/s41588-019-0409-8 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-017-00141-2 – ident: e_1_2_9_41_1 doi: 10.1056/NEJMoa2035790 – ident: e_1_2_9_78_1 doi: 10.1093/biomet/87.4.954 – ident: e_1_2_9_58_1 doi: 10.3389/fncom.2016.00016 – ident: e_1_2_9_68_1 doi: 10.1371/journal.pcbi.1009194 – ident: e_1_2_9_15_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_9_6_1 doi: 10.1101/814350 – ident: e_1_2_9_76_1 doi: 10.1038/s41431-019-0347-z – ident: e_1_2_9_3_1 doi: 10.1038/nbt1203 – ident: e_1_2_9_19_1 doi: 10.1038/s41586-020-2329-2 – ident: e_1_2_9_51_1 doi: 10.1038/s42256-019-0138-9 – ident: e_1_2_9_32_1 doi: 10.1038/ng.3259 – ident: e_1_2_9_7_1 doi: 10.1371/journal.pcbi.1003632 – ident: e_1_2_9_75_1 doi: 10.1038/s41576-021-00389-x – ident: e_1_2_9_71_1 doi: 10.1126/science.1260419 – volume: 15 start-page: 3133 year: 2014 ident: e_1_2_9_25_1 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Mach Learn Res contributor: fullname: Fernandez‐Delgado M – ident: e_1_2_9_70_1 doi: 10.1093/nar/gky1055 – ident: e_1_2_9_10_1 doi: 10.1093/nar/gkw1088 – ident: e_1_2_9_63_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_9_13_1 doi: 10.1002/mus.21302 – ident: e_1_2_9_4_1 doi: 10.1093/nar/gky1151 – ident: e_1_2_9_48_1 doi: 10.1093/nar/gkv1222 – ident: e_1_2_9_30_1 doi: 10.1098/rsif.2015.0571 – ident: e_1_2_9_65_1 doi: 10.1093/bioinformatics/btab883 – volume: 2016 start-page: 855 year: 2016 ident: e_1_2_9_33_1 article-title: node2vec: scalable feature learning for networks publication-title: KDD contributor: fullname: Grover A – ident: e_1_2_9_38_1 doi: 10.1111/jnc.13593 – volume-title: Online mendelian inheritance in man, OMIM® ident: e_1_2_9_56_1 contributor: fullname: McKusick‐Nathans Institute of Genetic Medicine (JHUB, MD) – ident: e_1_2_9_21_1 doi: 10.1038/s41467-019-10649-4 – ident: e_1_2_9_44_1 doi: 10.1186/1472-6947-11-51 – ident: e_1_2_9_64_1 doi: 10.1093/bioinformatics/btq257 – ident: e_1_2_9_67_1 doi: 10.1038/nprot.2015.124 – ident: e_1_2_9_26_1 doi: 10.1038/s41588-018-0154-4 – ident: e_1_2_9_5_1 doi: 10.1038/s41467-018-03621-1 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_9_60_1 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res contributor: fullname: Pedregosa F – ident: e_1_2_9_74_1 doi: 10.7554/eLife.51503 – ident: e_1_2_9_54_1 doi: 10.1038/nmeth.3799 – ident: e_1_2_9_35_1 doi: 10.1136/jmedgenet-2018-105503 – ident: e_1_2_9_69_1 doi: 10.1016/j.celrep.2017.10.001 – ident: e_1_2_9_14_1 doi: 10.1038/s41586-019-1338-5 – ident: e_1_2_9_45_1 doi: 10.1038/srep35241 – ident: e_1_2_9_77_1 doi: 10.1038/s41588-020-0625-2 – ident: e_1_2_9_47_1 doi: 10.1073/pnas.0810772105 – ident: e_1_2_9_39_1 doi: 10.1093/hmg/ddx261 – ident: e_1_2_9_11_1 doi: 10.1093/nar/gkx981 – ident: e_1_2_9_62_1 doi: 10.1093/nar/gky1016 |
SSID | ssj0038182 |
Score | 2.4609551 |
Snippet | How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to testing a... How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a... Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to... Abstract How do aberrations in widely expressed genes lead to tissue‐selective hereditary diseases? Previous attempts to answer this question were limited to... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e11407 |
SubjectTerms | Consortia data integration Datasets Decision trees Deep learning Disease EMBO10 EMBO16 EMBO22 Gene expression Genes Genetic disorders genomic medicine Hereditary diseases Humans Learning algorithms Life Sciences Machine Learning Molecular modelling Mutation omics Ontology Physiology Proteins Questions Risk assessment Selectivity Systems Biology tissue selectivity Tissues |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSxxBEG6CIHiRxBgzRkMHAsllcKZ7erb7GCUiAUMgEbw1_Yx72FnZWQ978yf4G_0lqep5xEWDlxxnpnpo6tH1FVVdRcjHCUeQHGOuTDHJK25FLk1QuQ3gTSBojlW6KHz-vT67qL5dissHo76wJqxrD9wx7ohFya3Hq0HYWU1WFhymiN7z2rNaWJdO30INwVR3BqMbYn2LRsEEO5q1FmJBBtFOhYNjH7ig1Kn_KXj5uEpyTJWuA9nkiU5fku0eQtIv3dZfkReh2SGb3VDJ1WsSfyww-YLlzHQ2DL-ls4BXfKftrKXzSK9wQud0aRYr2mdoWmpXFIvgf9OUO6DLJJH727s2TcqBQ5Fiq4wY2i55v0suTr_-OjnL-2kKuRMQM-RK8spH6dSE1TxYWRhw9tIZZ4rCC1ZYpoSqLTOACMugnAimjqVzFsycecv5G7LRzJvwltASyBwz1hrlKy-ddEBXCscsCzbWJiOfBgbr665phsZgA0WhQRR6FEVGjpH_IxU2u04vQAV0rwL6ORXIyMEgPd1bYKvR7SL2YUVGPoyfwXYwIWKaML9BGizNQxSWkb1O2ONO-ATXVjwjck0N1ra6_qWZXqX-3BDhFoCqYennQWP-7utffCiTRj3DLn3-83h82P8fvHtHtuCHPJU0ygOysVzchEOAWUv7PlnUH1NHJKI priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest Medical & Health Databases) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLKs-GFmQkJLhYTew4cU6IIqoKqQgJKu0t8rPdwyZlsz3sv2fGcVJWvI5JxpLjmfF84xnPEPKmFgiSQ2CNzmtWCiOZ0r5hxoM1Aac5lPGi8PmX6uyi_LyQi3TgNqS0ymlPjBu16y2ekR_jNoq2jOfvr38w7BqF0dXUQuMuuVfwvEKprhezw4XGiKdCjZJLfrwaDHiEHHyeEtvH_mKIYr3-P4HM33Ml54DpLpyN9uh0nzxMQJJ-GDn_iNzx3WNyf2wtuX1C3Nc1hmAwqZmupha4dOXxou9yWA20D_QK-3QuN3q9pSlOM1CzpZgKf0ljBIFuIl_YELvlwMZIsVxG8MMYwH9KLk4_ff94xlJHBWYl-A2sUaJ0Qdmm5pXwRuUaDL6y2uo8d5LnhjeyqQzXgAoL31jpdRUKaw2oOndGiGdkr-s7f0BoAWSWa2N040qnrLJAV0jLDfcmVDojb6flba_HwhktOhzIiBYY0c6MyMgJrv5MhQWv44t-fdkm_Wl5UMI4vCGGBfZUaQA3yeCcqByvpLEZOZp41yYtHNpbmcnI6_kz6A8GRXTn-xukwfQ8RGIZeT6yep6JqHFsKTKidoRgZ6q7X7rlVazRDV5uDsgahr6b5OV2Xn9bhyLK03-Wqz3_djI_vPj3bx-SB0AqYsKiOiJ7m_WNfwkgamNeRU35CY_4GtY priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9RAFB6kIvgi3o1WGUHQl2gyl-zkQcSKpQgVQRf6Nsy1XehmNdmC--89Z3IpoVUfszkDk3PZ8x3OjZBXC44gOca8NsUiF9zKXJlQ5zaAN4GgOYrUKHz8tTpaii8n8uSy_mlgYHdtaIf7pJbt-dvfv3YfwODfD9t72Lt1ZyHSYxDLCGwsv8mwDQjL-MSUUUDHxIahjVfPzJxSmt1_HeC8Wjc5JU_n0Db5psO75M4AKunHXgvukRuhuU9u9Wsmdw-I_9ZiOgYLnOl6XIdL1wGbflfduqObSM9wZ-dqa9odHXI2HbU7imXxpzRlE-g2ySjv0uYc-JOkODojhq5P5j8ky8PPPz4d5cN2hdxJiCHyWnHho3L1glU8WFUYcP7KGWeKwktWWFbLurLMAEIsQ-1kMFUsnbNg9sxbzh-RvWbThCeElkDmmLHW1F545ZQDulI6ZlmwsTIZeT2yV__sh2hoDD5QEBoEoSdBZOQAuT9R4fDr9MOmPdWDLWkWFbceu8Vw2J4SFjCUjN7zyrNKWpeR_VF2elQojW4YsRArMvJyeg22hAkS04TNBdJgqR6isow87kU93YQv8KzgGVEzJZhddf6mWZ2led0Q8RaAsuHom1FfLu_1Nz6USZ_-wy59_P1genj6789-Rm4DKU_Fi2qf7G3bi_AcANXWvkiW8geeAx2i priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen website dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEC5kRfAivo2u0oKgl2DSnc50ju7gsggrgi7sremnO4fJLJPZw9z8Cf5Gf4lVnYeGVfSWpLtDU9XV9RX1Ani1EASSY8wbUyzySliZKxOa3AbUJmg0xyolCp9-rE_Oqg_n8nwIkKVcmN_995JL_nbdWbTiONopFSWN30T9q-j0LuvleOOS0uFDQcbra2YKJ9Xl_xOYvB4TOTlG57A16Z3ju3BnAIzsXc_he3AjtPfhVt9Ccv8A4qctuVooeJmtx1a3bB0ooXfVrTu2ieyC-nGudma7Z4M_pmN2zyjk_StLngK2S_T_8e17l_ri4BXIqDBGDF3vqn8IZ8fvvyxP8qF3Qu4kWgh5o0Tlo3LNgtciWFUYVO3KGWeKwkteWN7IprbcIP4rQ-NkMHUsnbMo1NxbIR7BQbtpwxNgJU5z3FhrGl955ZTDeaV03PJgY20yeD0SWF_2JTI0mRbECo2s0BMrMjgi-k-zqLR1-oAc14OkaB6VsJ5ywaiUnqosIiQZvRe157W0LoPDkXt6kLdOk5IlpMOLDF5Owygp5P4wbdhc0RwKxCPMlcHjntnTTsSC1lYiAzU7BrOtzkfa1UWqxo32bIEYGpe-GU_Mr339jQ5lOlH_IJc-_Xw0vTz9_98_g9v4LFKYojqEg932KjxH6LSzL5Lc_ATQExRg priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library website dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG4kIngR345JpAVBL4Mz3T2zPcckGIIQCWggt6arH8kedjbsbA65-RP8jf4Sq3oeOqgI3nZ3upemqqv7q6mqrxh7s5AEkmPMG1ssciWhyrUNTQ4BbxN0mqNKhcKnn-qTc_Xxorr4pYq_54eYXriRZaTzmgzcQjd27CHW0FUH6N8J9GAUlZPfJdoYSuoT6mw8i-k6En1JpMqpMdNA20j_8H42f3YtJfb-P0HO3zMnp_DpHNym2-n4IXswwEp-0O-DR-xOaB-ze32jydsnLJ5tKCBDKc58NTbE5atAZb_LbtXxdeRX1LVzuUWB8CFq03G45ZQYf8lTPIFvk5a-f_3Wpe45eFByos-IoesD-k_Z-fGHL0cn-dBhIXcV-hF5o6XyUbtmIWoZQBcWAYB21tmi8JUoQDRVU4OwiBLL0Lgq2DqWzgGavvAg5TO2067b8ILxEoc5YQFs45XXTjscV1ZOgAgQa5uxt6OAzXVPpGHIASFVGFSFmVSRsUOS_zSKCLDTD-vNpRnsyYioJXiqGCPCPa0AcVQVvZe1F3UFLmN7o_bMYJWdoauY8JAoMvZ6eoz2REES24b1DY2hdD1CZhl73it7Wolc0FwlM6Zn22C21PmTdnmVOLvR6y0QaePUd-OO-bmuv8mhTDvqH-Iyp58Ppy8v_2POLruPn2XKatR7bGe7uQn7iLS28CoZ0w8GXSFw priority: 102 providerName: Wiley-Blackwell |
Title | Predicting molecular mechanisms of hereditary diseases by using their tissue‐selective manifestation |
URI | https://link.springer.com/article/10.15252/msb.202211407 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.202211407 https://www.ncbi.nlm.nih.gov/pubmed/37232043 https://www.proquest.com/docview/2847222320 https://search.proquest.com/docview/2820030065 https://pubmed.ncbi.nlm.nih.gov/PMC10407743 https://doaj.org/article/2f83bd8335064584b8465fdd36d265bc |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-ajo2-jP2fty5oMNhe3DiSZcuPS2gpg5SwrZA3I8lSG6idEqcPedtH2GfcJ9lJ_jPMNgZ7EdiWzXF30v3Od7oDeJcyB5KtDTMZpWHMFA-FNFmoDFoTdJpt7A8KLy6S88v404qvDiDpzsL4pH2t1ifVTXlSra99buVtqSddnthkuZijCxEhbGGTEYxQQzsfvdl_nQmibXlGTjmdlLVCP5Cip4NvHcEDliKKiGI2sES-YP-fUObvyZJ9xHSIZ71BOnsED1skST42FD-GA1M9gftNb8n9U7DLrYvBuKxmUnY9cElp3EnfdV3WZGPJtWvUud7J7Z60gZqaqD1xufBXxIcQyM4L5se377VvmIN7I3EVM6ypmxj-M7g8O_06Pw_bpgqh5ug6hJlgcWGFzlKaMKNEJNHmCy21jKKC00jRjGeJohKB4dRkmhuZ2KnWCnlOC8XYczisNpV5CWSK0zSVSsmsiAuhhcZ5U66pokbZRAbwvmNwftvUzsidz-GkkqNU8l4qAcwc__tZrua1v7HZXuWt5HNqBVOFOyTmauyJWCF04rYoWFLQhCsdwHEnvbxdiHXurK-DQDQK4G3_GJeQi4vIymzu3ByXoefAWAAvGmH3lHTKEoAYqMGA1OET1FpfprvT0gA-dBrzi66_8WHqNeof7MoXX2b9xav_p-w1HOFnmM9nFMdwuNvemTeIsXZqDCMaL3FMV-kY7s1OL5af8WqezMf-rwWOi1iM_cL7CYYRK_c |
link.rule.ids | 230,315,730,783,787,867,888,2109,11575,12069,21401,24331,27937,27938,31732,31733,33757,33758,41133,42202,43323,43818,46065,46489,50827,50936,51589,53805,53807 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCMGl4lkCBYyEBJeoiR0nzglRRLVAt0KilfZm-dnuYZOy2R7233fGyaaseB2T2JIzD883nvEMIW8rjiA5hLTWWZUW3IhUal-nxoM1Aac5FPGi8PSknJwVX2diNhy4dUNa5WZPjBu1ay2ekR_gNoq2jGUfLn-m2DUKo6tDC43b5A7W4UI5r2ajw4XGiA2FGgUT7GDRGfAIGfg8BbaP_cUQxXr9fwKZv-dKjgHTbTgb7dHRA7I7AEn6sef8Q3LLN4_I3b615Poxcd-XGILBpGa62LTApQuPF33n3aKjbaAX2KdzvtLLNR3iNB01a4qp8Oc0RhDoKvIl7WK3HNgYKZbLCL7rA_hPyNnR59NPk3ToqJBaAX5DWkteuCBtXbGSeyMzDQZfWm11ljnBMsNqUZeGaUCFua-t8LoMubUGVJ05w_lTstO0jX9GaA7DLNPG6NoVTlppYVwuLDPMm1DqhLzbkFdd9oUzFDocyAgFjFAjIxJyiNQfR2HB6_iiXZ6rQX8UC5IbhzfEsMCeLAzgJhGc46VjpTA2Ifsb3qlBCzt1IzMJeTN-Bv3BoIhufHuFYzA9D5FYQvZ6Vo8r4RXOLXhC5JYQbC11-0szv4g1usHLzQBZw9T3G3m5Wdff6JBHefoPudT0x-H48Pzfv_2a3JucTo_V8ZeTby_IfZjGY_Ki3Cc7q-WVfwmAamVeRa25BunvHb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQEYgL4t1AASMhwSUi8SPrHCmwKo9WK0Gl3iw_2z1sttpsD73xE_iN_BJmnAdEgJA4xrEja8bj-SbzIuT5jCNIjjGvTTHLBbcyVybUuQ2gTcBojiIlCh8eVQfH4sOJPPkli7-rDzH-cEPJSPc1Cvi5j0PHHqwaumot2HcMLBiB6eRXBWBxDOpjYjHcxaiOWJcSKXJszNSXbcQvvJqsn6ilVL3_T5Dz98jJ0X06BbdJO81vkZs9rKSvu3Nwm1wJzR1yrWs0eXmXxMUGHTIY4kxXQ0NcugqY9rtsVy1dR3qGXTuXWyAI7b02LbWXFAPjT2nyJ9Bt4tL3r9_a1D0HLkqK5TNiaDuH_j1yPH_35c1B3ndYyJ0EOyKvFRc-KlfPWMWDVYUBAKCccaYovGSFZbWsK8sMoMQy1E4GU8XSOQuiz7zl_D7ZadZN2CW0hGmOGWtN7YVXTjmYV0rHLAs2ViYjLwYC6_OukIZGAwRZoYEVemRFRvaR_uMsLICdBtabU93Lk2ZRcesxYwwL7ilhAUfJ6D2vPKukdRnZG7ine6lsNapixEOsyMiz8TXIEzpJTBPWFzgHw_UQmWXkQcfscSd8hmsFz4iaHIPJVqdvmuVZqtkNVm8BSBuWvhxOzM99_Y0OZTpR_yCXPvy8Pz48_I81T8n1xdu5_vT-6OMjcgOGeQpwVHtkZ7u5CI8BdG3tkyRXPwCk7CQE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+molecular+mechanisms+of+hereditary+diseases+by+using+their+tissue-selective+manifestation&rft.jtitle=Molecular+systems+biology&rft.au=Simonovsky%2C+Eyal&rft.au=Moran%2C+Sharon&rft.au=Ziv%2C+Maya&rft.au=Mauer%2C+Omry&rft.date=2023-08-08&rft.pub=EMBO+Press&rft.eissn=1744-4292&rft.volume=19&rft.issue=8&rft_id=info:doi/10.15252%2Fmsb.202211407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |