Latent Pattern Mixture Models for Informative Intermittent Missing Data in Longitudinal Studies

A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after on...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 60; no. 2; pp. 295 - 305
Main Authors Lin, Haiqun, McCulloch, Charles E., Rosenheck, Robert A.
Format Journal Article
LanguageEnglish
Published 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K Blackwell Publishing 01.06.2004
International Biometric Society
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.
AbstractList A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.
A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.
Summary .  A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.
A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes. [PUBLICATION ABSTRACT]
Author Rosenheck, Robert A.
McCulloch, Charles E.
Lin, Haiqun
Author_xml – sequence: 1
  givenname: Haiqun
  surname: Lin
  fullname: Lin, Haiqun
– sequence: 2
  givenname: Charles E.
  surname: McCulloch
  fullname: McCulloch, Charles E.
– sequence: 3
  givenname: Robert A.
  surname: Rosenheck
  fullname: Rosenheck, Robert A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15180654$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFN0AQcUBcsthxHMcHkGiBsmiXgrZVuVlOYq-cJnZrO7B9e5ymLFIPqD7YY833jz3zH4A9Y40EIEFwjuJ6284hhEWKc_RznkGYxyuieL59BGaI5CiFeQb3wGwH7YMD79t4ZQRmT8A-IqiEBclngC9FkCYk30UI0plkpbdhcDJZ2UZ2PlHWJQsT914E_UvGOFK9DrealfZem03yUQSRaJMsrdnoMDTaiC5Zj4H0T8FjJTovn92dh-D886ez4y_p8vRkcfxhmdaE5jhlkuGMKSmpIopmRcUolUVVNBXEFOa1ir_FNVVNWWcNYyWpM0SFxIhVKjZb4EPweqp75ez1IH3gvfa17DphpB08p4gxTCCJ4Jv_gqigJaEQExzRV_fQ1g4uNud5WZYoJ5iO9V7cQUPVy4ZfOd0Ld8P_jjgC5QTUznrvpPqHQD66yVs-GsVHo_joJr91k2-j9P09aa1DNMKa4ITuHlLg3VTgt-7kzYMf5keL01WMov75pG99sG6nxwUjlIxDT6e09kFud2nhLnlB43D4xbcTfoa_rtc_yAXPIv9y4pWwXGyc9vx8nUFE4rt5iUmJ_wD4q9mg
CODEN BIOMA5
CitedBy_id crossref_primary_10_1002_sim_3604
crossref_primary_10_1155_2018_7409284
crossref_primary_10_1111_j_1541_0420_2009_01234_x
crossref_primary_10_1111_rssa_12350
crossref_primary_10_1214_15_AOAS876
crossref_primary_10_1002_sim_2915
crossref_primary_10_1080_10705511_2014_882666
crossref_primary_10_1111_biom_12501
crossref_primary_10_1177_0962280206075309
crossref_primary_10_1016_j_jsat_2013_01_015
crossref_primary_10_1002_sim_8379
crossref_primary_10_1080_03610918_2014_889154
crossref_primary_10_1016_j_jsat_2008_03_002
crossref_primary_10_1155_2012_821643
crossref_primary_10_1186_s13104_018_3228_6
crossref_primary_10_1016_j_annepidem_2006_07_003
crossref_primary_10_1111_j_1541_0420_2007_00952_x
crossref_primary_10_1155_2022_1362913
crossref_primary_10_1002_sim_2964
crossref_primary_10_1177_0962280214529932
crossref_primary_10_1016_j_jsat_2007_08_005
crossref_primary_10_1111_j_1467_9469_2011_00776_x
crossref_primary_10_1111_j_1541_0420_2007_00884_x
crossref_primary_10_1016_j_csda_2010_07_002
crossref_primary_10_1007_s11121_024_01757_9
crossref_primary_10_1177_0962280206075311
crossref_primary_10_1111_rssb_12499
crossref_primary_10_1080_00273170701710338
crossref_primary_10_1111_j_1541_0420_2008_01104_x
crossref_primary_10_22237_jmasm_1478003640
crossref_primary_10_1177_0163278716673688
crossref_primary_10_1080_10543400903242779
crossref_primary_10_1002_sim_7989
crossref_primary_10_1111_insr_12588
crossref_primary_10_1080_10705511_2016_1250635
crossref_primary_10_2139_ssrn_2040719
crossref_primary_10_1016_j_jmva_2009_07_002
crossref_primary_10_1007_s11136_011_9999_z
crossref_primary_10_1111_jch_14241
crossref_primary_10_1214_20_AOAS1378
crossref_primary_10_3389_fpsyg_2020_564707
crossref_primary_10_1016_j_jspi_2007_04_005
crossref_primary_10_1136_bmjopen_2017_017284
crossref_primary_10_1002_bimj_200810491
crossref_primary_10_1016_j_csda_2018_04_001
crossref_primary_10_1080_03610910903019913
crossref_primary_10_1080_10705511_2014_936082
crossref_primary_10_1002_sim_8929
crossref_primary_10_1002_sim_2749
crossref_primary_10_1080_10543406_2014_971584
crossref_primary_10_1111_biom_13894
crossref_primary_10_1198_jasa_2010_ap09321
crossref_primary_10_1016_j_chiabu_2010_01_003
crossref_primary_10_1214_13_STS414
crossref_primary_10_1177_0962280212445839
crossref_primary_10_20982_tqmp_19_4_p347
crossref_primary_10_1016_j_csda_2008_10_017
crossref_primary_10_1111_j_1521_0391_2014_12100_x
Cites_doi 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E
10.1080/01621459.2000.10474219
10.1080/01621459.1997.10473658
10.1111/j.0006-341X.1999.00463.x
10.1002/sim.718
10.1093/biomet/88.2.551
10.1093/biostatistics/1.4.465
10.2307/2533439
10.2307/2531905
10.1111/j.0006-341X.2003.00097.x
10.1111/j.0006-341X.2002.00631.x
10.1002/sim.4780111408
10.1007/978-1-4612-4348-9
10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
10.1093/biomet/88.3.767
10.1001/archpsyc.60.9.940
10.1080/01621459.1995.10476493
10.2307/2986113
10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
10.1198/016214502753479220
10.1080/01621459.1993.10594302
ContentType Journal Article
Copyright Copyright 2004 The International Biometric Society
Copyright Blackwell Publishing Ltd. Jun 2004
Copyright_xml – notice: Copyright 2004 The International Biometric Society
– notice: Copyright Blackwell Publishing Ltd. Jun 2004
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7S9
L.6
7X8
DOI 10.1111/j.0006-341X.2004.00173.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef

AGRICOLA
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 305
ExternalDocumentID 2446768841
15180654
10_1111_j_0006_341X_2004_00173_x
BIOM173
3695756
ark_67375_WNG_T3JSSQ5W_2
US201500148358
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: AR48527
– fundername: NIMH NIH HHS
  grantid: 1R01MH66187-01A2
– fundername: NIAID NIH HHS
  grantid: AI55085
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGTJU
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PKN
JQ2
7S9
L.6
7X8
ID FETCH-LOGICAL-c5743-9e9329fee7f5f726b977e6b6db03704cf0653c7fd8c2d9985c217ae319bf04263
IEDL.DBID DR2
ISSN 0006-341X
IngestDate Fri Jul 11 02:00:22 EDT 2025
Fri Jul 11 18:34:01 EDT 2025
Thu Aug 21 00:46:36 EDT 2025
Wed Feb 19 01:41:33 EST 2025
Tue Jul 01 02:39:17 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Wed Jan 22 16:16:48 EST 2025
Thu Jul 03 21:22:35 EDT 2025
Wed Oct 30 09:54:00 EDT 2024
Thu Apr 03 09:45:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5743-9e9329fee7f5f726b977e6b6db03704cf0653c7fd8c2d9985c217ae319bf04263
Notes http://dx.doi.org/10.1111/j.0006-341X.2004.00173.x
ArticleID:BIOM173
istex:65EF455116D8A1BC750D7F9DA1AF6CD04CBFB433
ark:/67375/WNG-T3JSSQ5W-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 15180654
PQID 888145375
PQPubID 35366
PageCount 11
ParticipantIDs proquest_miscellaneous_71993505
proquest_miscellaneous_1678570353
proquest_journals_888145375
pubmed_primary_15180654
crossref_primary_10_1111_j_0006_341X_2004_00173_x
crossref_citationtrail_10_1111_j_0006_341X_2004_00173_x
wiley_primary_10_1111_j_0006_341X_2004_00173_x_BIOM173
jstor_primary_3695756
istex_primary_ark_67375_WNG_T3JSSQ5W_2
fao_agris_US201500148358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2004
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: June 2004
PublicationDecade 2000
PublicationPlace 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
PublicationPlace_xml – name: 350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2004
Publisher Blackwell Publishing
International Biometric Society
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing
– name: International Biometric Society
– name: Blackwell Publishing Ltd
References Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
Rosenheck, R. A., Kasprow, W., Frismn, L. K., and Liu-Mares, W. (2003). Cost-effectiveness of supported housing for homeless persons with mental illness. General Archives of Psychiatry 60, 940-951.
Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 16, 259-272.
Lin, H. Q., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories in longitudinal data with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318.
Schluchter, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine 11, 1861-1870.
Albert, P. S., Follmann, D. A., Wang, S. A., and Suh, E. B. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58, 631-642.
Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386.
Ibrahim, J. G., Chen, M. H., and Lipsitz, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika 88, 551-564.
Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257.
Muthén, B. and Shedden, K. (1999). Finite mixture modeling with mixture outcome using the EM algorithm. Biometrics 55, 463-469.
Muthén, B., Jo, B., and Brown, H. (2003). Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City. Journal of the American Statistical Association 98, 311-314.
Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics 59, 829-836.
Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188.
Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134.
Fitzmaurice, G. M., Laird, N. M., and Shneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021.
Daley, D. J., Vere-Jones, D., and Smirnov, B. M. (2002). An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edition. New York : Springer Verlag.
Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer-Verlag.
Diggle, P. J. and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93.
DeGruttola, V. and Tu, X. M. (1994). Modeling progression of CD4+ lymphocyte count and its relationship to survival time. Biometrics 50, 1003-1014.
Lin, H. Q., Turnbull, B. W., McCulloch, C. E., and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data. Journal of the American Statistical Association 97, 53-65.
Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditionally parametric models. The Annals of Statistics 23, 182-198.
Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood (with discussion). Journal of the American Statistical Association 95, 449-485.
Lo, Y. T., Mendell, N. R., and Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika 88, 767-778.
2002; 58
2000; 19
1997; 92
1995; 90
1997a; 16
2000
2002; 97
1993; 88
2000; 95
1988; 44
1999; 55
2003; 59
1993
2000; 1
2002
2001; 88
2003; 60
1994; 50
1992; 11
1992; 23
1997b; 16
2003; 98
1994; 43
2001; 20
Daley D. J. (e_1_2_9_5_1) 2002
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
Severini T. A. (e_1_2_9_25_1) 1992; 23
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Muthén B. (e_1_2_9_20_1) 2003; 98
e_1_2_9_9_1
e_1_2_9_26_1
References_xml – reference: Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386.
– reference: Diggle, P. J. and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 43, 49-93.
– reference: Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
– reference: Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood (with discussion). Journal of the American Statistical Association 95, 449-485.
– reference: Lin, H. Q., Turnbull, B. W., McCulloch, C. E., and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data. Journal of the American Statistical Association 97, 53-65.
– reference: Lin, H. Q., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark, L. C. (2000). A latent class mixed model for analyzing biomarker trajectories in longitudinal data with irregularly scheduled observations. Statistics in Medicine 19, 1303-1318.
– reference: Hogan, J. W. and Laird, N. M. (1997b). Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 16, 259-272.
– reference: Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics 59, 829-836.
– reference: Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175-188.
– reference: Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
– reference: Hogan, J. W. and Laird, N. M. (1997a). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-257.
– reference: DeGruttola, V. and Tu, X. M. (1994). Modeling progression of CD4+ lymphocyte count and its relationship to survival time. Biometrics 50, 1003-1014.
– reference: Muthén, B. and Shedden, K. (1999). Finite mixture modeling with mixture outcome using the EM algorithm. Biometrics 55, 463-469.
– reference: Rosenheck, R. A., Kasprow, W., Frismn, L. K., and Liu-Mares, W. (2003). Cost-effectiveness of supported housing for homeless persons with mental illness. General Archives of Psychiatry 60, 940-951.
– reference: Schluchter, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine 11, 1861-1870.
– reference: Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer-Verlag.
– reference: Ibrahim, J. G., Chen, M. H., and Lipsitz, S. R. (2001). Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. Biometrika 88, 551-564.
– reference: Lo, Y. T., Mendell, N. R., and Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika 88, 767-778.
– reference: Muthén, B., Jo, B., and Brown, H. (2003). Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City. Journal of the American Statistical Association 98, 311-314.
– reference: Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditionally parametric models. The Annals of Statistics 23, 182-198.
– reference: Daley, D. J., Vere-Jones, D., and Smirnov, B. M. (2002). An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edition. New York : Springer Verlag.
– reference: Fitzmaurice, G. M., Laird, N. M., and Shneyer, L. (2001). An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statistics in Medicine 20, 1009-1021.
– reference: Albert, P. S., Follmann, D. A., Wang, S. A., and Suh, E. B. (2002). A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics 58, 631-642.
– reference: Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134.
– volume: 60,
  start-page: 940
  year: 2003
  end-page: 951
  article-title: Cost‐effectiveness of supported housing for homeless persons with mental illness
  publication-title: General Archives of Psychiatry
– volume: 92,
  start-page: 1375
  year: 1997
  end-page: 1386
  article-title: Latent variable regression for multiple discrete outcomes
  publication-title: Journal of the American Statistical Association
– volume: 1,
  start-page: 465
  year: 2000
  end-page: 480
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics
– volume: 16,
  start-page: 259
  year: 1997b
  end-page: 272
  article-title: Model‐based approaches to analysing incomplete longitudinal and failure time data
  publication-title: Statistics in Medicine
– volume: 16,
  start-page: 239
  year: 1997a
  end-page: 257
  article-title: Mixture models for the joint distribution of repeated measures and event times
  publication-title: Statistics in Medicine
– year: 2000
– volume: 58,
  start-page: 631
  year: 2002
  end-page: 642
  article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness.
  publication-title: Biometrics
– volume: 23,
  start-page: 182
  year: 1992
  end-page: 198
  article-title: Profile likelihood and conditionally parametric models
  publication-title: The Annals of Statistics
– volume: 20,
  start-page: 1009
  year: 2001
  end-page: 1021
  article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non‐ignorable drop‐outs
  publication-title: Statistics in Medicine
– volume: 90,
  start-page: 106
  year: 1995
  end-page: 121
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: Journal of the American Statistical Association
– volume: 98,
  start-page: 311
  year: 2003
  end-page: 314
  article-title: Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City
  publication-title: Journal of the American Statistical Association
– volume: 59,
  start-page: 829
  year: 2003
  end-page: 836
  article-title: Modeling longitudinal data with nonignorable dropouts using a latent dropout class model
  publication-title: Biometrics
– volume: 50,
  start-page: 1003
  year: 1994
  end-page: 1014
  article-title: Modeling progression of CD4+ lymphocyte count and its relationship to survival time
  publication-title: Biometrics
– volume: 44,
  start-page: 175
  year: 1988
  end-page: 188
  article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
  publication-title: Biometrics
– volume: 55,
  start-page: 463
  year: 1999
  end-page: 469
  article-title: Finite mixture modeling with mixture outcome using the EM algorithm
  publication-title: Biometrics
– year: 2002
– volume: 97,
  start-page: 53
  year: 2002
  end-page: 65
  article-title: Latent class models for joint analysis of longitudinal biomarker and event process data
  publication-title: Journal of the American Statistical Association
– volume: 43,
  start-page: 49
  year: 1994
  end-page: 93
  article-title: Informative dropout in longitudinal data analysis (with discussion)
  publication-title: Applied Statistics
– volume: 11,
  start-page: 1861
  year: 1992
  end-page: 1870
  article-title: Methods for the analysis of informatively censored longitudinal data
  publication-title: Statistics in Medicine
– volume: 19,
  start-page: 1303
  year: 2000
  end-page: 1318
  article-title: A latent class mixed model for analyzing biomarker trajectories in longitudinal data with irregularly scheduled observations
  publication-title: Statistics in Medicine
– volume: 88,
  start-page: 551
  year: 2001
  end-page: 564
  article-title: Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable
  publication-title: Biometrika
– volume: 95,
  start-page: 449
  year: 2000
  end-page: 485
  article-title: On profile likelihood (with discussion)
  publication-title: Journal of the American Statistical Association
– volume: 88,
  start-page: 767
  year: 2001
  end-page: 778
  article-title: Testing the number of components in a normal mixture
  publication-title: Biometrika
– year: 1993
– volume: 88,
  start-page: 125
  year: 1993
  end-page: 134
  article-title: Pattern‐mixture models for multivariate incomplete data
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_9_14_1
  doi: 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E
– ident: e_1_2_9_18_1
  doi: 10.1080/01621459.2000.10474219
– ident: e_1_2_9_4_1
  doi: 10.1080/01621459.1997.10473658
– ident: e_1_2_9_19_1
  doi: 10.1111/j.0006-341X.1999.00463.x
– ident: e_1_2_9_8_1
  doi: 10.1002/sim.718
– ident: e_1_2_9_12_1
  doi: 10.1093/biomet/88.2.551
– ident: e_1_2_9_9_1
  doi: 10.1093/biostatistics/1.4.465
– ident: e_1_2_9_6_1
  doi: 10.2307/2533439
– ident: e_1_2_9_26_1
  doi: 10.2307/2531905
– ident: e_1_2_9_23_1
  doi: 10.1111/j.0006-341X.2003.00097.x
– ident: e_1_2_9_2_1
  doi: 10.1111/j.0006-341X.2002.00631.x
– ident: e_1_2_9_13_1
– volume-title: An Introduction to the Theory of Point Processes: Elementary Theory and Methods
  year: 2002
  ident: e_1_2_9_5_1
– ident: e_1_2_9_24_1
  doi: 10.1002/sim.4780111408
– ident: e_1_2_9_3_1
  doi: 10.1007/978-1-4612-4348-9
– ident: e_1_2_9_11_1
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
– ident: e_1_2_9_17_1
  doi: 10.1093/biomet/88.3.767
– ident: e_1_2_9_22_1
  doi: 10.1001/archpsyc.60.9.940
– ident: e_1_2_9_21_1
  doi: 10.1080/01621459.1995.10476493
– ident: e_1_2_9_7_1
  doi: 10.2307/2986113
– ident: e_1_2_9_10_1
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
– ident: e_1_2_9_15_1
  doi: 10.1198/016214502753479220
– volume: 23
  start-page: 182
  year: 1992
  ident: e_1_2_9_25_1
  article-title: Profile likelihood and conditionally parametric models
  publication-title: The Annals of Statistics
– ident: e_1_2_9_16_1
  doi: 10.1080/01621459.1993.10594302
– volume: 98
  start-page: 311
  year: 2003
  ident: e_1_2_9_20_1
  article-title: Discussion on principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City
  publication-title: Journal of the American Statistical Association
SSID ssj0009502
Score 2.024868
Snippet A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has...
Summary .  A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature,...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 295
SubjectTerms behavior disorders
Biometrics
Biometry
Community Mental Health Services
Conditional independence assumption
Data analysis
data collection
Data Interpretation, Statistical
dropouts
Homeless people
Homeless Persons - psychology
Homelessness
Humans
Induced substructures
Intermittent missing data
Joint analysis
Latent class
Longitudinal data
Longitudinal Studies
Mental disorders
Mental Disorders - therapy
Mental health services
Missing data
Modeling
Models, Statistical
Parametric models
School dropouts
Simulation
Trajectories
Visit process
Vouchers
Title Latent Pattern Mixture Models for Informative Intermittent Missing Data in Longitudinal Studies
URI https://api.istex.fr/ark:/67375/WNG-T3JSSQ5W-2/fulltext.pdf
https://www.jstor.org/stable/3695756
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2004.00173.x
https://www.ncbi.nlm.nih.gov/pubmed/15180654
https://www.proquest.com/docview/888145375
https://www.proquest.com/docview/1678570353
https://www.proquest.com/docview/71993505
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BJaTywBFKa8qxSIg3R_GxXvuRq5SqLkcaNW-r3fUaRSkOqh0p8OuZWTsuQUWqEG-R4llpx7Mz38yOvwF4kcamwECc-TaMhB8nYearMrB-GmM0MjoVhRsHlJ8kh5P4aMqnXf8TfQvT8kP0BTc6Gc5f0wFXut445ORqffTCU5fm0Z2CiIaEJ6l1i_DRl_A3_t1RSxzeiWw09Vy90EakulmqBeJXUv1q3bp4FSjdxLguSB3chfl6e21vyny4bPTQ_PyD-fH_7P8e3OmwLHvVGt99uGGrAdxqp1v-GMDtvKeErQewTbC2ZYV-APIYIW7VsE-O3bNi-WxFNxmMJrOd1wyBNOu-kyJvzFzZ8tuscTI5mgrGW_ZWNYrNKna8oJFLy4LGe7GuLXIHJgfvTt8c-t2oB99wIknNLOLIrLRWlLwUYaIRltpEJ4UeRWIUm5IodI0oi9SEBWaI3GAqpSz6D11SFhg9hK1qUdk9YBojbJGWmOqmQRzoQunIJCFGaDNSoQm0B2L9WqXpeNBpHMe5vMyHSLOSNEtTOmPpNCtXHgS95PeWC-QaMntoOVJ9RZctJ-OQCkxUxI146sFLZ079WupiTm12gsuzk_fyNDoajz_zMxl6sOPsrX8wSjJE2YkH-2v7k53nqWWa4rY5LuLB8_5fdBl0D6Qqu1jWMkCAQsRrPPLg2V-eEdTYiejYg93WsC93zAO6jI89SJx5XlsV8vWHjzn-evSvgvuw3fZNUQ3sMWw1F0v7BCFho5-6w_4LhJxMJQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEGJ74KNsLAyYkRBvqZoPJ-kjMEY3mvLRVuubZTsOqtalaE2lwl_PnZNmFA1pQrxVas6SL-e7350vvwN4lYQ6w0DcdY0fxG4Y-V1X5p5xkxCjkVZJnNlxQOkg6o3D0wmf1OOA6FuYih-iKbjRybD-mg44FaQ3Tjn5Whfd8MTmeXSpEAdtBJR3aMA3EekfffV_Y-DtVNThtcxGW8_1K23Eqtu5nCOCJeWv1s2L18HSTZRrw9TxA5itN1h1p5y3l6Vq659_cD_-Jw08hPs1nGVvKvt7BLdM0YK71YDLHy3YSRtW2EULtgnZVsTQj0H0EeUWJftsCT4Llk5XdJnBaDjbbMEQS7P6UylyyMxWLi-mpZVJ0Vow5LIjWUo2LVh_TlOXlhlN-GJ1Z-QujI_fj9713Hrag6s58aR2DULJbm5MnPM89iOFyNREKspUJ4g7oc6JRVfHeZZoP8MkkWvMpqRBF6JySgSDPdgq5oXZB6YwyGZJjtlu4oWeyqQKdORjkNYd6WtPORCv36vQNRU6TeSYiauUiDQrSLM0qDMUVrNi5YDXSH6v6EBuILOPpiPkN_TaYjz0qcZEddyAJw68tvbUrCUvz6nTLubibPBBjILT4fALPxO-A7vW4JoHg6iLQDty4GBtgKJ2PguRJLhtjos48LL5F70GXQXJwsyXC-EhRiHuNR44cPiXZ2Lq7USA7MCTyrKvdsw9uo8PHYisfd5YFeLtyacUfz39V8FDuNcbpX3RPxl8PIDtqo2KSmLPYKu8XJrniBBL9cKe_F9KaFBB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9NADLdgCDQe-CgbCwN2SIi3VPn-eARK2UZTBl21vp3uLhdUdaTTmkqFvx77kmYUDWlCvFVqfNI5Pvtnn_MzwOskUDkG4tTWnh_bQeSltihcbScBRiMlkzg344CyYXQ4Do4n4aTpf6JvYWp-iLbgRifD-Gs64Bd5sXHIydXa6IUnJs2jO4XY7yKevBNETkpjHHpfvd8IeJ2aObyR2ejquX6ljVB1uxBzBLCk-9W6d_E6VLoJck2U6j-E2Xp_dXPKrLusZFf9_IP68f8o4BE8aMAse1tb32O4pcsO3K3HW_7owP2s5YRddGCbcG1NC_0E-AAxblmxE0PvWbJsuqKrDEaj2c4XDJE0az6UInfMTN3y-7QyMhnaCgZc1hOVYNOSDeY0c2mZ03wv1vRF7sC4_-H0_aHdzHqwVUgsqalGIJkWWsdFWMReJBGX6khGuXT82AlUQRy6Ki7yRHk5poihwlxKaHQgsqA00N-FrXJe6j1gEkNsnhSY6yZu4MpcSF9FHoZo5QhPudKCeP1auWqI0Gkexzm_SohIs5w0S2M6A240y1cWuK3kRU0GcgOZPbQcLr6hz-bjkUcVJqri-mFiwRtjTu1a4nJGfXZxyM-GH_mpfzwafQnPuGfBjrG39kE_ShFmRxbsr-2PN65nwZMEtx3iIha8av9Fn0EXQaLU8-WCu4hQiHkt9C04-MszMXV2Ijy24Glt2Fc7Dl26jQ8siIx53lgV_N3R5wx_PftXwQO4d9Lr88HR8NM-bNc9VFQPew5b1eVSv0B4WMmX5tz_AviXTvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Pattern+Mixture+Models+for+Informative+Intermittent+Missing+Data+in+Longitudinal+Studies&rft.jtitle=Biometrics&rft.au=Lin%2C+Haiqun&rft.au=McCulloch%2C+Charles+E.&rft.au=Rosenheck%2C+Robert+A.&rft.date=2004-06-01&rft.pub=International+Biometric+Society&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=60&rft.issue=2&rft.spage=295&rft.epage=305&rft_id=info:doi/10.1111%2Fj.0006-341X.2004.00173.x&rft.externalDocID=3695756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon