Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation
Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive....
Saved in:
Published in | Molecular systems biology Vol. 11; no. 12; pp. 852 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2015
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.
Synopsis
Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes.
Chromatin architecture is mapped genome‐wide using Hi‐C and a neuronal differentiation model from mESC to post‐mitotic neurons.
Mammalian chromosomes fold hierarchically in a manner that reflects epigenomic features and involves higher‐order domains (metaTADs) up to the chromosome scale.
metaTAD topologies are relatively conserved through differentiation, and their reorganization is related to gene expression changes.
Polymer modelling shows that hierarchical chromatin folding promotes efficient packaging without the loss of contact specificity.
Graphical Abstract
Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. |
---|---|
AbstractList | Abstract Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains ( TAD s), which are arranged into compartments spanning multiple megabases of genomic DNA . TAD s have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (meta TAD s) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. meta TAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher-order organization remains elusive. Here, we investigate TAD higher-order interactions with Hi-C through neuronal differentiation and show that they form a hierarchy of domains-within-domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree-like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Synopsis Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. Chromatin architecture is mapped genome‐wide using Hi‐C and a neuronal differentiation model from mESC to post‐mitotic neurons. Mammalian chromosomes fold hierarchically in a manner that reflects epigenomic features and involves higher‐order domains (metaTADs) up to the chromosome scale. metaTAD topologies are relatively conserved through differentiation, and their reorganization is related to gene expression changes. Polymer modelling shows that hierarchical chromatin folding promotes efficient packaging without the loss of contact specificity. Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Synopsis Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. Chromatin architecture is mapped genome‐wide using Hi‐C and a neuronal differentiation model from mESC to post‐mitotic neurons. Mammalian chromosomes fold hierarchically in a manner that reflects epigenomic features and involves higher‐order domains (metaTADs) up to the chromosome scale. metaTAD topologies are relatively conserved through differentiation, and their reorganization is related to gene expression changes. Polymer modelling shows that hierarchical chromatin folding promotes efficient packaging without the loss of contact specificity. Graphical Abstract Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. |
Author | Schueler, Markus Pombo, Ana Kraemer, Dorothee CA Nicodemi, Mario Carninci, Piero Forrest, Alistair RR Morris, Kelly J Chiariello, Andrea M Xie, Sheila Q Hayashizaki, Yoshihide Fraser, James Rito, Tiago Aitken, Stuart Ferrai, Carmelo Laudanno, Giovanni Jaeger, Ines Semple, Colin A Kawaji, Hideya Moore, Benjamin L Dostie, Josée Itoh, Masayoshi Barbieri, Mariano |
AuthorAffiliation | 6 RIKEN Preventive Medicine and Diagnosis Innovation Program Wako Saitama Japan 1 Department of Biochemistry Goodman Cancer Centre McGill University Montréal QC Canada 7 Division of Genomic Technologies RIKEN Center for Life Science Technologies Yokohama Kanagawa Japan 9 Single Molecule Imaging Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK 10 Cardiff School of Biosciences Cardiff UK 2 Epigenetic Regulation and Chromatin Architecture Group Berlin Institute for Medical Systems Biology Max‐Delbrück Centre for Molecular Medicine Berlin‐Buch Germany 3 Genome Function Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK 11 Systems Biology and Genomics Harry Perkins Institute of Medical Research Nedlands WA Australia 4 Dipartimento di Fisica Università di Napoli Federico II INFN Napoli CNR‐SPIN Complesso Universitario di Monte Sant'Angelo Naples Italy 5 MRC Human Genetics Unit MRC IGMM University of Edinburg |
AuthorAffiliation_xml | – name: 2 Epigenetic Regulation and Chromatin Architecture Group Berlin Institute for Medical Systems Biology Max‐Delbrück Centre for Molecular Medicine Berlin‐Buch Germany – name: 6 RIKEN Preventive Medicine and Diagnosis Innovation Program Wako Saitama Japan – name: 4 Dipartimento di Fisica Università di Napoli Federico II INFN Napoli CNR‐SPIN Complesso Universitario di Monte Sant'Angelo Naples Italy – name: 11 Systems Biology and Genomics Harry Perkins Institute of Medical Research Nedlands WA Australia – name: 10 Cardiff School of Biosciences Cardiff UK – name: 8 Stem Cell Neurogenesis Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK – name: 5 MRC Human Genetics Unit MRC IGMM University of Edinburgh Edinburgh UK – name: 9 Single Molecule Imaging Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK – name: 1 Department of Biochemistry Goodman Cancer Centre McGill University Montréal QC Canada – name: 3 Genome Function Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK – name: 7 Division of Genomic Technologies RIKEN Center for Life Science Technologies Yokohama Kanagawa Japan |
Author_xml | – sequence: 1 givenname: James surname: Fraser fullname: Fraser, James organization: Department of Biochemistry, Goodman Cancer Centre, McGill University – sequence: 2 givenname: Carmelo surname: Ferrai fullname: Ferrai, Carmelo organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine, Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus – sequence: 3 givenname: Andrea M surname: Chiariello fullname: Chiariello, Andrea M organization: Dipartimento di Fisica, Università di Napoli Federico II, INFN Napoli, CNR‐SPIN, Complesso Universitario di Monte Sant'Angelo – sequence: 4 givenname: Markus surname: Schueler fullname: Schueler, Markus organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine – sequence: 5 givenname: Tiago surname: Rito fullname: Rito, Tiago organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine – sequence: 6 givenname: Giovanni surname: Laudanno fullname: Laudanno, Giovanni organization: Dipartimento di Fisica, Università di Napoli Federico II, INFN Napoli, CNR‐SPIN, Complesso Universitario di Monte Sant'Angelo – sequence: 7 givenname: Mariano surname: Barbieri fullname: Barbieri, Mariano organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine – sequence: 8 givenname: Benjamin L surname: Moore fullname: Moore, Benjamin L organization: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh – sequence: 9 givenname: Dorothee CA surname: Kraemer fullname: Kraemer, Dorothee CA organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine – sequence: 10 givenname: Stuart surname: Aitken fullname: Aitken, Stuart organization: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh – sequence: 11 givenname: Sheila Q surname: Xie fullname: Xie, Sheila Q organization: Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus – sequence: 12 givenname: Kelly J surname: Morris fullname: Morris, Kelly J organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine, Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus – sequence: 13 givenname: Masayoshi surname: Itoh fullname: Itoh, Masayoshi organization: RIKEN Preventive Medicine and Diagnosis Innovation Program, Division of Genomic Technologies, RIKEN Center for Life Science Technologies – sequence: 14 givenname: Hideya surname: Kawaji fullname: Kawaji, Hideya organization: RIKEN Preventive Medicine and Diagnosis Innovation Program, Division of Genomic Technologies, RIKEN Center for Life Science Technologies – sequence: 15 givenname: Ines surname: Jaeger fullname: Jaeger, Ines organization: Stem Cell Neurogenesis Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Cardiff School of Biosciences – sequence: 16 givenname: Yoshihide surname: Hayashizaki fullname: Hayashizaki, Yoshihide organization: RIKEN Preventive Medicine and Diagnosis Innovation Program – sequence: 17 givenname: Piero surname: Carninci fullname: Carninci, Piero organization: Division of Genomic Technologies, RIKEN Center for Life Science Technologies – sequence: 18 givenname: Alistair RR surname: Forrest fullname: Forrest, Alistair RR organization: Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Systems Biology and Genomics, Harry Perkins Institute of Medical Research – sequence: 20 givenname: Colin A surname: Semple fullname: Semple, Colin A email: colin.semple@igmm.ed.ac.uk organization: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh – sequence: 21 givenname: Josée surname: Dostie fullname: Dostie, Josée email: josee.dostie@mcgill.ca organization: Department of Biochemistry, Goodman Cancer Centre, McGill University – sequence: 22 givenname: Ana surname: Pombo fullname: Pombo, Ana email: ana.pombo@mdc-berlin.de organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine, Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus – sequence: 23 givenname: Mario surname: Nicodemi fullname: Nicodemi, Mario email: mario.nicodemi@na.infn.it organization: Dipartimento di Fisica, Università di Napoli Federico II, INFN Napoli, CNR‐SPIN, Complesso Universitario di Monte Sant'Angelo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26700852$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk2PEyEYgCdmjfuhR6-GxIuXqcDAMFxM3I26m6zxoJ4JMC8tdQYqTDX11_hb_GXSdrfuGuMJAs_75P06rY5CDFBVTwmeEU45fTlmM6OY8JZJ-qA6IYKxmlFJj-7cj6vTnJcYNx3p6KPqmLYC447Tk2pz6SHpZBfe6gG5OPQ-zJEOPUoQ01wH_0NPPgYUHbKLFMeY4wgZ6QRo8OEL9GiKaEo6ZJv8aosWj13oMIf866cPyMIwrAedUO-dgwRh8jvj4-qh00OGJzfnWfX57ZtPF5f19Yd3Vxevr2vLBaO17aEzAkthiG6EdqbX2ABpgBADvXPYUd0yLm3XtB1zWDYEE0qAdFa3nZTNWXW19_ZRL9Uq-VGnjYraq91DKVLpNHk7gBItN9hxKbEWzEgiBQhe2oSFMUZSW1yv9q7V2ozQ21JM0sM96f2f4BdqHr8pJjAr8ymCFzeCFL-uIU9q9HnbIR0grrMigtOGb4dZ0Od_ocu4TqW7WVEqMaaMky1V7ymbYs4J3CEZgtVuQVRZEHW7IIV_dreCA327EQVge-C7H2Dzf5t6__H84J3tw3KJKLNPf7L9dyK_Acom2m0 |
CitedBy_id | crossref_primary_10_1186_s13072_020_00336_w crossref_primary_10_26508_lsa_202201768 crossref_primary_10_26508_lsa_202000663 crossref_primary_10_1002_wcms_1308 crossref_primary_10_1093_bioinformatics_bty164 crossref_primary_10_1080_17445760_2019_1643020 crossref_primary_10_1111_tpj_13925 crossref_primary_10_3389_fgene_2019_00602 crossref_primary_10_1093_nar_gkx036 crossref_primary_10_1038_srep29775 crossref_primary_10_1080_19491034_2016_1190896 crossref_primary_10_1016_j_gde_2016_01_002 crossref_primary_10_1186_s13059_019_1893_y crossref_primary_10_1016_j_csbj_2022_12_009 crossref_primary_10_1038_nri_2017_146 crossref_primary_10_1101_cshperspect_a039693 crossref_primary_10_1371_journal_pcbi_1011185 crossref_primary_10_1016_j_coisb_2020_07_006 crossref_primary_10_1016_j_molcel_2019_05_032 crossref_primary_10_1038_nmeth_4146 crossref_primary_10_1093_bioinformatics_btab062 crossref_primary_10_1038_s41467_017_02386_3 crossref_primary_10_1038_s41467_024_48698_z crossref_primary_10_1016_j_ceb_2020_11_006 crossref_primary_10_1126_science_adg3797 crossref_primary_10_1038_s41598_020_72543_0 crossref_primary_10_1038_s41593_018_0266_2 crossref_primary_10_3390_ijms242115975 crossref_primary_10_1083_jcb_201902117 crossref_primary_10_1016_j_jgg_2021_06_017 crossref_primary_10_1371_journal_pcbi_1006617 crossref_primary_10_1371_journal_pcbi_1005647 crossref_primary_10_1016_j_csbj_2021_03_018 crossref_primary_10_1016_j_coisb_2017_04_001 crossref_primary_10_1016_j_stem_2021_04_023 crossref_primary_10_1016_j_addr_2017_07_016 crossref_primary_10_1038_s41576_019_0195_2 crossref_primary_10_3389_fcell_2021_753097 crossref_primary_10_1002_mco2_326 crossref_primary_10_1038_s41564_023_01483_y crossref_primary_10_1371_journal_pgen_1006966 crossref_primary_10_1038_s41588_022_01117_9 crossref_primary_10_1016_j_cell_2019_01_020 crossref_primary_10_1186_s13059_017_1225_z crossref_primary_10_3389_fgene_2021_748239 crossref_primary_10_1134_S0006297918040028 crossref_primary_10_1016_j_celrep_2016_10_061 crossref_primary_10_1080_01621459_2024_2358557 crossref_primary_10_1038_s41588_018_0098_8 crossref_primary_10_1186_s12859_020_03652_w crossref_primary_10_1186_s12864_021_08066_3 crossref_primary_10_1042_BST20201004 crossref_primary_10_1038_s41580_019_0132_4 crossref_primary_10_1016_j_yjmcc_2020_11_008 crossref_primary_10_1093_nar_gkx145 crossref_primary_10_1093_nar_gkz201 crossref_primary_10_3389_fcell_2021_723859 crossref_primary_10_1039_D0CP01877E crossref_primary_10_1093_nar_gkaa087 crossref_primary_10_1038_s41598_020_79158_5 crossref_primary_10_3390_ijms232314919 crossref_primary_10_1186_s13020_021_00502_6 crossref_primary_10_1371_journal_pone_0243791 crossref_primary_10_1371_journal_pbio_3002424 crossref_primary_10_1016_j_cell_2017_04_022 crossref_primary_10_1016_j_bpr_2021_100042 crossref_primary_10_1111_febs_15762 crossref_primary_10_1242_dev_148304 crossref_primary_10_1002_jcb_27737 crossref_primary_10_1038_s41594_019_0231_0 crossref_primary_10_1002_gcc_22711 crossref_primary_10_1093_bioinformatics_btaa445 crossref_primary_10_1093_nar_gkab547 crossref_primary_10_1093_nar_gkw1301 crossref_primary_10_7554_eLife_88564_3 crossref_primary_10_1002_wcms_1454 crossref_primary_10_1093_nar_gkx086 crossref_primary_10_1038_s41588_018_0338_y crossref_primary_10_1093_bioinformatics_btw368 crossref_primary_10_1103_PhysRevE_104_054402 crossref_primary_10_1111_nyas_14303 crossref_primary_10_3390_genes10060415 crossref_primary_10_1186_s13059_018_1558_2 crossref_primary_10_1186_s13059_018_1596_9 crossref_primary_10_1186_s13059_020_02106_z crossref_primary_10_1101_cshperspect_a040113 crossref_primary_10_1093_bfgp_elz028 crossref_primary_10_1186_s13073_017_0477_2 crossref_primary_10_1016_j_ymeth_2018_05_005 crossref_primary_10_1093_nar_gkx1214 crossref_primary_10_1016_j_lfs_2018_09_021 crossref_primary_10_1186_s13619_022_00145_4 crossref_primary_10_1038_nature24281 crossref_primary_10_1038_s41467_019_09483_5 crossref_primary_10_1111_dgd_12363 crossref_primary_10_1016_j_ymeth_2017_03_013 crossref_primary_10_1186_s13015_019_0157_4 crossref_primary_10_1038_s41597_022_01508_x crossref_primary_10_1186_s13059_016_1003_3 crossref_primary_10_15252_msb_20209760 crossref_primary_10_1016_j_jgg_2023_01_009 crossref_primary_10_1103_PhysRevE_94_042402 crossref_primary_10_1016_j_jmb_2019_10_014 crossref_primary_10_1016_j_ceb_2016_12_001 crossref_primary_10_1016_j_jbc_2021_101559 crossref_primary_10_3389_fnins_2017_00559 crossref_primary_10_1002_wsbm_1444 crossref_primary_10_1007_s10142_023_01146_5 crossref_primary_10_1016_j_tins_2018_02_009 crossref_primary_10_1186_s13395_022_00303_x crossref_primary_10_1093_bioinformatics_btz415 crossref_primary_10_1186_s13041_016_0263_x crossref_primary_10_1093_nar_gkaa004 crossref_primary_10_1186_s13395_017_0122_1 crossref_primary_10_1101_gr_210005_116 crossref_primary_10_1007_s10577_016_9545_5 crossref_primary_10_1016_j_ymeth_2018_02_024 crossref_primary_10_1016_j_celrep_2020_01_044 crossref_primary_10_3390_cells8080788 crossref_primary_10_1242_jcs_217513 crossref_primary_10_1096_fj_201700753R crossref_primary_10_1016_j_ceb_2020_01_002 crossref_primary_10_1101_gr_212803_116 crossref_primary_10_1371_journal_pcbi_1006686 crossref_primary_10_1016_j_bpj_2018_10_032 crossref_primary_10_1101_gad_310367_117 crossref_primary_10_15252_msb_20188214 crossref_primary_10_1016_j_conb_2016_12_002 crossref_primary_10_3390_polym14091918 crossref_primary_10_1038_s41586_021_04081_2 crossref_primary_10_3389_fgene_2017_00150 crossref_primary_10_1016_j_celrep_2018_03_056 crossref_primary_10_1038_s41594_023_01130_4 crossref_primary_10_7554_eLife_88564 crossref_primary_10_1007_s10565_018_9428_y crossref_primary_10_1186_s12859_017_1616_x crossref_primary_10_1007_s00418_018_1726_1 crossref_primary_10_12688_f1000research_10792_1 crossref_primary_10_1109_TCBB_2022_3147805 crossref_primary_10_1038_s41467_021_27159_x crossref_primary_10_1134_S1068162017010083 crossref_primary_10_1140_epjp_s13360_023_03776_x crossref_primary_10_1093_jmcb_mjz047 crossref_primary_10_1038_s41467_022_31856_6 crossref_primary_10_1016_j_celrep_2018_06_031 crossref_primary_10_1038_s41467_020_17141_4 crossref_primary_10_1083_jcb_201611001 crossref_primary_10_1007_s00425_023_04223_y crossref_primary_10_1038_s41598_019_45457_9 crossref_primary_10_3390_a15090330 crossref_primary_10_1080_21541264_2016_1181489 crossref_primary_10_1186_s11658_017_0050_4 crossref_primary_10_1038_s41467_018_03113_2 crossref_primary_10_3389_fnins_2018_00874 crossref_primary_10_1126_sciadv_aay4055 crossref_primary_10_1016_j_cell_2022_09_006 crossref_primary_10_3389_fonc_2020_00468 crossref_primary_10_1371_journal_pone_0188201 crossref_primary_10_1093_bioinformatics_btab238 crossref_primary_10_1038_s41422_020_00466_6 crossref_primary_10_1038_s41467_023_41964_6 crossref_primary_10_1038_s41588_019_0392_0 crossref_primary_10_1262_jrd_2016_172 crossref_primary_10_1093_jrsssc_qlae011 crossref_primary_10_1016_j_neuron_2022_06_004 crossref_primary_10_1016_j_coisb_2017_02_003 crossref_primary_10_1186_s12915_022_01375_3 crossref_primary_10_1038_srep36819 crossref_primary_10_1186_s12864_020_6580_6 crossref_primary_10_1126_science_aat5641 crossref_primary_10_1007_s00412_018_0684_7 crossref_primary_10_1038_s41598_023_39522_7 crossref_primary_10_1093_nar_gkad798 crossref_primary_10_1016_j_celrep_2019_07_013 crossref_primary_10_1038_s41592_021_01135_1 crossref_primary_10_1186_s12859_022_04674_2 crossref_primary_10_1038_s41598_019_42212_y crossref_primary_10_1016_j_jmb_2019_12_017 crossref_primary_10_1002_advs_202300366 crossref_primary_10_1016_j_celrep_2022_110601 crossref_primary_10_1038_nrm_2016_104 crossref_primary_10_1038_s41467_019_10402_x crossref_primary_10_1186_s12859_018_2288_x crossref_primary_10_1103_PhysRevResearch_2_043078 crossref_primary_10_1038_s41467_024_48593_7 crossref_primary_10_1134_S000629791804003X crossref_primary_10_3389_fcell_2022_1067248 crossref_primary_10_1186_s12864_016_3387_6 crossref_primary_10_1101_gr_212308_116 crossref_primary_10_1186_s13072_017_0146_0 crossref_primary_10_1038_s41467_017_00478_8 crossref_primary_10_1007_s00412_016_0604_7 crossref_primary_10_1016_j_cell_2020_09_014 crossref_primary_10_1016_j_celrep_2023_113543 crossref_primary_10_1016_j_csbj_2021_04_016 crossref_primary_10_1038_s41467_018_03017_1 crossref_primary_10_1016_j_bpj_2019_06_032 crossref_primary_10_1007_s10577_016_9548_2 crossref_primary_10_1016_j_gde_2020_12_008 crossref_primary_10_3390_ijms24043660 crossref_primary_10_1007_s00357_020_09377_y crossref_primary_10_1371_journal_pcbi_1008834 crossref_primary_10_1038_s41467_022_31892_2 crossref_primary_10_1186_s13059_022_02687_x crossref_primary_10_1371_journal_pcbi_1006786 crossref_primary_10_1016_j_devcel_2019_05_021 crossref_primary_10_1016_j_isci_2022_104269 crossref_primary_10_1017_S2040174417000678 crossref_primary_10_7554_eLife_21926 crossref_primary_10_3390_jdb8030018 crossref_primary_10_1101_gr_254219_119 crossref_primary_10_1016_j_semcdb_2018_07_004 crossref_primary_10_1074_jbc_RA120_015534 crossref_primary_10_1002_pmic_201900047 crossref_primary_10_1209_0295_5075_120_40004 crossref_primary_10_1101_sqb_2017_82_035030 crossref_primary_10_1016_j_gde_2016_10_006 crossref_primary_10_1093_hmg_ddab348 crossref_primary_10_1186_s13072_024_00538_6 crossref_primary_10_1016_j_ymeth_2019_09_018 crossref_primary_10_1038_s41588_019_0474_z crossref_primary_10_1101_gr_237073_118 crossref_primary_10_1016_j_jmb_2019_12_006 crossref_primary_10_1073_pnas_1817829116 crossref_primary_10_2139_ssrn_3947354 crossref_primary_10_3390_ijms21217948 crossref_primary_10_3390_genes14051046 crossref_primary_10_3389_fnmol_2018_00060 |
Cites_doi | 10.1016/j.cell.2013.04.053 10.1038/nature13182 10.1242/dev.066746 10.1016/j.cell.2012.01.010 10.1016/j.gde.2012.12.009 10.1073/pnas.1204799109 10.1126/science.1073374 10.1371/journal.pbio.0040138 10.1038/nmeth.2148 10.1038/nmeth0306-211 10.1038/nature14222 10.1038/nature11082 10.1186/s13059-015-0661-x 10.1002/bies.201200178 10.1371/journal.pone.0006286 10.1371/journal.pbio.1001046 10.1016/j.cell.2007.01.028 10.2217/bmm.10.68 10.1016/j.bpj.2008.12.3919 10.1101/gad.251694.114 10.1038/nrg2041 10.1016/j.molcel.2013.10.030 10.1038/nature06008 10.1038/nprot.2012.005 10.1073/pnas.0508637103 10.1016/j.ceb.2014.04.004 10.1016/j.molcel.2010.03.016 10.1016/j.stem.2011.12.017 10.1038/nature11049 10.1016/j.cell.2008.04.043 10.1126/science.1181369 10.1016/j.cell.2013.02.001 10.1016/j.cell.2014.11.021 10.1038/nature13986 10.1371/journal.pbio.0060245 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 2015 The Authors. Published under the terms of the CC BY 4.0 license 2015 The Authors. Published under the terms of the CC BY 4.0 license. 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2015 – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | FANTOM Consortium The FANTOM Consortium |
CorporateAuthor_xml | – sequence: 0 name: The FANTOM Consortium – name: FANTOM Consortium |
DBID | C6C 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PIMPY PQEST PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.15252/msb.20156492 |
DatabaseName | SpringerOpen Wiley Open Access Journals Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Databases Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | James Fraser et al |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_765b0f5990a74b9197e7585207bbb92c 10_15252_msb_20156492 26700852 MSB156492 |
Genre | article Journal Article |
GeographicLocations | United Kingdom--UK Japan |
GeographicLocations_xml | – name: United Kingdom--UK – name: Japan |
GrantInformation_xml | – fundername: Helmholtz Foundation (Germany) – fundername: Canadian Institutes of Health Research (CIHR) grantid: MOP‐86716; CAP‐120350 – fundername: MEXT – fundername: Canadian Institutes of Health Research (CIHR) funderid: MOP‐86716; CAP‐120350 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H008098/1 – fundername: Canadian Institutes of Health Research grantid: MOP-86716 – fundername: Canadian Institutes of Health Research grantid: CAP-120350 – fundername: Medical Research Council grantid: MC_U120061476 |
GroupedDBID | --- -Q- 0R~ 123 1OC 24P 29M 2WC 39C 3V. 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAHHS ABDBF ABUWG ACCFJ ACGFO ACPRK ACXQS ADBBV ADKYN ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IHR INH KQ8 LK8 M1P M2O M48 M7P ML0 M~E O5R O5S O9- OK1 P2P PADUT PIMPY PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M 4.4 88A ACSMW COF EBLON GODZA IGS M0L CGR CUY CVF ECM EIF NPM AAYXX CITATION ITC 7QL 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5742-cde8b7097b1a37afbda0be13e11bedff0f2a6459c83684f09310121e18ca68993 |
IEDL.DBID | RPM |
ISSN | 1744-4292 |
IngestDate | Mon Nov 04 19:56:10 EST 2024 Tue Sep 17 21:14:49 EDT 2024 Fri Oct 25 07:39:42 EDT 2024 Thu Oct 10 18:48:29 EDT 2024 Fri Dec 06 02:40:56 EST 2024 Sat Sep 28 08:29:46 EDT 2024 Sat Aug 24 01:03:43 EDT 2024 Sat Oct 26 01:34:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | polymer modelling chromosome architecture chromatin contacts epigenetics gene expression |
Language | English |
License | Attribution 2015 The Authors. Published under the terms of the CC BY 4.0 license. http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5742-cde8b7097b1a37afbda0be13e11bedff0f2a6459c83684f09310121e18ca68993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704492/ |
PMID | 26700852 |
PQID | 2290024514 |
PQPubID | 29031 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_765b0f5990a74b9197e7585207bbb92c pubmedcentral_primary_oai_pubmedcentral_nih_gov_4704492 proquest_miscellaneous_1752351564 proquest_journals_2290024514 crossref_primary_10_15252_msb_20156492 pubmed_primary_26700852 wiley_primary_10_15252_msb_20156492_MSB156492 springer_journals_10_15252_msb_20156492 |
PublicationCentury | 2000 |
PublicationDate | December 2015 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | Kodzius, Kojima, Nishiyori, Nakamura, Fukuda, Tagami, Sasaki, Imamura, Kai, Harbers, Hayashizaki, Carninci (CR16) 2006; 3 Lanctot, Cheutin, Cremer, Cavalli, Cremer (CR17) 2007; 8 Misteli (CR20) 2007; 128 Dixon, Selvaraj, Yue, Kim, Li, Shen, Hu, Liu, Ren (CR8) 2012; 485 Brookes, de Santiago, Hebenstreit, Morris, Carroll, Xie, Stock, Heidemann, Eick, Nozaki, Kimura, Ragoussis, Teichmann, Pombo (CR5) 2012; 10 Yu, Gerstein (CR35) 2006; 103 Branco, Pombo (CR4) 2006; 4 Takahashi, Lassmann, Murata, Carninci (CR32) 2012; 7 Jaeger, Arber, Risner‐Janiczek, Kuechler, Pritzsche, Chen, Naveenan, Ungless, Li (CR15) 2011; 138 Peric‐Hupkes, Meuleman, Pagie, Bruggeman, Solovei, Brugman, Graf, Flicek, Kerkhoven, van Lohuizen, Reinders, Wessels, van Steensel (CR25) 2010; 38 Moore, Aitken, Semple (CR21) 2015; 16 Crutchley, Wang, Ferraiuolo, Dostie (CR7) 2010; 4 Spielmann, Mundlos (CR31) 2013; 35 Dixon, Jung, Selvaraj, Shen, Antosiewicz‐Bourget, Lee, Ye, Kim, Rajagopal, Xie, Diao, Liang, Zhao, Lobanenkov, Ecker, Thomson, Ren (CR9) 2015; 518 Tanay, Cavalli (CR33) 2013; 23 (CR10) 2011; 9 Ravasz, Somera, Mongru, Oltvai, Barabasi (CR29) 2002; 297 Williamson, Berlivet, Eskeland, Boyle, Illingworth, Paquette, Dostie, Bickmore (CR34) 2014; 28 Lieberman‐Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner, Sandstrom, Bernstein, Bender, Groudine, Gnirke, Stamatoyannopoulos, Mirny, Lander, Dekker (CR18) 2009; 326 Sexton, Yaffe, Kenigsberg, Bantignies, Leblanc, Hoichman, Parrinello, Tanay, Cavalli (CR30) 2012; 148 Nicodemi, Pombo (CR23) 2014; 28C Rao, Huntley, Durand, Stamenova, Bochkov, Robinson, Sanborn, Machol, Omer, Lander, Aiden (CR28) 2014; 159 Phillips‐Cremins, Sauria, Sanyal, Gerasimova, Lajoie, Bell, Ong, Hookway, Guo, Sun, Bland, Wagstaff, Dalton, McDevitt, Sen, Dekker, Taylor, Corces (CR26) 2013; 153 Bickmore, van Steensel (CR3) 2013; 152 Chen, Xu, Yuan, Fang, Huss, Vega, Wong, Orlov, Zhang, Jiang, Loh, Yeo, Yeo, Narang, Govindarajan, Leong, Shahab, Ruan, Bourque, Sung (CR6) 2008; 133 Hiratani, Ryba, Itoh, Yokochi, Schwaiger, Chang, Lyou, Townes, Schubeler, Gilbert (CR13) 2008; 6 Barbieri, Chotalia, Fraser, Lavitas, Dostie, Pombo, Nicodemi (CR2) 2012; 109 Nora, Lajoie, Schulz, Giorgetti, Okamoto, Servant, Piolot, van Berkum, Meisig, Sedat, Gribnau, Barillot, Bluthgen, Dekker, Heard (CR24) 2012; 485 Nicodemi, Prisco (CR22) 2009; 96 Ferrari, Scelfo, Jammula, Cuomo, Barozzi, Stutzer, Fischle, Bonaldi, Pasini (CR11) 2014; 53 Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos, Alvarez, Brockman, Kim, Koche, Lee, Mendenhall, O'Donovan, Presser, Russ, Xie, Meissner, Wernig, Jaenisch, Nusbaum (CR19) 2007; 448 Abranches, Silva, Pradier, Schulz, Hummel, Henrique, Bekman (CR1) 2009; 4 Imakaev, Fudenberg, McCord, Naumova, Goloborodko, Lajoie, Dekker, Mirny (CR14) 2012; 9 Forrest, Kawaji, Rehli, Baillie, de Hoon, Haberle, Lassmann, Kulakovskiy, Lizio, Itoh, Andersson, Mungall, Meehan, Schmeier, Bertin, Jorgensen, Dimont, Arner, Schmidl, Schaefer (CR12) 2014; 507 Pope, Ryba, Dileep, Yue, Wu, Denas, Vera, Wang, Hansen, Canfield, Thurman, Cheng, Gulsoy, Dennis, Snyder, Stamatoyannopoulos, Taylor, Hardison, Kahveci, Ren (CR27) 2014; 515 2011; 138 2014; 515 2007; 448 2010; 38 2012; 485 2015; 16 2007; 128 2002; 297 2013; 23 2006; 3 2006; 4 2008; 6 2014; 28 2012; 148 2012; 10 2014; 159 2012; 109 2011; 9 2014; 507 2009; 96 2014; 28C 2013; 35 2007; 8 2015; 518 2013; 152 2009; 4 2013; 153 2008; 133 2012; 7 2010; 4 2006; 103 2014; 53 2012; 9 2009; 326 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 133 start-page: 1106 year: 2008 end-page: 1117 ident: CR6 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell contributor: fullname: Sung – volume: 485 start-page: 376 year: 2012 end-page: 380 ident: CR8 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature contributor: fullname: Ren – volume: 515 start-page: 402 year: 2014 end-page: 405 ident: CR27 article-title: Topologically associating domains are stable units of replication‐timing regulation publication-title: Nature contributor: fullname: Ren – volume: 159 start-page: 1665 year: 2014 end-page: 1680 ident: CR28 article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping publication-title: Cell contributor: fullname: Aiden – volume: 35 start-page: 533 year: 2013 end-page: 543 ident: CR31 article-title: Structural variations, the regulatory landscape of the genome and their alteration in human disease publication-title: BioEssays contributor: fullname: Mundlos – volume: 38 start-page: 603 year: 2010 end-page: 613 ident: CR25 article-title: Molecular maps of the reorganization of genome‐nuclear lamina interactions during differentiation publication-title: Mol Cell contributor: fullname: van Steensel – volume: 53 start-page: 49 year: 2014 end-page: 62 ident: CR11 article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity publication-title: Mol Cell contributor: fullname: Pasini – volume: 7 start-page: 542 year: 2012 end-page: 561 ident: CR32 article-title: 5′ end‐centered expression profiling using cap‐analysis gene expression and next‐generation sequencing publication-title: Nat Protoc contributor: fullname: Carninci – volume: 9 start-page: 999 year: 2012 end-page: 1003 ident: CR14 article-title: Iterative correction of Hi‐C data reveals hallmarks of chromosome organization publication-title: Nat Methods contributor: fullname: Mirny – volume: 109 start-page: 16173 year: 2012 end-page: 16178 ident: CR2 article-title: Complexity of chromatin folding is captured by the strings and binders switch model publication-title: Proc Natl Acad Sci USA contributor: fullname: Nicodemi – volume: 4 start-page: e6286 year: 2009 ident: CR1 article-title: Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo publication-title: PLoS One contributor: fullname: Bekman – volume: 507 start-page: 462 year: 2014 end-page: 470 ident: CR12 article-title: A promoter‐level mammalian expression atlas publication-title: Nature contributor: fullname: Schaefer – volume: 128 start-page: 787 year: 2007 end-page: 800 ident: CR20 article-title: Beyond the sequence: cellular organization of genome function publication-title: Cell contributor: fullname: Misteli – volume: 518 start-page: 331 year: 2015 end-page: 336 ident: CR9 article-title: Chromatin architecture reorganization during stem cell differentiation publication-title: Nature contributor: fullname: Ren – volume: 138 start-page: 4363 year: 2011 end-page: 4374 ident: CR15 article-title: Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells publication-title: Development contributor: fullname: Li – volume: 16 start-page: 110 year: 2015 ident: CR21 article-title: Integrative modeling reveals the principles of multi‐scale chromatin boundary formation in human nuclear organization publication-title: Genome Biol contributor: fullname: Semple – volume: 28C start-page: 90 year: 2014 end-page: 95 ident: CR23 article-title: Models of chromosome structure publication-title: Curr Opin Cell Biol contributor: fullname: Pombo – volume: 297 start-page: 1551 year: 2002 end-page: 1555 ident: CR29 article-title: Hierarchical organization of modularity in metabolic networks publication-title: Science contributor: fullname: Barabasi – volume: 103 start-page: 14724 year: 2006 end-page: 14731 ident: CR35 article-title: Genomic analysis of the hierarchical structure of regulatory networks publication-title: Proc Natl Acad Sci USA contributor: fullname: Gerstein – volume: 3 start-page: 211 year: 2006 end-page: 222 ident: CR16 article-title: CAGE: cap analysis of gene expression publication-title: Nat Methods contributor: fullname: Carninci – volume: 485 start-page: 381 year: 2012 end-page: 385 ident: CR24 article-title: Spatial partitioning of the regulatory landscape of the X‐inactivation centre publication-title: Nature contributor: fullname: Heard – volume: 23 start-page: 197 year: 2013 end-page: 203 ident: CR33 article-title: Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization publication-title: Curr Opin Genet Dev contributor: fullname: Cavalli – volume: 96 start-page: 2168 year: 2009 end-page: 2177 ident: CR22 article-title: Thermodynamic pathways to genome spatial organization in the cell nucleus publication-title: Biophys J contributor: fullname: Prisco – volume: 10 start-page: 157 year: 2012 end-page: 170 ident: CR5 article-title: Polycomb associates genome‐wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs publication-title: Cell Stem Cell contributor: fullname: Pombo – volume: 8 start-page: 104 year: 2007 end-page: 115 ident: CR17 article-title: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions publication-title: Nat Rev Genet contributor: fullname: Cremer – volume: 326 start-page: 289 year: 2009 end-page: 293 ident: CR18 article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome publication-title: Science contributor: fullname: Dekker – volume: 6 start-page: e245 year: 2008 ident: CR13 article-title: Global reorganization of replication domains during embryonic stem cell differentiation publication-title: PLoS Biol contributor: fullname: Gilbert – volume: 4 start-page: e138 year: 2006 ident: CR4 article-title: Intermingling of chromosome territories in interphase suggests role in translocations and transcription‐dependent associations publication-title: PLoS Biol contributor: fullname: Pombo – volume: 448 start-page: 553 year: 2007 end-page: 560 ident: CR19 article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells publication-title: Nature contributor: fullname: Nusbaum – volume: 9 start-page: e1001046 year: 2011 ident: CR10 article-title: A user's guide to the encyclopedia of DNA elements (ENCODE) publication-title: PLoS Biol – volume: 4 start-page: 611 year: 2010 end-page: 629 ident: CR7 article-title: Chromatin conformation signatures: ideal human disease biomarkers? publication-title: Biomark Med contributor: fullname: Dostie – volume: 153 start-page: 1281 year: 2013 end-page: 1295 ident: CR26 article-title: Architectural protein subclasses shape 3D organization of genomes during lineage commitment publication-title: Cell contributor: fullname: Corces – volume: 148 start-page: 458 year: 2012 end-page: 472 ident: CR30 article-title: Three‐dimensional folding and functional organization principles of the Drosophila genome publication-title: Cell contributor: fullname: Cavalli – volume: 152 start-page: 1270 year: 2013 end-page: 1284 ident: CR3 article-title: Genome architecture: domain organization of interphase chromosomes publication-title: Cell contributor: fullname: van Steensel – volume: 28 start-page: 2778 year: 2014 end-page: 2791 ident: CR34 article-title: Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization publication-title: Genes Dev contributor: fullname: Bickmore – volume: 448 start-page: 553 year: 2007 end-page: 560 article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells publication-title: Nature – volume: 38 start-page: 603 year: 2010 end-page: 613 article-title: Molecular maps of the reorganization of genome‐nuclear lamina interactions during differentiation publication-title: Mol Cell – volume: 148 start-page: 458 year: 2012 end-page: 472 article-title: Three‐dimensional folding and functional organization principles of the Drosophila genome publication-title: Cell – volume: 133 start-page: 1106 year: 2008 end-page: 1117 article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells publication-title: Cell – volume: 507 start-page: 462 year: 2014 end-page: 470 article-title: A promoter‐level mammalian expression atlas publication-title: Nature – volume: 28C start-page: 90 year: 2014 end-page: 95 article-title: Models of chromosome structure publication-title: Curr Opin Cell Biol – volume: 53 start-page: 49 year: 2014 end-page: 62 article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity publication-title: Mol Cell – volume: 515 start-page: 402 year: 2014 end-page: 405 article-title: Topologically associating domains are stable units of replication‐timing regulation publication-title: Nature – volume: 28 start-page: 2778 year: 2014 end-page: 2791 article-title: Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization publication-title: Genes Dev – volume: 10 start-page: 157 year: 2012 end-page: 170 article-title: Polycomb associates genome‐wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs publication-title: Cell Stem Cell – volume: 485 start-page: 381 year: 2012 end-page: 385 article-title: Spatial partitioning of the regulatory landscape of the X‐inactivation centre publication-title: Nature – volume: 518 start-page: 331 year: 2015 end-page: 336 article-title: Chromatin architecture reorganization during stem cell differentiation publication-title: Nature – volume: 4 start-page: e138 year: 2006 article-title: Intermingling of chromosome territories in interphase suggests role in translocations and transcription‐dependent associations publication-title: PLoS Biol – volume: 103 start-page: 14724 year: 2006 end-page: 14731 article-title: Genomic analysis of the hierarchical structure of regulatory networks publication-title: Proc Natl Acad Sci USA – volume: 485 start-page: 376 year: 2012 end-page: 380 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature – volume: 109 start-page: 16173 year: 2012 end-page: 16178 article-title: Complexity of chromatin folding is captured by the strings and binders switch model publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 611 year: 2010 end-page: 629 article-title: Chromatin conformation signatures: ideal human disease biomarkers? publication-title: Biomark Med – volume: 6 start-page: e245 year: 2008 article-title: Global reorganization of replication domains during embryonic stem cell differentiation publication-title: PLoS Biol – volume: 326 start-page: 289 year: 2009 end-page: 293 article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome publication-title: Science – volume: 96 start-page: 2168 year: 2009 end-page: 2177 article-title: Thermodynamic pathways to genome spatial organization in the cell nucleus publication-title: Biophys J – volume: 4 start-page: e6286 year: 2009 article-title: Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo publication-title: PLoS One – volume: 297 start-page: 1551 year: 2002 end-page: 1555 article-title: Hierarchical organization of modularity in metabolic networks publication-title: Science – volume: 9 start-page: 999 year: 2012 end-page: 1003 article-title: Iterative correction of Hi‐C data reveals hallmarks of chromosome organization publication-title: Nat Methods – volume: 159 start-page: 1665 year: 2014 end-page: 1680 article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping publication-title: Cell – volume: 23 start-page: 197 year: 2013 end-page: 203 article-title: Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization publication-title: Curr Opin Genet Dev – volume: 7 start-page: 542 year: 2012 end-page: 561 article-title: 5′ end‐centered expression profiling using cap‐analysis gene expression and next‐generation sequencing publication-title: Nat Protoc – volume: 152 start-page: 1270 year: 2013 end-page: 1284 article-title: Genome architecture: domain organization of interphase chromosomes publication-title: Cell – volume: 138 start-page: 4363 year: 2011 end-page: 4374 article-title: Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells publication-title: Development – volume: 16 start-page: 110 year: 2015 article-title: Integrative modeling reveals the principles of multi‐scale chromatin boundary formation in human nuclear organization publication-title: Genome Biol – volume: 8 start-page: 104 year: 2007 end-page: 115 article-title: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions publication-title: Nat Rev Genet – volume: 35 start-page: 533 year: 2013 end-page: 543 article-title: Structural variations, the regulatory landscape of the genome and their alteration in human disease publication-title: BioEssays – volume: 9 start-page: e1001046 year: 2011 article-title: A user's guide to the encyclopedia of DNA elements (ENCODE) publication-title: PLoS Biol – volume: 153 start-page: 1281 year: 2013 end-page: 1295 article-title: Architectural protein subclasses shape 3D organization of genomes during lineage commitment publication-title: Cell – volume: 3 start-page: 211 year: 2006 end-page: 222 article-title: CAGE: cap analysis of gene expression publication-title: Nat Methods – volume: 128 start-page: 787 year: 2007 end-page: 800 article-title: Beyond the sequence: cellular organization of genome function publication-title: Cell – ident: e_1_2_8_27_1 doi: 10.1016/j.cell.2013.04.053 – ident: e_1_2_8_13_1 doi: 10.1038/nature13182 – ident: e_1_2_8_16_1 doi: 10.1242/dev.066746 – ident: e_1_2_8_31_1 doi: 10.1016/j.cell.2012.01.010 – ident: e_1_2_8_34_1 doi: 10.1016/j.gde.2012.12.009 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.1204799109 – ident: e_1_2_8_30_1 doi: 10.1126/science.1073374 – ident: e_1_2_8_5_1 doi: 10.1371/journal.pbio.0040138 – ident: e_1_2_8_15_1 doi: 10.1038/nmeth.2148 – ident: e_1_2_8_17_1 doi: 10.1038/nmeth0306-211 – ident: e_1_2_8_10_1 doi: 10.1038/nature14222 – ident: e_1_2_8_9_1 doi: 10.1038/nature11082 – ident: e_1_2_8_22_1 doi: 10.1186/s13059-015-0661-x – ident: e_1_2_8_32_1 doi: 10.1002/bies.201200178 – ident: e_1_2_8_2_1 doi: 10.1371/journal.pone.0006286 – ident: e_1_2_8_11_1 doi: 10.1371/journal.pbio.1001046 – ident: e_1_2_8_21_1 doi: 10.1016/j.cell.2007.01.028 – ident: e_1_2_8_8_1 doi: 10.2217/bmm.10.68 – ident: e_1_2_8_23_1 doi: 10.1016/j.bpj.2008.12.3919 – ident: e_1_2_8_35_1 doi: 10.1101/gad.251694.114 – ident: e_1_2_8_18_1 doi: 10.1038/nrg2041 – ident: e_1_2_8_12_1 doi: 10.1016/j.molcel.2013.10.030 – ident: e_1_2_8_20_1 doi: 10.1038/nature06008 – ident: e_1_2_8_33_1 doi: 10.1038/nprot.2012.005 – ident: e_1_2_8_36_1 doi: 10.1073/pnas.0508637103 – ident: e_1_2_8_24_1 doi: 10.1016/j.ceb.2014.04.004 – ident: e_1_2_8_26_1 doi: 10.1016/j.molcel.2010.03.016 – ident: e_1_2_8_6_1 doi: 10.1016/j.stem.2011.12.017 – ident: e_1_2_8_25_1 doi: 10.1038/nature11049 – ident: e_1_2_8_7_1 doi: 10.1016/j.cell.2008.04.043 – ident: e_1_2_8_19_1 doi: 10.1126/science.1181369 – ident: e_1_2_8_4_1 doi: 10.1016/j.cell.2013.02.001 – ident: e_1_2_8_29_1 doi: 10.1016/j.cell.2014.11.021 – ident: e_1_2_8_28_1 doi: 10.1038/nature13986 – ident: e_1_2_8_14_1 doi: 10.1371/journal.pbio.0060245 |
SSID | ssj0038182 |
Score | 2.6262949 |
Snippet | Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple... Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple... Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains ( TAD s), which are arranged into compartments spanning multiple... Abstract Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 852 |
SubjectTerms | Animals Cell Differentiation Cell division Cells, Cultured Chromatin Chromatin - chemistry Chromatin Assembly and Disassembly chromatin contacts chromosome architecture Chromosomes Chromosomes - chemistry Datasets Deoxyribonucleic acid Differentiation (biology) DNA Domains EMBO09 EMBO11 EMBO17 Epigenesis, Genetic epigenetics Folding Gene expression Gene Expression Regulation Genomes Innovations Mammals Mice Mouse Embryonic Stem Cells - cytology Neurons Neurons - cytology Packaging polymer modelling Stem cells Structural hierarchy Substructures Transcription Transcription, Genetic Trees |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lat0wEBUlEOimNOnLbVpUKO3KRJIl21o2IeFSSDdtIDshySNyobHDtbPI3_Rb-mXRWPZtTF-b7oxt5PG8NCONzhDyrim10wFUzhpX5rJmKrdFyfIQjZJzgKhUuKB_9rlcnctPF-riXqsvrAlL8MCJcYdVqRwLKjpNW0mnua4AQ1zBKuecFn70vkzMyVTywTgNiQlRUwklDq96h2VcqpRaLGagEaj_d9Hlr0WS253SZRw7TkSnj8mjKYKkHxPle-QBtPtkN_WUvH1CbldrPFM8tjj5RkPaXKK2begGunsHL2kXqL_EYry-u4Ke2g1Q3M2Fhg4dHXAKmx1KHCedD-5_fF-3FNf6sXiVzs1VhiTep-T89OTr8Sqf-ivkXsWMOPcN1K5iunLcFpUNrrHMAS-AcwdNCCwIi1gzvi7KWgamCwQD48Brb8uYpxXPyE7btfCCUBu8Ds4X2lshQYCzLHjrXRO00szbjLyfeW6uE4yGwfQDhWOicMwsnIwcoUS2LyH69XgjcshMOmH-pRMZOZjlaSaT7A0C2-M-M5cZebt9HI0JuWZb6G56E2MpUSikJCPPk_i3lAg80BQ_kpFqoRgLUpdP2vXlCNgtKybHf_swq9BPsv7AhXzUsL_zypx9OUpXL_8H116RhzhyqtU5IDvD5gZex4hrcG9G47oD7AwqwA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwcNA9BF_Eb6unRBB9KpekTds8iSt3LMIdoh7cW0jSCbfgtee2B_rvzfRjz0W9t9L0YzIfmZnMZAbgTV1opwOqlNeuSPOKq9RmBU9DFEohECNT0Yb-8UmxOs0_namzacOtm9Iq5zVxWKjr1tMe-QHVJacwocjfX_5IqWsURVenFhq3YU-KrKoWsLc8PPn8ZV6LSR3JqbKmkkoeXHSO0rlUkWu5o4mGgv3_sjL_TpbcRkx37dlBIR3dh3uTJck-jKR_ALeweQh3xt6Svx7Bz9WazhYPrU6-szAGmZhtarbB9o8DmKwNzJ9TUl7XXmDH7AYZRXWxZn3LelJl88ISvzOeE-7YumG05U85rGzusdKPVH4Mp0eH3z6u0qnNQupVdIxTX2PlSq5LJ2xW2uBqyx2KDIVwWIfAg7RUcsZXWVHlgeuMaoIJFJW3RXTXsiewaNoGnwGzwevgfKa9lTlKdJYHb72rg1aae5vA2xnl5nKspmHICyHamEgbM9MmgSURZPsQFcEebkQEmUmmTFkox4OK-tSWudNCl0jej-Slc05Ln8D-TE4zSWZnrvkogdfb4ShThDXbYHvVmWhSyUwRJAk8Ham_hUTSuab4kwTKHb7YAXV3pFmfD3W785Lnw9zezRx0DdZ_sJAODHYzrszx1-V49fzmCb-Au_TOmIyzD4t-c4Uvo0nVu1eT3PwGdrgjNQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA8yEXwRv61OiSD6VE3StGkeRJw4LsL1RS_sLSTpCbuwtfO2g-2_N6dfs2zurbRNm56PnHN6Tn6HkHdVoZ0OkKesckUqS5anNitYGqJScg4QhQp_6K9_FquN_HGUH11BCo0EbG8M7bCf1GZ38vHiz-WXqPCfx-494tNp67BIKy-kjqvxXRGNIlZ3reWcUEC7JEaIzWtDFiapR-6_yd28XjU5p06Xjm1vmQ4fkgejS0m_DjLwiNyB-jG5NzSZvHxCLlZb3GTc9zw5oWHINlFbV3QHzT87MWkTqD_G6ry2OYWW2h1QTO9CRbuGdmjTphUmPmfYMNzSbU3x3z8Ws9Kp2Uo3sPsp2Rx-__1tlY79FlKfxwg59RWUTjGtHLeZssFVljngGXDuoAqBBWERe8aXWVHKwHSG4GAceOltEeO27BnZq5saXhBqg9fB-Ux7KyQIcJYFb72rgs418zYh7yeSm7MBVsNgOIK8MZE3ZuJNQg6QIfNNiIbdn4gEMqNyGVXkjoU8GlarpNNcK8AwSDDlnNPCJ2R_YqeZJMwg0D3mnblMyNv5clQupJqtoTlvTfStRJbjTBLyfOD-PBOBG5ziSxKiFnKxmOrySr097gG8pWKy_7YPkwRdTes_VEh7AbudVmb962A4enn7B78i93HMUJWzT_a63Tm8jr5V5970WvMXQCwkeA priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0EJFSFxQKa-UUhkJwSnCduI4PtIV1QqpXKBSb5btjNWVaII26aF_w7fwZXjiZGlUQNyiOHEm8_DMeB4m5E1TaacDyJw1rsrLmsncFhXLQxRKzgEiU-GG_tnnan1efrqQF1MSDdbC3I7fSyHF-6veYQKWrEodV9r7Uf0qZORVtZoXXNQ5YmqfeeeVhboZu_L_yZS8mxG5C4sujdZR65zuk0eTuUg_JPo-JvegPSAP0gGSN0_IzXqDBcTjeSbfaEiRJGrbhm6hu1VlSbtA_SVm3vXdFfTUboFi6BYaOnR0QH01rx5xnlQM3P_8sWkpbuxjpiqdT1IZEi2fkvPTj19X63w6TCH3Mrq_uW-gdopp5bgtlA2uscwBL4BzB00ILAiLjWV8XVR1GZgusPMXB157W0WnrHhG9tquhReE2uB1cL7Q3ooSBDjLgrfeNUFLzbzNyNsZ5-Z76plh0NdA4phIHDMTJyMnSJHdQ9jqerwRMWQmyTGqko4FGbWmVaXTXCtAH0cw5ZzTwmfkaKanmeSvN9jFHoPKvMzI691wlBzEmm2hu-5NNJxEIRGSjDxP5N9BIrB6KX4kI2rBGAtQlyPt5nLszl0qVo7_9m5mod9g_QUL-chh_8aVOftykq4O_3vml-QhXqbsmyOyN2yv4VW0oQZ3PErQL2KGGoU priority: 102 providerName: Springer Nature – databaseName: Wiley Open Access Journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9YwFA4yEbwRv61OiSB6VUzapG0unThehImgg92FJD1hL7h2vO0u9m_2W_bLzEnauuIHeFeaNk3PR85Jcs5zCHnTVsoqDzJnra1y0TCZm7JiuQ9KyTlAECrc0D_6Um2OxecTeTLVOcVcmIQPsWy4oWbE-RoV3NhhrtiDqKFng8XQLFkJFebg28G1qbCEQSG-zlMxWqMiZUSKHOsyTSCb2MH7m6-vjFLE7v-Tw_l73ORyeLp2baNtOrxP7k1OJf2QpOABuQXdQ3InlZm8fEQuN1tMM45VT35Qn86bqOlauoP-Ri4m7T11pxifN_RnMFCzA4oHvNDSsacjWrV5jgn9pJTh4fpq21Hc_sd4VjrXWxkTxx-T48NP3z9u8qnkQu5kWCTnroXG1kzVlpuyNt62hlngJXBuofWe-cIg_IxryqoRnqkS8cE48MaZKizdyidkr-s7eEao8U5560rlTCGgAGuYd8bZ1iupmDMZeTvTXJ8nZA2NKxJkjg7M0TNzMnKAHFkeQkDseCNQSE_6petKWuZlsK2mFlZxVQOuhApWW2tV4TKyP_NTT1o6aMS6x6NnLjLyemkO-oVUMx30F4MO7lVRShxJRp4m9i8jKTDHKXwkI_VKMFZDXbd029OI4S1qJuK_vZtF6New_kKFPErYv2mlj74dpKvn__n8C3IXb6ZInX2yN-4u4GXwt0b7KurUT8RHJwo priority: 102 providerName: Wiley-Blackwell |
Title | Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation |
URI | https://link.springer.com/article/10.15252/msb.20156492 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20156492 https://www.ncbi.nlm.nih.gov/pubmed/26700852 https://www.proquest.com/docview/2290024514 https://search.proquest.com/docview/1752351564 https://pubmed.ncbi.nlm.nih.gov/PMC4704492 https://doaj.org/article/765b0f5990a74b9197e7585207bbb92c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB42Wwq9lL7rdhtUKO3JG1mWLOvYhF1CIUtou5CbkWSJDWzsJc4e9t_0t_SXVeNH2tDHoRdjW7YYZkaaGWnmE8C7MlNGeSdiWpos5jkVsU4zGvswKJPEuaBUuKC_uMjml_zTSqyOQAy1MG3SvjXr0-p6c1qtr9rcypuNnQx5YpPlYsYl5VyxyQhGwfwOIXo3_aIFYj2YpmCCTTaNwQwukYU_EPoX61JywQ7sUAvX_ycf8_dUyf1-6aE325qj80fwsPcjyceO3sdw5KoncL87WfLuKdzN11hZ3B50ck18t8VEdFWSrat_Kb8ktSf2ClPymnrjGqK3juCerivJriY7NGTDtBL66aqEm-_f1hXBFX9MYSXDESu7TsjP4PL87OtsHvenLMRWhLg4tqXLjaRKmkSnUntTampckrokMa70nnqmEXHG5mmWc09VipBgiUtyq7MQraXP4biqK_cSiPZWeWNTZTXjjjmjqbfamtIroajVEbwfeF7cdGAaBQYhKKciyKkY5BTBFCWy_wgxsNsXgUNFrwmFzIShXgRzqiU3KlHSYfDDqDTGKGYjOBnkWfQDsykQ3h53mxMewdt9cxhSyDVdufq2KYJHxVKBlETwohP_npJBfSKQB4pxQOphS9DiFra719oIPgwq9JOsv3AhbjXs37wqFl-m3d2r_6bpNTzA7ro0nRM43m1v3ZvgbO3MGEaML8NVruQY7k3PLpafw9Msm43b5YtwXfB83A7BH8-2MiA |
link.rule.ids | 230,314,727,780,784,864,885,2102,11562,12056,21388,24318,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,46052,46476,50814,50923,51576,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiGcJFDASglNU24mT-IRY1GqB7gpBK_Vm2Y6trkSTskkl-Pd48tgSAb1FcR72PDxjz_gbgNdlJo30TsS0NFmcFlTEOslo7INSMuZcECrc0F-ussVJ-ulUnA4bbs2QVjnOid1EXdYW98j3EZccw4QsfXfxI8aqURhdHUpo3IQdRE4XM9iZH6y-fB3nYjRHfEDWFFzw_fPGYDqXyFLJJ5aoA-z_l5f5d7LkNmI69Wc7g3R4D-4OniR537P-Ptxw1QO41deW_PUQfi7WeLa4K3Xynfg-yER0VZKNq_84gElqT-wZJuU19blriN44glFdV5K2Ji2asnFiCd_pzwk3ZF0R3PLHHFYy1lhpey4_gpPDg-MPi3gosxBbERbGsS1dYXIqc8N0kmtvSk2NY4ljzLjSe-q5RsgZWyRZkXoqE8QEY44VVmdhuZY8hllVV-4JEO2t9MYm0mqeOu6Mpt5qa0ovhaRWR_BmJLm66NE0FK5CkDcq8EaNvIlgjgzZPoQg2N2NQCA16JTKM2GoF8Ge6jw1ksnc4eqH09wYI7mNYG9kpxo0s1FXchTBq21z0Cmkmq5cfdmo4FLxRGBPItjtub_tCcdzTeEnEeQTuZh0ddpSrc863O40p2k3trejBF116z9UiDsBu55Wavlt3l89vX7AL-H24nh5pI4-rj4_gzv4fp-YswezdnPpngf3qjUvBh36DTZCJh0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIhAXVJ4NLWAkBKeoduI8LE50YbU8WiFBpd4s2xmrK9Gk2qSH_ht-C78MTxwvrAqIW-QkjjPj8czYM98Q8qIppZEOipQ1pkxFzYpU5yVLnRdKzgH8pMIN_aPjcnEiPpwWp1vkdcyFGaPd45FkyGlAlKZ2OLhoXKzXkx2c9wbDsopSSL_-3hDeasC6DbNyFpdh1ETZBKp57ZUNJTRi9f_JwLweJ7k-LN00ZUddNN8hdyYjkr4JXL9LtqC9R26GspJX98nVYolpxWOVk2_UhfMlqtuGrqD7LfeSdo7aM4zH67tz6KleAUXKQEOHjg6oxeKa4vsJKcL9j-_LluJ2P8av0lhfZQgcfkBO5u--zhbpVGIhtYV3ilPbQG0qJivDdV5pZxrNDPAcODfQOMdcphFuxtZ5WQvHZI54YBx4bXXpXbX8IdluuxZ2CdXOSmdsLq3OBGRgNHNWW9M4WUhmdUJeRpqri4CkodADQeYozxwVmZOQQ-TI-iEEwB4bPIXUJE-qKgvDXOF1qa6EkVxWgJ5PxipjjMxsQvYjP9Uklb1CbHs8auYiIc_Xt708IdV0C91lr7w5leUFjiQhjwL71yPJMKfJfyQh1cbE2Bjq5p12eTZidouKifHfXsUp9GtYf6FCOs6wf9NKHX05DFeP_7vnZ-TW57dz9en98cc9chtbQ3jOPtkeVpfwxBtZg3k6CtNPK58lrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+folding+and+reorganization+of+chromosomes+are+linked+to+transcriptional+changes+in+cellular+differentiation&rft.jtitle=Molecular+systems+biology&rft.au=Fraser%2C+James&rft.au=Ferrai%2C+Carmelo&rft.au=Chiariello%2C+Andrea+M&rft.au=Schueler%2C+Markus&rft.date=2015-12-01&rft.pub=EMBO+Press&rft.eissn=1744-4292&rft.volume=11&rft.issue=12&rft_id=info:doi/10.15252%2Fmsb.20156492 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |