Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation

Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive....

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 11; no. 12; pp. 852 - n/a
Main Authors Fraser, James, Ferrai, Carmelo, Chiariello, Andrea M, Schueler, Markus, Rito, Tiago, Laudanno, Giovanni, Barbieri, Mariano, Moore, Benjamin L, Kraemer, Dorothee CA, Aitken, Stuart, Xie, Sheila Q, Morris, Kelly J, Itoh, Masayoshi, Kawaji, Hideya, Jaeger, Ines, Hayashizaki, Yoshihide, Carninci, Piero, Forrest, Alistair RR, Semple, Colin A, Dostie, Josée, Pombo, Ana, Nicodemi, Mario
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2015
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Synopsis Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. Chromatin architecture is mapped genome‐wide using Hi‐C and a neuronal differentiation model from mESC to post‐mitotic neurons. Mammalian chromosomes fold hierarchically in a manner that reflects epigenomic features and involves higher‐order domains (metaTADs) up to the chromosome scale. metaTAD topologies are relatively conserved through differentiation, and their reorganization is related to gene expression changes. Polymer modelling shows that hierarchical chromatin folding promotes efficient packaging without the loss of contact specificity. Graphical Abstract Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes.
AbstractList Abstract Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.
Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains ( TAD s), which are arranged into compartments spanning multiple megabases of genomic DNA . TAD s have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (meta TAD s) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. meta TAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.
Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher-order organization remains elusive. Here, we investigate TAD higher-order interactions with Hi-C through neuronal differentiation and show that they form a hierarchy of domains-within-domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree-like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency.
Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Synopsis Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. Chromatin architecture is mapped genome‐wide using Hi‐C and a neuronal differentiation model from mESC to post‐mitotic neurons. Mammalian chromosomes fold hierarchically in a manner that reflects epigenomic features and involves higher‐order domains (metaTADs) up to the chromosome scale. metaTAD topologies are relatively conserved through differentiation, and their reorganization is related to gene expression changes. Polymer modelling shows that hierarchical chromatin folding promotes efficient packaging without the loss of contact specificity. Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes.
Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple megabases of genomic DNA. TADs have internal substructures that are often cell type specific, but their higher‐order organization remains elusive. Here, we investigate TAD higher‐order interactions with Hi‐C through neuronal differentiation and show that they form a hierarchy of domains‐within‐domains (metaTADs) extending across genomic scales up to the range of entire chromosomes. We find that TAD interactions are well captured by tree‐like, hierarchical structures irrespective of cell type. metaTAD tree structures correlate with genetic, epigenomic and expression features, and structural tree rearrangements during differentiation are linked to transcriptional state changes. Using polymer modelling, we demonstrate that hierarchical folding promotes efficient chromatin packaging without the loss of contact specificity, highlighting a role far beyond the simple need for packing efficiency. Synopsis Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes. Chromatin architecture is mapped genome‐wide using Hi‐C and a neuronal differentiation model from mESC to post‐mitotic neurons. Mammalian chromosomes fold hierarchically in a manner that reflects epigenomic features and involves higher‐order domains (metaTADs) up to the chromosome scale. metaTAD topologies are relatively conserved through differentiation, and their reorganization is related to gene expression changes. Polymer modelling shows that hierarchical chromatin folding promotes efficient packaging without the loss of contact specificity. Graphical Abstract Genome‐wide mapping of chromatin architecture reveals a hierarchical folding of chromatin that involves higher‐order domains interactions across the whole chromosomes, reflects epigenomic features and reorganizes upon differentiation‐induced gene expression changes.
Author Schueler, Markus
Pombo, Ana
Kraemer, Dorothee CA
Nicodemi, Mario
Carninci, Piero
Forrest, Alistair RR
Morris, Kelly J
Chiariello, Andrea M
Xie, Sheila Q
Hayashizaki, Yoshihide
Fraser, James
Rito, Tiago
Aitken, Stuart
Ferrai, Carmelo
Laudanno, Giovanni
Jaeger, Ines
Semple, Colin A
Kawaji, Hideya
Moore, Benjamin L
Dostie, Josée
Itoh, Masayoshi
Barbieri, Mariano
AuthorAffiliation 6 RIKEN Preventive Medicine and Diagnosis Innovation Program Wako Saitama Japan
1 Department of Biochemistry Goodman Cancer Centre McGill University Montréal QC Canada
7 Division of Genomic Technologies RIKEN Center for Life Science Technologies Yokohama Kanagawa Japan
9 Single Molecule Imaging Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK
10 Cardiff School of Biosciences Cardiff UK
2 Epigenetic Regulation and Chromatin Architecture Group Berlin Institute for Medical Systems Biology Max‐Delbrück Centre for Molecular Medicine Berlin‐Buch Germany
3 Genome Function Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK
11 Systems Biology and Genomics Harry Perkins Institute of Medical Research Nedlands WA Australia
4 Dipartimento di Fisica Università di Napoli Federico II INFN Napoli CNR‐SPIN Complesso Universitario di Monte Sant'Angelo Naples Italy
5 MRC Human Genetics Unit MRC IGMM University of Edinburg
AuthorAffiliation_xml – name: 2 Epigenetic Regulation and Chromatin Architecture Group Berlin Institute for Medical Systems Biology Max‐Delbrück Centre for Molecular Medicine Berlin‐Buch Germany
– name: 6 RIKEN Preventive Medicine and Diagnosis Innovation Program Wako Saitama Japan
– name: 4 Dipartimento di Fisica Università di Napoli Federico II INFN Napoli CNR‐SPIN Complesso Universitario di Monte Sant'Angelo Naples Italy
– name: 11 Systems Biology and Genomics Harry Perkins Institute of Medical Research Nedlands WA Australia
– name: 10 Cardiff School of Biosciences Cardiff UK
– name: 8 Stem Cell Neurogenesis Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK
– name: 5 MRC Human Genetics Unit MRC IGMM University of Edinburgh Edinburgh UK
– name: 9 Single Molecule Imaging Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK
– name: 1 Department of Biochemistry Goodman Cancer Centre McGill University Montréal QC Canada
– name: 3 Genome Function Group MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus London UK
– name: 7 Division of Genomic Technologies RIKEN Center for Life Science Technologies Yokohama Kanagawa Japan
Author_xml – sequence: 1
  givenname: James
  surname: Fraser
  fullname: Fraser, James
  organization: Department of Biochemistry, Goodman Cancer Centre, McGill University
– sequence: 2
  givenname: Carmelo
  surname: Ferrai
  fullname: Ferrai, Carmelo
  organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine, Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus
– sequence: 3
  givenname: Andrea M
  surname: Chiariello
  fullname: Chiariello, Andrea M
  organization: Dipartimento di Fisica, Università di Napoli Federico II, INFN Napoli, CNR‐SPIN, Complesso Universitario di Monte Sant'Angelo
– sequence: 4
  givenname: Markus
  surname: Schueler
  fullname: Schueler, Markus
  organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine
– sequence: 5
  givenname: Tiago
  surname: Rito
  fullname: Rito, Tiago
  organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine
– sequence: 6
  givenname: Giovanni
  surname: Laudanno
  fullname: Laudanno, Giovanni
  organization: Dipartimento di Fisica, Università di Napoli Federico II, INFN Napoli, CNR‐SPIN, Complesso Universitario di Monte Sant'Angelo
– sequence: 7
  givenname: Mariano
  surname: Barbieri
  fullname: Barbieri, Mariano
  organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine
– sequence: 8
  givenname: Benjamin L
  surname: Moore
  fullname: Moore, Benjamin L
  organization: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh
– sequence: 9
  givenname: Dorothee CA
  surname: Kraemer
  fullname: Kraemer, Dorothee CA
  organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine
– sequence: 10
  givenname: Stuart
  surname: Aitken
  fullname: Aitken, Stuart
  organization: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh
– sequence: 11
  givenname: Sheila Q
  surname: Xie
  fullname: Xie, Sheila Q
  organization: Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus
– sequence: 12
  givenname: Kelly J
  surname: Morris
  fullname: Morris, Kelly J
  organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine, Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus
– sequence: 13
  givenname: Masayoshi
  surname: Itoh
  fullname: Itoh, Masayoshi
  organization: RIKEN Preventive Medicine and Diagnosis Innovation Program, Division of Genomic Technologies, RIKEN Center for Life Science Technologies
– sequence: 14
  givenname: Hideya
  surname: Kawaji
  fullname: Kawaji, Hideya
  organization: RIKEN Preventive Medicine and Diagnosis Innovation Program, Division of Genomic Technologies, RIKEN Center for Life Science Technologies
– sequence: 15
  givenname: Ines
  surname: Jaeger
  fullname: Jaeger, Ines
  organization: Stem Cell Neurogenesis Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Cardiff School of Biosciences
– sequence: 16
  givenname: Yoshihide
  surname: Hayashizaki
  fullname: Hayashizaki, Yoshihide
  organization: RIKEN Preventive Medicine and Diagnosis Innovation Program
– sequence: 17
  givenname: Piero
  surname: Carninci
  fullname: Carninci, Piero
  organization: Division of Genomic Technologies, RIKEN Center for Life Science Technologies
– sequence: 18
  givenname: Alistair RR
  surname: Forrest
  fullname: Forrest, Alistair RR
  organization: Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Systems Biology and Genomics, Harry Perkins Institute of Medical Research
– sequence: 20
  givenname: Colin A
  surname: Semple
  fullname: Semple, Colin A
  email: colin.semple@igmm.ed.ac.uk
  organization: MRC Human Genetics Unit, MRC IGMM, University of Edinburgh
– sequence: 21
  givenname: Josée
  surname: Dostie
  fullname: Dostie, Josée
  email: josee.dostie@mcgill.ca
  organization: Department of Biochemistry, Goodman Cancer Centre, McGill University
– sequence: 22
  givenname: Ana
  surname: Pombo
  fullname: Pombo, Ana
  email: ana.pombo@mdc-berlin.de
  organization: Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max‐Delbrück Centre for Molecular Medicine, Genome Function Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus
– sequence: 23
  givenname: Mario
  surname: Nicodemi
  fullname: Nicodemi, Mario
  email: mario.nicodemi@na.infn.it
  organization: Dipartimento di Fisica, Università di Napoli Federico II, INFN Napoli, CNR‐SPIN, Complesso Universitario di Monte Sant'Angelo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26700852$$D View this record in MEDLINE/PubMed
BookMark eNp9kk2PEyEYgCdmjfuhR6-GxIuXqcDAMFxM3I26m6zxoJ4JMC8tdQYqTDX11_hb_GXSdrfuGuMJAs_75P06rY5CDFBVTwmeEU45fTlmM6OY8JZJ-qA6IYKxmlFJj-7cj6vTnJcYNx3p6KPqmLYC447Tk2pz6SHpZBfe6gG5OPQ-zJEOPUoQ01wH_0NPPgYUHbKLFMeY4wgZ6QRo8OEL9GiKaEo6ZJv8aosWj13oMIf866cPyMIwrAedUO-dgwRh8jvj4-qh00OGJzfnWfX57ZtPF5f19Yd3Vxevr2vLBaO17aEzAkthiG6EdqbX2ABpgBADvXPYUd0yLm3XtB1zWDYEE0qAdFa3nZTNWXW19_ZRL9Uq-VGnjYraq91DKVLpNHk7gBItN9hxKbEWzEgiBQhe2oSFMUZSW1yv9q7V2ozQ21JM0sM96f2f4BdqHr8pJjAr8ymCFzeCFL-uIU9q9HnbIR0grrMigtOGb4dZ0Od_ocu4TqW7WVEqMaaMky1V7ymbYs4J3CEZgtVuQVRZEHW7IIV_dreCA327EQVge-C7H2Dzf5t6__H84J3tw3KJKLNPf7L9dyK_Acom2m0
