Observations of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere

In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 42; no. 16; pp. 6560 - 6565
Main Authors Guo, Jianpeng, Forbes, Jeffrey M., Wei, Fengsi, Feng, Xueshang, Liu, Huixin, Wan, Weixing, Yang, Zhiliang, Liu, Chaoxu, Emery, Barbara A., Deng, Yue
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 28.08.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. Key Points A compressed Bz within SIR resulted in sudden high‐latitude energy injection Sudden energy injection generated gravity waves in the auroral regions A wave almost traveled around the Earth once horizontally in the thermosphere
AbstractList In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. A compressed B z within SIR resulted in sudden high‐latitude energy injection Sudden energy injection generated gravity waves in the auroral regions A wave almost traveled around the Earth once horizontally in the thermosphere
In this paper we report the detection of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of 720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest-traveling large-scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. Key Points * A compressed B sub(z) within SIR resulted in sudden high-latitude energy injection * Sudden energy injection generated gravity waves in the auroral regions * A wave almost traveled around the Earth once horizontally in the thermosphere
In this paper we report the detection of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of 720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest-traveling large-scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere.
In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. Key Points A compressed Bz within SIR resulted in sudden high‐latitude energy injection Sudden energy injection generated gravity waves in the auroral regions A wave almost traveled around the Earth once horizontally in the thermosphere
In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere.
Author Emery, Barbara A.
Guo, Jianpeng
Feng, Xueshang
Forbes, Jeffrey M.
Wei, Fengsi
Liu, Huixin
Wan, Weixing
Deng, Yue
Liu, Chaoxu
Yang, Zhiliang
Author_xml – sequence: 1
  givenname: Jianpeng
  surname: Guo
  fullname: Guo, Jianpeng
  email: jpguo@spaceweather.ac.cnfengx@spaceweather.ac.cn
  organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Jeffrey M.
  surname: Forbes
  fullname: Forbes, Jeffrey M.
  organization: Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado, Boulder, USA
– sequence: 3
  givenname: Fengsi
  surname: Wei
  fullname: Wei, Fengsi
  organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Xueshang
  surname: Feng
  fullname: Feng, Xueshang
  organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Huixin
  surname: Liu
  fullname: Liu, Huixin
  organization: Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Fukuoka, Japan
– sequence: 6
  givenname: Weixing
  surname: Wan
  fullname: Wan, Weixing
  organization: Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Zhiliang
  surname: Yang
  fullname: Yang, Zhiliang
  organization: Department of Astronomy, Beijing Normal University, Beijing, China
– sequence: 8
  givenname: Chaoxu
  surname: Liu
  fullname: Liu, Chaoxu
  organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China
– sequence: 9
  givenname: Barbara A.
  surname: Emery
  fullname: Emery, Barbara A.
  organization: High Altitude Observatory, National Center for Atmospheric Research, Colorado, Boulder, USA
– sequence: 10
  givenname: Yue
  surname: Deng
  fullname: Deng, Yue
  organization: Department of Physics, University of Texas, Texas, Arlington, USA
BookMark eNqNkUtv1DAURi1UJKaFHT_AEhsWBK7t-LWEAinSiEo8BDvLSeypS8Ye7Eza4dc3w1QIVaJiYV0vzrkPfcfoKKboEHpK4CUBoK8oEN4sQXAhyQO0ILquKwUgj9ACQM9_KsUjdFzKJQAwYGSBpvO2uDzZMaRYcPLY4sHmlatKZweHV9lOYdzhKzs5vMlpY1czGlc4TS5jG7G7HrNbu2F30PBFyuFXiqMdcB_KaGPncIh4vHD7l9epbObiHqOH3g7FPbmtJ-jr-3dfTs-q5Xnz4fT1suq4rKHq29Z62bWet9Qy5XXvqSdAOW0VU70lQtfaSsp77jqhwSsmeK2Fb7UHIRU7Qc8Pfefdf25dGc06lM4Ng40ubYshkjNOJFD6HyijitRUsBl9dge9TNsc50MM0QSUkkTLeylJqORS0X0veqC6nErJzpsujL_jGLMNgyFg9tmav7OdpRd3pE0Oa5t3_8JvZ1yFwe3uZU3zackZIzBL1UGaY3TXfySbfxghmeTm28fGqLdvmu-6VuYzuwFSJcOm
CitedBy_id crossref_primary_10_1002_2015JA022043
crossref_primary_10_1002_2015JA022076
crossref_primary_10_1029_2024JA033167
crossref_primary_10_1051_swsc_2020043
crossref_primary_10_1029_2018JA026172
crossref_primary_10_1109_LGRS_2022_3146977
crossref_primary_10_1016_j_icarus_2023_115730
crossref_primary_10_1029_2019JA026655
crossref_primary_10_3847_1538_4357_ab25e9
crossref_primary_10_1029_2019JA027108
Cites_doi 10.1029/2008JD010135
10.1016/j.jastp.2010.06.010
10.1029/2008GL034075
10.1007/BF00177800
10.1029/2009GL038165
10.1029/2005JA011270
10.1016/j.asr.2014.11.020
10.1029/93JA02015
10.1016/j.asr.2008.10.031
10.1002/2014JA020255
10.1029/2002JA009430
10.1029/2007JA012866
10.1029/95JA00065
10.1016/0021-9169(75)90012-4
10.1029/2006JA012199
10.1029/JA083iA09p04131
ContentType Journal Article
Copyright 2015. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2015. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
DOI 10.1002/2015GL065671
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database

Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 6565
ExternalDocumentID 3809118471
10_1002_2015GL065671
GRL53310
ark_67375_WNG_8DBGX948_S
Genre article
GrantInformation_xml – fundername: 973 program
  funderid: 2012CB825601
– fundername: Chinese Academy of Sciences
  funderid: KZZD-EW-01-4
– fundername: National Natural Science Foundation of China
  funderid: 41231068; 41374187; U1231104
– fundername: Specialized Research Fund for State Key Laboratories
– fundername: NASA Award
  funderid: NNX12AD26G
– fundername: JSPS KAKENHI
  funderid: 15K05301; 15H02135; 15H03733
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AANHP
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
ACTHY
AGQPQ
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7UA
C1K
ID FETCH-LOGICAL-c5740-dbbaf7cbf5b2a38f9df2f10252b838da16949a725d5ec690f8365496fb9f06783
ISSN 0094-8276
IngestDate Thu Jul 10 17:18:11 EDT 2025
Tue Aug 05 10:13:08 EDT 2025
Fri Jul 25 10:31:34 EDT 2025
Fri Jul 25 10:37:36 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Tue Jul 01 01:05:37 EDT 2025
Tue Jan 07 16:31:42 EST 2025
Wed Oct 30 09:49:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5740-dbbaf7cbf5b2a38f9df2f10252b838da16949a725d5ec690f8365496fb9f06783
Notes 973 program - No. 2012CB825601
Chinese Academy of Sciences - No. KZZD-EW-01-4
Specialized Research Fund for State Key Laboratories
ark:/67375/WNG-8DBGX948-S
ArticleID:GRL53310
NASA Award - No. NNX12AD26G
istex:5E454AA29650DECB1DEB454F390885C5E13BFD8C
JSPS KAKENHI - No. 15K05301; No. 15H02135; No. 15H03733
National Natural Science Foundation of China - No. 41231068; No. 41374187; No. U1231104
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1712757823
PQPubID 54723
PageCount 6
ParticipantIDs proquest_miscellaneous_1753517022
proquest_miscellaneous_1732814263
proquest_journals_1910887197
proquest_journals_1712757823
crossref_citationtrail_10_1002_2015GL065671
crossref_primary_10_1002_2015GL065671
wiley_primary_10_1002_2015GL065671_GRL53310
istex_primary_ark_67375_WNG_8DBGX948_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 August 2015
PublicationDateYYYYMMDD 2015-08-28
PublicationDate_xml – month: 08
  year: 2015
  text: 28 August 2015
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Weimer, D. R. (2005), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi:10.1029/2005JA011270.
Francis, S. H. (1975), Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011-1054.
Liu, H., H. Lühr, and S. Watanabe (2007), Climatology of the equatorial thermospheric mass density anomaly, J. Geophys. Res., 112, A05305, doi:10.1029/2006JA012199.
Mayr, H. G., I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell (1990), Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM), Space Sci. Rev., 54, 297-375.
Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131.
Yiğit, E., and A. S. Medvedev (2015), Internal wave coupling processes in Earth's atmosphere, Adv. Space Res., 55, 983-1003, doi:10.1016/j.asr.2014.11.020.
Yiğit, E., A. D. Aylward, and A. S. Medvedev (2008), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135.
Bruinsma, S. L., and J. M. Forbes (2010), Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data, J. Atmos. Sol. Terr. Phys., 72, 1057-1066.
Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866.
Guo, J., H. Liu, X. Feng, W. Wan, Y. Deng, and C. Liu (2014), Constructive interference of large-scale gravity waves excited by interplanetary shock on 29 October 2003: CHAMP observation, J. Geophys. Res. Space Physics, 119, 6846-6851, doi:10.1002/2014JA020255.
Liu, H., H. Lühr, and S. Watanabe (2009), A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP, Geophys. Res. Lett., 36, L10109, doi:10.1029/2009GL038165.
Forbes, J. M., F. A. Marcos, and F. Kamalabadi (1995), Wave structures in lower thermosphere density from Satellite Electrostatic Triaxial Accelerometer (SETA) measurements, J. Geophys. Res., 100, 14,693-14,702.
Sutton, E. K. (2011), Accelerometer-derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3, Tech. Memo, Air Force Res. Lab., Kirtland Air Force Base, New Mexico.
Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99(A3), 3893-3914, doi:10.1029/93JA02015.
Bruinsma, S. L., and J. M. Forbes (2009), Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43, 369-376, doi:10.1016/j.asr.2008.10.031.
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430.
Forbes, J. M., S. L. Bruinsma, Y. Miyoshi, and H. Fujiwara (2008), A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite, Geophys. Res. Lett., 35, L14802, doi:10.1029/2008GL034075.
2014; 119
2007; 112
2009; 36
1990; 54
2009; 43
2005; 110
2011
1978; 83
2015; 55
1994; 99
2002; 107
1975; 37
2008; 35
1995; 100
2008; 113
2010; 72
Sutton E. K. (e_1_2_6_15_1) 2011
e_1_2_6_10_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_16_1
References_xml – reference: Francis, S. H. (1975), Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011-1054.
– reference: Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866.
– reference: Liu, H., H. Lühr, and S. Watanabe (2009), A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP, Geophys. Res. Lett., 36, L10109, doi:10.1029/2009GL038165.
– reference: Guo, J., H. Liu, X. Feng, W. Wan, Y. Deng, and C. Liu (2014), Constructive interference of large-scale gravity waves excited by interplanetary shock on 29 October 2003: CHAMP observation, J. Geophys. Res. Space Physics, 119, 6846-6851, doi:10.1002/2014JA020255.
– reference: Bruinsma, S. L., and J. M. Forbes (2009), Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43, 369-376, doi:10.1016/j.asr.2008.10.031.
– reference: Bruinsma, S. L., and J. M. Forbes (2010), Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data, J. Atmos. Sol. Terr. Phys., 72, 1057-1066.
– reference: Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430.
– reference: Forbes, J. M., F. A. Marcos, and F. Kamalabadi (1995), Wave structures in lower thermosphere density from Satellite Electrostatic Triaxial Accelerometer (SETA) measurements, J. Geophys. Res., 100, 14,693-14,702.
– reference: Mayr, H. G., I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell (1990), Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM), Space Sci. Rev., 54, 297-375.
– reference: Yiğit, E., and A. S. Medvedev (2015), Internal wave coupling processes in Earth's atmosphere, Adv. Space Res., 55, 983-1003, doi:10.1016/j.asr.2014.11.020.
– reference: Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99(A3), 3893-3914, doi:10.1029/93JA02015.
– reference: Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131.
– reference: Forbes, J. M., S. L. Bruinsma, Y. Miyoshi, and H. Fujiwara (2008), A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite, Geophys. Res. Lett., 35, L14802, doi:10.1029/2008GL034075.
– reference: Weimer, D. R. (2005), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi:10.1029/2005JA011270.
– reference: Sutton, E. K. (2011), Accelerometer-derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3, Tech. Memo, Air Force Res. Lab., Kirtland Air Force Base, New Mexico.
– reference: Liu, H., H. Lühr, and S. Watanabe (2007), Climatology of the equatorial thermospheric mass density anomaly, J. Geophys. Res., 112, A05305, doi:10.1029/2006JA012199.
– reference: Yiğit, E., A. D. Aylward, and A. S. Medvedev (2008), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135.
– volume: 83
  start-page: 4131
  year: 1978
  end-page: 4145
  article-title: Gravity wave generation, propagation, and dissipation in the thermosphere
  publication-title: J. Geophys. Res.
– volume: 107
  start-page: 1468
  issue: A12
  year: 2002
  article-title: NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues
  publication-title: J. Geophys. Res.
– year: 2011
  article-title: Accelerometer‐derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3
  publication-title: Tech. Memo
– volume: 119
  start-page: 6846
  year: 2014
  end-page: 6851
  article-title: Constructive interference of large‐scale gravity waves excited by interplanetary shock on 29 October 2003: CHAMP observation
  publication-title: J. Geophys. Res. Space Physics
– volume: 72
  start-page: 1057
  year: 2010
  end-page: 1066
  article-title: Large‐scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 100
  start-page: 14,693
  year: 1995
  end-page: 14,702
  article-title: Wave structures in lower thermosphere density from Satellite Electrostatic Triaxial Accelerometer (SETA) measurements
  publication-title: J. Geophys. Res.
– volume: 35
  start-page: L14802
  year: 2008
  article-title: A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite
  publication-title: Geophys. Res. Lett.
– volume: 43
  start-page: 369
  year: 2009
  end-page: 376
  article-title: Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations
  publication-title: Adv. Space Res.
– volume: 113
  start-page: D19106
  year: 2008
  article-title: Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study
  publication-title: J. Geophys. Res.
– volume: 55
  start-page: 983
  year: 2015
  end-page: 1003
  article-title: Internal wave coupling processes in Earth's atmosphere
  publication-title: Adv. Space Res.
– volume: 113
  start-page: A06311
  year: 2008
  article-title: Seasonal, Kp, solar wind, and solar flux variations in long‐term single‐pass satellite estimates of electron and ion auroral hemispheric power
  publication-title: J. Geophys. Res.
– volume: 37
  start-page: 1011
  year: 1975
  end-page: 1054
  article-title: Global propagation of atmospheric gravity waves: A review
  publication-title: J. Atmos. Terr. Phys.
– volume: 112
  start-page: A05305
  year: 2007
  article-title: Climatology of the equatorial thermospheric mass density anomaly
  publication-title: J. Geophys. Res.
– volume: 110
  start-page: A12307
  year: 2005
  article-title: Predicting surface geomagnetic variations using ionospheric electrodynamic models
  publication-title: J. Geophys. Res.
– volume: 54
  start-page: 297
  year: 1990
  end-page: 375
  article-title: Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM)
  publication-title: Space Sci. Rev.
– volume: 99
  start-page: 3893
  issue: A3
  year: 1994
  end-page: 3914
  article-title: Response of the thermosphere and ionosphere to geomagnetic storms
  publication-title: J. Geophys. Res.
– volume: 36
  start-page: L10109
  year: 2009
  article-title: A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP
  publication-title: Geophys. Res. Lett.
– ident: e_1_2_6_18_1
  doi: 10.1029/2008JD010135
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jastp.2010.06.010
– ident: e_1_2_6_6_1
  doi: 10.1029/2008GL034075
– ident: e_1_2_6_12_1
  doi: 10.1007/BF00177800
– ident: e_1_2_6_11_1
  doi: 10.1029/2009GL038165
– ident: e_1_2_6_16_1
  doi: 10.1029/2005JA011270
– ident: e_1_2_6_17_1
  doi: 10.1016/j.asr.2014.11.020
– ident: e_1_2_6_8_1
  doi: 10.1029/93JA02015
– ident: e_1_2_6_2_1
  doi: 10.1016/j.asr.2008.10.031
– ident: e_1_2_6_9_1
  doi: 10.1002/2014JA020255
– year: 2011
  ident: e_1_2_6_15_1
  article-title: Accelerometer‐derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3
  publication-title: Tech. Memo
– ident: e_1_2_6_13_1
  doi: 10.1029/2002JA009430
– ident: e_1_2_6_4_1
  doi: 10.1029/2007JA012866
– ident: e_1_2_6_5_1
  doi: 10.1029/95JA00065
– ident: e_1_2_6_7_1
  doi: 10.1016/0021-9169(75)90012-4
– ident: e_1_2_6_10_1
  doi: 10.1029/2006JA012199
– ident: e_1_2_6_14_1
  doi: 10.1029/JA083iA09p04131
SSID ssj0003031
Score 2.2439237
Snippet In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July...
In this paper we report the detection of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6560
SubjectTerms Atmosphere
Auroral zones
Clean energy
Compressed
Detection
Dissipation
Distance
Earth
Energy
Equatorial regions
Geophysics
Gravitation
Gravitational waves
Gravity
gravity wave
Gravity wave propagation
Gravity waves
Horizontal
Inertia
Injection
Phase velocity
Propagation
Satellite tracking
Satellites
SIR
Temperature
Thermosphere
Wave propagation
Title Observations of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere
URI https://api.istex.fr/ark:/67375/WNG-8DBGX948-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL065671
https://www.proquest.com/docview/1712757823
https://www.proquest.com/docview/1910887197
https://www.proquest.com/docview/1732814263
https://www.proquest.com/docview/1753517022
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKKyReEFdRGMhIwEsVaC7O5bEwlgKlILayai-RHTusojRT0wLb3-IPck7spqlWKuAlihzn5vPl-DvOuRDyhONqfhpKK0wVGCipElYkubIUGETdiIM9VmbXfz_0-yPv7ZiNG41fNa-l5UI8Ty-2xpX8j1ShDeSKUbL_INnqotAA-yBf2IKEYftXMv4gqjXVQgc6TtGx2ypg4FUHKwshx_6BBYZAUYLq4NrJGV60wzG7_wJXB6fn-rTOaT6fXORleKREWonfvHGDRJr4LS8wB8GG71Cs8rOVpE3eoNPOtAwRqsh6vNR_dwCIZ8pMlNAsVD2UbL0qe6xKBwMY6C_FZM1UtU4aL_EXlbmIWaywGa6-muDvciK57A10yeUTfR2t0AlMgmytliMP2rq6Pu5Kb3tOHZ91LYwJhbZODzrdLD5YPADu5evqL5tZuPu9w-Tj_kEyeDN8t3lUz_ohMCwb5_QrpOWAbeI0Sav3eXQyqggAsAJdqNG8iIm3gJu_qN96gwm18KP-uWHm1I2lku0c3SDXjZlCexpzN0lDzW6Rq3FZBvoc9krH4bS4Tb7XMUjzjHJawyA1GKSIQVrDIEUMUj6jFQb1aXSNQbrCIJ3MKOCP1jF4h4wOXh-96lumloeVssDrWlIIngWpyJhwuBtmkcycDMgtc0TohpLbfuRFPHCYZCoFDZGFrs-8yM9ElCGhcu-S5iyfqXuEKsl8BcRbeoHrRZnH_a6SUjIvE0L5btAmndW4JqlJdI_1VqaJTtHtJHUptMnTqveZTvDyh37PShFVnfj8KzpFBiw5HsZJuP8yHkdemBy2yd5KhonRFUViB1hIAdi4u_0wkHaY7e0IHv5xdRgUPf694zOVL_ESrhPaWF9hVx_mMjsAXg6DUMJn5zsl8acBmHt29_7uZ35Arq0_5j3SXMyX6iFw8YV4ZLD_G_vv33U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQrhBcEL9ioYCRgAuKuonj2D4WSrPAdpGgCysulh3bomJJ0KaFlhOPwDP2SZhJ0rCVoBKHSJEy-fNkZj5Pxt8Q8shgNr-QLpKFhwlK4W2knPGRhwnRWBmYjzXs-ruzbDJPXy34outzimthWn6IPuGGltH4azRwTEhv_mENhdDF8ymE0AzXkA8R2MgBGW69n3-c984YPHTbNE-lkUxE1tW-wxU2188_E5WGOMBHZyDnOnBtIs_OVXKlg4x0q9XxNXLBl9fJxbxpyXsMe00RZ1HfIEdvbJ9jrWkVqKFLLPQ--fmrBlV4ir2GAHXT7-abp3BbcCYGy54p1nFSU1Lw1JgvXB63J9JP1Wr_R4ULJqlDoAlfCN0vKYBG3FZfqhpZCfxNMt95sfd8EnWdFaKCi3QcOWtNEIUN3CaGyaBcSAJADZ5YyaQzcaZSZUTCHfcF6CtIlsFEMgtWBQxv7BYZlFXpbxPqHc88wCCXCpaqkJps7J1zPA3W-oyJEXl6OrK66GjHsfvFUreEyYle18OIPO6lv7Z0G_-Qe9IoqRcyq89Yoia4_jDLtdx-li9UKvW7Edk41aLurLPWsUBae8BG7O-HAUKB740VPPzD_jCYHf5LMaWvDvESLJExst2fJ8MZjwWgJBiE5gM69510_nYK4Dse3_kv6Qfk0mRvd6qnL2ev75LLKIM570RukMHB6tDfA9B0YO93hvEbWq4Okg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hRiAuiKcIFFgk4IKsxo99HQslLhACAgJRL6td766oCHYVt9By4if0N_aXMGO7JpWgEodIkTzrODs7M9-OZ78h5JHBbH4hXSQLDxuUwttIOeMjDxuikTKwH2vY9d9M-fYsezVn8y7hhmdhWn6IPuGGltH4azTwPRc2_pCGQuRi-QQiKMcj5AMkyoNVPdj8NNuZ9b4YHHTbM09lkUwE70rf4Q4bq-PPBKUBzu_hGcS5ilubwDO-Sq50iJFutiq-Ri748jq5mDcdeY_gW1PDWdQ3yOFb26dYa1oFaugC67xPfh3XoAlPsdUQgG76w3z3FH4WfInBqmeKZZzUlBQcNaYLF0ftQPqlWu7-rPC8JHWIM2GB0N2SAmbEz_JbVSMpgb9JZuMXH59vR11jhahgIhtFzloTRGEDs4lJZVAuJAGQBkusTKUzMVeZMiJhjvkC1BVkymEfyYNVAaNbeouslVXpbxPqHeMeUJDLRJqpkBk-8s45lgVrPU_FkDw9nVlddKzj2PxioVu-5ESv6mFIHvfSey3bxj_knjRK6oXM8itWqAmmP09zLbee5XOVSf1hSNZPtag746x1LJDVHqBR-vfLgKDA9cYKHv5hfxmsDl-lmNJXB3iLNJExkt2fJ8NSFgsASTAJzQI69z_p_P0EsHc8uvNf0g_IpXdbYz15OX19l1xGEcx4J3KdrO0vD_w9gEz79n5nF78BmuwNuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observations+of+a+large-scale+gravity+wave+propagating+over+an+extremely+large+horizontal+distance+in+the+thermosphere&rft.jtitle=Geophysical+research+letters&rft.au=Guo%2C+Jianpeng&rft.au=bes%2C+Jeffrey+M&rft.au=Wei%2C+Fengsi&rft.au=Feng%2C+Xueshang&rft.date=2015-08-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=16&rft.spage=6560&rft_id=info:doi/10.1002%2F2015GL065671&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3809118471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon