Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters
Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present s...
Saved in:
Published in | Environmental toxicology and chemistry Vol. 38; no. 2; pp. 436 - 447 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.02.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number–based metrics but results from hazard studies are mostly mass‐based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no‐observed‐effect concentration. The predicted‐no‐effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 105 particles · m−3 (25th and 75th quantiles of 6.1 × 105 and 1.3 × 106 particles · m−3, respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10−6 in North America, 3.3 × 10−6 in Europe, and 4.6 × 10−3 in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436–447. © 2018 SETAC
The environmental risk of microplastics was assessed using a probabilistic approach in the freshwaters of Asia, Europe, and North America. Results show that such risks cannot be excluded in Asia. |
---|---|
AbstractList | Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number–based metrics but results from hazard studies are mostly mass‐based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no‐observed‐effect concentration. The predicted‐no‐effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 105 particles · m−3 (25th and 75th quantiles of 6.1 × 105 and 1.3 × 106 particles · m−3, respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10−6 in North America, 3.3 × 10−6 in Europe, and 4.6 × 10−3 in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436–447. © 2018 SETAC Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number-based metrics but results from hazard studies are mostly mass-based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no-observed-effect concentration. The predicted-no-effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 105 particles · m-3 (25th and 75th quantiles of 6.1 × 105 and 1.3 × 106 particles · m-3 , respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10-6 in North America, 3.3 × 10-6 in Europe, and 4.6 × 10-3 in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436-447. © 2018 SETAC.Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number-based metrics but results from hazard studies are mostly mass-based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no-observed-effect concentration. The predicted-no-effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 105 particles · m-3 (25th and 75th quantiles of 6.1 × 105 and 1.3 × 106 particles · m-3 , respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10-6 in North America, 3.3 × 10-6 in Europe, and 4.6 × 10-3 in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436-447. © 2018 SETAC. Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number–based metrics but results from hazard studies are mostly mass‐based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no‐observed‐effect concentration. The predicted‐no‐effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 10⁵ particles · m⁻³ (25th and 75th quantiles of 6.1 × 10⁵ and 1.3 × 10⁶ particles · m⁻³, respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10⁻⁶ in North America, 3.3 × 10⁻⁶ in Europe, and 4.6 × 10⁻³ in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436–447. © 2018 SETAC Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number–based metrics but results from hazard studies are mostly mass‐based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no‐observed‐effect concentration. The predicted‐no‐effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 10 5 particles · m −3 (25th and 75th quantiles of 6.1 × 10 5 and 1.3 × 10 6 particles · m −3 , respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10 −6 in North America, 3.3 × 10 −6 in Europe, and 4.6 × 10 −3 in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436–447. © 2018 SETAC The environmental risk of microplastics was assessed using a probabilistic approach in the freshwaters of Asia, Europe, and North America. Results show that such risks cannot be excluded in Asia. © 2019 SETAC Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number–based metrics but results from hazard studies are mostly mass‐based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no‐observed‐effect concentration. The predicted‐no‐effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 105 particles · m−3 (25th and 75th quantiles of 6.1 × 105 and 1.3 × 106 particles · m−3, respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10−6 in North America, 3.3 × 10−6 in Europe, and 4.6 × 10−3 in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436–447. © 2018 SETAC The environmental risk of microplastics was assessed using a probabilistic approach in the freshwaters of Asia, Europe, and North America. Results show that such risks cannot be excluded in Asia. Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of microplastics on organisms. However, no risk assessment of microplastics has been performed specifically in freshwater so far. The aim of the present study was therefore to review all exposure and ecotoxicity data available for microplastics in freshwaters and to perform a preliminary probabilistic risk assessment. The exposure probability distribution was based on 391 concentrations measured in Asia, Europe, and North America. Because exposure data are mainly available in particle number-based metrics but results from hazard studies are mostly mass-based, the hazard results were converted into particle number concentrations. A statistical analysis of the hazard data showed that there was no significant influence of particle shape or type of polymer on the no-observed-effect concentration. The predicted-no-effect concentration (PNEC) was calculated as the fifth percentile of the probabilistic species sensitivity distribution, based on 53 values from 14 freshwater species, to have a mode of 7.4 × 10 particles · m (25th and 75th quantiles of 6.1 × 10 and 1.3 × 10 particles · m , respectively). The exposure probability distribution was divided by the PNEC probability distribution to calculate risk characterization ratios (RCRs), with modes of 1.3 × 10 in North America, 3.3 × 10 in Europe, and 4.6 × 10 in Asia. Probability distributions associated with the RCRs showed that ecological risks cannot be entirely excluded in Asia, where 0.4% of the RCR values were above 1. Environ Toxicol Chem 2019;38:436-447. © 2018 SETAC. |
Author | Yang, Tong Adam, Véronique Nowack, Bernd |
AuthorAffiliation | 1 Empa Swiss Federal Laboratories for Materials Science and Technology St. Gallen Switzerland |
AuthorAffiliation_xml | – name: 1 Empa Swiss Federal Laboratories for Materials Science and Technology St. Gallen Switzerland |
Author_xml | – sequence: 1 givenname: Véronique surname: Adam fullname: Adam, Véronique organization: Swiss Federal Laboratories for Materials Science and Technology – sequence: 2 givenname: Tong surname: Yang fullname: Yang, Tong organization: Swiss Federal Laboratories for Materials Science and Technology – sequence: 3 givenname: Bernd surname: Nowack fullname: Nowack, Bernd email: bernd.nowack@empa.ch organization: Swiss Federal Laboratories for Materials Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30488983$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLcLEr8AWeLCJYu_EtsckKoVX1IlLuVsOc6k6-LEi510W8SPx8uWAhVInHyYZ17PzPueoKMxjoDQU0pWlBD2Eia3EpzxB2hB65pVqqHqCC2I5KSSrFHH6CTnS0Joo7V-hI45EUppxRfo23nc2dRhO2JwcYrX3sUQL7yzASefP2ObM-Q8wDjh2OPBuxS3webJu_wKr-OwtQWL475or6wPtg2AN_brQbTDcL2NeU6AOztZ7EfcJ8ibnZ0g5cfoYW9Dhie37xJ9evvmfP2-Ovv47sP69KxytRS8UrLhpK2VqKUFVhOmWUfrVvG-lY3oJXREC0U1UEKpkJQC9H2thYbWiV41fIleH3S3cztA58oyyQazTX6w6cZE682fldFvzEW8Mo0SWipZBF7cCqT4ZYY8mcFnByHYEeKcDaNK14JIJv4D5bpWnAld0Of30Ms4p7FcolCSEaZ48WiJnv0-_N3UPz389WOxJucE_R1CidnHw5R4mH08Crq6hzo_2cnH_do-_K2hOjTsfICbfwqbwvzgvwMXMMwY |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_122900 crossref_primary_10_1016_j_chemosphere_2024_142630 crossref_primary_10_1016_j_cej_2021_130205 crossref_primary_10_1016_j_scitotenv_2022_153730 crossref_primary_10_1016_j_trac_2023_117092 crossref_primary_10_1016_j_watres_2023_120322 crossref_primary_10_1016_j_envpol_2024_125505 crossref_primary_10_3390_su14137987 crossref_primary_10_1016_j_envpol_2024_123327 crossref_primary_10_1016_j_envpol_2024_125504 crossref_primary_10_1016_j_chemosphere_2020_128162 crossref_primary_10_1016_j_jhazmat_2020_123923 crossref_primary_10_3390_w13192736 crossref_primary_10_1016_j_jhazmat_2024_133732 crossref_primary_10_1016_j_scitotenv_2020_137253 crossref_primary_10_1016_j_chemosphere_2020_128040 crossref_primary_10_1016_j_scitotenv_2019_135579 crossref_primary_10_1016_j_jhazmat_2024_135919 crossref_primary_10_1016_j_chemosphere_2021_131185 crossref_primary_10_1016_j_envpol_2019_113227 crossref_primary_10_1016_j_aquatox_2020_105689 crossref_primary_10_3390_ijerph17051509 crossref_primary_10_1007_s10653_024_01992_7 crossref_primary_10_1016_j_jhazmat_2020_123773 crossref_primary_10_1016_j_jwpe_2024_106624 crossref_primary_10_1002_wat2_1398 crossref_primary_10_1007_s00216_020_03066_w crossref_primary_10_3390_biomedicines11020264 crossref_primary_10_1016_j_scitotenv_2025_178378 crossref_primary_10_1515_biol_2022_0034 crossref_primary_10_1007_s10661_024_13421_4 crossref_primary_10_1016_j_scitotenv_2021_146094 crossref_primary_10_1016_j_marpolbul_2022_113467 crossref_primary_10_1016_j_jenvman_2023_118386 crossref_primary_10_1021_acs_est_3c06829 crossref_primary_10_1021_acs_est_4c04818 crossref_primary_10_1016_j_marpolbul_2024_116656 crossref_primary_10_1016_j_jenvman_2024_121836 crossref_primary_10_1016_j_scitotenv_2020_141137 crossref_primary_10_1016_j_chemosphere_2022_133861 crossref_primary_10_1016_j_ceja_2022_100310 crossref_primary_10_1007_s11270_021_05291_0 crossref_primary_10_1016_j_scitotenv_2021_150118 crossref_primary_10_3390_toxics10050270 crossref_primary_10_1007_s42114_023_00664_x crossref_primary_10_1016_j_chemosphere_2024_143995 crossref_primary_10_1016_j_envpol_2023_122086 crossref_primary_10_1016_j_envpol_2025_125711 crossref_primary_10_2139_ssrn_4199034 crossref_primary_10_1039_D3EM00281K crossref_primary_10_1016_j_jhazmat_2021_127533 crossref_primary_10_1002_ldr_4999 crossref_primary_10_1021_acs_est_9b03905 crossref_primary_10_17352_gje_000094 crossref_primary_10_1016_j_cherd_2024_05_027 crossref_primary_10_1021_acs_est_9b06583 crossref_primary_10_1016_j_cogsc_2021_100467 crossref_primary_10_1007_s10661_024_13021_2 crossref_primary_10_3390_su13179922 crossref_primary_10_1007_s11356_022_24437_z crossref_primary_10_1111_jiec_13140 crossref_primary_10_1002_appl_202200124 crossref_primary_10_1016_j_scitotenv_2024_169965 crossref_primary_10_1016_j_envint_2021_106794 crossref_primary_10_1016_j_envadv_2023_100396 crossref_primary_10_1002_etc_4745 crossref_primary_10_3390_polym13050771 crossref_primary_10_1080_10807039_2022_2140027 crossref_primary_10_1016_j_scitotenv_2022_157461 crossref_primary_10_1016_j_geoderma_2022_116315 crossref_primary_10_1016_j_scitotenv_2020_141276 crossref_primary_10_1016_j_jhazmat_2022_128453 crossref_primary_10_1186_s43591_022_00037_z crossref_primary_10_3389_fenvs_2024_1439573 crossref_primary_10_1016_j_envres_2025_121281 crossref_primary_10_1016_j_marpolbul_2021_113282 crossref_primary_10_1016_j_scitotenv_2019_136073 crossref_primary_10_1002_ieam_4214 crossref_primary_10_1007_s13762_023_04865_1 crossref_primary_10_1016_j_scitotenv_2021_146695 crossref_primary_10_1139_cjfas_2023_0023 crossref_primary_10_1002_etc_5168 crossref_primary_10_1016_j_jhazmat_2023_132174 crossref_primary_10_1016_j_scitotenv_2022_160758 crossref_primary_10_31025_2611_4135_2019_13873 crossref_primary_10_3390_jmse10020288 crossref_primary_10_1016_j_watres_2020_115723 crossref_primary_10_1016_j_jhazmat_2024_133520 crossref_primary_10_1080_02757540_2022_2126461 crossref_primary_10_1016_j_scitotenv_2020_144013 crossref_primary_10_1016_j_scitotenv_2022_158686 crossref_primary_10_1016_j_jhazmat_2022_130532 crossref_primary_10_1016_j_scitotenv_2020_139866 crossref_primary_10_1007_s11367_025_02446_7 crossref_primary_10_1016_j_scitotenv_2022_154207 crossref_primary_10_1039_D4EM00744A crossref_primary_10_1016_j_cbpc_2020_108849 crossref_primary_10_1016_j_ecoenv_2023_115406 crossref_primary_10_1016_j_jhazmat_2024_136145 crossref_primary_10_1002_etc_4887 crossref_primary_10_1038_s41565_019_0424_z crossref_primary_10_3389_fenvs_2020_551075 crossref_primary_10_1016_j_sciaf_2020_e00546 crossref_primary_10_1016_j_scitotenv_2022_157486 crossref_primary_10_3390_w15091768 crossref_primary_10_1002_etc_5295 crossref_primary_10_1016_j_jhazmat_2022_128399 crossref_primary_10_1016_j_envpol_2021_116896 crossref_primary_10_1016_j_crsus_2024_100302 crossref_primary_10_1016_j_envpol_2020_114551 crossref_primary_10_1016_j_scitotenv_2023_162192 crossref_primary_10_1016_j_scitotenv_2021_151388 crossref_primary_10_1007_s00506_020_00698_1 crossref_primary_10_1016_j_jhazmat_2022_129814 crossref_primary_10_1371_journal_pbio_3000932 crossref_primary_10_1016_j_jhazmat_2021_126885 crossref_primary_10_1021_acs_est_0c02982 crossref_primary_10_1039_C9NR03306H crossref_primary_10_1038_s41578_021_00411_y crossref_primary_10_1016_j_scitotenv_2020_140349 crossref_primary_10_1016_j_scitotenv_2022_160021 crossref_primary_10_1016_j_ecolind_2020_106698 crossref_primary_10_1186_s43591_021_00008_w crossref_primary_10_1021_acs_est_9b02900 crossref_primary_10_3390_land11071117 crossref_primary_10_1016_j_envpol_2020_115499 crossref_primary_10_1016_j_jhazmat_2023_131229 crossref_primary_10_1371_journal_pone_0228896 crossref_primary_10_1038_s41598_020_79304_z crossref_primary_10_1021_acs_est_1c01768 |
Cites_doi | 10.1016/j.wasman.2005.03.007 10.1016/j.scitotenv.2016.09.213 10.1016/j.envpol.2018.02.005 10.1071/EN14218 10.1016/j.envpol.2015.04.023 10.1016/S0025-326X(87)80019-X 10.1021/es2031505 10.1186/s12302-015-0069-y 10.1098/rstb.2008.0265 10.1016/j.watres.2018.06.015 10.1016/j.marpolbul.2014.12.041 10.1016/j.fooweb.2018.e00097 10.1016/j.watres.2015.02.012 10.1038/ncomms15611 10.1016/j.watres.2017.12.056 10.1002/etc.2914 10.3389/fenvs.2017.00045 10.1021/es400663f 10.1016/j.cub.2013.09.001 10.1016/j.marpolbul.2017.02.048 10.1016/j.scitotenv.2015.12.100 10.1016/j.envpol.2013.02.031 10.1016/j.envpol.2013.10.036 10.1021/acs.est.7b02219 10.1016/j.envpol.2014.02.006 10.1098/rstb.2008.0284 10.1021/acs.est.6b02917 10.3109/17435390.2015.1073812 10.1002/anie.201606957 10.1139/facets-2016-0070 10.1002/ieam.1334 10.1002/etc.4268 10.1186/s12302-014-0012-7 10.1016/j.envpol.2018.07.069 10.1016/j.marpolbul.2011.09.025 10.1016/j.wasman.2008.05.005 10.1071/EN14172 10.1016/S0025-326X(02)00220-5 10.1002/etc.2177 10.1016/j.marenvres.2015.06.014 10.1016/S0261-2194(00)00086-7 10.1021/acs.est.8b01513 10.1016/j.scitotenv.2017.01.190 10.1016/j.marpolbul.2015.07.022 |
ContentType | Journal Article |
Copyright | 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. 2018 SETAC. 2019 SETAC |
Copyright_xml | – notice: 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. – notice: 2018 SETAC. – notice: 2019 SETAC |
DBID | 24P AAYXX CITATION NPM 7QO 7SN 7SS 7ST 7T7 7TK 7U7 8FD C1K FR3 K9. P64 RC3 SOI 7X8 7S9 L.6 5PM |
DOI | 10.1002/etc.4323 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
DocumentTitleAlternate | Environmental risk assessment of microplastics |
EISSN | 1552-8618 |
EndPage | 447 |
ExternalDocumentID | PMC6849787 30488983 10_1002_etc_4323 ETC4323 |
Genre | article Journal Article |
GeographicLocations | Asia North America Europe |
GeographicLocations_xml | – name: North America – name: Europe – name: Asia |
GroupedDBID | --- --K -~X ..I .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 24P 29G 31~ 33P 36B 3SF 3V. 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 5WD 66C 702 7PT 7X2 7X7 7XC 8-0 8-1 8-3 8-4 8-5 88E 88I 8C1 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAFWJ AAHBH AAHHS AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDFA ABEFU ABEJV ABJCF ABJNI ABPVW ABUWG ABXVV ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F D0L D1I DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS ECGQY EJD F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNUQQ GODZA GUQSH GWYGA H.T H.X HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ IHE IX1 J0M KB. L6V LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0K M1P M2O M2P M41 M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OBOKY OHT OWPYF P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q.N Q11 Q2X QB0 R.K RIWAO RJQFR RNS ROL ROX RPZ RWI RX1 SAMSI SUPJJ TWZ UB1 UKHRP VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WUPDE WXSBR WYISQ XG1 XIH XV2 YCJ ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGNP AGHNM AGORE BCRHZ CITATION KOP AAMMB ACVCV AEFGJ AGQPQ AGXDD AIDQK AIDYY AJBYB AJDVS H13 NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QO 7SN 7SS 7ST 7T7 7TK 7U7 8FD C1K FR3 K9. P64 RC3 SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5743-87630b58457ae250292d15b83fb764f7ed094819e10114711eeff5949ebc4f863 |
IEDL.DBID | DR2 |
ISSN | 0730-7268 1552-8618 |
IngestDate | Thu Aug 21 14:11:10 EDT 2025 Fri Jul 11 18:31:24 EDT 2025 Fri Jul 11 10:16:41 EDT 2025 Wed Aug 13 02:49:13 EDT 2025 Mon Jul 21 05:45:07 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Tue Jul 01 01:49:54 EDT 2025 Wed Jan 22 16:52:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Probabilistic species sensitivity distribution Probabilistic risk assessment Microplastics Freshwater |
Language | English |
License | Attribution-NonCommercial-NoDerivs https://creativecommons.org/licenses/by-nc-nd/4.0 2018 SETAC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5743-87630b58457ae250292d15b83fb764f7ed094819e10114711eeff5949ebc4f863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetc.4323 |
PMID | 30488983 |
PQID | 2172028398 |
PQPubID | 32741 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6849787 proquest_miscellaneous_2189540724 proquest_miscellaneous_2139583249 proquest_journals_2172028398 pubmed_primary_30488983 crossref_primary_10_1002_etc_4323 crossref_citationtrail_10_1002_etc_4323 wiley_primary_10_1002_etc_4323_ETC4323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Environmental toxicology and chemistry |
PublicationTitleAlternate | Environ Toxicol Chem |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2017; 5 2015; 12 2015; 34 2018; 28 2018; 242 2017; 8 2013; 47 2017; 2 2015; 204 2015; 92 2013; 23 2015; 75 2011; 62 2015; 99 2016; 10 2008 2014; 26 2016; 50 2017; 575 1987; 18 2009; 29 2017; 118 2017; 51 2018; 17 2000; 19 2013; 32 2016; 545–546 2015; 111 2018; 236 2018; 137 2002; 44 2006; 26 2017; 56 2013; 178 2009; 364 2018 2017 2016 2018; 52 2015 2016; 28 2012; 46 2014; 188 2017; 586 2014; 185 2018; 37 2018; 58 2012; 9 Solomon (2025010314431248700_etc4323-bib-0041) 2000; 19 Coll (2025010314431248700_etc4323-bib-0008) 2016; 10 Imhof (2025010314431248700_etc4323-bib-0027) 2013; 23 Henry (2025010314431248700_etc4323-bib-0023) 2006; 26 Everaert (2025010314431248700_etc4323-bib-0016) 2018; 242 Derraik (2025010314431248700_etc4323-bib-0009) 2002; 44 Laist (2025010314431248700_etc4323-bib-0034) 1987; 18 Ivleva (2025010314431248700_etc4323-bib-0029) 2017; 56 Duis (2025010314431248700_etc4323-bib-0011) 2016; 28 Wang (2025010314431248700_etc4323-bib-0048) 2016; 545–546 Cole (2025010314431248700_etc4323-bib-0006) 2013; 47 Gregory (2025010314431248700_etc4323-bib-0022) 2009; 364 Blettler (2025010314431248700_etc4323-bib-0003) 2018; 28 Horton (2025010314431248700_etc4323-bib-0025) 2017; 586 Lahens (2025010314431248700_etc4323-bib-0033) 2018; 236 Faure (2025010314431248700_etc4323-bib-0017) 2015; 12 Cable (2025010314431248700_etc4323-bib-0005) 2017; 5 Dris (2025010314431248700_etc4323-bib-0010) 2015; 12 Baldwin (2025010314431248700_etc4323-bib-0002) 2016; 50 Burns (2025010314431248700_etc4323-bib-0004) 2018; 37 European Chemicals Agency. (2025010314431248700_etc4323-bib-0013) 2008 Plastics Europe. (2025010314431248700_etc4323-bib-0040) 2018 Zhang (2025010314431248700_etc4323-bib-0051) 2015; 204 Wagner (2025010314431248700_etc4323-bib-0046) 2014; 26 Gottschalk (2025010314431248700_etc4323-bib-0021) 2012; 9 Ivar do Sul (2025010314431248700_etc4323-bib-0028) 2014; 185 Wang (2025010314431248700_etc4323-bib-0047) 2017; 575 Avio (2025010314431248700_etc4323-bib-0001) 2015; 111 GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. (2025010314431248700_etc4323-bib-0019) 2015 Li (2025010314431248700_etc4323-bib-0038) 2018; 137 Xanthos (2025010314431248700_etc4323-bib-0050) 2017; 118 IBM. (2025010314431248700_etc4323-bib-0026) 2017 Kawecki (2025010314431248700_etc4323-bib-0030) 2018; 52 Gall (2025010314431248700_etc4323-bib-0018) 2015; 92 Wright (2025010314431248700_etc4323-bib-0049) 2013; 178 Cole (2025010314431248700_etc4323-bib-0007) 2011; 62 Syberg (2025010314431248700_etc4323-bib-0043) 2015; 34 European Chemicals Agency. (2025010314431248700_etc4323-bib-0014) 2016 Khan (2025010314431248700_etc4323-bib-0031) 2018 Lechner (2025010314431248700_etc4323-bib-0036) 2014; 188 Koelmans (2025010314431248700_etc4323-bib-0032) 2017; 51 Lebreton (2025010314431248700_etc4323-bib-0035) 2017; 8 European Parliament. (2025010314431248700_etc4323-bib-0015) 2018 Hidalgo-Ruz (2025010314431248700_etc4323-bib-0024) 2012; 46 Stolte (2025010314431248700_etc4323-bib-0042) 2015; 99 Vermaire (2025010314431248700_etc4323-bib-0045) 2017; 2 Lehtiniemi (2025010314431248700_etc4323-bib-0037) 2018; 17 Teuten (2025010314431248700_etc4323-bib-0044) 2009; 364 Eerkes-Medrano (2025010314431248700_etc4323-bib-0012) 2015; 75 Gottschalk (2025010314431248700_etc4323-bib-0020) 2013; 32 Parrot (2025010314431248700_etc4323-bib-0039) 2009; 29 |
References_xml | – volume: 28 start-page: 416 year: 2018 end-page: 424 article-title: Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps publication-title: Water Res – volume: 236 start-page: 661 year: 2018 end-page: 671 article-title: Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity publication-title: Environ Pollut – volume: 111 start-page: 18 year: 2015 end-page: 26 article-title: Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea publication-title: Mar Environ Res – volume: 242 start-page: 1930 year: 2018 end-page: 1938 article-title: Risk assessment of microplastics in the ocean: Modelling approach and first conclusions publication-title: Environ Pollut – volume: 8 start-page: 15611 year: 2017 article-title: River plastic emissions to the world's oceans publication-title: Nat Commun – volume: 34 start-page: 945 year: 2015 end-page: 953 article-title: Microplastics: Addressing ecological risk through lessons learned publication-title: Environ Toxicol Chem – volume: 12 start-page: 582 year: 2015 end-page: 591 article-title: Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants publication-title: Environ Chem – volume: 58 start-page: 101 year: 2018 end-page: 124 – volume: 46 start-page: 3060 year: 2012 end-page: 3075 article-title: Microplastics in the marine environment: A review of the methods used for identification and quantification publication-title: Environ Sci Technol – volume: 23 start-page: R867 year: 2013 article-title: Contamination of beach sediments of a subalpine lake with microplastic particles publication-title: Curr Biol – volume: 18 start-page: 319 year: 1987 end-page: 326 article-title: Overview of the biological effects of lost and discarded plastic debris in the marine environment publication-title: Mar Pollut Bull – volume: 26 start-page: 92 year: 2006 end-page: 100 article-title: Municipal solid waste management challenges in developing countries—Kenyan case study publication-title: Waste Manag – volume: 37 start-page: 2776 year: 2018 end-page: 2796 article-title: Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps publication-title: Environ Toxicol Chem – year: 2018 – volume: 29 start-page: 986 year: 2009 end-page: 995 article-title: Municipal solid waste management in Africa: Strategies and livelihoods in Yaoundé, Cameroon publication-title: Waste Manag – volume: 185 start-page: 352 year: 2014 end-page: 364 article-title: The present and future of microplastic pollution in the marine environment publication-title: Environ Pollut – volume: 9 start-page: 79 year: 2012 end-page: 86 article-title: A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk publication-title: Integr Environ Assess Manag – volume: 118 start-page: 17 year: 2017 end-page: 26 article-title: International policies to reduce plastic marine pollution from single‐use plastics (plastic bags and microbeads): A review publication-title: Mar Pollut Bull – volume: 586 start-page: 127 year: 2017 end-page: 141 article-title: Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci Total Environ – volume: 19 start-page: 649 year: 2000 end-page: 655 article-title: Probabilistic risk assessment of agrochemicals in the environment publication-title: Crop Prot – volume: 28 start-page: 2 year: 2016 end-page: 14 article-title: Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects publication-title: Environ Sci Eur – start-page: 8 year: 2008 – volume: 2 start-page: 301 year: 2017 end-page: 314 article-title: Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries publication-title: Facets – volume: 62 start-page: 2588 year: 2011 end-page: 2597 article-title: Microplastics as contaminants in the marine environment: A review publication-title: Mar Pollut Bull – volume: 75 start-page: 63 year: 2015 end-page: 82 article-title: Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res – volume: 26 start-page: 12 year: 2014 article-title: Microplastics in freshwater ecosystems: What we know and what we need to know publication-title: Environ Sci Eur – volume: 44 start-page: 842 year: 2002 end-page: 852 article-title: The pollution of the marine environment by plastic debris: A review publication-title: Mar Pollut Bull – year: 2015 – volume: 50 start-page: 10377 year: 2016 end-page: 10385 article-title: Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology publication-title: Environ Sci Technol – volume: 188 start-page: 177 year: 2014 end-page: 181 article-title: The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe's second largest river publication-title: Environ Pollut – volume: 178 start-page: 483 year: 2013 end-page: 492 article-title: The physical impacts of microplastics on marine organisms: A review publication-title: Environ Pollut – volume: 92 start-page: 170 year: 2015 end-page: 179 article-title: The impact of debris on marine life publication-title: Mar Pollut Bull – volume: 99 start-page: 216 year: 2015 end-page: 229 article-title: Microplastic concentrations in beach sediments along the German Baltic coast publication-title: Mar Pollut Bull – volume: 12 start-page: 539 year: 2015 end-page: 550 article-title: Beyond the ocean: Contamination of freshwater ecosystems with (micro‐)plastic particles publication-title: Environ Chem – volume: 137 start-page: 362 year: 2018 end-page: 374 article-title: Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection publication-title: Water Res – volume: 10 start-page: 436 year: 2016 end-page: 444 article-title: Probabilistic environmental risk assessment of five nanomaterials (nano‐TiO , nano‐Ag, nano‐ZnO, CNT, and fullerenes) publication-title: Nanotoxicology – volume: 5 year: 2017 article-title: Distribution and modeled transport of plastic pollution in the Great Lakes, the world's largest freshwater resource publication-title: Front Environ Sci – year: 2016 – volume: 545–546 start-page: 67 year: 2016 end-page: 76 article-title: Probabilistic modeling of the flows and environmental risks of nano‐silica publication-title: Sci Total Environ – volume: 17 start-page: e00097 year: 2018 article-title: Size matters more than shape: Ingestion of primary and secondary microplastics by small predators publication-title: Food Webs – volume: 52 start-page: 9874 year: 2018 end-page: 9888 article-title: Probabilistic material flow analysis of seven commodity plastics in Europe publication-title: Environ Sci Technol – volume: 51 start-page: 11513 year: 2017 end-page: 11519 article-title: Risks of plastic debris: Unravelling fact, opinion, perception, and belief publication-title: Environ Sci Technol – volume: 32 start-page: 1278 year: 2013 end-page: 1287 article-title: Engineered nanomaterials in water and soils: A risk quantification based on probabilistic exposure and effect modeling publication-title: Environ Toxicol Chem – volume: 204 start-page: 117 year: 2015 end-page: 123 article-title: Accumulation of floating microplastics behind the Three Gorges Dam publication-title: Environ Pollut – volume: 47 start-page: 6646 year: 2013 end-page: 6655 article-title: Microplastic ingestion by zooplankton publication-title: Environ Sci Technol – volume: 364 start-page: 2013 year: 2009 end-page: 2025 article-title: Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers‐on, hitch‐hiking and alien invasions publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 364 start-page: 2027 year: 2009 end-page: 2045 article-title: Transport and release of chemicals from plastics to the environment and to wildlife publication-title: Philos Trans R Soc Lond B Biol Sci – year: 2017 – volume: 56 start-page: 1720 year: 2017 end-page: 1739 article-title: Microplastic in aquatic ecosystems publication-title: Angew Chem Int Ed Engl – volume: 575 start-page: 1369 year: 2017 end-page: 1374 article-title: Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China publication-title: Sci Total Environ – year: 2018 ident: 2025010314431248700_etc4323-bib-0040 – volume: 26 start-page: 92 year: 2006 ident: 2025010314431248700_etc4323-bib-0023 article-title: Municipal solid waste management challenges in developing countries—Kenyan case study publication-title: Waste Manag doi: 10.1016/j.wasman.2005.03.007 – volume: 575 start-page: 1369 year: 2017 ident: 2025010314431248700_etc4323-bib-0047 article-title: Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.213 – volume: 236 start-page: 661 year: 2018 ident: 2025010314431248700_etc4323-bib-0033 article-title: Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.02.005 – volume: 12 start-page: 582 year: 2015 ident: 2025010314431248700_etc4323-bib-0017 article-title: Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants publication-title: Environ Chem doi: 10.1071/EN14218 – volume: 204 start-page: 117 year: 2015 ident: 2025010314431248700_etc4323-bib-0051 article-title: Accumulation of floating microplastics behind the Three Gorges Dam publication-title: Environ Pollut doi: 10.1016/j.envpol.2015.04.023 – volume: 18 start-page: 319 year: 1987 ident: 2025010314431248700_etc4323-bib-0034 article-title: Overview of the biological effects of lost and discarded plastic debris in the marine environment publication-title: Mar Pollut Bull doi: 10.1016/S0025-326X(87)80019-X – start-page: 101 volume-title: The Handbook of Environmental Chemistry year: 2018 ident: 2025010314431248700_etc4323-bib-0031 – volume: 46 start-page: 3060 year: 2012 ident: 2025010314431248700_etc4323-bib-0024 article-title: Microplastics in the marine environment: A review of the methods used for identification and quantification publication-title: Environ Sci Technol doi: 10.1021/es2031505 – volume: 28 start-page: 2 year: 2016 ident: 2025010314431248700_etc4323-bib-0011 article-title: Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects publication-title: Environ Sci Eur doi: 10.1186/s12302-015-0069-y – volume: 364 start-page: 2013 year: 2009 ident: 2025010314431248700_etc4323-bib-0022 article-title: Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2008.0265 – volume: 28 start-page: 416 year: 2018 ident: 2025010314431248700_etc4323-bib-0003 article-title: Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps publication-title: Water Res doi: 10.1016/j.watres.2018.06.015 – volume: 92 start-page: 170 year: 2015 ident: 2025010314431248700_etc4323-bib-0018 article-title: The impact of debris on marine life publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2014.12.041 – volume: 17 start-page: e00097 year: 2018 ident: 2025010314431248700_etc4323-bib-0037 article-title: Size matters more than shape: Ingestion of primary and secondary microplastics by small predators publication-title: Food Webs doi: 10.1016/j.fooweb.2018.e00097 – year: 2018 ident: 2025010314431248700_etc4323-bib-0015 – volume: 75 start-page: 63 year: 2015 ident: 2025010314431248700_etc4323-bib-0012 article-title: Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res doi: 10.1016/j.watres.2015.02.012 – volume: 8 start-page: 15611 year: 2017 ident: 2025010314431248700_etc4323-bib-0035 article-title: River plastic emissions to the world's oceans publication-title: Nat Commun doi: 10.1038/ncomms15611 – volume: 137 start-page: 362 year: 2018 ident: 2025010314431248700_etc4323-bib-0038 article-title: Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection publication-title: Water Res doi: 10.1016/j.watres.2017.12.056 – volume: 34 start-page: 945 year: 2015 ident: 2025010314431248700_etc4323-bib-0043 article-title: Microplastics: Addressing ecological risk through lessons learned publication-title: Environ Toxicol Chem doi: 10.1002/etc.2914 – volume: 5 year: 2017 ident: 2025010314431248700_etc4323-bib-0005 article-title: Distribution and modeled transport of plastic pollution in the Great Lakes, the world's largest freshwater resource publication-title: Front Environ Sci doi: 10.3389/fenvs.2017.00045 – volume: 47 start-page: 6646 year: 2013 ident: 2025010314431248700_etc4323-bib-0006 article-title: Microplastic ingestion by zooplankton publication-title: Environ Sci Technol doi: 10.1021/es400663f – volume: 23 start-page: R867 year: 2013 ident: 2025010314431248700_etc4323-bib-0027 article-title: Contamination of beach sediments of a subalpine lake with microplastic particles publication-title: Curr Biol doi: 10.1016/j.cub.2013.09.001 – volume: 118 start-page: 17 year: 2017 ident: 2025010314431248700_etc4323-bib-0050 article-title: International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2017.02.048 – volume: 545–546 start-page: 67 year: 2016 ident: 2025010314431248700_etc4323-bib-0048 article-title: Probabilistic modeling of the flows and environmental risks of nano-silica publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2015.12.100 – volume: 178 start-page: 483 year: 2013 ident: 2025010314431248700_etc4323-bib-0049 article-title: The physical impacts of microplastics on marine organisms: A review publication-title: Environ Pollut doi: 10.1016/j.envpol.2013.02.031 – volume: 185 start-page: 352 year: 2014 ident: 2025010314431248700_etc4323-bib-0028 article-title: The present and future of microplastic pollution in the marine environment publication-title: Environ Pollut doi: 10.1016/j.envpol.2013.10.036 – volume: 51 start-page: 11513 year: 2017 ident: 2025010314431248700_etc4323-bib-0032 article-title: Risks of plastic debris: Unravelling fact, opinion, perception, and belief publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b02219 – volume: 188 start-page: 177 year: 2014 ident: 2025010314431248700_etc4323-bib-0036 article-title: The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe's second largest river publication-title: Environ Pollut doi: 10.1016/j.envpol.2014.02.006 – volume: 364 start-page: 2027 year: 2009 ident: 2025010314431248700_etc4323-bib-0044 article-title: Transport and release of chemicals from plastics to the environment and to wildlife publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2008.0284 – volume: 50 start-page: 10377 year: 2016 ident: 2025010314431248700_etc4323-bib-0002 article-title: Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b02917 – year: 2016 ident: 2025010314431248700_etc4323-bib-0014 – volume: 10 start-page: 436 year: 2016 ident: 2025010314431248700_etc4323-bib-0008 article-title: Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes) publication-title: Nanotoxicology doi: 10.3109/17435390.2015.1073812 – volume: 56 start-page: 1720 year: 2017 ident: 2025010314431248700_etc4323-bib-0029 article-title: Microplastic in aquatic ecosystems publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201606957 – volume: 2 start-page: 301 year: 2017 ident: 2025010314431248700_etc4323-bib-0045 article-title: Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries publication-title: Facets doi: 10.1139/facets-2016-0070 – year: 2015 ident: 2025010314431248700_etc4323-bib-0019 – volume: 9 start-page: 79 year: 2012 ident: 2025010314431248700_etc4323-bib-0021 article-title: A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk publication-title: Integr Environ Assess Manag doi: 10.1002/ieam.1334 – volume: 37 start-page: 2776 year: 2018 ident: 2025010314431248700_etc4323-bib-0004 article-title: Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps publication-title: Environ Toxicol Chem doi: 10.1002/etc.4268 – volume: 26 start-page: 12 year: 2014 ident: 2025010314431248700_etc4323-bib-0046 article-title: Microplastics in freshwater ecosystems: What we know and what we need to know publication-title: Environ Sci Eur doi: 10.1186/s12302-014-0012-7 – volume: 242 start-page: 1930 year: 2018 ident: 2025010314431248700_etc4323-bib-0016 article-title: Risk assessment of microplastics in the ocean: Modelling approach and first conclusions publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.07.069 – year: 2017 ident: 2025010314431248700_etc4323-bib-0026 – volume: 62 start-page: 2588 year: 2011 ident: 2025010314431248700_etc4323-bib-0007 article-title: Microplastics as contaminants in the marine environment: A review publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2011.09.025 – volume: 29 start-page: 986 year: 2009 ident: 2025010314431248700_etc4323-bib-0039 article-title: Municipal solid waste management in Africa: Strategies and livelihoods in Yaoundé, Cameroon publication-title: Waste Manag doi: 10.1016/j.wasman.2008.05.005 – start-page: 8 year: 2008 ident: 2025010314431248700_etc4323-bib-0013 – volume: 12 start-page: 539 year: 2015 ident: 2025010314431248700_etc4323-bib-0010 article-title: Beyond the ocean: Contamination of freshwater ecosystems with (micro-)plastic particles publication-title: Environ Chem doi: 10.1071/EN14172 – volume: 44 start-page: 842 year: 2002 ident: 2025010314431248700_etc4323-bib-0009 article-title: The pollution of the marine environment by plastic debris: A review publication-title: Mar Pollut Bull doi: 10.1016/S0025-326X(02)00220-5 – volume: 32 start-page: 1278 year: 2013 ident: 2025010314431248700_etc4323-bib-0020 article-title: Engineered nanomaterials in water and soils: A risk quantification based on probabilistic exposure and effect modeling publication-title: Environ Toxicol Chem doi: 10.1002/etc.2177 – volume: 111 start-page: 18 year: 2015 ident: 2025010314431248700_etc4323-bib-0001 article-title: Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea publication-title: Mar Environ Res doi: 10.1016/j.marenvres.2015.06.014 – volume: 19 start-page: 649 year: 2000 ident: 2025010314431248700_etc4323-bib-0041 article-title: Probabilistic risk assessment of agrochemicals in the environment publication-title: Crop Prot doi: 10.1016/S0261-2194(00)00086-7 – volume: 52 start-page: 9874 year: 2018 ident: 2025010314431248700_etc4323-bib-0030 article-title: Probabilistic material flow analysis of seven commodity plastics in Europe publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b01513 – volume: 586 start-page: 127 year: 2017 ident: 2025010314431248700_etc4323-bib-0025 article-title: Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.01.190 – volume: 99 start-page: 216 year: 2015 ident: 2025010314431248700_etc4323-bib-0042 article-title: Microplastic concentrations in beach sediments along the German Baltic coast publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2015.07.022 |
SSID | ssj0016999 |
Score | 2.5936096 |
Snippet | Microplastics have been detected in freshwaters all over the world in almost all samples, and ecotoxicological studies have shown adverse effects of... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 436 |
SubjectTerms | adverse effects Asia ecotoxicology Europe Exposure Fresh water Freshwater Hazard/Risk Assessment Mathematical analysis Microplastics North America Particle shape Polymers Probabilistic risk assessment Probabilistic species sensitivity distribution Probability distribution Quantiles risk Risk assessment risk characterization Statistical analysis Statistical methods |
Title | Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetc.4323 https://www.ncbi.nlm.nih.gov/pubmed/30488983 https://www.proquest.com/docview/2172028398 https://www.proquest.com/docview/2139583249 https://www.proquest.com/docview/2189540724 https://pubmed.ncbi.nlm.nih.gov/PMC6849787 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3faxQxEMcHLQi--PvHaS0RRJ_2upvNj41vUlqKoIi0UPBhSXYT7rDuHr07rcU_3pnsDz2rIj7dQ-aWZDOTfHd38hmAZ6Z2WgVnkzqtVCJwA0ysFTJxstBOqKzO46m0N2_V4bF4fSJP-qxKOgvT8SHGF24UGXG9pgC3brn7AxqKo5qKnBPok1K1SA-9H8lRmTKxdCQ5cKK5KgbubMp3hz9u7kSX5OXlLMmf1Wvcfg5uwoeh413WycfpeuWm1cUvTMf_G9ktuNGrUvaqc6PbcMU3d-DafiRaf70L345ici2zDcOn1VV7Pq-GNZNRbjqzI9-TtYF9oiS_BcpyQkC_ZHtjqUNqtJ_t_JTOa7GZveguWjN_vmjpVSWjhFU2b1g488vZF0voz3twfLB_tHeY9GUbkkoS8JQYdynOtZDaelRY3PA6k67IA7qFCNrXKSFijM_oYUxnmfchSCOMd5UIhcrvw1bTNv4hsBq3VxEqogpqgeLFaZ5a9KogZKWtchN4MUxhWfVMcyqtcVp2NGZe4r0s6V5O4Oloueg4Hr-x2R68oOwjeVlSAS_SYKbAS4zNGIP0YcU2vl2TTW4kLo3C_M2mMAQ75GICDzrHGjuS0zJqCuyA3nC50YAY4JstzXwWWeCqoBKBegLPo0f9cWwlThT9PvpXw8dwHbWh6RLUt2Frdbb2T1B_rdwOXOXi3U6Mt-916i_- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHpQjBhfdjoYCREJyyzcOPGE6otFqg7QFtpR6QIjuxtStKsmp3oVT8eGacTWApIMQpB08sP2bsiTP-BuCprqyS3pqoiksZcdwAI2O4iKzIleUyqbJwK21vX44O-NtDcbgGL7u7MC0foj9wI8sI6zUZOB1Ib_6ghmK3hjxLswtwkRJ6Ezj_9fueHZVIHZJHkgpHKpV5R56N083uzdW96JyDeT5O8mf_NWxAO9fgQ9f0Nu7k43Axt8Py7Beq43_27TpcXTqm7FWrSTdgzdU34dJ2gFp_vQXfxiG-lpma4QfrvDmdlt2yySg8nZke8ckazz5RnN8MPXOiQL9gW322Qyo0n830iK5ssYk5ayutmDudNXRayShmlU1r5o_dyeSLIfrnbTjY2R5vjaJl5oaoFMQ8JcxdjNPNhTIOnaxUp1UibJ551AzulatiosRol9D3mEoS57wXmmtnS-5zmd2B9bqp3T1gFe6w3JcEFlQc_Rer0tigYnkuSmWkHcDzbg6Lcok1p-waR0ULZE4LHMuCxnIAT3rJWYvy-I3MRqcGxdKYTwrK4UVumM6xir4YzZD-rZjaNQuSybTA1ZHrv8nkmniHKR_A3Vaz-oZktJLqHBugVnSuFyAM-GpJPZ0EHLjMKUugGsCzoFJ_7FuBE0XP-_8q-Bguj8Z7u8Xum_13D-AKuoq6jVffgPX58cI9RHdsbh8Fs_sOITozQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEagXxLsLBYyE4BSaOH7E3FDpqryqHlqpt8hObO1KJVm1W2grfjwzzgNWBcQpB08sJ5_H_myPvwF4aWqnVXA2qdNKJQInwMRaIRMnC-2Eyuo83kr7sqd2D8XHI3nUR1XSXZhOH2LccCPPiOM1OfiiDlu_REPxq96InOfX4Qad9VE4Fxf74wmCMjF3JPXgRHNVDMKzKd8a3lydiq7wy6thkr_T1zj_TO_A7Z44sncd0nfhmm_uwc2dKDp9cR9-HMT4V2YbhgvKZXs-r4ZhjVH4OLOjBCdrA_tKcXgLZM6k0vyWbY_ZCKnQfrPzY7pSxWb2squ0Zv580dJuIqOYUjZvWMCF-uy7JXXOB3A43TnY3k36zApJJUmTlGToUoRDSG09kiBueJ1JV-QBkRNB-zolFRfjM1ov6SzzPgRphPGuEqFQ-UNYa9rGbwCrcQYUoSLhPy2QXzjNU4vAByErbZWbwOvhJ5dVLztO2S-Oy04wmZcIR0lwTODFaLnopDb-YLM54FT2znZaUo4tokmmwCrGYnQTOvuwjW_PyCY3EkcvYf5lUxjSI-RiAo866MeG5DTSmQIboFc6xWhAMt2rJc18FuW6VUFZ_PQEXsXu89dvKxEoej7-X8PncGv__bT8_GHv0xNYRyZnunDyTVhbnpz5p8iWlu5ZdIufSEsR-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+an+ecotoxicological+risk+assessment+of+microplastics%3A+Comparison+of+available+hazard+and+exposure+data+in+freshwaters&rft.jtitle=Environmental+toxicology+and+chemistry&rft.au=Adam%2C+V%C3%A9ronique&rft.au=Yang%2C+Tong&rft.au=Nowack%2C+Bernd&rft.date=2019-02-01&rft.issn=1552-8618&rft.eissn=1552-8618&rft.volume=38&rft.issue=2&rft.spage=436&rft_id=info:doi/10.1002%2Fetc.4323&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-7268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-7268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-7268&client=summon |