Latent Pattern Mixture Models for Informative Intermittent Missing Data in Longitudinal Studies
A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after on...
Saved in:
Published in | Biometrics Vol. 60; no. 2; pp. 295 - 305 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
Blackwell Publishing
01.06.2004
International Biometric Society Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes. |
---|---|
AbstractList | A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes. A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes. Summary . A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes. A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes. [PUBLICATION ABSTRACT] |
Author | Rosenheck, Robert A. McCulloch, Charles E. Lin, Haiqun |
Author_xml | – sequence: 1 givenname: Haiqun surname: Lin fullname: Lin, Haiqun – sequence: 2 givenname: Charles E. surname: McCulloch fullname: McCulloch, Charles E. – sequence: 3 givenname: Robert A. surname: Rosenheck fullname: Rosenheck, Robert A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15180654$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFN0AQcUBcsthxHMcHkGiBsmiXgrZVuVlOYq-cJnZrO7B9e5ymLFIPqD7YY833jz3zH4A9Y40EIEFwjuJ6284hhEWKc_RznkGYxyuieL59BGaI5CiFeQb3wGwH7YMD79t4ZQRmT8A-IqiEBclngC9FkCYk30UI0plkpbdhcDJZ2UZ2PlHWJQsT914E_UvGOFK9DrealfZem03yUQSRaJMsrdnoMDTaiC5Zj4H0T8FjJTovn92dh-D886ez4y_p8vRkcfxhmdaE5jhlkuGMKSmpIopmRcUolUVVNBXEFOa1ir_FNVVNWWcNYyWpM0SFxIhVKjZb4EPweqp75ez1IH3gvfa17DphpB08p4gxTCCJ4Jv_gqigJaEQExzRV_fQ1g4uNud5WZYoJ5iO9V7cQUPVy4ZfOd0Ld8P_jjgC5QTUznrvpPqHQD66yVs-GsVHo_joJr91k2-j9P09aa1DNMKa4ITuHlLg3VTgt-7kzYMf5keL01WMov75pG99sG6nxwUjlIxDT6e09kFud2nhLnlB43D4xbcTfoa_rtc_yAXPIv9y4pWwXGyc9vx8nUFE4rt5iUmJ_wD4q9mg |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1002_sim_3604 crossref_primary_10_1155_2018_7409284 crossref_primary_10_1111_j_1541_0420_2009_01234_x crossref_primary_10_1111_rssa_12350 crossref_primary_10_1214_15_AOAS876 crossref_primary_10_1002_sim_2915 crossref_primary_10_1080_10705511_2014_882666 crossref_primary_10_1111_biom_12501 crossref_primary_10_1177_0962280206075309 crossref_primary_10_1016_j_jsat_2013_01_015 crossref_primary_10_1002_sim_8379 crossref_primary_10_1080_03610918_2014_889154 crossref_primary_10_1016_j_jsat_2008_03_002 crossref_primary_10_1155_2012_821643 crossref_primary_10_1186_s13104_018_3228_6 crossref_primary_10_1016_j_annepidem_2006_07_003 crossref_primary_10_1111_j_1541_0420_2007_00952_x crossref_primary_10_1155_2022_1362913 crossref_primary_10_1002_sim_2964 crossref_primary_10_1177_0962280214529932 crossref_primary_10_1016_j_jsat_2007_08_005 crossref_primary_10_1111_j_1467_9469_2011_00776_x crossref_primary_10_1111_j_1541_0420_2007_00884_x crossref_primary_10_1016_j_csda_2010_07_002 crossref_primary_10_1007_s11121_024_01757_9 crossref_primary_10_1177_0962280206075311 crossref_primary_10_1111_rssb_12499 crossref_primary_10_1080_00273170701710338 crossref_primary_10_1111_j_1541_0420_2008_01104_x crossref_primary_10_22237_jmasm_1478003640 crossref_primary_10_1177_0163278716673688 crossref_primary_10_1080_10543400903242779 crossref_primary_10_1002_sim_7989 crossref_primary_10_1111_insr_12588 crossref_primary_10_1080_10705511_2016_1250635 crossref_primary_10_2139_ssrn_2040719 crossref_primary_10_1016_j_jmva_2009_07_002 crossref_primary_10_1007_s11136_011_9999_z crossref_primary_10_1111_jch_14241 crossref_primary_10_1214_20_AOAS1378 crossref_primary_10_3389_fpsyg_2020_564707 crossref_primary_10_1016_j_jspi_2007_04_005 crossref_primary_10_1136_bmjopen_2017_017284 crossref_primary_10_1002_bimj_200810491 crossref_primary_10_1016_j_csda_2018_04_001 crossref_primary_10_1080_03610910903019913 crossref_primary_10_1080_10705511_2014_936082 crossref_primary_10_1002_sim_8929 crossref_primary_10_1002_sim_2749 crossref_primary_10_1080_10543406_2014_971584 crossref_primary_10_1111_biom_13894 crossref_primary_10_1198_jasa_2010_ap09321 crossref_primary_10_1016_j_chiabu_2010_01_003 crossref_primary_10_1214_13_STS414 crossref_primary_10_1177_0962280212445839 crossref_primary_10_20982_tqmp_19_4_p347 crossref_primary_10_1016_j_csda_2008_10_017 crossref_primary_10_1111_j_1521_0391_2014_12100_x |
Cites_doi | 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E 10.1080/01621459.2000.10474219 10.1080/01621459.1997.10473658 10.1111/j.0006-341X.1999.00463.x 10.1002/sim.718 10.1093/biomet/88.2.551 10.1093/biostatistics/1.4.465 10.2307/2533439 10.2307/2531905 10.1111/j.0006-341X.2003.00097.x 10.1111/j.0006-341X.2002.00631.x 10.1002/sim.4780111408 10.1007/978-1-4612-4348-9 10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S 10.1093/biomet/88.3.767 10.1001/archpsyc.60.9.940 10.1080/01621459.1995.10476493 10.2307/2986113 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X 10.1198/016214502753479220 10.1080/01621459.1993.10594302 |
ContentType | Journal Article |
Copyright | Copyright 2004 The International Biometric Society Copyright Blackwell Publishing Ltd. Jun 2004 |
Copyright_xml | – notice: Copyright 2004 The International Biometric Society – notice: Copyright Blackwell Publishing Ltd. Jun 2004 |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7S9 L.6 7X8 |
DOI | 10.1111/j.0006-341X.2004.00173.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef AGRICOLA ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 305 |
ExternalDocumentID | 2446768841 15180654 10_1111_j_0006_341X_2004_00173_x BIOM173 3695756 ark_67375_WNG_T3JSSQ5W_2 US201500148358 |
Genre | article Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: AR48527 – fundername: NIMH NIH HHS grantid: 1R01MH66187-01A2 – fundername: NIAID NIH HHS grantid: AI55085 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGTJU AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 3V. AAPXW ADACV AELPN AEUQT AFFTP AFPWT AIBGX BSCLL ESTFP JSODD VQA WRC AAMMB AEFGJ AGORE AGQPQ AGXDD AIDQK AIDYY AAYXX AHGBF AJBYB CITATION PHGZM CGR CUY CVF ECM EIF NPM PKN JQ2 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5743-9e9329fee7f5f726b977e6b6db03704cf0653c7fd8c2d9985c217ae319bf04263 |
IEDL.DBID | DR2 |
ISSN | 0006-341X |
IngestDate | Fri Jul 11 02:00:22 EDT 2025 Fri Jul 11 18:34:01 EDT 2025 Thu Aug 21 00:46:36 EDT 2025 Wed Feb 19 01:41:33 EST 2025 Tue Jul 01 02:39:17 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Wed Jan 22 16:16:48 EST 2025 Thu Jul 03 21:22:35 EDT 2025 Wed Oct 30 09:54:00 EDT 2024 Thu Apr 03 09:45:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5743-9e9329fee7f5f726b977e6b6db03704cf0653c7fd8c2d9985c217ae319bf04263 |
Notes | http://dx.doi.org/10.1111/j.0006-341X.2004.00173.x ArticleID:BIOM173 istex:65EF455116D8A1BC750D7F9DA1AF6CD04CBFB433 ark:/67375/WNG-T3JSSQ5W-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 15180654 |
PQID | 888145375 |
PQPubID | 35366 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_71993505 proquest_miscellaneous_1678570353 proquest_journals_888145375 pubmed_primary_15180654 crossref_primary_10_1111_j_0006_341X_2004_00173_x crossref_citationtrail_10_1111_j_0006_341X_2004_00173_x wiley_primary_10_1111_j_0006_341X_2004_00173_x_BIOM173 jstor_primary_3695756 istex_primary_ark_67375_WNG_T3JSSQ5W_2 fao_agris_US201500148358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2004 |
PublicationDateYYYYMMDD | 2004-06-01 |
PublicationDate_xml | – month: 06 year: 2004 text: June 2004 |
PublicationDecade | 2000 |
PublicationPlace | 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K |
PublicationPlace_xml | – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2004 |
Publisher | Blackwell Publishing International Biometric Society Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing – name: International Biometric Society – name: Blackwell Publishing Ltd |
References | Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480. Rosenheck, R. A., Kasprow, W., Frismn, L. K., and Liu-Mares, W. (2003). Cost-effectiveness of supported housing for homeless persons with mental illness. General Archives of Psychiatry 60, 940-951. Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 16, 259-272. Lin, H. Q., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories in longitudinal data with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318. Schluchter, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine 11, 1861-1870. Albert, P. S., Follmann, D. A., Wang, S. A., and Suh, E. B. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58, 631-642. Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386. Ibrahim, J. G., Chen, M. H., and Lipsitz, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika 88, 551-564. Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121. Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257. Muthén, B. and Shedden, K. (1999). Finite mixture modeling with mixture outcome using the EM algorithm. Biometrics 55, 463-469. Muthén, B., Jo, B., and Brown, H. (2003). Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City. Journal of the American Statistical Association 98, 311-314. Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics 59, 829-836. Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188. Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134. Fitzmaurice, G. M., Laird, N. M., and Shneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021. Daley, D. J., Vere-Jones, D., and Smirnov, B. M. (2002). An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edition. New York : Springer Verlag. Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer-Verlag. Diggle, P. J. and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93. DeGruttola, V. and Tu, X. M. (1994). Modeling progression of CD4+ lymphocyte count and its relationship to survival time. Biometrics 50, 1003-1014. Lin, H. Q., Turnbull, B. W., McCulloch, C. E., and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data. Journal of the American Statistical Association 97, 53-65. Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditionally parametric models. The Annals of Statistics 23, 182-198. Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood (with discussion). Journal of the American Statistical Association 95, 449-485. Lo, Y. T., Mendell, N. R., and Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika 88, 767-778. 2002; 58 2000; 19 1997; 92 1995; 90 1997a; 16 2000 2002; 97 1993; 88 2000; 95 1988; 44 1999; 55 2003; 59 1993 2000; 1 2002 2001; 88 2003; 60 1994; 50 1992; 11 1992; 23 1997b; 16 2003; 98 1994; 43 2001; 20 Daley D. J. (e_1_2_9_5_1) 2002 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 Severini T. A. (e_1_2_9_25_1) 1992; 23 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Muthén B. (e_1_2_9_20_1) 2003; 98 e_1_2_9_9_1 e_1_2_9_26_1 |
References_xml | – reference: Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386. – reference: Diggle, P. J. and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93. – reference: Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121. – reference: Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood (with discussion). Journal of the American Statistical Association 95, 449-485. – reference: Lin, H. Q., Turnbull, B. W., McCulloch, C. E., and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data. Journal of the American Statistical Association 97, 53-65. – reference: Lin, H. Q., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories in longitudinal data with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318. – reference: Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 16, 259-272. – reference: Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics 59, 829-836. – reference: Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188. – reference: Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480. – reference: Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257. – reference: DeGruttola, V. and Tu, X. M. (1994). Modeling progression of CD4+ lymphocyte count and its relationship to survival time. Biometrics 50, 1003-1014. – reference: Muthén, B. and Shedden, K. (1999). Finite mixture modeling with mixture outcome using the EM algorithm. Biometrics 55, 463-469. – reference: Rosenheck, R. A., Kasprow, W., Frismn, L. K., and Liu-Mares, W. (2003). Cost-effectiveness of supported housing for homeless persons with mental illness. General Archives of Psychiatry 60, 940-951. – reference: Schluchter, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine 11, 1861-1870. – reference: Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer-Verlag. – reference: Ibrahim, J. G., Chen, M. H., and Lipsitz, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika 88, 551-564. – reference: Lo, Y. T., Mendell, N. R., and Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika 88, 767-778. – reference: Muthén, B., Jo, B., and Brown, H. (2003). Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City. Journal of the American Statistical Association 98, 311-314. – reference: Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditionally parametric models. The Annals of Statistics 23, 182-198. – reference: Daley, D. J., Vere-Jones, D., and Smirnov, B. M. (2002). An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edition. New York : Springer Verlag. – reference: Fitzmaurice, G. M., Laird, N. M., and Shneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021. – reference: Albert, P. S., Follmann, D. A., Wang, S. A., and Suh, E. B. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58, 631-642. – reference: Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134. – volume: 60, start-page: 940 year: 2003 end-page: 951 article-title: Cost‐effectiveness of supported housing for homeless persons with mental illness publication-title: General Archives of Psychiatry – volume: 92, start-page: 1375 year: 1997 end-page: 1386 article-title: Latent variable regression for multiple discrete outcomes publication-title: Journal of the American Statistical Association – volume: 1, start-page: 465 year: 2000 end-page: 480 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biostatistics – volume: 16, start-page: 259 year: 1997b end-page: 272 article-title: Model‐based approaches to analysing incomplete longitudinal and failure time data publication-title: Statistics in Medicine – volume: 16, start-page: 239 year: 1997a end-page: 257 article-title: Mixture models for the joint distribution of repeated measures and event times publication-title: Statistics in Medicine – year: 2000 – volume: 58, start-page: 631 year: 2002 end-page: 642 article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness. publication-title: Biometrics – volume: 23, start-page: 182 year: 1992 end-page: 198 article-title: Profile likelihood and conditionally parametric models publication-title: The Annals of Statistics – volume: 20, start-page: 1009 year: 2001 end-page: 1021 article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non‐ignorable drop‐outs publication-title: Statistics in Medicine – volume: 90, start-page: 106 year: 1995 end-page: 121 article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: Journal of the American Statistical Association – volume: 98, start-page: 311 year: 2003 end-page: 314 article-title: Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City publication-title: Journal of the American Statistical Association – volume: 59, start-page: 829 year: 2003 end-page: 836 article-title: Modeling longitudinal data with nonignorable dropouts using a latent dropout class model publication-title: Biometrics – volume: 50, start-page: 1003 year: 1994 end-page: 1014 article-title: Modeling progression of CD4+ lymphocyte count and its relationship to survival time publication-title: Biometrics – volume: 44, start-page: 175 year: 1988 end-page: 188 article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process publication-title: Biometrics – volume: 55, start-page: 463 year: 1999 end-page: 469 article-title: Finite mixture modeling with mixture outcome using the EM algorithm publication-title: Biometrics – year: 2002 – volume: 97, start-page: 53 year: 2002 end-page: 65 article-title: Latent class models for joint analysis of longitudinal biomarker and event process data publication-title: Journal of the American Statistical Association – volume: 43, start-page: 49 year: 1994 end-page: 93 article-title: Informative dropout in longitudinal data analysis (with discussion) publication-title: Applied Statistics – volume: 11, start-page: 1861 year: 1992 end-page: 1870 article-title: Methods for the analysis of informatively censored longitudinal data publication-title: Statistics in Medicine – volume: 19, start-page: 1303 year: 2000 end-page: 1318 article-title: A latent class mixed model for analyzing biomarker trajectories in longitudinal data with irregularly scheduled observations publication-title: Statistics in Medicine – volume: 88, start-page: 551 year: 2001 end-page: 564 article-title: Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable publication-title: Biometrika – volume: 95, start-page: 449 year: 2000 end-page: 485 article-title: On profile likelihood (with discussion) publication-title: Journal of the American Statistical Association – volume: 88, start-page: 767 year: 2001 end-page: 778 article-title: Testing the number of components in a normal mixture publication-title: Biometrika – year: 1993 – volume: 88, start-page: 125 year: 1993 end-page: 134 article-title: Pattern‐mixture models for multivariate incomplete data publication-title: Journal of the American Statistical Association – ident: e_1_2_9_14_1 doi: 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E – ident: e_1_2_9_18_1 doi: 10.1080/01621459.2000.10474219 – ident: e_1_2_9_4_1 doi: 10.1080/01621459.1997.10473658 – ident: e_1_2_9_19_1 doi: 10.1111/j.0006-341X.1999.00463.x – ident: e_1_2_9_8_1 doi: 10.1002/sim.718 – ident: e_1_2_9_12_1 doi: 10.1093/biomet/88.2.551 – ident: e_1_2_9_9_1 doi: 10.1093/biostatistics/1.4.465 – ident: e_1_2_9_6_1 doi: 10.2307/2533439 – ident: e_1_2_9_26_1 doi: 10.2307/2531905 – ident: e_1_2_9_23_1 doi: 10.1111/j.0006-341X.2003.00097.x – ident: e_1_2_9_2_1 doi: 10.1111/j.0006-341X.2002.00631.x – ident: e_1_2_9_13_1 – volume-title: An Introduction to the Theory of Point Processes: Elementary Theory and Methods year: 2002 ident: e_1_2_9_5_1 – ident: e_1_2_9_24_1 doi: 10.1002/sim.4780111408 – ident: e_1_2_9_3_1 doi: 10.1007/978-1-4612-4348-9 – ident: e_1_2_9_11_1 doi: 10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S – ident: e_1_2_9_17_1 doi: 10.1093/biomet/88.3.767 – ident: e_1_2_9_22_1 doi: 10.1001/archpsyc.60.9.940 – ident: e_1_2_9_21_1 doi: 10.1080/01621459.1995.10476493 – ident: e_1_2_9_7_1 doi: 10.2307/2986113 – ident: e_1_2_9_10_1 doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X – ident: e_1_2_9_15_1 doi: 10.1198/016214502753479220 – volume: 23 start-page: 182 year: 1992 ident: e_1_2_9_25_1 article-title: Profile likelihood and conditionally parametric models publication-title: The Annals of Statistics – ident: e_1_2_9_16_1 doi: 10.1080/01621459.1993.10594302 – volume: 98 start-page: 311 year: 2003 ident: e_1_2_9_20_1 article-title: Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City publication-title: Journal of the American Statistical Association |
SSID | ssj0009502 |
Score | 2.024868 |
Snippet | A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has... Summary . A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature,... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 295 |
SubjectTerms | behavior disorders Biometrics Biometry Community Mental Health Services Conditional independence assumption Data analysis data collection Data Interpretation, Statistical dropouts Homeless people Homeless Persons - psychology Homelessness Humans Induced substructures Intermittent missing data Joint analysis Latent class Longitudinal data Longitudinal Studies Mental disorders Mental Disorders - therapy Mental health services Missing data Modeling Models, Statistical Parametric models School dropouts Simulation Trajectories Visit process Vouchers |
Title | Latent Pattern Mixture Models for Informative Intermittent Missing Data in Longitudinal Studies |
URI | https://api.istex.fr/ark:/67375/WNG-T3JSSQ5W-2/fulltext.pdf https://www.jstor.org/stable/3695756 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2004.00173.x https://www.ncbi.nlm.nih.gov/pubmed/15180654 https://www.proquest.com/docview/888145375 https://www.proquest.com/docview/1678570353 https://www.proquest.com/docview/71993505 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BJaTywBFKa8qxSIg3R_GxXvuRq5SqLkcaNW-r3fUaRSkOqh0p8OuZWTsuQUWqEG-R4llpx7Mz38yOvwF4kcamwECc-TaMhB8nYearMrB-GmM0MjoVhRsHlJ8kh5P4aMqnXf8TfQvT8kP0BTc6Gc5f0wFXut445ORqffTCU5fm0Z2CiIaEJ6l1i_DRl_A3_t1RSxzeiWw09Vy90EakulmqBeJXUv1q3bp4FSjdxLguSB3chfl6e21vyny4bPTQ_PyD-fH_7P8e3OmwLHvVGt99uGGrAdxqp1v-GMDtvKeErQewTbC2ZYV-APIYIW7VsE-O3bNi-WxFNxmMJrOd1wyBNOu-kyJvzFzZ8tuscTI5mgrGW_ZWNYrNKna8oJFLy4LGe7GuLXIHJgfvTt8c-t2oB99wIknNLOLIrLRWlLwUYaIRltpEJ4UeRWIUm5IodI0oi9SEBWaI3GAqpSz6D11SFhg9hK1qUdk9YBojbJGWmOqmQRzoQunIJCFGaDNSoQm0B2L9WqXpeNBpHMe5vMyHSLOSNEtTOmPpNCtXHgS95PeWC-QaMntoOVJ9RZctJ-OQCkxUxI146sFLZ079WupiTm12gsuzk_fyNDoajz_zMxl6sOPsrX8wSjJE2YkH-2v7k53nqWWa4rY5LuLB8_5fdBl0D6Qqu1jWMkCAQsRrPPLg2V-eEdTYiejYg93WsC93zAO6jI89SJx5XlsV8vWHjzn-evSvgvuw3fZNUQ3sMWw1F0v7BCFho5-6w_4LhJxMJQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEGJ74KNsLAyYkRBvqZoPJ-kjMEY3mvLRVuubZTsOqtalaE2lwl_PnZNmFA1pQrxVas6SL-e7350vvwN4lYQ6w0DcdY0fxG4Y-V1X5p5xkxCjkVZJnNlxQOkg6o3D0wmf1OOA6FuYih-iKbjRybD-mg44FaQ3Tjn5Whfd8MTmeXSpEAdtBJR3aMA3EekfffV_Y-DtVNThtcxGW8_1K23Eqtu5nCOCJeWv1s2L18HSTZRrw9TxA5itN1h1p5y3l6Vq659_cD_-Jw08hPs1nGVvKvt7BLdM0YK71YDLHy3YSRtW2EULtgnZVsTQj0H0EeUWJftsCT4Llk5XdJnBaDjbbMEQS7P6UylyyMxWLi-mpZVJ0Vow5LIjWUo2LVh_TlOXlhlN-GJ1Z-QujI_fj9713Hrag6s58aR2DULJbm5MnPM89iOFyNREKspUJ4g7oc6JRVfHeZZoP8MkkWvMpqRBF6JySgSDPdgq5oXZB6YwyGZJjtlu4oWeyqQKdORjkNYd6WtPORCv36vQNRU6TeSYiauUiDQrSLM0qDMUVrNi5YDXSH6v6EBuILOPpiPkN_TaYjz0qcZEddyAJw68tvbUrCUvz6nTLubibPBBjILT4fALPxO-A7vW4JoHg6iLQDty4GBtgKJ2PguRJLhtjos48LL5F70GXQXJwsyXC-EhRiHuNR44cPiXZ2Lq7USA7MCTyrKvdsw9uo8PHYisfd5YFeLtyacUfz39V8FDuNcbpX3RPxl8PIDtqo2KSmLPYKu8XJrniBBL9cKe_F9KaFBB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9NADLdgCDQe-CgbCwN2SIi3VPn-eARK2UZTBl21vp3uLhdUdaTTmkqFvx77kmYUDWlCvFVqfNI5Pvtnn_MzwOskUDkG4tTWnh_bQeSltihcbScBRiMlkzg344CyYXQ4Do4n4aTpf6JvYWp-iLbgRifD-Gs64Bd5sXHIydXa6IUnJs2jO4XY7yKevBNETkpjHHpfvd8IeJ2aObyR2ejquX6ljVB1uxBzBLCk-9W6d_E6VLoJck2U6j-E2Xp_dXPKrLusZFf9_IP68f8o4BE8aMAse1tb32O4pcsO3K3HW_7owP2s5YRddGCbcG1NC_0E-AAxblmxE0PvWbJsuqKrDEaj2c4XDJE0az6UInfMTN3y-7QyMhnaCgZc1hOVYNOSDeY0c2mZ03wv1vRF7sC4_-H0_aHdzHqwVUgsqalGIJkWWsdFWMReJBGX6khGuXT82AlUQRy6Ki7yRHk5poihwlxKaHQgsqA00N-FrXJe6j1gEkNsnhSY6yZu4MpcSF9FHoZo5QhPudKCeP1auWqI0Gkexzm_SohIs5w0S2M6A240y1cWuK3kRU0GcgOZPbQcLr6hz-bjkUcVJqri-mFiwRtjTu1a4nJGfXZxyM-GH_mpfzwafQnPuGfBjrG39kE_ShFmRxbsr-2PN65nwZMEtx3iIha8av9Fn0EXQaLU8-WCu4hQiHkt9C04-MszMXV2Ijy24Glt2Fc7Dl26jQ8siIx53lgV_N3R5wx_PftXwQO4d9Lr88HR8NM-bNc9VFQPew5b1eVSv0B4WMmX5tz_AviXTvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Pattern+Mixture+Models+for+Informative+Intermittent+Missing+Data+in+Longitudinal+Studies&rft.jtitle=Biometrics&rft.au=Lin%2C+Haiqun&rft.au=McCulloch%2C+Charles+E.&rft.au=Rosenheck%2C+Robert+A.&rft.date=2004-06-01&rft.pub=International+Biometric+Society&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=60&rft.issue=2&rft.spage=295&rft.epage=305&rft_id=info:doi/10.1111%2Fj.0006-341X.2004.00173.x&rft.externalDocID=3695756 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |