Observations of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere
In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the...
Saved in:
Published in | Geophysical research letters Vol. 42; no. 16; pp. 6560 - 6565 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
28.08.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere.
Key Points
A compressed Bz within SIR resulted in sudden high‐latitude energy injection
Sudden energy injection generated gravity waves in the auroral regions
A wave almost traveled around the Earth once horizontally in the thermosphere |
---|---|
AbstractList | In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere.
A compressed B
z
within SIR resulted in sudden high‐latitude energy injection
Sudden energy injection generated gravity waves in the auroral regions
A wave almost traveled around the Earth once horizontally in the thermosphere In this paper we report the detection of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of 720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest-traveling large-scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. Key Points * A compressed B sub(z) within SIR resulted in sudden high-latitude energy injection * Sudden energy injection generated gravity waves in the auroral regions * A wave almost traveled around the Earth once horizontally in the thermosphere In this paper we report the detection of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of 720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest-traveling large-scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. Key Points A compressed Bz within SIR resulted in sudden high‐latitude energy injection Sudden energy injection generated gravity waves in the auroral regions A wave almost traveled around the Earth once horizontally in the thermosphere In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July 2006. Specifically, after being launched at the northern auroral region on the dayside, this wave propagated equatorward with phase speeds on the order of ∼720 m/s and finally almost traveled around the Earth once horizontally in the thermosphere prior to dissipation. The time taken to dissipate is about 15.5 h. It is the farthest‐traveling large‐scale gravity wave currently tracked by satellite measurements, made possible by a sudden injection of energy in an unusually clean propagation environment. This experiment of opportunity serves as an important step in furthering our theoretical understanding of gravity wave propagation and dissipation in the thermosphere. |
Author | Emery, Barbara A. Guo, Jianpeng Feng, Xueshang Forbes, Jeffrey M. Wei, Fengsi Liu, Huixin Wan, Weixing Deng, Yue Liu, Chaoxu Yang, Zhiliang |
Author_xml | – sequence: 1 givenname: Jianpeng surname: Guo fullname: Guo, Jianpeng email: jpguo@spaceweather.ac.cnfengx@spaceweather.ac.cn organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Jeffrey M. surname: Forbes fullname: Forbes, Jeffrey M. organization: Department of Aerospace Engineering Sciences, University of Colorado Boulder, Colorado, Boulder, USA – sequence: 3 givenname: Fengsi surname: Wei fullname: Wei, Fengsi organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Xueshang surname: Feng fullname: Feng, Xueshang organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Huixin surname: Liu fullname: Liu, Huixin organization: Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Fukuoka, Japan – sequence: 6 givenname: Weixing surname: Wan fullname: Wan, Weixing organization: Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China – sequence: 7 givenname: Zhiliang surname: Yang fullname: Yang, Zhiliang organization: Department of Astronomy, Beijing Normal University, Beijing, China – sequence: 8 givenname: Chaoxu surname: Liu fullname: Liu, Chaoxu organization: SIGMA Weather Group, State Key Laboratory of Space Weather, NSSC, Chinese Academy of Sciences, Beijing, China – sequence: 9 givenname: Barbara A. surname: Emery fullname: Emery, Barbara A. organization: High Altitude Observatory, National Center for Atmospheric Research, Colorado, Boulder, USA – sequence: 10 givenname: Yue surname: Deng fullname: Deng, Yue organization: Department of Physics, University of Texas, Texas, Arlington, USA |
BookMark | eNqNkUtv1DAURi1UJKaFHT_AEhsWBK7t-LWEAinSiEo8BDvLSeypS8Ye7Eza4dc3w1QIVaJiYV0vzrkPfcfoKKboEHpK4CUBoK8oEN4sQXAhyQO0ILquKwUgj9ACQM9_KsUjdFzKJQAwYGSBpvO2uDzZMaRYcPLY4sHmlatKZweHV9lOYdzhKzs5vMlpY1czGlc4TS5jG7G7HrNbu2F30PBFyuFXiqMdcB_KaGPncIh4vHD7l9epbObiHqOH3g7FPbmtJ-jr-3dfTs-q5Xnz4fT1suq4rKHq29Z62bWet9Qy5XXvqSdAOW0VU70lQtfaSsp77jqhwSsmeK2Fb7UHIRU7Qc8Pfefdf25dGc06lM4Ng40ubYshkjNOJFD6HyijitRUsBl9dge9TNsc50MM0QSUkkTLeylJqORS0X0veqC6nErJzpsujL_jGLMNgyFg9tmav7OdpRd3pE0Oa5t3_8JvZ1yFwe3uZU3zackZIzBL1UGaY3TXfySbfxghmeTm28fGqLdvmu-6VuYzuwFSJcOm |
CitedBy_id | crossref_primary_10_1002_2015JA022043 crossref_primary_10_1002_2015JA022076 crossref_primary_10_1029_2024JA033167 crossref_primary_10_1051_swsc_2020043 crossref_primary_10_1029_2018JA026172 crossref_primary_10_1109_LGRS_2022_3146977 crossref_primary_10_1016_j_icarus_2023_115730 crossref_primary_10_1029_2019JA026655 crossref_primary_10_3847_1538_4357_ab25e9 crossref_primary_10_1029_2019JA027108 |
Cites_doi | 10.1029/2008JD010135 10.1016/j.jastp.2010.06.010 10.1029/2008GL034075 10.1007/BF00177800 10.1029/2009GL038165 10.1029/2005JA011270 10.1016/j.asr.2014.11.020 10.1029/93JA02015 10.1016/j.asr.2008.10.031 10.1002/2014JA020255 10.1029/2002JA009430 10.1029/2007JA012866 10.1029/95JA00065 10.1016/0021-9169(75)90012-4 10.1029/2006JA012199 10.1029/JA083iA09p04131 |
ContentType | Journal Article |
Copyright | 2015. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2015. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
DOI | 10.1002/2015GL065671 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 6565 |
ExternalDocumentID | 3809118471 10_1002_2015GL065671 GRL53310 ark_67375_WNG_8DBGX948_S |
Genre | article |
GrantInformation_xml | – fundername: 973 program funderid: 2012CB825601 – fundername: Chinese Academy of Sciences funderid: KZZD-EW-01-4 – fundername: National Natural Science Foundation of China funderid: 41231068; 41374187; U1231104 – fundername: Specialized Research Fund for State Key Laboratories – fundername: NASA Award funderid: NNX12AD26G – fundername: JSPS KAKENHI funderid: 15K05301; 15H02135; 15H03733 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AANHP ACRPL ACYXJ ADNMO AAFWJ AAYXX ACTHY AGQPQ CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M 7UA C1K |
ID | FETCH-LOGICAL-c5740-dbbaf7cbf5b2a38f9df2f10252b838da16949a725d5ec690f8365496fb9f06783 |
ISSN | 0094-8276 |
IngestDate | Thu Jul 10 17:18:11 EDT 2025 Tue Aug 05 10:13:08 EDT 2025 Fri Jul 25 10:31:34 EDT 2025 Fri Jul 25 10:37:36 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Tue Jul 01 01:05:37 EDT 2025 Tue Jan 07 16:31:42 EST 2025 Wed Oct 30 09:49:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5740-dbbaf7cbf5b2a38f9df2f10252b838da16949a725d5ec690f8365496fb9f06783 |
Notes | 973 program - No. 2012CB825601 Chinese Academy of Sciences - No. KZZD-EW-01-4 Specialized Research Fund for State Key Laboratories ark:/67375/WNG-8DBGX948-S ArticleID:GRL53310 NASA Award - No. NNX12AD26G istex:5E454AA29650DECB1DEB454F390885C5E13BFD8C JSPS KAKENHI - No. 15K05301; No. 15H02135; No. 15H03733 National Natural Science Foundation of China - No. 41231068; No. 41374187; No. U1231104 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1712757823 |
PQPubID | 54723 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1753517022 proquest_miscellaneous_1732814263 proquest_journals_1910887197 proquest_journals_1712757823 crossref_citationtrail_10_1002_2015GL065671 crossref_primary_10_1002_2015GL065671 wiley_primary_10_1002_2015GL065671_GRL53310 istex_primary_ark_67375_WNG_8DBGX948_S |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 August 2015 |
PublicationDateYYYYMMDD | 2015-08-28 |
PublicationDate_xml | – month: 08 year: 2015 text: 28 August 2015 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Weimer, D. R. (2005), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi:10.1029/2005JA011270. Francis, S. H. (1975), Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011-1054. Liu, H., H. Lühr, and S. Watanabe (2007), Climatology of the equatorial thermospheric mass density anomaly, J. Geophys. Res., 112, A05305, doi:10.1029/2006JA012199. Mayr, H. G., I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell (1990), Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM), Space Sci. Rev., 54, 297-375. Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131. Yiğit, E., and A. S. Medvedev (2015), Internal wave coupling processes in Earth's atmosphere, Adv. Space Res., 55, 983-1003, doi:10.1016/j.asr.2014.11.020. Yiğit, E., A. D. Aylward, and A. S. Medvedev (2008), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135. Bruinsma, S. L., and J. M. Forbes (2010), Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data, J. Atmos. Sol. Terr. Phys., 72, 1057-1066. Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866. Guo, J., H. Liu, X. Feng, W. Wan, Y. Deng, and C. Liu (2014), Constructive interference of large-scale gravity waves excited by interplanetary shock on 29 October 2003: CHAMP observation, J. Geophys. Res. Space Physics, 119, 6846-6851, doi:10.1002/2014JA020255. Liu, H., H. Lühr, and S. Watanabe (2009), A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP, Geophys. Res. Lett., 36, L10109, doi:10.1029/2009GL038165. Forbes, J. M., F. A. Marcos, and F. Kamalabadi (1995), Wave structures in lower thermosphere density from Satellite Electrostatic Triaxial Accelerometer (SETA) measurements, J. Geophys. Res., 100, 14,693-14,702. Sutton, E. K. (2011), Accelerometer-derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3, Tech. Memo, Air Force Res. Lab., Kirtland Air Force Base, New Mexico. Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99(A3), 3893-3914, doi:10.1029/93JA02015. Bruinsma, S. L., and J. M. Forbes (2009), Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43, 369-376, doi:10.1016/j.asr.2008.10.031. Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430. Forbes, J. M., S. L. Bruinsma, Y. Miyoshi, and H. Fujiwara (2008), A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite, Geophys. Res. Lett., 35, L14802, doi:10.1029/2008GL034075. 2014; 119 2007; 112 2009; 36 1990; 54 2009; 43 2005; 110 2011 1978; 83 2015; 55 1994; 99 2002; 107 1975; 37 2008; 35 1995; 100 2008; 113 2010; 72 Sutton E. K. (e_1_2_6_15_1) 2011 e_1_2_6_10_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_16_1 |
References_xml | – reference: Francis, S. H. (1975), Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37, 1011-1054. – reference: Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866. – reference: Liu, H., H. Lühr, and S. Watanabe (2009), A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP, Geophys. Res. Lett., 36, L10109, doi:10.1029/2009GL038165. – reference: Guo, J., H. Liu, X. Feng, W. Wan, Y. Deng, and C. Liu (2014), Constructive interference of large-scale gravity waves excited by interplanetary shock on 29 October 2003: CHAMP observation, J. Geophys. Res. Space Physics, 119, 6846-6851, doi:10.1002/2014JA020255. – reference: Bruinsma, S. L., and J. M. Forbes (2009), Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations, Adv. Space Res., 43, 369-376, doi:10.1016/j.asr.2008.10.031. – reference: Bruinsma, S. L., and J. M. Forbes (2010), Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data, J. Atmos. Sol. Terr. Phys., 72, 1057-1066. – reference: Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430. – reference: Forbes, J. M., F. A. Marcos, and F. Kamalabadi (1995), Wave structures in lower thermosphere density from Satellite Electrostatic Triaxial Accelerometer (SETA) measurements, J. Geophys. Res., 100, 14,693-14,702. – reference: Mayr, H. G., I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell (1990), Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM), Space Sci. Rev., 54, 297-375. – reference: Yiğit, E., and A. S. Medvedev (2015), Internal wave coupling processes in Earth's atmosphere, Adv. Space Res., 55, 983-1003, doi:10.1016/j.asr.2014.11.020. – reference: Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99(A3), 3893-3914, doi:10.1029/93JA02015. – reference: Richmond, A. D. (1978), Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131-4145, doi:10.1029/JA083iA09p04131. – reference: Forbes, J. M., S. L. Bruinsma, Y. Miyoshi, and H. Fujiwara (2008), A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite, Geophys. Res. Lett., 35, L14802, doi:10.1029/2008GL034075. – reference: Weimer, D. R. (2005), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi:10.1029/2005JA011270. – reference: Sutton, E. K. (2011), Accelerometer-derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3, Tech. Memo, Air Force Res. Lab., Kirtland Air Force Base, New Mexico. – reference: Liu, H., H. Lühr, and S. Watanabe (2007), Climatology of the equatorial thermospheric mass density anomaly, J. Geophys. Res., 112, A05305, doi:10.1029/2006JA012199. – reference: Yiğit, E., A. D. Aylward, and A. S. Medvedev (2008), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135. – volume: 83 start-page: 4131 year: 1978 end-page: 4145 article-title: Gravity wave generation, propagation, and dissipation in the thermosphere publication-title: J. Geophys. Res. – volume: 107 start-page: 1468 issue: A12 year: 2002 article-title: NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues publication-title: J. Geophys. Res. – year: 2011 article-title: Accelerometer‐derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3 publication-title: Tech. Memo – volume: 119 start-page: 6846 year: 2014 end-page: 6851 article-title: Constructive interference of large‐scale gravity waves excited by interplanetary shock on 29 October 2003: CHAMP observation publication-title: J. Geophys. Res. Space Physics – volume: 72 start-page: 1057 year: 2010 end-page: 1066 article-title: Large‐scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data publication-title: J. Atmos. Sol. Terr. Phys. – volume: 100 start-page: 14,693 year: 1995 end-page: 14,702 article-title: Wave structures in lower thermosphere density from Satellite Electrostatic Triaxial Accelerometer (SETA) measurements publication-title: J. Geophys. Res. – volume: 35 start-page: L14802 year: 2008 article-title: A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite publication-title: Geophys. Res. Lett. – volume: 43 start-page: 369 year: 2009 end-page: 376 article-title: Properties of traveling atmospheric disturbances (TADs) inferred from CHAMP accelerometer observations publication-title: Adv. Space Res. – volume: 113 start-page: D19106 year: 2008 article-title: Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study publication-title: J. Geophys. Res. – volume: 55 start-page: 983 year: 2015 end-page: 1003 article-title: Internal wave coupling processes in Earth's atmosphere publication-title: Adv. Space Res. – volume: 113 start-page: A06311 year: 2008 article-title: Seasonal, Kp, solar wind, and solar flux variations in long‐term single‐pass satellite estimates of electron and ion auroral hemispheric power publication-title: J. Geophys. Res. – volume: 37 start-page: 1011 year: 1975 end-page: 1054 article-title: Global propagation of atmospheric gravity waves: A review publication-title: J. Atmos. Terr. Phys. – volume: 112 start-page: A05305 year: 2007 article-title: Climatology of the equatorial thermospheric mass density anomaly publication-title: J. Geophys. Res. – volume: 110 start-page: A12307 year: 2005 article-title: Predicting surface geomagnetic variations using ionospheric electrodynamic models publication-title: J. Geophys. Res. – volume: 54 start-page: 297 year: 1990 end-page: 375 article-title: Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM) publication-title: Space Sci. Rev. – volume: 99 start-page: 3893 issue: A3 year: 1994 end-page: 3914 article-title: Response of the thermosphere and ionosphere to geomagnetic storms publication-title: J. Geophys. Res. – volume: 36 start-page: L10109 year: 2009 article-title: A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP publication-title: Geophys. Res. Lett. – ident: e_1_2_6_18_1 doi: 10.1029/2008JD010135 – ident: e_1_2_6_3_1 doi: 10.1016/j.jastp.2010.06.010 – ident: e_1_2_6_6_1 doi: 10.1029/2008GL034075 – ident: e_1_2_6_12_1 doi: 10.1007/BF00177800 – ident: e_1_2_6_11_1 doi: 10.1029/2009GL038165 – ident: e_1_2_6_16_1 doi: 10.1029/2005JA011270 – ident: e_1_2_6_17_1 doi: 10.1016/j.asr.2014.11.020 – ident: e_1_2_6_8_1 doi: 10.1029/93JA02015 – ident: e_1_2_6_2_1 doi: 10.1016/j.asr.2008.10.031 – ident: e_1_2_6_9_1 doi: 10.1002/2014JA020255 – year: 2011 ident: e_1_2_6_15_1 article-title: Accelerometer‐derived atmospheric densities from the CHAMP and GRACE accelerometers: Version 2.3 publication-title: Tech. Memo – ident: e_1_2_6_13_1 doi: 10.1029/2002JA009430 – ident: e_1_2_6_4_1 doi: 10.1029/2007JA012866 – ident: e_1_2_6_5_1 doi: 10.1029/95JA00065 – ident: e_1_2_6_7_1 doi: 10.1016/0021-9169(75)90012-4 – ident: e_1_2_6_10_1 doi: 10.1029/2006JA012199 – ident: e_1_2_6_14_1 doi: 10.1029/JA083iA09p04131 |
SSID | ssj0003031 |
Score | 2.2439237 |
Snippet | In this paper we report the detection of a large‐scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July... In this paper we report the detection of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere on 28 July... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6560 |
SubjectTerms | Atmosphere Auroral zones Clean energy Compressed Detection Dissipation Distance Earth Energy Equatorial regions Geophysics Gravitation Gravitational waves Gravity gravity wave Gravity wave propagation Gravity waves Horizontal Inertia Injection Phase velocity Propagation Satellite tracking Satellites SIR Temperature Thermosphere Wave propagation |
Title | Observations of a large-scale gravity wave propagating over an extremely large horizontal distance in the thermosphere |
URI | https://api.istex.fr/ark:/67375/WNG-8DBGX948-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2015GL065671 https://www.proquest.com/docview/1712757823 https://www.proquest.com/docview/1910887197 https://www.proquest.com/docview/1732814263 https://www.proquest.com/docview/1753517022 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKKyReEFdRGMhIwEsVaC7O5bEwlgKlILayai-RHTusojRT0wLb3-IPck7spqlWKuAlihzn5vPl-DvOuRDyhONqfhpKK0wVGCipElYkubIUGETdiIM9VmbXfz_0-yPv7ZiNG41fNa-l5UI8Ty-2xpX8j1ShDeSKUbL_INnqotAA-yBf2IKEYftXMv4gqjXVQgc6TtGx2ypg4FUHKwshx_6BBYZAUYLq4NrJGV60wzG7_wJXB6fn-rTOaT6fXORleKREWonfvHGDRJr4LS8wB8GG71Cs8rOVpE3eoNPOtAwRqsh6vNR_dwCIZ8pMlNAsVD2UbL0qe6xKBwMY6C_FZM1UtU4aL_EXlbmIWaywGa6-muDvciK57A10yeUTfR2t0AlMgmytliMP2rq6Pu5Kb3tOHZ91LYwJhbZODzrdLD5YPADu5evqL5tZuPu9w-Tj_kEyeDN8t3lUz_ohMCwb5_QrpOWAbeI0Sav3eXQyqggAsAJdqNG8iIm3gJu_qN96gwm18KP-uWHm1I2lku0c3SDXjZlCexpzN0lDzW6Rq3FZBvoc9krH4bS4Tb7XMUjzjHJawyA1GKSIQVrDIEUMUj6jFQb1aXSNQbrCIJ3MKOCP1jF4h4wOXh-96lumloeVssDrWlIIngWpyJhwuBtmkcycDMgtc0TohpLbfuRFPHCYZCoFDZGFrs-8yM9ElCGhcu-S5iyfqXuEKsl8BcRbeoHrRZnH_a6SUjIvE0L5btAmndW4JqlJdI_1VqaJTtHtJHUptMnTqveZTvDyh37PShFVnfj8KzpFBiw5HsZJuP8yHkdemBy2yd5KhonRFUViB1hIAdi4u_0wkHaY7e0IHv5xdRgUPf694zOVL_ESrhPaWF9hVx_mMjsAXg6DUMJn5zsl8acBmHt29_7uZ35Arq0_5j3SXMyX6iFw8YV4ZLD_G_vv33U |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQrhBcEL9ioYCRgAuKuonj2D4WSrPAdpGgCysulh3bomJJ0KaFlhOPwDP2SZhJ0rCVoBKHSJEy-fNkZj5Pxt8Q8shgNr-QLpKFhwlK4W2knPGRhwnRWBmYjzXs-ruzbDJPXy34outzimthWn6IPuGGltH4azRwTEhv_mENhdDF8ymE0AzXkA8R2MgBGW69n3-c984YPHTbNE-lkUxE1tW-wxU2188_E5WGOMBHZyDnOnBtIs_OVXKlg4x0q9XxNXLBl9fJxbxpyXsMe00RZ1HfIEdvbJ9jrWkVqKFLLPQ--fmrBlV4ir2GAHXT7-abp3BbcCYGy54p1nFSU1Lw1JgvXB63J9JP1Wr_R4ULJqlDoAlfCN0vKYBG3FZfqhpZCfxNMt95sfd8EnWdFaKCi3QcOWtNEIUN3CaGyaBcSAJADZ5YyaQzcaZSZUTCHfcF6CtIlsFEMgtWBQxv7BYZlFXpbxPqHc88wCCXCpaqkJps7J1zPA3W-oyJEXl6OrK66GjHsfvFUreEyYle18OIPO6lv7Z0G_-Qe9IoqRcyq89Yoia4_jDLtdx-li9UKvW7Edk41aLurLPWsUBae8BG7O-HAUKB740VPPzD_jCYHf5LMaWvDvESLJExst2fJ8MZjwWgJBiE5gM69510_nYK4Dse3_kv6Qfk0mRvd6qnL2ev75LLKIM570RukMHB6tDfA9B0YO93hvEbWq4Okg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6hRiAuiKcIFFgk4IKsxo99HQslLhACAgJRL6td766oCHYVt9By4if0N_aXMGO7JpWgEodIkTzrODs7M9-OZ78h5JHBbH4hXSQLDxuUwttIOeMjDxuikTKwH2vY9d9M-fYsezVn8y7hhmdhWn6IPuGGltH4azTwPRc2_pCGQuRi-QQiKMcj5AMkyoNVPdj8NNuZ9b4YHHTbM09lkUwE70rf4Q4bq-PPBKUBzu_hGcS5ilubwDO-Sq50iJFutiq-Ri748jq5mDcdeY_gW1PDWdQ3yOFb26dYa1oFaugC67xPfh3XoAlPsdUQgG76w3z3FH4WfInBqmeKZZzUlBQcNaYLF0ftQPqlWu7-rPC8JHWIM2GB0N2SAmbEz_JbVSMpgb9JZuMXH59vR11jhahgIhtFzloTRGEDs4lJZVAuJAGQBkusTKUzMVeZMiJhjvkC1BVkymEfyYNVAaNbeouslVXpbxPqHeMeUJDLRJqpkBk-8s45lgVrPU_FkDw9nVlddKzj2PxioVu-5ESv6mFIHvfSey3bxj_knjRK6oXM8itWqAmmP09zLbee5XOVSf1hSNZPtag746x1LJDVHqBR-vfLgKDA9cYKHv5hfxmsDl-lmNJXB3iLNJExkt2fJ8NSFgsASTAJzQI69z_p_P0EsHc8uvNf0g_IpXdbYz15OX19l1xGEcx4J3KdrO0vD_w9gEz79n5nF78BmuwNuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observations+of+a+large-scale+gravity+wave+propagating+over+an+extremely+large+horizontal+distance+in+the+thermosphere&rft.jtitle=Geophysical+research+letters&rft.au=Guo%2C+Jianpeng&rft.au=bes%2C+Jeffrey+M&rft.au=Wei%2C+Fengsi&rft.au=Feng%2C+Xueshang&rft.date=2015-08-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=42&rft.issue=16&rft.spage=6560&rft_id=info:doi/10.1002%2F2015GL065671&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3809118471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |