The evolution of heart gene delivery vectors

Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector inc...

Full description

Saved in:
Bibliographic Details
Published inThe journal of gene medicine Vol. 13; no. 10; pp. 557 - 565
Main Authors Wasala, Nalinda B., Shin, Jin-Hong, Duan, Dongsheng
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.10.2011
Wiley Periodicals Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno‐associated virus. Among these, adeno‐associated virus has shown many attractive features for pre‐clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. Copyright © 2011 John Wiley & Sons, Ltd.
Abstract Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno‐associated virus. Among these, adeno‐associated virus has shown many attractive features for pre‐clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. Copyright © 2011 John Wiley & Sons, Ltd.
Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer.
Author Shin, Jin-Hong
Wasala, Nalinda B.
Duan, Dongsheng
Author_xml – sequence: 1
  givenname: Nalinda B.
  surname: Wasala
  fullname: Wasala, Nalinda B.
  organization: Department of Molecular Microbiology and Immunology, University of Missouri, MO, Columbia, USA
– sequence: 2
  givenname: Jin-Hong
  surname: Shin
  fullname: Shin, Jin-Hong
  organization: Department of Molecular Microbiology and Immunology, University of Missouri, MO, Columbia, USA
– sequence: 3
  givenname: Dongsheng
  surname: Duan
  fullname: Duan, Dongsheng
  email: duand@missouri.edu, D. Duan, Department of Molecular Microbiology and Immunology, The University of Missouri, School of Medicine, One Hospital Dr M610G, MSB, Columbia, MO 65212, USA., duand@missouri.edu
  organization: Department of Molecular Microbiology and Immunology, University of Missouri, MO, Columbia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21837689$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URD9A4hegSBzogZSx489LJViVBVTgEgTiYrnJeDdLNi52srD_Hlddlg8JTjPSPHo0M-8xORjCgIQ8pHBGAdiz1WJ9RiXAHXJEBaMlY4If5B6MKbnRnw7JcUorAKq0NvfIIaO6UlKbI_K0XmKBm9BPYxeGIvhiiS6OxQIHLFrsuw3GbbHBZgwx3Sd3vesTPtjVE_Lh5UU9e1Vevp-_nj2_LBuhOJRXhjHOvPG-hUqIxgvassZp2VSKAZeMSea1glYYh0YLaChy9EpzkFJ4V52Q81vv9XS1xrbBYYyut9exW7u4tcF19s_J0C3tImxsxQzTSmTBk50ghq8TptGuu9Rg37sBw5SsAZCVoVpn8vS_JM0_M9IYCRl9_Be6ClMc8iMsVUIYzqk0v4RNDClF9Pu1KdibsGwOy96EldFHv5-5B3-mk4HyFvjW9bj9p8i-mb_dCXd8l0b8vudd_GKlqpSwH9_NbV2zF7Sefbai-gHFQ6y6
CitedBy_id crossref_primary_10_1007_s00210_012_0815_2
crossref_primary_10_1186_s12933_018_0684_1
crossref_primary_10_1038_gt_2015_114
crossref_primary_10_3389_fbioe_2019_00466
crossref_primary_10_1038_gt_2012_10
crossref_primary_10_1161_JAHA_119_012239
crossref_primary_10_1089_hum_2012_241
crossref_primary_10_1038_gt_2012_11
crossref_primary_10_1016_j_biotechadv_2022_108005
crossref_primary_10_1016_j_omtn_2021_04_018
crossref_primary_10_1113_JP271739
crossref_primary_10_1016_j_bmcl_2015_01_018
crossref_primary_10_1517_21678707_2016_1124039
crossref_primary_10_1089_hum_2011_186
crossref_primary_10_1038_s41392_022_00972_6
crossref_primary_10_1093_cvr_cvv205
crossref_primary_10_1089_hgtb_2014_128
crossref_primary_10_1016_j_trsl_2012_12_003
crossref_primary_10_1002_term_2974
crossref_primary_10_1007_s12265_013_9479_7
crossref_primary_10_1016_j_hrthm_2020_08_002
crossref_primary_10_3390_app13169432
crossref_primary_10_3389_fphys_2021_718622
crossref_primary_10_3390_molecules24203744
crossref_primary_10_3390_biom8040147
crossref_primary_10_1161_CIRCRESAHA_114_303475
crossref_primary_10_1089_hum_2013_044
crossref_primary_10_1007_s12265_019_09932_y
crossref_primary_10_3389_fbioe_2021_681705
crossref_primary_10_1016_j_jconrel_2013_02_006
crossref_primary_10_1038_gt_2016_43
crossref_primary_10_1039_D0BM01677B
crossref_primary_10_1007_s11886_012_0333_3
crossref_primary_10_1002_jgm_1619
crossref_primary_10_1002_advs_201901818
Cites_doi 10.1038/nbt1073
10.1038/nm1085
10.1161/01.RES.0000237661.18885.f6
10.1038/mt.2011.22
10.1038/mt.2008.202
10.1016/S0003-4975(99)00807-3
10.1038/mt.2008.61
10.1016/j.cardfail.2009.01.013
10.1073/pnas.90.24.11498
10.1016/j.cardfail.2008.02.005
10.1172/JCI6026
10.1038/sj.gt.3302802
10.1038/sj.gt.3300853
10.1038/mt.2010.205
10.1038/sj.gt.3302078
10.1002/jgm.1129
10.1002/jgm.665
10.1038/mt.2010.77
10.1016/S0002-9149(03)00661-1
10.1089/hum.1992.3.3-267
10.1073/pnas.0805676105
10.1126/science.149.3685.754
10.1038/83324
10.1038/mt.2008.76
10.1161/01.CIR.0000089371.11664.27
10.1128/JVI.72.11.8568-8577.1998
10.1161/01.RES.73.4.622
10.2174/1566523054065057
10.1073/pnas.0813207106
10.1161/01.RES.72.6.1211
10.1016/j.yjmcc.2010.11.011
10.1038/nm739
10.1097/00000658-199910000-00002
10.1073/pnas.95.9.5251
10.1172/JCI115902
10.1007/s00395-002-0360-0
10.1016/j.jconrel.2008.06.024
10.1161/01.CIR.82.6.2217
10.1016/0092-8674(92)90213-V
10.1038/sj.gt.3303029
10.1023/A:1012146305040
10.1172/JCI117174
10.1128/JVI.01686-08
10.1016/j.ymthe.2006.03.014
10.1080/02648725.2007.10648098
10.1038/sj.gt.3303035
10.1161/01.CIR.98.25.2800
10.1161/01.RES.73.6.1202
10.1038/mt.2009.116
10.1161/01.CIR.101.2.178
10.1161/01.CIR.90.5.2414
10.1038/mt.2008.207
10.1073/pnas.84.21.7413
10.1161/01.CIR.0000065598.46411.EF
10.1016/S0003-4975(97)01295-2
10.1161/01.CIR.99.2.201
10.1038/mt.2009.256
10.1161/hc0402.102953
10.1038/sj.mt.6300081
10.1126/science.2017680
10.1126/science.272.5259.263
10.4244/EIJV6I7A140
10.1038/mt.2009.70
10.1089/hum.2008.123
10.1007/978-1-4419-1207-7_12
10.1161/01.CIR.0000015982.70785.B7
10.1038/nm1345
10.1021/bi00450a039
10.1161/01.CIR.100.5.468
10.1073/pnas.87.6.2211
10.1161/01.RES.70.1.193
10.1002/ccd.20859
10.1038/gt.2011.18
10.1161/01.CIR.103.17.2138
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright © 2011 John Wiley & Sons, Ltd. 2011
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: Copyright © 2011 John Wiley & Sons, Ltd. 2011
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
7TM
8FD
FR3
K9.
P64
RC3
7QO
7U9
H94
7X8
5PM
DOI 10.1002/jgm.1600
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
CrossRef
MEDLINE - Academic

Genetics Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-2254
EndPage 565
ExternalDocumentID 3918838241
10_1002_jgm_1600
21837689
JGM1600
ark_67375_WNG_TT2B1TCZ_5
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health HL‐91883 and AR‐49419 (DD), Muscular Dystrophy Association (DD), Parent Project Muscular Dystrophy (DD) and Jesse's Journey: The Foundation for Gene and Cell Therapy (DD)
– fundername: NIAMS NIH HHS
  grantid: R01 AR049419-10
– fundername: NIAMS NIH HHS
  grantid: AR-49419
– fundername: NHLBI NIH HHS
  grantid: R01 HL091883-03
– fundername: NHLBI NIH HHS
  grantid: HL-91883
– fundername: NHLBI NIH HHS
  grantid: R01 HL091883
– fundername: NIAMS NIH HHS
  grantid: R01 AR049419
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
  grantid: R01 AR049419-10 || AR
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL091883-03 || HL
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
29K
31~
33P
3SF
3V.
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABPVW
ABQWH
ABUWG
ABWRO
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
GNP
GODZA
H.X
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XV2
ZA5
ZZTAW
~IA
~WT
AITYG
ALIPV
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
7TM
8FD
FR3
K9.
P64
RC3
7QO
7U9
H94
7X8
5PM
ID FETCH-LOGICAL-c5740-b92242f9ffd0355cf51d2ca86c3720462262f870d59ae9850c1e4ef7840665fa3
IEDL.DBID DR2
ISSN 1099-498X
1521-2254
IngestDate Tue Sep 17 21:25:08 EDT 2024
Sat Aug 17 05:44:08 EDT 2024
Fri Aug 16 05:16:18 EDT 2024
Fri Sep 13 05:08:18 EDT 2024
Fri Aug 23 02:52:11 EDT 2024
Sat Sep 28 08:11:55 EDT 2024
Sat Aug 24 00:53:21 EDT 2024
Wed Jan 17 04:59:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright © 2011 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5740-b92242f9ffd0355cf51d2ca86c3720462262f870d59ae9850c1e4ef7840665fa3
Notes ArticleID:JGM1600
istex:5FF37FC8BF96FBA95681ADDB243DC71DA9D1B9BC
ark:/67375/WNG-TT2B1TCZ-5
National Institutes of Health HL-91883 and AR-49419 (DD), Muscular Dystrophy Association (DD), Parent Project Muscular Dystrophy (DD) and Jesse's Journey: The Foundation for Gene and Cell Therapy (DD)
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-3
ObjectType-Review-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgm.1600
PMID 21837689
PQID 1755944169
PQPubID 42608
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3292875
proquest_miscellaneous_900639188
proquest_miscellaneous_1017969960
proquest_journals_1755944169
crossref_primary_10_1002_jgm_1600
pubmed_primary_21837689
wiley_primary_10_1002_jgm_1600_JGM1600
istex_primary_ark_67375_WNG_TT2B1TCZ_5
PublicationCentury 2000
PublicationDate 2011-10
October 2011
2011-Oct
2011-10-00
20111001
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Chichester
PublicationTitle The journal of gene medicine
PublicationTitleAlternate J Gene Med
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley Periodicals Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Periodicals Inc
References Svensson EC, Marshall DJ, Woodard K, et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999; 99: 201-205.
Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 1993; 73: 1202-1207.
Symes JF, Losordo DW, Vale PR, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999; 68: 830-836.
Kaspar BK, Roth DM, Lai NC, et al. Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med 2005; 7: 316-324.
Gregorevic P, Schultz BR, Allen JM, et al. Evaluation of vascular delivery methodologies to enhance rAAV6-mediated gene transfer to canine striated musculature. Mol Ther 2009; 17: 1427-1433.
Rosengart TK, Lee LY, Patel SR, et al. Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Ann Surg 1999; 230: 466-470.
Hajjar RJ, Schmidt U, Matsui T, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 1998; 95: 5251-5256.
Losordo DW, Vale PR, Hendel RC, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 2002; 105: 2012-2018.
Fuchs S, Dib N, Cohen BM, et al. A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc Interv 2006; 68: 372-378.
Jaski BE, Jessup ML, Mancini DM, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171-181.
Alter J, Lou F, Rabinowitz A, et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 2006; 12: 175-177.
Fleury S, Simeoni E, Zuppinger C, et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 2003; 107: 2375-2382.
Buttrick PM, Kaplan ML, Kitsis RN, Leinwand LA. Distinct behavior of cardiac myosin heavy chain gene constructs in vivo. Discordance with in vitro results. Circ Res 1993; 72: 1211-1217.
Maurice JP, Hata JA, Shah AS, et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest 1999; 104: 21-29.
Stewart MJ, Plautz GE, Del Buono L, et al. Gene transfer in vivo with DNA-liposome complexes: safety and acute toxicity in mice. Hum Gene Ther 1992; 3: 267-275.
Kastrup J, Jorgensen E, Fuchs S, et al. A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121. 10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention 2011; 6: 813-818.
Bostick B, Ghosh A, Yue Y, Long C, Duan D. Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther 2007; 14: 1605-1609.
Duan D, Sharma P, Yang J, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long term episomal persistence in muscle. J Virol 1998; 72: 8568-8577.
Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33-40.
Hofland HE, Nagy D, Liu JJ, et al. In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex. Pharm Res 1997; 14: 742-749.
Ghosh A, Yue Y, Long C, Bostick B, Duan D. Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 2007; 15: 750-755.
Hajjar RJ, Zsebo K, Deckelbaum L, et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 2008; 14: 355-367.
Gojo S, Niwaya K, Taniguchi S, Nishizaki K, Kitamura S. Gene transfer into the donor heart during cold preservation for heart transplantation. Ann Thorac Surg 1998; 65: 647-652.
Niwano K, Arai M, Koitabashi N, et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol Ther 2008; 16: 1026-1032.
Hoshijima M, Ikeda Y, Iwanaga Y, et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 2002; 8: 864-871.
Zhao J, Pettigrew GJ, Thomas J, et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 2002; 97: 348-358.
Wang Z, Zhu T, Qiao C, et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321-328.
Gregorevic P, Blankinship MJ, Allen JM, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828-834.
Gwathmey JK, Yerevanian AI, Hajjar RJ. Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol 2011; 50: 803-812.
Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413-7417.
Yue Y, Ghosh A, Long C, et al. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 2008; 16: 1944-52.
Ikeda Y, Gu Y, Iwanaga Y, et al. Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer. Circulation 2002; 105: 502-508.
Yockman JW, Kastenmeier A, Erickson HM, et al. Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction. J Control Release 2008; 132: 260-266.
Pacak CA, Mah CS, Thattaliyath BD, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: e3-9.
Kass-Eisler A, Falck-Pedersen E, Alvira M, et al. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci USA 1993; 90: 11498-11502.
Fortuin FD, Vale P, Losordo DW, et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol 2003; 92: 436-439.
Rosenfeld MA, Siegfried W, Yoshimura K, et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 1991; 252: 431-434.
Lin H, Parmacek MS, Morle G, Bollin S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 1990; 82: 2217-2221.
Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263-267.
Sundararaman S, Miller TJ, Pastore JM, Kiedrowski M, Aras R, Penn MS. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther 2011. doi:gt201118 [pii]10.1038/gt.2011.18.
Wu B, Moulton HM, Iversen PL, et al. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 2008; 105: 14814-14819.
Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection. Gene Ther 1999; 6: 683-688.
Raake PW, Hinkel R, Muller S, et al. Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther 2008; 15: 12-17.
Inagaki K, Fuess S, Storm TA, et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45-53.
Schnepp BC, Jensen RL, Clark KR, Johnson PR. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J Virol 2009; 83: 1456-1464.
Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998; 98: 2800-2804.
Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D. Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the Mdx mouse heart. Circulation 2003; 108: 1626-1632.
Su H, Yeghiazarians Y, Lee A, et al. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid. J Gene Med 2008; 10: 33-41.
Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285-297.
Yang L, Jiang J, Drouin LM, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci USA 2009; 106: 3946-3951.
Rosenfeld MA, Yoshimura K, Trapnell BC, et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 1992; 68: 143-155.
Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science 1965; 149: 754-756.
Vale PR, Losordo DW, Milliken CE, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ven
1965; 149
2002; 97
2009; 83
2010; 18
2008; 105
2011; 19
2001; 103
2003; 10
2005; 23
1992; 90
1990; 87
1987; 84
2003; 92
1993; 73
1993; 72
2006; 68
1997; 14
1999; 99
2002; 105
1998; 95
1998; 98
2007; 24
1992; 3
2009; 15
2009; 17
1991; 252
1994; 90
2006; 12
2011
2006; 13
2010
2006; 99
2008; 19
2008; 16
2006; 14
2002; 8
1999; 68
2008; 14
2008; 15
2008; 10
1993; 90
1999; 100
1998; 65
1999; 6
1999; 104
2011; 6
2007; 14
1990; 82
1989; 28
2007; 15
2004; 10
1992; 70
2003; 108
2003; 107
2001; 7
2011; 50
1996; 272
1999; 230
2005; 5
2005; 7
1992; 68
1998; 72
2000; 101
2008; 132
1994; 93
2009; 106
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 93
  start-page: 1864
  year: 1994
  end-page: 1868
  article-title: Buttrick PM Tetracycline‐regulated cardiac gene expression in vivo
  publication-title: J Clin Invest
– volume: 14
  start-page: 742
  year: 1997
  end-page: 749
  article-title: In vivo gene transfer by intravenous administration of stable cationic lipid/DNA complex
  publication-title: Pharm Res
– volume: 73
  start-page: 622
  year: 1993
  end-page: 628
  article-title: Characterization of promoter elements of the rabbit cardiac sarcoplasmic reticulum Ca(2+)‐ATPase gene required for expression in cardiac muscle cells
  publication-title: Circ Res
– volume: 24
  start-page: 165
  year: 2007
  end-page: 177
  article-title: Expanding adeno‐associated viral vector capacity: a tale of two vectors
  publication-title: Biotechnol Genet Eng Rev
– volume: 252
  start-page: 431
  year: 1991
  end-page: 434
  article-title: Adenovirus‐mediated transfer of a recombinant alpha 1‐antitrypsin gene to the lung epithelium in vivo
  publication-title: Science
– volume: 16
  start-page: 1953
  year: 2008
  end-page: 59
  article-title: Percutaneous transendocardial delivery of self‐complementary adeno‐associated virus 6 achieves global cardiac gene transfer in canines
  publication-title: Mol Ther
– volume: 15
  start-page: 12
  year: 2008
  end-page: 17
  article-title: Cardio‐specific long‐term gene expression in a porcine model after selective pressure‐regulated retroinfusion of adeno‐associated viral (AAV) vectors
  publication-title: Gene Ther
– volume: 15
  start-page: 750
  year: 2007
  end-page: 755
  article-title: Efficient whole‐body transduction with trans‐splicing adeno‐associated viral vectors
  publication-title: Mol Ther
– volume: 10
  start-page: 33
  year: 2008
  end-page: 41
  article-title: AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid
  publication-title: J Gene Med
– volume: 95
  start-page: 5251
  year: 1998
  end-page: 5256
  article-title: Modulation of ventricular function through gene transfer in vivo
  publication-title: Proc Natl Acad Sci USA
– volume: 72
  start-page: 8568
  year: 1998
  end-page: 8577
  article-title: Circular intermediates of recombinant adeno‐associated virus have defined structural characteristics responsible for long term episomal persistence in muscle
  publication-title: J Virol
– year: 2011
  article-title: Plasmid‐based transient human stromal cell‐derived factor‐1 gene transfer improves cardiac function in chronic heart failure
  publication-title: Gene Ther
– volume: 230
  start-page: 466
  year: 1999
  end-page: 470
  article-title: Six‐month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA
  publication-title: Ann Surg
– volume: 17
  start-page: 1109
  year: 2009
  end-page: 1115
  article-title: VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial
  publication-title: Mol Ther
– volume: 10
  start-page: 1807
  year: 2003
  end-page: 1813
  article-title: Efficient and long‐term intracardiac gene transfer in delta‐sarcoglycan‐deficiency hamster by adeno‐associated virus‐2 vectors
  publication-title: Gene Ther
– volume: 14
  start-page: 1605
  year: 2007
  end-page: 1609
  article-title: Systemic AAV‐9 transduction in mice is influenced by animal age but not by the route of administration
  publication-title: Gene Ther
– volume: 105
  start-page: 14814
  year: 2008
  end-page: 14819
  article-title: Effective rescue of dystrophin improves cardiac function in dystrophin‐deficient mice by a modified morpholino oligomer
  publication-title: Proc Natl Acad Sci USA
– volume: 84
  start-page: 7413
  year: 1987
  end-page: 7417
  article-title: Lipofection: a highly efficient, lipid‐mediated DNA‐transfection procedure
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: 33
  year: 2001
  end-page: 40
  article-title: Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics
  publication-title: Nat Med
– volume: 16
  start-page: 1944
  year: 2008
  end-page: 52
  article-title: A single intravenous injection of adeno‐associated virus serotype‐9 leads to whole body skeletal muscle transduction in dogs
  publication-title: Mol Ther
– volume: 90
  start-page: 626
  year: 1992
  end-page: 630
  article-title: Widespread long‐term gene transfer to mouse skeletal muscles and heart
  publication-title: J Clin Invest
– volume: 68
  start-page: 830
  year: 1999
  end-page: 836
  article-title: Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease
  publication-title: Ann Thorac Surg
– volume: 105
  start-page: 2012
  year: 2002
  end-page: 2018
  article-title: Phase 1/2 placebo‐controlled, double‐blind, dose‐escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia
  publication-title: Circulation
– volume: 10
  start-page: 828
  year: 2004
  end-page: 834
  article-title: Systemic delivery of genes to striated muscles using adeno‐associated viral vectors
  publication-title: Nat Med
– volume: 73
  start-page: 1202
  year: 1993
  end-page: 1207
  article-title: Efficient gene transfer into myocardium by direct injection of adenovirus vectors
  publication-title: Circ Res
– volume: 272
  start-page: 263
  year: 1996
  end-page: 267
  article-title: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector
  publication-title: Science
– volume: 68
  start-page: 372
  year: 2006
  end-page: 378
  article-title: A randomized, double‐blind, placebo‐controlled, multicenter, pilot study of the safety and feasibility of catheter‐based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease
  publication-title: Catheter Cardiovasc Interv
– volume: 99
  start-page: 201
  year: 1999
  end-page: 205
  article-title: Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno‐associated virus vectors
  publication-title: Circulation
– volume: 16
  start-page: 1073
  year: 2008
  end-page: 1080
  article-title: Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection
  publication-title: Mol Ther
– volume: 19
  start-page: 36
  year: 2011
  end-page: 45
  article-title: Gene therapy of mdx mice with large truncated dystrophins generated by recombination using rAAV6
  publication-title: Mol Ther
– volume: 104
  start-page: 21
  year: 1999
  end-page: 29
  article-title: Enhancement of cardiac function after adenoviral‐mediated in vivo intracoronary beta2‐adrenergic receptor gene delivery
  publication-title: J Clin Invest
– volume: 19
  start-page: 1359
  year: 2008
  end-page: 1368
  article-title: Adeno‐associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat
  publication-title: Hum Gene Ther
– volume: 90
  start-page: 11498
  year: 1993
  end-page: 11502
  article-title: Quantitative determination of adenovirus‐mediated gene delivery to rat cardiac myocytes in vitro and in vivo
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 321
  year: 2005
  end-page: 328
  article-title: Adeno‐associated virus serotype 8 efficiently delivers genes to muscle and heart
  publication-title: Nat Biotechnol
– volume: 83
  start-page: 1456
  year: 2009
  end-page: 1464
  article-title: Infectious molecular clones of adeno‐associated virus isolated directly from human tissues
  publication-title: J Virol
– volume: 7
  start-page: 316
  year: 2005
  end-page: 324
  article-title: Myocardial gene transfer and long‐term expression following intracoronary delivery of adeno‐associated virus
  publication-title: J Gene Med
– volume: 82
  start-page: 2217
  year: 1990
  end-page: 2221
  article-title: Expression of recombinant genes in myocardium in vivo after direct injection of DNA
  publication-title: Circulation
– volume: 99
  start-page: e3
  year: 2006
  end-page: 9
  article-title: Recombinant adeno‐associated virus serotype 9 leads to preferential cardiac transduction in vivo
  publication-title: Circ Res
– volume: 18
  start-page: 1284
  year: 2010
  end-page: 1292
  article-title: SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells
  publication-title: Mol Ther
– volume: 70
  start-page: 193
  year: 1992
  end-page: 198
  article-title: Behavior of genes directly injected into the rat heart in vivo
  publication-title: Circ Res
– volume: 15
  start-page: 171
  year: 2009
  end-page: 181
  article-title: Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first‐in‐human phase 1/2 clinical trial
  publication-title: J Card Fail
– volume: 50
  start-page: 803
  year: 2011
  end-page: 812
  article-title: Cardiac gene therapy with SERCA2a: from bench to bedside
  publication-title: J Mol Cell Cardiol
– volume: 132
  start-page: 260
  year: 2008
  end-page: 266
  article-title: Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction
  publication-title: J Control Release
– volume: 14
  start-page: 355
  year: 2008
  end-page: 367
  article-title: Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure
  publication-title: J Card Fail
– volume: 14
  start-page: 45
  year: 2006
  end-page: 53
  article-title: Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8
  publication-title: Mol Ther
– volume: 19
  start-page: 1070
  year: 2011
  end-page: 1078
  article-title: Engineering liver‐detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer
  publication-title: Mol Ther
– start-page: 205
  year: 2010
  end-page: 218
– volume: 106
  start-page: 3946
  year: 2009
  end-page: 3951
  article-title: A myocardium tropic adeno‐associated virus (AAV) evolved by DNA shuffling and in vivo selection
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 1026
  year: 2008
  end-page: 1032
  article-title: Lentiviral vector‐mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats
  publication-title: Mol Ther
– volume: 17
  start-page: 1427
  year: 2009
  end-page: 1433
  article-title: Evaluation of vascular delivery methodologies to enhance rAAV6‐mediated gene transfer to canine striated musculature
  publication-title: Mol Ther
– volume: 6
  start-page: 813
  year: 2011
  end-page: 818
  article-title: A randomised, double‐blind, placebo‐controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121. 10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial
  publication-title: EuroIntervention
– volume: 108
  start-page: 1626
  year: 2003
  end-page: 1632
  article-title: Microdystrophin gene therapy of cardiomyopathy restores dystrophin–glycoprotein complex and improves sarcolemma integrity in the Mdx mouse heart
  publication-title: Circulation
– volume: 28
  start-page: 9508
  year: 1989
  end-page: 9514
  article-title: Highly efficient DNA delivery mediated by pH‐sensitive immunoliposomes
  publication-title: Biochemistry
– volume: 87
  start-page: 2211
  year: 1990
  end-page: 2215
  article-title: Site‐specific integration by adeno‐associated virus
  publication-title: Proc Natl Acad Sci USA
– volume: 105
  start-page: 502
  year: 2002
  end-page: 508
  article-title: Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer
  publication-title: Circulation
– volume: 92
  start-page: 436
  year: 2003
  end-page: 439
  article-title: One‐year follow‐up of direct myocardial gene transfer of vascular endothelial growth factor‐2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no‐option patients
  publication-title: Am J Cardiol
– volume: 101
  start-page: 178
  year: 2000
  end-page: 184
  article-title: High‐efficiency, long‐term cardiac expression of foreign genes in living mouse embryos and neonates
  publication-title: Circulation
– volume: 107
  start-page: 2375
  year: 2003
  end-page: 2382
  article-title: Multiply attenuated, self‐inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo
  publication-title: Circulation
– volume: 149
  start-page: 754
  year: 1965
  end-page: 756
  article-title: Adenovirus‐associated defective virus particles
  publication-title: Science
– volume: 3
  start-page: 267
  year: 1992
  end-page: 275
  article-title: Gene transfer in vivo with DNA–liposome complexes: safety and acute toxicity in mice
  publication-title: Hum Gene Ther
– volume: 90
  start-page: 2414
  year: 1994
  end-page: 2424
  article-title: Direct in vivo gene transfer into porcine myocardium using replication‐deficient adenoviral vectors
  publication-title: Circulation
– volume: 6
  start-page: 683
  year: 1999
  end-page: 688
  article-title: Gene delivery to the myocardium by intrapericardial injection
  publication-title: Gene Ther
– volume: 68
  start-page: 143
  year: 1992
  end-page: 155
  article-title: In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium
  publication-title: Cell
– volume: 65
  start-page: 647
  year: 1998
  end-page: 652
  article-title: Gene transfer into the donor heart during cold preservation for heart transplantation
  publication-title: Ann Thorac Surg
– volume: 5
  start-page: 285
  year: 2005
  end-page: 297
  article-title: New recombinant serotypes of AAV vectors
  publication-title: Curr Gene Ther
– volume: 13
  start-page: 1503
  year: 2006
  end-page: 1511
  article-title: Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF (121) (AdVEGF121) versus maximum medical treatment
  publication-title: Gene Ther
– volume: 18
  start-page: 75
  year: 2010
  end-page: 79
  article-title: Evidence for the failure of adeno‐associated virus serotype 5 to package a viral genome > or = 8.2 kb
  publication-title: Mol Ther
– volume: 98
  start-page: 2800
  year: 1998
  end-page: 2804
  article-title: Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia
  publication-title: Circulation
– volume: 12
  start-page: 175
  year: 2006
  end-page: 177
  article-title: Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology
  publication-title: Nat Med
– volume: 100
  start-page: 468
  year: 1999
  end-page: 474
  article-title: Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease
  publication-title: Circulation
– volume: 97
  start-page: 348
  year: 2002
  end-page: 358
  article-title: Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo
  publication-title: Basic Res Cardiol
– volume: 103
  start-page: 2138
  year: 2001
  end-page: 2143
  article-title: Randomized, single‐blind, placebo‐controlled pilot study of catheter‐based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia
  publication-title: Circulation
– volume: 8
  start-page: 864
  year: 2002
  end-page: 871
  article-title: Chronic suppression of heart‐failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery
  publication-title: Nat Med
– volume: 72
  start-page: 1211
  year: 1993
  end-page: 1217
  article-title: Distinct behavior of cardiac myosin heavy chain gene constructs in vivo. Discordance with in vitro results
  publication-title: Circ Res
– ident: e_1_2_6_53_1
  doi: 10.1038/nbt1073
– ident: e_1_2_6_52_1
  doi: 10.1038/nm1085
– ident: e_1_2_6_54_1
  doi: 10.1161/01.RES.0000237661.18885.f6
– ident: e_1_2_6_59_1
  doi: 10.1038/mt.2011.22
– ident: e_1_2_6_65_1
  doi: 10.1038/mt.2008.202
– ident: e_1_2_6_10_1
  doi: 10.1016/S0003-4975(99)00807-3
– ident: e_1_2_6_25_1
  doi: 10.1038/mt.2008.61
– ident: e_1_2_6_74_1
  doi: 10.1016/j.cardfail.2009.01.013
– ident: e_1_2_6_29_1
  doi: 10.1073/pnas.90.24.11498
– ident: e_1_2_6_73_1
  doi: 10.1016/j.cardfail.2008.02.005
– ident: e_1_2_6_35_1
  doi: 10.1172/JCI6026
– ident: e_1_2_6_40_1
  doi: 10.1038/sj.gt.3302802
– ident: e_1_2_6_33_1
  doi: 10.1038/sj.gt.3300853
– ident: e_1_2_6_72_1
  doi: 10.1038/mt.2010.205
– ident: e_1_2_6_48_1
  doi: 10.1038/sj.gt.3302078
– ident: e_1_2_6_62_1
  doi: 10.1002/jgm.1129
– ident: e_1_2_6_60_1
  doi: 10.1002/jgm.665
– ident: e_1_2_6_63_1
  doi: 10.1038/mt.2010.77
– ident: e_1_2_6_8_1
  doi: 10.1016/S0002-9149(03)00661-1
– ident: e_1_2_6_16_1
  doi: 10.1089/hum.1992.3.3-267
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.0805676105
– ident: e_1_2_6_43_1
  doi: 10.1126/science.149.3685.754
– ident: e_1_2_6_21_1
  doi: 10.1038/83324
– ident: e_1_2_6_55_1
  doi: 10.1038/mt.2008.76
– ident: e_1_2_6_51_1
  doi: 10.1161/01.CIR.0000089371.11664.27
– ident: e_1_2_6_44_1
  doi: 10.1128/JVI.72.11.8568-8577.1998
– ident: e_1_2_6_6_1
  doi: 10.1161/01.RES.73.4.622
– ident: e_1_2_6_50_1
  doi: 10.2174/1566523054065057
– ident: e_1_2_6_58_1
  doi: 10.1073/pnas.0813207106
– ident: e_1_2_6_5_1
  doi: 10.1161/01.RES.72.6.1211
– ident: e_1_2_6_75_1
  doi: 10.1016/j.yjmcc.2010.11.011
– ident: e_1_2_6_49_1
  doi: 10.1038/nm739
– ident: e_1_2_6_38_1
  doi: 10.1097/00000658-199910000-00002
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.95.9.5251
– ident: e_1_2_6_28_1
  doi: 10.1172/JCI115902
– ident: e_1_2_6_24_1
  doi: 10.1007/s00395-002-0360-0
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jconrel.2008.06.024
– ident: e_1_2_6_2_1
  doi: 10.1161/01.CIR.82.6.2217
– ident: e_1_2_6_27_1
  doi: 10.1016/0092-8674(92)90213-V
– ident: e_1_2_6_71_1
  doi: 10.1038/sj.gt.3303029
– ident: e_1_2_6_17_1
  doi: 10.1023/A:1012146305040
– ident: e_1_2_6_4_1
  doi: 10.1172/JCI117174
– ident: e_1_2_6_45_1
  doi: 10.1128/JVI.01686-08
– ident: e_1_2_6_57_1
  doi: 10.1016/j.ymthe.2006.03.014
– ident: e_1_2_6_68_1
  doi: 10.1080/02648725.2007.10648098
– ident: e_1_2_6_61_1
  doi: 10.1038/sj.gt.3303035
– ident: e_1_2_6_11_1
  doi: 10.1161/01.CIR.98.25.2800
– ident: e_1_2_6_30_1
  doi: 10.1161/01.RES.73.6.1202
– ident: e_1_2_6_66_1
  doi: 10.1038/mt.2009.116
– ident: e_1_2_6_37_1
  doi: 10.1161/01.CIR.101.2.178
– ident: e_1_2_6_31_1
  doi: 10.1161/01.CIR.90.5.2414
– ident: e_1_2_6_64_1
  doi: 10.1038/mt.2008.207
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.84.21.7413
– ident: e_1_2_6_23_1
  doi: 10.1161/01.CIR.0000065598.46411.EF
– ident: e_1_2_6_32_1
  doi: 10.1016/S0003-4975(97)01295-2
– ident: e_1_2_6_47_1
  doi: 10.1161/01.CIR.99.2.201
– ident: e_1_2_6_67_1
  doi: 10.1038/mt.2009.256
– ident: e_1_2_6_36_1
  doi: 10.1161/hc0402.102953
– ident: e_1_2_6_70_1
  doi: 10.1038/sj.mt.6300081
– ident: e_1_2_6_26_1
  doi: 10.1126/science.2017680
– ident: e_1_2_6_22_1
  doi: 10.1126/science.272.5259.263
– ident: e_1_2_6_42_1
  doi: 10.4244/EIJV6I7A140
– ident: e_1_2_6_13_1
  doi: 10.1038/mt.2009.70
– ident: e_1_2_6_56_1
  doi: 10.1089/hum.2008.123
– ident: e_1_2_6_69_1
  doi: 10.1007/978-1-4419-1207-7_12
– ident: e_1_2_6_12_1
  doi: 10.1161/01.CIR.0000015982.70785.B7
– ident: e_1_2_6_19_1
  doi: 10.1038/nm1345
– ident: e_1_2_6_14_1
  doi: 10.1021/bi00450a039
– ident: e_1_2_6_39_1
  doi: 10.1161/01.CIR.100.5.468
– ident: e_1_2_6_46_1
  doi: 10.1073/pnas.87.6.2211
– ident: e_1_2_6_3_1
  doi: 10.1161/01.RES.70.1.193
– ident: e_1_2_6_41_1
  doi: 10.1002/ccd.20859
– ident: e_1_2_6_7_1
  doi: 10.1038/gt.2011.18
– ident: e_1_2_6_9_1
  doi: 10.1161/01.CIR.103.17.2138
SSID ssj0017889
Score 2.2367904
SecondaryResourceType review_article
Snippet Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene...
Abstract Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 557
SubjectTerms AAV
Adeno-associated virus
adenovirus
Animal models
Animals
Clinical Trials as Topic
Gene therapy
Gene Transfer Techniques
Genetic Therapy - methods
Genetic Vectors - genetics
Genetic Vectors - metabolism
Heart - physiology
Heart Diseases - therapy
heart gene delivery
Humans
lentivirus
nonviral vector
viral vector
Title The evolution of heart gene delivery vectors
URI https://api.istex.fr/ark:/67375/WNG-TT2B1TCZ-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgm.1600
https://www.ncbi.nlm.nih.gov/pubmed/21837689
https://www.proquest.com/docview/1755944169/abstract/
https://search.proquest.com/docview/1017969960
https://search.proquest.com/docview/900639188
https://pubmed.ncbi.nlm.nih.gov/PMC3292875
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUKVeWugzLVSuVHFqIHbsxDm2iIeQyqFa1FV7sBLHBoqardhdVPrrO-M8YAtIVU-J5In8mrG_sSffALyrpbReWhUjFvWxTCtcB53CN24rp7XFTSxEWxxlB8fycKzGXVQl_QvT8kMMB25kGWG9JgMvq-n2NWno95MfdDRC7jrx6BEe-jwwR3H07Ipw0VlQEjU97nlnE7Hdf7iwE63QoP66C2bejpa8iWLDNrT3GL71HWijT8635rNqy_7-i9vx_3q4Co86dMo-tOq0BkuueQIP2nyVV0_hPSoVc5edtrKJZ5QPe8ZQCR2rsTa0iyt2GS4Cps_geG93tHMQd-kWYqtymcRVgdu58IX3dYIoxHrFa2FLndmQySZDoCY8mnetiNBbq8RyJ53P0UXMMuXL9DksN5PGvQRWp0Jpl7oyqYXMhdV5VUpZ-pSnlfaCR_C2H3rzs2XVMC1_sjDYa0O9jmAzzMkgUF6cUxRarsyXo30zGomPfLTz1agI1vtJM50BTg2iIlUg1MsKrGsoRtOh-5CycZP51ITVKCN6mgjYPTJFwHBc6whetGowtIfAJTprWEG-oCCDADF3L5Y0Z6eBwTsVBXqq2PLNMP_3joE53P9Ez1f_KvgaHoo-SJGvw_LsYu42EDXNqjfBPv4Ao7gSNQ
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3hT9QwFH8hECNfEBVwCloTwycHa9duXfikBDgR7oMZ4WJMmq1rRQk7wt0R4a_ntbtNTyUxftqSdmlf-177e-3b7wG8qTjXlmsRIha1IY9LXAeNwDeqSyOlxk3MR1v0k94JPxyIwRzstP_CNPwQ3YGbswy_XjsDdwfS2z9ZQ79_vXBnI-ivL6C1C-9Pfeq4oyj6dpm_6sxcGjU5aJlnI7bdfjmzFy24Yf3xN6D5Z7zkrzjWb0T7j-BLK0ITf3K-NRmXW_r2N3bH_5RxGZamAJW8azTqMcyZ-gk8aFJW3jyFt6hXxFxPFZYMLXEpsccE9dCQCptD07gh1_4uYLQCJ_t7-W4vnGZcCLVIeRSWGe7ozGbWVhECEW0FrZguZKJ9MpsEsRqzaOGVcJzeUkSaGm5sil5ikghbxKswXw9r8wxIFTMhTWyKqGI8ZVqmZcF5YWMal9IyGsDrduzVZUOsoRoKZaZQauWkDmDTT0pXobg6d4FoqVCn_QOV5-w9zXc_KxHAejtramqDI4XASGSI9pIM2-qK0XrclUhRm-FkpPyClDiGmgDIPXUyD-OolAGsNXrQ9cfhS_TXsIF0RkO6Co68e7ak_nbmSbxjlqGzij3f9Apw7xiow4Nj93z-rxVfwcNefnykjj70P76ARdbGLNJ1mB9fTcwGgqhx-dIbyx3J4BZX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6hViBeWihX2gKuhPpE2tixE-cRWrYHZYXQVqzog5U4di81W3V3q5Zfz9g5YIFKiKdE8kS-Zuxv7Mk3AG9KzrXlWoSIRW3I4wLXQSPwjerCSKlxE_PRFv1k95DvD8Wwiap0_8LU_BDdgZuzDL9eOwO_LO3mT9LQs-MLdzSC7vo8T2LmNHr7S0cdRdG1y_xNZ-ayqMlhSzwbsc32y5mtaN6N6s3fcOaf4ZK_wli_D_UW4ajtQR1-cr4xnRQb-vtv5I7_18VHsNDAU_Ku1qfHcM9US3C_Tlh5-wTeolYRc92oKxlZ4hJiTwhqoSEl1oaGcUuu_U3A-Ckc9j4MtnbDJt9CqEXKo7DIcD9nNrO2jBCGaCtoyXQuE-1T2SSI1JhF-y6FY_SWItLUcGNT9BGTRNg8fgZz1agyL4CUMRPSxCaPSsZTpmVa5JznNqZxIS2jAay1Q68ua1oNVRMoM4W9Vq7XAaz7OekE8qtzF4aWCvW1v6MGA_aeDra-KRHAajtpqrHAsUJYJDLEekmGdXXFaDvuQiSvzGg6Vn45Shw_TQDkDpnMgzgqZQDPazXo2uPQJXprWEE6oyCdgKPuni2pTk88hTfqK7qq2PJ1P_93joHa3_nknsv_KvgaHnze7qmDvf7HFXjI2oBFugpzk6upeYkIalK88qbyA3pIFQY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+evolution+of+heart+gene+delivery+vectors&rft.jtitle=The+journal+of+gene+medicine&rft.au=Wasala%2C+Nalinda+B.&rft.au=Shin%2C+Jin%E2%80%90Hong&rft.au=Duan%2C+Dongsheng&rft.date=2011-10-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1099-498X&rft.eissn=1521-2254&rft.volume=13&rft.issue=10&rft.spage=557&rft.epage=565&rft_id=info:doi/10.1002%2Fjgm.1600&rft.externalDBID=10.1002%252Fjgm.1600&rft.externalDocID=JGM1600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-498X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-498X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-498X&client=summon