CitedBy_id crossref_primary_10_1186_s13072_020_00336_w
crossref_primary_10_26508_lsa_202201768
crossref_primary_10_26508_lsa_202000663
crossref_primary_10_1002_wcms_1308
crossref_primary_10_1093_bioinformatics_bty164
crossref_primary_10_1080_17445760_2019_1643020
crossref_primary_10_1111_tpj_13925
crossref_primary_10_3389_fgene_2019_00602
crossref_primary_10_1093_nar_gkx036
crossref_primary_10_1038_srep29775
crossref_primary_10_1080_19491034_2016_1190896
crossref_primary_10_1016_j_gde_2016_01_002
crossref_primary_10_1186_s13059_019_1893_y
crossref_primary_10_1016_j_csbj_2022_12_009
crossref_primary_10_1038_nri_2017_146
crossref_primary_10_1101_cshperspect_a039693
crossref_primary_10_1371_journal_pcbi_1011185
crossref_primary_10_1016_j_coisb_2020_07_006
crossref_primary_10_1016_j_molcel_2019_05_032
crossref_primary_10_1038_nmeth_4146
crossref_primary_10_1093_bioinformatics_btab062
crossref_primary_10_1038_s41467_017_02386_3
crossref_primary_10_1038_s41467_024_48698_z
crossref_primary_10_1016_j_ceb_2020_11_006
crossref_primary_10_1126_science_adg3797
crossref_primary_10_1038_s41598_020_72543_0
crossref_primary_10_1038_s41593_018_0266_2
crossref_primary_10_3390_ijms242115975
crossref_primary_10_1083_jcb_201902117
crossref_primary_10_1016_j_jgg_2021_06_017
crossref_primary_10_1371_journal_pcbi_1006617
crossref_primary_10_1371_journal_pcbi_1005647
crossref_primary_10_1016_j_csbj_2021_03_018
crossref_primary_10_1016_j_coisb_2017_04_001
crossref_primary_10_1016_j_stem_2021_04_023
crossref_primary_10_1016_j_addr_2017_07_016
crossref_primary_10_1038_s41576_019_0195_2
crossref_primary_10_3389_fcell_2021_753097
crossref_primary_10_1002_mco2_326
crossref_primary_10_1038_s41564_023_01483_y
crossref_primary_10_1371_journal_pgen_1006966
crossref_primary_10_1038_s41588_022_01117_9
crossref_primary_10_1016_j_cell_2019_01_020
crossref_primary_10_1186_s13059_017_1225_z
crossref_primary_10_3389_fgene_2021_748239
crossref_primary_10_1134_S0006297918040028
crossref_primary_10_1016_j_celrep_2016_10_061
crossref_primary_10_1080_01621459_2024_2358557
crossref_primary_10_1038_s41588_018_0098_8
crossref_primary_10_1186_s12859_020_03652_w
crossref_primary_10_1186_s12864_021_08066_3
crossref_primary_10_1042_BST20201004
crossref_primary_10_1038_s41580_019_0132_4
crossref_primary_10_1016_j_yjmcc_2020_11_008
crossref_primary_10_1093_nar_gkx145
crossref_primary_10_1093_nar_gkz201
crossref_primary_10_3389_fcell_2021_723859
crossref_primary_10_1039_D0CP01877E
crossref_primary_10_1093_nar_gkaa087
crossref_primary_10_1038_s41598_020_79158_5
crossref_primary_10_3390_ijms232314919
crossref_primary_10_1186_s13020_021_00502_6
crossref_primary_10_1371_journal_pone_0243791
crossref_primary_10_1371_journal_pbio_3002424
crossref_primary_10_1016_j_cell_2017_04_022
crossref_primary_10_1016_j_bpr_2021_100042
crossref_primary_10_1111_febs_15762
crossref_primary_10_1242_dev_148304
crossref_primary_10_1002_jcb_27737
crossref_primary_10_1038_s41594_019_0231_0
crossref_primary_10_1002_gcc_22711
crossref_primary_10_1093_bioinformatics_btaa445
crossref_primary_10_1093_nar_gkab547
crossref_primary_10_1093_nar_gkw1301
crossref_primary_10_7554_eLife_88564_3
crossref_primary_10_1002_wcms_1454
crossref_primary_10_1093_nar_gkx086
crossref_primary_10_1038_s41588_018_0338_y
crossref_primary_10_1093_bioinformatics_btw368
crossref_primary_10_1103_PhysRevE_104_054402
crossref_primary_10_1111_nyas_14303
crossref_primary_10_3390_genes10060415
crossref_primary_10_1186_s13059_018_1558_2
crossref_primary_10_1186_s13059_018_1596_9
crossref_primary_10_1186_s13059_020_02106_z
crossref_primary_10_1101_cshperspect_a040113
crossref_primary_10_1093_bfgp_elz028
crossref_primary_10_1186_s13073_017_0477_2
crossref_primary_10_1016_j_ymeth_2018_05_005
crossref_primary_10_1093_nar_gkx1214
crossref_primary_10_1016_j_lfs_2018_09_021
crossref_primary_10_1186_s13619_022_00145_4
crossref_primary_10_1038_nature24281
crossref_primary_10_1038_s41467_019_09483_5
crossref_primary_10_1111_dgd_12363
crossref_primary_10_1016_j_ymeth_2017_03_013
crossref_primary_10_1186_s13015_019_0157_4
crossref_primary_10_1038_s41597_022_01508_x
crossref_primary_10_1186_s13059_016_1003_3
crossref_primary_10_15252_msb_20209760
crossref_primary_10_1016_j_jgg_2023_01_009
crossref_primary_10_1103_PhysRevE_94_042402
crossref_primary_10_1016_j_jmb_2019_10_014
crossref_primary_10_1016_j_ceb_2016_12_001
crossref_primary_10_1016_j_jbc_2021_101559
crossref_primary_10_3389_fnins_2017_00559
crossref_primary_10_1002_wsbm_1444
crossref_primary_10_1007_s10142_023_01146_5
crossref_primary_10_1016_j_tins_2018_02_009
crossref_primary_10_1186_s13395_022_00303_x
crossref_primary_10_1093_bioinformatics_btz415
crossref_primary_10_1186_s13041_016_0263_x
crossref_primary_10_1093_nar_gkaa004
crossref_primary_10_1186_s13395_017_0122_1
crossref_primary_10_1101_gr_210005_116
crossref_primary_10_1007_s10577_016_9545_5
crossref_primary_10_1016_j_ymeth_2018_02_024
crossref_primary_10_1016_j_celrep_2020_01_044
crossref_primary_10_3390_cells8080788
crossref_primary_10_1242_jcs_217513
crossref_primary_10_1096_fj_201700753R
crossref_primary_10_1016_j_ceb_2020_01_002
crossref_primary_10_1101_gr_212803_116
crossref_primary_10_1371_journal_pcbi_1006686
crossref_primary_10_1016_j_bpj_2018_10_032
crossref_primary_10_1101_gad_310367_117
crossref_primary_10_15252_msb_20188214
crossref_primary_10_1016_j_conb_2016_12_002
crossref_primary_10_3390_polym14091918
crossref_primary_10_1038_s41586_021_04081_2
crossref_primary_10_3389_fgene_2017_00150
crossref_primary_10_1016_j_celrep_2018_03_056
crossref_primary_10_1038_s41594_023_01130_4
crossref_primary_10_7554_eLife_88564
crossref_primary_10_1007_s10565_018_9428_y
crossref_primary_10_1186_s12859_017_1616_x
crossref_primary_10_1007_s00418_018_1726_1
crossref_primary_10_12688_f1000research_10792_1
crossref_primary_10_1109_TCBB_2022_3147805
crossref_primary_10_1038_s41467_021_27159_x
crossref_primary_10_1134_S1068162017010083
crossref_primary_10_1140_epjp_s13360_023_03776_x
crossref_primary_10_1093_jmcb_mjz047
crossref_primary_10_1038_s41467_022_31856_6
crossref_primary_10_1016_j_celrep_2018_06_031
crossref_primary_10_1038_s41467_020_17141_4
crossref_primary_10_1083_jcb_201611001
crossref_primary_10_1007_s00425_023_04223_y
crossref_primary_10_1038_s41598_019_45457_9
crossref_primary_10_3390_a15090330
crossref_primary_10_1080_21541264_2016_1181489
crossref_primary_10_1186_s11658_017_0050_4
crossref_primary_10_1038_s41467_018_03113_2
crossref_primary_10_3389_fnins_2018_00874
crossref_primary_10_1126_sciadv_aay4055
crossref_primary_10_1016_j_cell_2022_09_006
crossref_primary_10_3389_fonc_2020_00468
crossref_primary_10_1371_journal_pone_0188201
crossref_primary_10_1093_bioinformatics_btab238
crossref_primary_10_1038_s41422_020_00466_6
crossref_primary_10_1038_s41467_023_41964_6
crossref_primary_10_1038_s41588_019_0392_0
crossref_primary_10_1262_jrd_2016_172
crossref_primary_10_1093_jrsssc_qlae011
crossref_primary_10_1016_j_neuron_2022_06_004
crossref_primary_10_1016_j_coisb_2017_02_003
crossref_primary_10_1186_s12915_022_01375_3
crossref_primary_10_1038_srep36819
crossref_primary_10_1186_s12864_020_6580_6
crossref_primary_10_1126_science_aat5641
crossref_primary_10_1007_s00412_018_0684_7
crossref_primary_10_1038_s41598_023_39522_7
crossref_primary_10_1093_nar_gkad798
crossref_primary_10_1016_j_celrep_2019_07_013
crossref_primary_10_1038_s41592_021_01135_1
crossref_primary_10_1186_s12859_022_04674_2
crossref_primary_10_1038_s41598_019_42212_y
crossref_primary_10_1016_j_jmb_2019_12_017
crossref_primary_10_1002_advs_202300366
crossref_primary_10_1016_j_celrep_2022_110601
crossref_primary_10_1038_nrm_2016_104
crossref_primary_10_1038_s41467_019_10402_x
crossref_primary_10_1186_s12859_018_2288_x
crossref_primary_10_1103_PhysRevResearch_2_043078
crossref_primary_10_1038_s41467_024_48593_7
crossref_primary_10_1134_S000629791804003X
crossref_primary_10_3389_fcell_2022_1067248
crossref_primary_10_1186_s12864_016_3387_6
crossref_primary_10_1101_gr_212308_116
crossref_primary_10_1186_s13072_017_0146_0
crossref_primary_10_1038_s41467_017_00478_8
crossref_primary_10_1007_s00412_016_0604_7
crossref_primary_10_1016_j_cell_2020_09_014
crossref_primary_10_1016_j_celrep_2023_113543
crossref_primary_10_1016_j_csbj_2021_04_016
crossref_primary_10_1038_s41467_018_03017_1
crossref_primary_10_1016_j_bpj_2019_06_032
crossref_primary_10_1007_s10577_016_9548_2
crossref_primary_10_1016_j_gde_2020_12_008
crossref_primary_10_3390_ijms24043660
crossref_primary_10_1007_s00357_020_09377_y
crossref_primary_10_1371_journal_pcbi_1008834
crossref_primary_10_1038_s41467_022_31892_2
crossref_primary_10_1186_s13059_022_02687_x
crossref_primary_10_1371_journal_pcbi_1006786
crossref_primary_10_1016_j_devcel_2019_05_021
crossref_primary_10_1016_j_isci_2022_104269
crossref_primary_10_1017_S2040174417000678
crossref_primary_10_7554_eLife_21926
crossref_primary_10_3390_jdb8030018
crossref_primary_10_1101_gr_254219_119
crossref_primary_10_1016_j_semcdb_2018_07_004
crossref_primary_10_1074_jbc_RA120_015534
crossref_primary_10_1002_pmic_201900047
crossref_primary_10_1209_0295_5075_120_40004
crossref_primary_10_1101_sqb_2017_82_035030
crossref_primary_10_1016_j_gde_2016_10_006
crossref_primary_10_1093_hmg_ddab348
crossref_primary_10_1186_s13072_024_00538_6
crossref_primary_10_1016_j_ymeth_2019_09_018
crossref_primary_10_1038_s41588_019_0474_z
crossref_primary_10_1101_gr_237073_118
crossref_primary_10_1016_j_jmb_2019_12_006
crossref_primary_10_1073_pnas_1817829116
crossref_primary_10_2139_ssrn_3947354
crossref_primary_10_3390_ijms21217948
crossref_primary_10_3390_genes14051046
crossref_primary_10_3389_fnmol_2018_00060
Cites_doi 10.1016/j.cell.2013.04.053
10.1038/nature13182
10.1242/dev.066746
10.1016/j.cell.2012.01.010
10.1016/j.gde.2012.12.009
10.1073/pnas.1204799109
10.1126/science.1073374
10.1371/journal.pbio.0040138
10.1038/nmeth.2148
10.1038/nmeth0306-211
10.1038/nature14222
10.1038/nature11082
10.1186/s13059-015-0661-x
10.1002/bies.201200178
10.1371/journal.pone.0006286
10.1371/journal.pbio.1001046
10.1016/j.cell.2007.01.028
10.2217/bmm.10.68
10.1016/j.bpj.2008.12.3919
10.1101/gad.251694.114
10.1038/nrg2041
10.1016/j.molcel.2013.10.030
10.1038/nature06008
10.1038/nprot.2012.005
10.1073/pnas.0508637103
10.1016/j.ceb.2014.04.004
10.1016/j.molcel.2010.03.016
10.1016/j.stem.2011.12.017
10.1038/nature11049
10.1016/j.cell.2008.04.043
10.1126/science.1181369
10.1016/j.cell.2013.02.001
10.1016/j.cell.2014.11.021
10.1038/nature13986
10.1371/journal.pbio.0060245
ContentType Journal Article
Copyright The Author(s) 2015
2015 The Authors. Published under the terms of the CC BY 4.0 license
2015 The Authors. Published under the terms of the CC BY 4.0 license.
2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2015
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2015 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2015. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor FANTOM Consortium
The FANTOM Consortium
CorporateAuthor_xml – sequence: 0
  name: The FANTOM Consortium
– name: FANTOM Consortium
DBID C6C
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.15252/msb.20156492
DatabaseName SpringerOpen
Wiley Open Access Journals
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Databases
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate James Fraser et al
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_765b0f5990a74b9197e7585207bbb92c
10_15252_msb_20156492
26700852
MSB156492
Genre article
Journal Article
GeographicLocations United Kingdom--UK
Japan
GeographicLocations_xml – name: United Kingdom--UK
– name: Japan
GrantInformation_xml – fundername: Helmholtz Foundation (Germany)
– fundername: Canadian Institutes of Health Research (CIHR)
  grantid: MOP‐86716; CAP‐120350
– fundername: MEXT
– fundername: Canadian Institutes of Health Research (CIHR)
  funderid: MOP‐86716; CAP‐120350
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H008098/1
– fundername: Canadian Institutes of Health Research
  grantid: MOP-86716
– fundername: Canadian Institutes of Health Research
  grantid: CAP-120350
– fundername: Medical Research Council
  grantid: MC_U120061476
GroupedDBID ---
-Q-
0R~
123
1OC
24P
29M
2WC
39C
3V.
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAHHS
ABDBF
ABUWG
ACCFJ
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AFRAH
AHMBA
AIAGR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IHR
INH
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
O5R
O5S
O9-
OK1
P2P
PADUT
PIMPY
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
4.4
88A
ACSMW
COF
EBLON
GODZA
IGS
M0L
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ITC
7QL
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c5742-cde8b7097b1a37afbda0be13e11bedff0f2a6459c83684f09310121e18ca68993
IEDL.DBID RPM
ISSN 1744-4292
IngestDate Mon Nov 04 19:56:10 EST 2024
Tue Sep 17 21:14:49 EDT 2024
Fri Oct 25 07:39:42 EDT 2024
Thu Oct 10 18:48:29 EDT 2024
Fri Dec 06 02:40:56 EST 2024
Sat Sep 28 08:29:46 EDT 2024
Sat Aug 24 01:03:43 EDT 2024
Sat Oct 26 01:34:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords polymer modelling
chromosome architecture
chromatin contacts
epigenetics
gene expression
Language English
License Attribution
2015 The Authors. Published under the terms of the CC BY 4.0 license.
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5742-cde8b7097b1a37afbda0be13e11bedff0f2a6459c83684f09310121e18ca68993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704492/
PMID 26700852
PQID 2290024514
PQPubID 29031
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_765b0f5990a74b9197e7585207bbb92c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4704492
proquest_miscellaneous_1752351564
proquest_journals_2290024514
crossref_primary_10_15252_msb_20156492
pubmed_primary_26700852
wiley_primary_10_15252_msb_20156492_MSB156492
springer_journals_10_15252_msb_20156492
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2015
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References Kodzius, Kojima, Nishiyori, Nakamura, Fukuda, Tagami, Sasaki, Imamura, Kai, Harbers, Hayashizaki, Carninci (CR16) 2006; 3
Lanctot, Cheutin, Cremer, Cavalli, Cremer (CR17) 2007; 8
Misteli (CR20) 2007; 128
Dixon, Selvaraj, Yue, Kim, Li, Shen, Hu, Liu, Ren (CR8) 2012; 485
Brookes, de Santiago, Hebenstreit, Morris, Carroll, Xie, Stock, Heidemann, Eick, Nozaki, Kimura, Ragoussis, Teichmann, Pombo (CR5) 2012; 10
Yu, Gerstein (CR35) 2006; 103
Branco, Pombo (CR4) 2006; 4
Takahashi, Lassmann, Murata, Carninci (CR32) 2012; 7
Jaeger, Arber, Risner‐Janiczek, Kuechler, Pritzsche, Chen, Naveenan, Ungless, Li (CR15) 2011; 138
Peric‐Hupkes, Meuleman, Pagie, Bruggeman, Solovei, Brugman, Graf, Flicek, Kerkhoven, van Lohuizen, Reinders, Wessels, van Steensel (CR25) 2010; 38
Moore, Aitken, Semple (CR21) 2015; 16
Crutchley, Wang, Ferraiuolo, Dostie (CR7) 2010; 4
Spielmann, Mundlos (CR31) 2013; 35
Dixon, Jung, Selvaraj, Shen, Antosiewicz‐Bourget, Lee, Ye, Kim, Rajagopal, Xie, Diao, Liang, Zhao, Lobanenkov, Ecker, Thomson, Ren (CR9) 2015; 518
Tanay, Cavalli (CR33) 2013; 23
(CR10) 2011; 9
Ravasz, Somera, Mongru, Oltvai, Barabasi (CR29) 2002; 297
Williamson, Berlivet, Eskeland, Boyle, Illingworth, Paquette, Dostie, Bickmore (CR34) 2014; 28
Lieberman‐Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo, Dorschner, Sandstrom, Bernstein, Bender, Groudine, Gnirke, Stamatoyannopoulos, Mirny, Lander, Dekker (CR18) 2009; 326
Sexton, Yaffe, Kenigsberg, Bantignies, Leblanc, Hoichman, Parrinello, Tanay, Cavalli (CR30) 2012; 148
Nicodemi, Pombo (CR23) 2014; 28C
Rao, Huntley, Durand, Stamenova, Bochkov, Robinson, Sanborn, Machol, Omer, Lander, Aiden (CR28) 2014; 159
Phillips‐Cremins, Sauria, Sanyal, Gerasimova, Lajoie, Bell, Ong, Hookway, Guo, Sun, Bland, Wagstaff, Dalton, McDevitt, Sen, Dekker, Taylor, Corces (CR26) 2013; 153
Bickmore, van Steensel (CR3) 2013; 152
Chen, Xu, Yuan, Fang, Huss, Vega, Wong, Orlov, Zhang, Jiang, Loh, Yeo, Yeo, Narang, Govindarajan, Leong, Shahab, Ruan, Bourque, Sung (CR6) 2008; 133
Hiratani, Ryba, Itoh, Yokochi, Schwaiger, Chang, Lyou, Townes, Schubeler, Gilbert (CR13) 2008; 6
Barbieri, Chotalia, Fraser, Lavitas, Dostie, Pombo, Nicodemi (CR2) 2012; 109
Nora, Lajoie, Schulz, Giorgetti, Okamoto, Servant, Piolot, van Berkum, Meisig, Sedat, Gribnau, Barillot, Bluthgen, Dekker, Heard (CR24) 2012; 485
Nicodemi, Prisco (CR22) 2009; 96
Ferrari, Scelfo, Jammula, Cuomo, Barozzi, Stutzer, Fischle, Bonaldi, Pasini (CR11) 2014; 53
Mikkelsen, Ku, Jaffe, Issac, Lieberman, Giannoukos, Alvarez, Brockman, Kim, Koche, Lee, Mendenhall, O'Donovan, Presser, Russ, Xie, Meissner, Wernig, Jaenisch, Nusbaum (CR19) 2007; 448
Abranches, Silva, Pradier, Schulz, Hummel, Henrique, Bekman (CR1) 2009; 4
Imakaev, Fudenberg, McCord, Naumova, Goloborodko, Lajoie, Dekker, Mirny (CR14) 2012; 9
Forrest, Kawaji, Rehli, Baillie, de Hoon, Haberle, Lassmann, Kulakovskiy, Lizio, Itoh, Andersson, Mungall, Meehan, Schmeier, Bertin, Jorgensen, Dimont, Arner, Schmidl, Schaefer (CR12) 2014; 507
Pope, Ryba, Dileep, Yue, Wu, Denas, Vera, Wang, Hansen, Canfield, Thurman, Cheng, Gulsoy, Dennis, Snyder, Stamatoyannopoulos, Taylor, Hardison, Kahveci, Ren (CR27) 2014; 515
2011; 138
2014; 515
2007; 448
2010; 38
2012; 485
2015; 16
2007; 128
2002; 297
2013; 23
2006; 3
2006; 4
2008; 6
2014; 28
2012; 148
2012; 10
2014; 159
2012; 109
2011; 9
2014; 507
2009; 96
2014; 28C
2013; 35
2007; 8
2015; 518
2013; 152
2009; 4
2013; 153
2008; 133
2012; 7
2010; 4
2006; 103
2014; 53
2012; 9
2009; 326
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 133
  start-page: 1106
  year: 2008
  end-page: 1117
  ident: CR6
  article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
  publication-title: Cell
  contributor:
    fullname: Sung
– volume: 485
  start-page: 376
  year: 2012
  end-page: 380
  ident: CR8
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  contributor:
    fullname: Ren
– volume: 515
  start-page: 402
  year: 2014
  end-page: 405
  ident: CR27
  article-title: Topologically associating domains are stable units of replication‐timing regulation
  publication-title: Nature
  contributor:
    fullname: Ren
– volume: 159
  start-page: 1665
  year: 2014
  end-page: 1680
  ident: CR28
  article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
  publication-title: Cell
  contributor:
    fullname: Aiden
– volume: 35
  start-page: 533
  year: 2013
  end-page: 543
  ident: CR31
  article-title: Structural variations, the regulatory landscape of the genome and their alteration in human disease
  publication-title: BioEssays
  contributor:
    fullname: Mundlos
– volume: 38
  start-page: 603
  year: 2010
  end-page: 613
  ident: CR25
  article-title: Molecular maps of the reorganization of genome‐nuclear lamina interactions during differentiation
  publication-title: Mol Cell
  contributor:
    fullname: van Steensel
– volume: 53
  start-page: 49
  year: 2014
  end-page: 62
  ident: CR11
  article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity
  publication-title: Mol Cell
  contributor:
    fullname: Pasini
– volume: 7
  start-page: 542
  year: 2012
  end-page: 561
  ident: CR32
  article-title: 5′ end‐centered expression profiling using cap‐analysis gene expression and next‐generation sequencing
  publication-title: Nat Protoc
  contributor:
    fullname: Carninci
– volume: 9
  start-page: 999
  year: 2012
  end-page: 1003
  ident: CR14
  article-title: Iterative correction of Hi‐C data reveals hallmarks of chromosome organization
  publication-title: Nat Methods
  contributor:
    fullname: Mirny
– volume: 109
  start-page: 16173
  year: 2012
  end-page: 16178
  ident: CR2
  article-title: Complexity of chromatin folding is captured by the strings and binders switch model
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Nicodemi
– volume: 4
  start-page: e6286
  year: 2009
  ident: CR1
  article-title: Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo
  publication-title: PLoS One
  contributor:
    fullname: Bekman
– volume: 507
  start-page: 462
  year: 2014
  end-page: 470
  ident: CR12
  article-title: A promoter‐level mammalian expression atlas
  publication-title: Nature
  contributor:
    fullname: Schaefer
– volume: 128
  start-page: 787
  year: 2007
  end-page: 800
  ident: CR20
  article-title: Beyond the sequence: cellular organization of genome function
  publication-title: Cell
  contributor:
    fullname: Misteli
– volume: 518
  start-page: 331
  year: 2015
  end-page: 336
  ident: CR9
  article-title: Chromatin architecture reorganization during stem cell differentiation
  publication-title: Nature
  contributor:
    fullname: Ren
– volume: 138
  start-page: 4363
  year: 2011
  end-page: 4374
  ident: CR15
  article-title: Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells
  publication-title: Development
  contributor:
    fullname: Li
– volume: 16
  start-page: 110
  year: 2015
  ident: CR21
  article-title: Integrative modeling reveals the principles of multi‐scale chromatin boundary formation in human nuclear organization
  publication-title: Genome Biol
  contributor:
    fullname: Semple
– volume: 28C
  start-page: 90
  year: 2014
  end-page: 95
  ident: CR23
  article-title: Models of chromosome structure
  publication-title: Curr Opin Cell Biol
  contributor:
    fullname: Pombo
– volume: 297
  start-page: 1551
  year: 2002
  end-page: 1555
  ident: CR29
  article-title: Hierarchical organization of modularity in metabolic networks
  publication-title: Science
  contributor:
    fullname: Barabasi
– volume: 103
  start-page: 14724
  year: 2006
  end-page: 14731
  ident: CR35
  article-title: Genomic analysis of the hierarchical structure of regulatory networks
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Gerstein
– volume: 3
  start-page: 211
  year: 2006
  end-page: 222
  ident: CR16
  article-title: CAGE: cap analysis of gene expression
  publication-title: Nat Methods
  contributor:
    fullname: Carninci
– volume: 485
  start-page: 381
  year: 2012
  end-page: 385
  ident: CR24
  article-title: Spatial partitioning of the regulatory landscape of the X‐inactivation centre
  publication-title: Nature
  contributor:
    fullname: Heard
– volume: 23
  start-page: 197
  year: 2013
  end-page: 203
  ident: CR33
  article-title: Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization
  publication-title: Curr Opin Genet Dev
  contributor:
    fullname: Cavalli
– volume: 96
  start-page: 2168
  year: 2009
  end-page: 2177
  ident: CR22
  article-title: Thermodynamic pathways to genome spatial organization in the cell nucleus
  publication-title: Biophys J
  contributor:
    fullname: Prisco
– volume: 10
  start-page: 157
  year: 2012
  end-page: 170
  ident: CR5
  article-title: Polycomb associates genome‐wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs
  publication-title: Cell Stem Cell
  contributor:
    fullname: Pombo
– volume: 8
  start-page: 104
  year: 2007
  end-page: 115
  ident: CR17
  article-title: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
  publication-title: Nat Rev Genet
  contributor:
    fullname: Cremer
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  ident: CR18
  article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome
  publication-title: Science
  contributor:
    fullname: Dekker
– volume: 6
  start-page: e245
  year: 2008
  ident: CR13
  article-title: Global reorganization of replication domains during embryonic stem cell differentiation
  publication-title: PLoS Biol
  contributor:
    fullname: Gilbert
– volume: 4
  start-page: e138
  year: 2006
  ident: CR4
  article-title: Intermingling of chromosome territories in interphase suggests role in translocations and transcription‐dependent associations
  publication-title: PLoS Biol
  contributor:
    fullname: Pombo
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  ident: CR19
  article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells
  publication-title: Nature
  contributor:
    fullname: Nusbaum
– volume: 9
  start-page: e1001046
  year: 2011
  ident: CR10
  article-title: A user's guide to the encyclopedia of DNA elements (ENCODE)
  publication-title: PLoS Biol
– volume: 4
  start-page: 611
  year: 2010
  end-page: 629
  ident: CR7
  article-title: Chromatin conformation signatures: ideal human disease biomarkers?
  publication-title: Biomark Med
  contributor:
    fullname: Dostie
– volume: 153
  start-page: 1281
  year: 2013
  end-page: 1295
  ident: CR26
  article-title: Architectural protein subclasses shape 3D organization of genomes during lineage commitment
  publication-title: Cell
  contributor:
    fullname: Corces
– volume: 148
  start-page: 458
  year: 2012
  end-page: 472
  ident: CR30
  article-title: Three‐dimensional folding and functional organization principles of the Drosophila genome
  publication-title: Cell
  contributor:
    fullname: Cavalli
– volume: 152
  start-page: 1270
  year: 2013
  end-page: 1284
  ident: CR3
  article-title: Genome architecture: domain organization of interphase chromosomes
  publication-title: Cell
  contributor:
    fullname: van Steensel
– volume: 28
  start-page: 2778
  year: 2014
  end-page: 2791
  ident: CR34
  article-title: Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization
  publication-title: Genes Dev
  contributor:
    fullname: Bickmore
– volume: 448
  start-page: 553
  year: 2007
  end-page: 560
  article-title: Genome‐wide maps of chromatin state in pluripotent and lineage‐committed cells
  publication-title: Nature
– volume: 38
  start-page: 603
  year: 2010
  end-page: 613
  article-title: Molecular maps of the reorganization of genome‐nuclear lamina interactions during differentiation
  publication-title: Mol Cell
– volume: 148
  start-page: 458
  year: 2012
  end-page: 472
  article-title: Three‐dimensional folding and functional organization principles of the Drosophila genome
  publication-title: Cell
– volume: 133
  start-page: 1106
  year: 2008
  end-page: 1117
  article-title: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
  publication-title: Cell
– volume: 507
  start-page: 462
  year: 2014
  end-page: 470
  article-title: A promoter‐level mammalian expression atlas
  publication-title: Nature
– volume: 28C
  start-page: 90
  year: 2014
  end-page: 95
  article-title: Models of chromosome structure
  publication-title: Curr Opin Cell Biol
– volume: 53
  start-page: 49
  year: 2014
  end-page: 62
  article-title: Polycomb‐dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity
  publication-title: Mol Cell
– volume: 515
  start-page: 402
  year: 2014
  end-page: 405
  article-title: Topologically associating domains are stable units of replication‐timing regulation
  publication-title: Nature
– volume: 28
  start-page: 2778
  year: 2014
  end-page: 2791
  article-title: Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization
  publication-title: Genes Dev
– volume: 10
  start-page: 157
  year: 2012
  end-page: 170
  article-title: Polycomb associates genome‐wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs
  publication-title: Cell Stem Cell
– volume: 485
  start-page: 381
  year: 2012
  end-page: 385
  article-title: Spatial partitioning of the regulatory landscape of the X‐inactivation centre
  publication-title: Nature
– volume: 518
  start-page: 331
  year: 2015
  end-page: 336
  article-title: Chromatin architecture reorganization during stem cell differentiation
  publication-title: Nature
– volume: 4
  start-page: e138
  year: 2006
  article-title: Intermingling of chromosome territories in interphase suggests role in translocations and transcription‐dependent associations
  publication-title: PLoS Biol
– volume: 103
  start-page: 14724
  year: 2006
  end-page: 14731
  article-title: Genomic analysis of the hierarchical structure of regulatory networks
  publication-title: Proc Natl Acad Sci USA
– volume: 485
  start-page: 376
  year: 2012
  end-page: 380
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
– volume: 109
  start-page: 16173
  year: 2012
  end-page: 16178
  article-title: Complexity of chromatin folding is captured by the strings and binders switch model
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 611
  year: 2010
  end-page: 629
  article-title: Chromatin conformation signatures: ideal human disease biomarkers?
  publication-title: Biomark Med
– volume: 6
  start-page: e245
  year: 2008
  article-title: Global reorganization of replication domains during embryonic stem cell differentiation
  publication-title: PLoS Biol
– volume: 326
  start-page: 289
  year: 2009
  end-page: 293
  article-title: Comprehensive mapping of long‐range interactions reveals folding principles of the human genome
  publication-title: Science
– volume: 96
  start-page: 2168
  year: 2009
  end-page: 2177
  article-title: Thermodynamic pathways to genome spatial organization in the cell nucleus
  publication-title: Biophys J
– volume: 4
  start-page: e6286
  year: 2009
  article-title: Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo
  publication-title: PLoS One
– volume: 297
  start-page: 1551
  year: 2002
  end-page: 1555
  article-title: Hierarchical organization of modularity in metabolic networks
  publication-title: Science
– volume: 9
  start-page: 999
  year: 2012
  end-page: 1003
  article-title: Iterative correction of Hi‐C data reveals hallmarks of chromosome organization
  publication-title: Nat Methods
– volume: 159
  start-page: 1665
  year: 2014
  end-page: 1680
  article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
  publication-title: Cell
– volume: 23
  start-page: 197
  year: 2013
  end-page: 203
  article-title: Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization
  publication-title: Curr Opin Genet Dev
– volume: 7
  start-page: 542
  year: 2012
  end-page: 561
  article-title: 5′ end‐centered expression profiling using cap‐analysis gene expression and next‐generation sequencing
  publication-title: Nat Protoc
– volume: 152
  start-page: 1270
  year: 2013
  end-page: 1284
  article-title: Genome architecture: domain organization of interphase chromosomes
  publication-title: Cell
– volume: 138
  start-page: 4363
  year: 2011
  end-page: 4374
  article-title: Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells
  publication-title: Development
– volume: 16
  start-page: 110
  year: 2015
  article-title: Integrative modeling reveals the principles of multi‐scale chromatin boundary formation in human nuclear organization
  publication-title: Genome Biol
– volume: 8
  start-page: 104
  year: 2007
  end-page: 115
  article-title: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
  publication-title: Nat Rev Genet
– volume: 35
  start-page: 533
  year: 2013
  end-page: 543
  article-title: Structural variations, the regulatory landscape of the genome and their alteration in human disease
  publication-title: BioEssays
– volume: 9
  start-page: e1001046
  year: 2011
  article-title: A user's guide to the encyclopedia of DNA elements (ENCODE)
  publication-title: PLoS Biol
– volume: 153
  start-page: 1281
  year: 2013
  end-page: 1295
  article-title: Architectural protein subclasses shape 3D organization of genomes during lineage commitment
  publication-title: Cell
– volume: 3
  start-page: 211
  year: 2006
  end-page: 222
  article-title: CAGE: cap analysis of gene expression
  publication-title: Nat Methods
– volume: 128
  start-page: 787
  year: 2007
  end-page: 800
  article-title: Beyond the sequence: cellular organization of genome function
  publication-title: Cell
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cell.2013.04.053
– ident: e_1_2_8_13_1
  doi: 10.1038/nature13182
– ident: e_1_2_8_16_1
  doi: 10.1242/dev.066746
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cell.2012.01.010
– ident: e_1_2_8_34_1
  doi: 10.1016/j.gde.2012.12.009
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.1204799109
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1073374
– ident: e_1_2_8_5_1
  doi: 10.1371/journal.pbio.0040138
– ident: e_1_2_8_15_1
  doi: 10.1038/nmeth.2148
– ident: e_1_2_8_17_1
  doi: 10.1038/nmeth0306-211
– ident: e_1_2_8_10_1
  doi: 10.1038/nature14222
– ident: e_1_2_8_9_1
  doi: 10.1038/nature11082
– ident: e_1_2_8_22_1
  doi: 10.1186/s13059-015-0661-x
– ident: e_1_2_8_32_1
  doi: 10.1002/bies.201200178
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pone.0006286
– ident: e_1_2_8_11_1
  doi: 10.1371/journal.pbio.1001046
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2007.01.028
– ident: e_1_2_8_8_1
  doi: 10.2217/bmm.10.68
– ident: e_1_2_8_23_1
  doi: 10.1016/j.bpj.2008.12.3919
– ident: e_1_2_8_35_1
  doi: 10.1101/gad.251694.114
– ident: e_1_2_8_18_1
  doi: 10.1038/nrg2041
– ident: e_1_2_8_12_1
  doi: 10.1016/j.molcel.2013.10.030
– ident: e_1_2_8_20_1
  doi: 10.1038/nature06008
– ident: e_1_2_8_33_1
  doi: 10.1038/nprot.2012.005
– ident: e_1_2_8_36_1
  doi: 10.1073/pnas.0508637103
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ceb.2014.04.004
– ident: e_1_2_8_26_1
  doi: 10.1016/j.molcel.2010.03.016
– ident: e_1_2_8_6_1
  doi: 10.1016/j.stem.2011.12.017
– ident: e_1_2_8_25_1
  doi: 10.1038/nature11049
– ident: e_1_2_8_7_1
  doi: 10.1016/j.cell.2008.04.043
– ident: e_1_2_8_19_1
  doi: 10.1126/science.1181369
– ident: e_1_2_8_4_1
  doi: 10.1016/j.cell.2013.02.001
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cell.2014.11.021
– ident: e_1_2_8_28_1
  doi: 10.1038/nature13986
– ident: e_1_2_8_14_1
  doi: 10.1371/journal.pbio.0060245
SSID ssj0038182
Score 2.6262949
Snippet Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning multiple...
Mammalian chromosomes fold into arrays of megabase-sized topologically associating domains (TADs), which are arranged into compartments spanning multiple...
Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains ( TAD s), which are arranged into compartments spanning multiple...
Abstract Mammalian chromosomes fold into arrays of megabase‐sized topologically associating domains (TADs), which are arranged into compartments spanning...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 852
SubjectTerms Animals
Cell Differentiation
Cell division
Cells, Cultured
Chromatin
Chromatin - chemistry
Chromatin Assembly and Disassembly
chromatin contacts
chromosome architecture
Chromosomes
Chromosomes - chemistry
Datasets
Deoxyribonucleic acid
Differentiation (biology)
DNA
Domains
EMBO09
EMBO11
EMBO17
Epigenesis, Genetic
epigenetics
Folding
Gene expression
Gene Expression Regulation
Genomes
Innovations
Mammals
Mice
Mouse Embryonic Stem Cells - cytology
Neurons
Neurons - cytology
Packaging
polymer modelling
Stem cells
Structural hierarchy
Substructures
Transcription
Transcription, Genetic
Trees
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Lat0wEBUlEOimNOnLbVpUKO3KRJIl21o2IeFSSDdtIDshySNyobHDtbPI3_Rb-mXRWPZtTF-b7oxt5PG8NCONzhDyrim10wFUzhpX5rJmKrdFyfIQjZJzgKhUuKB_9rlcnctPF-riXqsvrAlL8MCJcYdVqRwLKjpNW0mnua4AQ1zBKuecFn70vkzMyVTywTgNiQlRUwklDq96h2VcqpRaLGagEaj_d9Hlr0WS253SZRw7TkSnj8mjKYKkHxPle-QBtPtkN_WUvH1CbldrPFM8tjj5RkPaXKK2begGunsHL2kXqL_EYry-u4Ke2g1Q3M2Fhg4dHXAKmx1KHCedD-5_fF-3FNf6sXiVzs1VhiTep-T89OTr8Sqf-ivkXsWMOPcN1K5iunLcFpUNrrHMAS-AcwdNCCwIi1gzvi7KWgamCwQD48Brb8uYpxXPyE7btfCCUBu8Ds4X2lshQYCzLHjrXRO00szbjLyfeW6uE4yGwfQDhWOicMwsnIwcoUS2LyH69XgjcshMOmH-pRMZOZjlaSaT7A0C2-M-M5cZebt9HI0JuWZb6G56E2MpUSikJCPPk_i3lAg80BQ_kpFqoRgLUpdP2vXlCNgtKybHf_swq9BPsv7AhXzUsL_zypx9OUpXL_8H116RhzhyqtU5IDvD5gZex4hrcG9G47oD7AwqwA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Databases
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1di9QwcNA9BF_Eb6unRBB9KpekTds8iSt3LMIdoh7cW0jSCbfgtee2B_rvzfRjz0W9t9L0YzIfmZnMZAbgTV1opwOqlNeuSPOKq9RmBU9DFEohECNT0Yb-8UmxOs0_namzacOtm9Iq5zVxWKjr1tMe-QHVJacwocjfX_5IqWsURVenFhq3YU-KrKoWsLc8PPn8ZV6LSR3JqbKmkkoeXHSO0rlUkWu5o4mGgv3_sjL_TpbcRkx37dlBIR3dh3uTJck-jKR_ALeweQh3xt6Svx7Bz9WazhYPrU6-szAGmZhtarbB9o8DmKwNzJ9TUl7XXmDH7AYZRXWxZn3LelJl88ISvzOeE-7YumG05U85rGzusdKPVH4Mp0eH3z6u0qnNQupVdIxTX2PlSq5LJ2xW2uBqyx2KDIVwWIfAg7RUcsZXWVHlgeuMaoIJFJW3RXTXsiewaNoGnwGzwevgfKa9lTlKdJYHb72rg1aae5vA2xnl5nKspmHICyHamEgbM9MmgSURZPsQFcEebkQEmUmmTFkox4OK-tSWudNCl0jej-Slc05Ln8D-TE4zSWZnrvkogdfb4ShThDXbYHvVmWhSyUwRJAk8Ham_hUTSuab4kwTKHb7YAXV3pFmfD3W785Lnw9zezRx0DdZ_sJAODHYzrszx1-V49fzmCb-Au_TOmIyzD4t-c4Uvo0nVu1eT3PwGdrgjNQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA8yEXwRv61OiSD6VE3StGkeRJw4LsL1RS_sLSTpCbuwtfO2g-2_N6dfs2zurbRNm56PnHN6Tn6HkHdVoZ0OkKesckUqS5anNitYGqJScg4QhQp_6K9_FquN_HGUH11BCo0EbG8M7bCf1GZ38vHiz-WXqPCfx-494tNp67BIKy-kjqvxXRGNIlZ3reWcUEC7JEaIzWtDFiapR-6_yd28XjU5p06Xjm1vmQ4fkgejS0m_DjLwiNyB-jG5NzSZvHxCLlZb3GTc9zw5oWHINlFbV3QHzT87MWkTqD_G6ry2OYWW2h1QTO9CRbuGdmjTphUmPmfYMNzSbU3x3z8Ws9Kp2Uo3sPsp2Rx-__1tlY79FlKfxwg59RWUTjGtHLeZssFVljngGXDuoAqBBWERe8aXWVHKwHSG4GAceOltEeO27BnZq5saXhBqg9fB-Ux7KyQIcJYFb72rgs418zYh7yeSm7MBVsNgOIK8MZE3ZuJNQg6QIfNNiIbdn4gEMqNyGVXkjoU8GlarpNNcK8AwSDDlnNPCJ2R_YqeZJMwg0D3mnblMyNv5clQupJqtoTlvTfStRJbjTBLyfOD-PBOBG5ziSxKiFnKxmOrySr097gG8pWKy_7YPkwRdTes_VEh7AbudVmb962A4enn7B78i93HMUJWzT_a63Tm8jr5V5970WvMXQCwkeA
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0EJFSFxQKa-UUhkJwSnCduI4PtIV1QqpXKBSb5btjNWVaII26aF_w7fwZXjiZGlUQNyiOHEm8_DMeB4m5E1TaacDyJw1rsrLmsncFhXLQxRKzgEiU-GG_tnnan1efrqQF1MSDdbC3I7fSyHF-6veYQKWrEodV9r7Uf0qZORVtZoXXNQ5YmqfeeeVhboZu_L_yZS8mxG5C4sujdZR65zuk0eTuUg_JPo-JvegPSAP0gGSN0_IzXqDBcTjeSbfaEiRJGrbhm6hu1VlSbtA_SVm3vXdFfTUboFi6BYaOnR0QH01rx5xnlQM3P_8sWkpbuxjpiqdT1IZEi2fkvPTj19X63w6TCH3Mrq_uW-gdopp5bgtlA2uscwBL4BzB00ILAiLjWV8XVR1GZgusPMXB157W0WnrHhG9tquhReE2uB1cL7Q3ooSBDjLgrfeNUFLzbzNyNsZ5-Z76plh0NdA4phIHDMTJyMnSJHdQ9jqerwRMWQmyTGqko4FGbWmVaXTXCtAH0cw5ZzTwmfkaKanmeSvN9jFHoPKvMzI691wlBzEmm2hu-5NNJxEIRGSjDxP5N9BIrB6KX4kI2rBGAtQlyPt5nLszl0qVo7_9m5mod9g_QUL-chh_8aVOftykq4O_3vml-QhXqbsmyOyN2yv4VW0oQZ3PErQL2KGGoU
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Open Access Journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9YwFA4yEbwRv61OiSB6VUzapG0unThehImgg92FJD1hL7h2vO0u9m_2W_bLzEnauuIHeFeaNk3PR85Jcs5zCHnTVsoqDzJnra1y0TCZm7JiuQ9KyTlAECrc0D_6Um2OxecTeTLVOcVcmIQPsWy4oWbE-RoV3NhhrtiDqKFng8XQLFkJFebg28G1qbCEQSG-zlMxWqMiZUSKHOsyTSCb2MH7m6-vjFLE7v-Tw_l73ORyeLp2baNtOrxP7k1OJf2QpOABuQXdQ3InlZm8fEQuN1tMM45VT35Qn86bqOlauoP-Ri4m7T11pxifN_RnMFCzA4oHvNDSsacjWrV5jgn9pJTh4fpq21Hc_sd4VjrXWxkTxx-T48NP3z9u8qnkQu5kWCTnroXG1kzVlpuyNt62hlngJXBuofWe-cIg_IxryqoRnqkS8cE48MaZKizdyidkr-s7eEao8U5560rlTCGgAGuYd8bZ1iupmDMZeTvTXJ8nZA2NKxJkjg7M0TNzMnKAHFkeQkDseCNQSE_6petKWuZlsK2mFlZxVQOuhApWW2tV4TKyP_NTT1o6aMS6x6NnLjLyemkO-oVUMx30F4MO7lVRShxJRp4m9i8jKTDHKXwkI_VKMFZDXbd029OI4S1qJuK_vZtF6New_kKFPErYv2mlj74dpKvn__n8C3IXb6ZInX2yN-4u4GXwt0b7KurUT8RHJwo
  priority: 102
  providerName: Wiley-Blackwell
Title Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation
URI https://link.springer.com/article/10.15252/msb.20156492
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20156492
https://www.ncbi.nlm.nih.gov/pubmed/26700852
https://www.proquest.com/docview/2290024514
https://search.proquest.com/docview/1752351564
https://pubmed.ncbi.nlm.nih.gov/PMC4704492
https://doaj.org/article/765b0f5990a74b9197e7585207bbb92c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEB42Wwq9lL7rdhtUKO3JG1mWLOvYhF1CIUtou5CbkWSJDWzsJc4e9t_0t_SXVeNH2tDHoRdjW7YYZkaaGWnmE8C7MlNGeSdiWpos5jkVsU4zGvswKJPEuaBUuKC_uMjml_zTSqyOQAy1MG3SvjXr0-p6c1qtr9rcypuNnQx5YpPlYsYl5VyxyQhGwfwOIXo3_aIFYj2YpmCCTTaNwQwukYU_EPoX61JywQ7sUAvX_ycf8_dUyf1-6aE325qj80fwsPcjyceO3sdw5KoncL87WfLuKdzN11hZ3B50ck18t8VEdFWSrat_Kb8ktSf2ClPymnrjGqK3juCerivJriY7NGTDtBL66aqEm-_f1hXBFX9MYSXDESu7TsjP4PL87OtsHvenLMRWhLg4tqXLjaRKmkSnUntTampckrokMa70nnqmEXHG5mmWc09VipBgiUtyq7MQraXP4biqK_cSiPZWeWNTZTXjjjmjqbfamtIroajVEbwfeF7cdGAaBQYhKKciyKkY5BTBFCWy_wgxsNsXgUNFrwmFzIShXgRzqiU3KlHSYfDDqDTGKGYjOBnkWfQDsykQ3h53mxMewdt9cxhSyDVdufq2KYJHxVKBlETwohP_npJBfSKQB4pxQOphS9DiFra719oIPgwq9JOsv3AhbjXs37wqFl-m3d2r_6bpNTzA7ro0nRM43m1v3ZvgbO3MGEaML8NVruQY7k3PLpafw9Msm43b5YtwXfB83A7BH8-2MiA
link.rule.ids 230,314,727,780,784,864,885,2102,11562,12056,21388,24318,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,46052,46476,50814,50923,51576,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiGcJFDASglNU24mT-IRY1GqB7gpBK_Vm2Y6trkSTskkl-Pd48tgSAb1FcR72PDxjz_gbgNdlJo30TsS0NFmcFlTEOslo7INSMuZcECrc0F-ussVJ-ulUnA4bbs2QVjnOid1EXdYW98j3EZccw4QsfXfxI8aqURhdHUpo3IQdRE4XM9iZH6y-fB3nYjRHfEDWFFzw_fPGYDqXyFLJJ5aoA-z_l5f5d7LkNmI69Wc7g3R4D-4OniR537P-Ptxw1QO41deW_PUQfi7WeLa4K3Xynfg-yER0VZKNq_84gElqT-wZJuU19blriN44glFdV5K2Ji2asnFiCd_pzwk3ZF0R3PLHHFYy1lhpey4_gpPDg-MPi3gosxBbERbGsS1dYXIqc8N0kmtvSk2NY4ljzLjSe-q5RsgZWyRZkXoqE8QEY44VVmdhuZY8hllVV-4JEO2t9MYm0mqeOu6Mpt5qa0ovhaRWR_BmJLm66NE0FK5CkDcq8EaNvIlgjgzZPoQg2N2NQCA16JTKM2GoF8Ge6jw1ksnc4eqH09wYI7mNYG9kpxo0s1FXchTBq21z0Cmkmq5cfdmo4FLxRGBPItjtub_tCcdzTeEnEeQTuZh0ddpSrc863O40p2k3trejBF116z9UiDsBu55Wavlt3l89vX7AL-H24nh5pI4-rj4_gzv4fp-YswezdnPpngf3qjUvBh36DTZCJh0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIhAXVJ4NLWAkBKeoduI8LE50YbU8WiFBpd4s2xmrK9Gk2qSH_ht-C78MTxwvrAqIW-QkjjPj8czYM98Q8qIppZEOipQ1pkxFzYpU5yVLnRdKzgH8pMIN_aPjcnEiPpwWp1vkdcyFGaPd45FkyGlAlKZ2OLhoXKzXkx2c9wbDsopSSL_-3hDeasC6DbNyFpdh1ETZBKp57ZUNJTRi9f_JwLweJ7k-LN00ZUddNN8hdyYjkr4JXL9LtqC9R26GspJX98nVYolpxWOVk2_UhfMlqtuGrqD7LfeSdo7aM4zH67tz6KleAUXKQEOHjg6oxeKa4vsJKcL9j-_LluJ2P8av0lhfZQgcfkBO5u--zhbpVGIhtYV3ilPbQG0qJivDdV5pZxrNDPAcODfQOMdcphFuxtZ5WQvHZI54YBx4bXXpXbX8IdluuxZ2CdXOSmdsLq3OBGRgNHNWW9M4WUhmdUJeRpqri4CkodADQeYozxwVmZOQQ-TI-iEEwB4bPIXUJE-qKgvDXOF1qa6EkVxWgJ5PxipjjMxsQvYjP9Uklb1CbHs8auYiIc_Xt708IdV0C91lr7w5leUFjiQhjwL71yPJMKfJfyQh1cbE2Bjq5p12eTZidouKifHfXsUp9GtYf6FCOs6wf9NKHX05DFeP_7vnZ-TW57dz9en98cc9chtbQ3jOPtkeVpfwxBtZg3k6CtNPK58lrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+folding+and+reorganization+of+chromosomes+are+linked+to+transcriptional+changes+in+cellular+differentiation&rft.jtitle=Molecular+systems+biology&rft.au=Fraser%2C+James&rft.au=Ferrai%2C+Carmelo&rft.au=Chiariello%2C+Andrea+M&rft.au=Schueler%2C+Markus&rft.date=2015-12-01&rft.pub=EMBO+Press&rft.eissn=1744-4292&rft.volume=11&rft.issue=12&rft_id=info:doi/10.15252%2Fmsb.20156492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon