3D Deep Learning on Medical Images: A Review
The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 18; p. 5097 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.09.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field. |
---|---|
AbstractList | The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field. The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field. |
Author | Singh, Satya P. Wang, Lipo Gulyás, Balázs Gupta, Sukrit Padmanabhan, Parasuraman Goli, Haveesh |
AuthorAffiliation | 1 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore; satya@ntu.edu.sg (S.P.S.); balazs.gulyas@ntu.edu.sg (B.G.) 5 Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden 2 Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore 3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; elpwang@ntu.edu.sg 4 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; SUKRIT001@e.ntu.edu.sg (S.G.); HAVEESH001@e.ntu.edu.sg (H.G.) |
AuthorAffiliation_xml | – name: 5 Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden – name: 3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; elpwang@ntu.edu.sg – name: 2 Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore – name: 4 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; SUKRIT001@e.ntu.edu.sg (S.G.); HAVEESH001@e.ntu.edu.sg (H.G.) – name: 1 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore; satya@ntu.edu.sg (S.P.S.); balazs.gulyas@ntu.edu.sg (B.G.) |
Author_xml | – sequence: 1 givenname: Satya P. orcidid: 0000-0003-3159-3622 surname: Singh fullname: Singh, Satya P. – sequence: 2 givenname: Lipo orcidid: 0000-0002-4257-7639 surname: Wang fullname: Wang, Lipo – sequence: 3 givenname: Sukrit surname: Gupta fullname: Gupta, Sukrit – sequence: 4 givenname: Haveesh orcidid: 0000-0001-9437-2654 surname: Goli fullname: Goli, Haveesh – sequence: 5 givenname: Parasuraman orcidid: 0000-0003-4112-4600 surname: Padmanabhan fullname: Padmanabhan, Parasuraman – sequence: 6 givenname: Balázs surname: Gulyás fullname: Gulyás, Balázs |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32906819$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVtrFDEYhoNU7EEv_AMy4I0F1345zCTxQiith4UVQfQ65PDNmmU2WZPZiv--025d2uJVQvLkyZu8x-Qg5YSEvKTwjnMNZ5UBVS1o-YQcUcHETDEGB_fmh-S41hUA45yrZ-SQMw2dovqIvOWXzSXiplmgLSmmZZNT8xVD9HZo5mu7xPq-OW--41XEP8_J094OFV_cjSfk56ePPy6-zBbfPs8vzhcz30o-zvqe9Wq6wUmuJATJBAPZSdtZNaXV3AvZ9py2oqeATKHonQqK2pZR1YN2_ITMd96Q7cpsSlzb8tdkG83tQi5LY8sY_YDGByu4DwxQW0EdOC994NRJRYV1LkyuDzvXZuvWGDymsdjhgfThToq_zDJfGdlKkCAmwZs7Qcm_t1hHs47V4zDYhHlbDROCdsB0qyf09SN0lbclTV91S0mmOoCJenU_0T7Kv1Im4HQH-JJrLdjvEQrmpnCzL3xizx6xPo52jPnmMXH4z4lroRmoHA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3454374 crossref_primary_10_1155_2022_6347307 crossref_primary_10_1109_JIOT_2023_3306435 crossref_primary_10_3390_app132413267 crossref_primary_10_1038_s41598_023_49514_2 crossref_primary_10_26599_BDMA_2024_9020090 crossref_primary_10_1007_s13755_024_00322_6 crossref_primary_10_1186_s12943_025_02240_x crossref_primary_10_3390_s21113691 crossref_primary_10_1148_radiol_222217 crossref_primary_10_32604_cmes_2022_021225 crossref_primary_10_1038_s41524_023_01134_0 crossref_primary_10_5090_jcs_22_083 crossref_primary_10_1109_ACCESS_2023_3336590 crossref_primary_10_1186_s12859_022_04872_y crossref_primary_10_1002_btm2_10641 crossref_primary_10_1109_ACCESS_2023_3257345 crossref_primary_10_3390_a16110521 crossref_primary_10_1016_j_mtcomm_2024_109717 crossref_primary_10_1038_s41598_025_92954_1 crossref_primary_10_1080_21681163_2023_2258998 crossref_primary_10_1142_S1469026824420045 crossref_primary_10_3390_jcm12227082 crossref_primary_10_3390_s23031694 crossref_primary_10_3390_su13169470 crossref_primary_10_2147_JHC_S493478 crossref_primary_10_1063_5_0082741 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_1137_23M1562202 crossref_primary_10_1016_j_ymeth_2021_04_022 crossref_primary_10_3390_electronics12030604 crossref_primary_10_1080_00032719_2024_2417349 crossref_primary_10_1155_2022_4093658 crossref_primary_10_1038_s41598_023_45314_w crossref_primary_10_1007_s11547_024_01791_1 crossref_primary_10_32604_cmc_2024_047754 crossref_primary_10_2196_60616 crossref_primary_10_7717_peerj_cs_806 crossref_primary_10_34133_2021_8786793 crossref_primary_10_1109_JSEN_2020_3023471 crossref_primary_10_1016_j_vrih_2024_04_001 crossref_primary_10_1109_ACCESS_2020_3032612 crossref_primary_10_3390_s23146580 crossref_primary_10_1016_j_media_2022_102429 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_3390_diagnostics12123197 crossref_primary_10_1016_j_wneu_2022_07_041 crossref_primary_10_3390_s22093272 crossref_primary_10_1016_j_neucom_2022_01_044 crossref_primary_10_3748_wjg_v27_i35_5978 crossref_primary_10_1038_s41598_022_05990_6 crossref_primary_10_1016_j_imavis_2024_104991 crossref_primary_10_3934_mbe_2022366 crossref_primary_10_1016_j_compbiomed_2022_106366 crossref_primary_10_3390_bioengineering12010081 crossref_primary_10_1016_j_clinimag_2024_110254 crossref_primary_10_1038_s41524_022_00725_7 crossref_primary_10_1109_JBHI_2021_3097735 crossref_primary_10_1016_j_ajodo_2024_09_009 crossref_primary_10_1016_j_ymeth_2021_04_005 crossref_primary_10_3389_fonc_2022_844197 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125149 crossref_primary_10_1109_ACCESS_2022_3194529 crossref_primary_10_34088_kojose_1081402 crossref_primary_10_1007_s00238_023_02152_3 crossref_primary_10_3390_bioengineering11121191 crossref_primary_10_5194_se_13_1475_2022 crossref_primary_10_1007_s11696_023_03137_z crossref_primary_10_3788_IRLA20240204 crossref_primary_10_1007_s11042_022_11925_0 crossref_primary_10_1364_OE_507476 crossref_primary_10_1002_jbio_202100142 crossref_primary_10_1016_j_jhepr_2024_101219 crossref_primary_10_7717_peerj_cs_1994 crossref_primary_10_3390_healthcare9111545 crossref_primary_10_1038_s41598_024_55092_8 crossref_primary_10_1515_revneuro_2022_0122 crossref_primary_10_1007_s00256_021_03773_0 crossref_primary_10_1016_j_ymssp_2024_111173 crossref_primary_10_1016_j_ejmp_2024_104504 crossref_primary_10_1109_JBHI_2024_3407116 crossref_primary_10_1051_matecconf_202134205003 crossref_primary_10_1016_j_acra_2024_12_011 crossref_primary_10_1002_acm2_14559 crossref_primary_10_1016_j_neucom_2025_129816 crossref_primary_10_1002_mp_15804 crossref_primary_10_1007_s00521_024_09859_9 crossref_primary_10_1117_1_JMI_11_4_045501 crossref_primary_10_1371_journal_pcbi_1011815 crossref_primary_10_3389_frai_2023_1232640 crossref_primary_10_1007_s11042_024_19579_w crossref_primary_10_3390_bioengineering10040397 crossref_primary_10_1016_j_patrec_2025_01_002 crossref_primary_10_3390_info14060301 crossref_primary_10_1016_j_compmedimag_2024_102452 crossref_primary_10_1016_j_media_2023_102919 crossref_primary_10_1002_jbio_202300209 crossref_primary_10_1038_s41598_022_06076_z crossref_primary_10_1111_coin_70000 crossref_primary_10_1016_j_compbiomed_2023_107302 crossref_primary_10_3390_biomedicines12112561 crossref_primary_10_1038_s41598_022_07186_4 crossref_primary_10_1109_TMM_2023_3304896 crossref_primary_10_1016_j_neucom_2024_127672 crossref_primary_10_1016_j_neuroimage_2024_120646 crossref_primary_10_3390_s22166129 crossref_primary_10_1002_mds_28775 crossref_primary_10_62762_TIS_2025_367320 crossref_primary_10_1002_mp_15150 crossref_primary_10_1080_00207721_2023_2169059 crossref_primary_10_3390_s23125723 crossref_primary_10_3390_tomography9060169 crossref_primary_10_3390_su15075930 crossref_primary_10_32604_cmes_2024_055723 crossref_primary_10_1016_j_compbiomed_2024_108379 crossref_primary_10_3390_bioengineering11070662 crossref_primary_10_1007_s11831_024_10176_6 crossref_primary_10_1016_j_bspc_2023_105773 crossref_primary_10_3390_cancers13163944 crossref_primary_10_1016_j_media_2024_103198 crossref_primary_10_1088_1361_6560_ac5297 crossref_primary_10_1007_s40031_024_01176_y crossref_primary_10_1007_s13139_023_00802_9 crossref_primary_10_1016_j_eswa_2023_120655 crossref_primary_10_1007_s10916_024_02040_8 crossref_primary_10_1145_3605149 crossref_primary_10_1109_ACCESS_2021_3078295 crossref_primary_10_1016_j_cell_2024_03_035 crossref_primary_10_1142_S1793962324410083 crossref_primary_10_1016_j_jbi_2023_104357 crossref_primary_10_1016_j_jdent_2024_104862 crossref_primary_10_1145_3638044 crossref_primary_10_3389_fonc_2023_1105100 crossref_primary_10_1002_brb3_70427 crossref_primary_10_1097_MNM_0000000000001634 crossref_primary_10_1115_1_4066575 crossref_primary_10_1038_s41746_020_00376_2 crossref_primary_10_32604_cmc_2021_013966 crossref_primary_10_3788_LOP240499 crossref_primary_10_1016_j_compbiomed_2024_108709 crossref_primary_10_3390_app12136318 crossref_primary_10_3390_s22114226 crossref_primary_10_25699_SSSB_2023_51_5_005 crossref_primary_10_3389_fdmed_2024_1479380 crossref_primary_10_3390_s21134550 crossref_primary_10_1007_s11517_021_02383_1 crossref_primary_10_1007_s13735_021_00218_1 crossref_primary_10_3390_bioengineering11101034 crossref_primary_10_1016_j_ymeth_2021_05_007 crossref_primary_10_1016_j_ymeth_2021_05_005 crossref_primary_10_2147_JIR_S484485 crossref_primary_10_3233_WEB_220129 crossref_primary_10_1016_j_compmedimag_2023_102241 crossref_primary_10_1016_j_compbiomed_2024_108035 crossref_primary_10_1016_j_neuroimage_2023_119898 crossref_primary_10_3389_fonc_2022_895515 crossref_primary_10_3390_brainsci13040685 crossref_primary_10_1007_s10462_020_09924_4 crossref_primary_10_1177_2192568220961353 crossref_primary_10_1038_s42256_023_00633_5 crossref_primary_10_1109_JBHI_2022_3228603 crossref_primary_10_1007_s10489_022_03666_2 crossref_primary_10_1016_j_compmedimag_2021_102009 crossref_primary_10_1007_s11119_023_10096_8 crossref_primary_10_47164_ijngc_v13i3_711 crossref_primary_10_3389_fnins_2022_926486 crossref_primary_10_1016_j_imu_2024_101551 crossref_primary_10_3390_app12031246 crossref_primary_10_1016_j_apradiso_2024_111540 crossref_primary_10_1002_mp_16694 crossref_primary_10_1016_j_fmre_2021_06_013 crossref_primary_10_1016_j_compbiomed_2024_108168 crossref_primary_10_1016_j_ymeth_2021_02_013 crossref_primary_10_1007_s00521_021_06430_8 crossref_primary_10_1007_s12559_021_09946_2 crossref_primary_10_3389_fnagi_2024_1410844 crossref_primary_10_1007_s13198_024_02377_w crossref_primary_10_1016_j_eclinm_2023_102385 crossref_primary_10_3390_bioengineering11050485 crossref_primary_10_1053_j_sodo_2021_05_007 crossref_primary_10_1007_s10278_025_01402_z crossref_primary_10_1093_neuonc_noad202 crossref_primary_10_1109_ACCESS_2024_3388841 crossref_primary_10_3390_jpm12101739 crossref_primary_10_1146_annurev_anchem_091222_092734 crossref_primary_10_3390_sym14010007 crossref_primary_10_3390_cancers15051428 crossref_primary_10_3390_diagnostics13182987 crossref_primary_10_3390_biomimetics8070519 crossref_primary_10_1109_ACCESS_2023_3314380 crossref_primary_10_1186_s12938_023_01172_1 crossref_primary_10_32604_cmc_2023_035888 crossref_primary_10_3390_sym13112080 crossref_primary_10_3390_app14135898 crossref_primary_10_3390_s21237990 crossref_primary_10_1016_j_eswa_2022_119287 crossref_primary_10_1080_01431161_2022_2133579 crossref_primary_10_1186_s13640_022_00581_x crossref_primary_10_3390_s23177443 crossref_primary_10_54097_hset_v65i_11459 crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_1007_s11227_021_04046_2 crossref_primary_10_1002_jemt_24705 crossref_primary_10_1007_s12551_024_01231_4 crossref_primary_10_1016_j_neucom_2022_04_065 crossref_primary_10_3390_electronics10040431 crossref_primary_10_1016_j_ymeth_2022_03_009 crossref_primary_10_1111_1759_7714_15428 crossref_primary_10_1038_s41598_023_45269_y crossref_primary_10_3390_biomedicines9020159 crossref_primary_10_1186_s12903_023_03607_6 crossref_primary_10_3390_s22072547 crossref_primary_10_1007_s00246_024_03470_4 crossref_primary_10_3389_fnins_2021_630747 crossref_primary_10_1007_s11042_024_19541_w crossref_primary_10_1007_s00521_022_07885_z crossref_primary_10_1016_j_media_2023_102850 crossref_primary_10_3390_s22218366 crossref_primary_10_3389_fbinf_2024_1497539 crossref_primary_10_3390_app11041574 crossref_primary_10_1016_j_ajo_2024_04_030 crossref_primary_10_14245_ns_2347022_511 crossref_primary_10_3389_fnins_2024_1245791 crossref_primary_10_1016_j_ejrad_2021_110073 crossref_primary_10_1016_j_rineng_2024_103071 crossref_primary_10_1007_s00521_023_09301_6 crossref_primary_10_3389_fnagi_2022_1073909 crossref_primary_10_3389_frai_2022_884749 crossref_primary_10_3390_electronics12030554 crossref_primary_10_1016_j_compbiomed_2022_106422 crossref_primary_10_1007_s11831_023_09967_0 crossref_primary_10_1016_j_bspc_2023_104858 crossref_primary_10_1063_5_0180494 crossref_primary_10_1016_j_knosys_2025_113166 crossref_primary_10_1016_j_tafmec_2024_104759 crossref_primary_10_1016_j_imu_2021_100709 crossref_primary_10_1016_j_media_2021_102159 crossref_primary_10_1109_JSEN_2020_3045135 crossref_primary_10_14316_pmp_2024_35_4_106 crossref_primary_10_1371_journal_pone_0243253 crossref_primary_10_1371_journal_pone_0296985 crossref_primary_10_3390_electronics12071710 crossref_primary_10_1007_s11814_023_1452_9 crossref_primary_10_1016_j_optlastec_2023_109331 crossref_primary_10_1007_s13246_020_00957_1 crossref_primary_10_1016_j_compbiomed_2023_106615 crossref_primary_10_1016_j_hfc_2021_11_005 crossref_primary_10_1016_j_ejro_2024_100624 crossref_primary_10_3390_s20247121 crossref_primary_10_1093_dmfr_twaf006 crossref_primary_10_3390_make6010033 crossref_primary_10_1016_j_oooo_2024_07_010 crossref_primary_10_1007_s00256_024_04590_x crossref_primary_10_3390_cancers14051341 crossref_primary_10_1007_s11042_024_18622_0 crossref_primary_10_1016_j_jinf_2025_106455 crossref_primary_10_3390_cancers16213702 crossref_primary_10_1016_j_cmpb_2022_106861 crossref_primary_10_3390_jimaging10050100 crossref_primary_10_1109_JSEN_2024_3424556 crossref_primary_10_3390_math10234472 crossref_primary_10_1186_s40658_022_00522_7 crossref_primary_10_1016_j_ymeth_2021_07_004 crossref_primary_10_1117_1_JMI_11_1_014503 crossref_primary_10_1109_TBME_2021_3117407 crossref_primary_10_1007_s10462_021_10061_9 crossref_primary_10_1016_j_ymeth_2021_07_001 crossref_primary_10_1109_TPAMI_2023_3339130 crossref_primary_10_1016_j_ymeth_2021_07_006 crossref_primary_10_1080_03091902_2021_1905895 |
Cites_doi | 10.1109/TPAMI.2012.59 10.1016/j.media.2019.03.010 10.1016/S1361-8415(01)80026-8 10.1109/MSP.2010.936730 10.1016/j.imu.2018.12.001 10.3390/s19092167 10.3390/jimaging6070065 10.1002/ima.22368 10.1561/0600000035 10.1109/CVPR.2015.7298594 10.1006/nimg.2002.1148 10.1109/ACCESS.2019.2913847 10.1007/s11548-018-1888-2 10.1007/s10916-016-0454-0 10.1016/j.media.2016.10.004 10.1088/1361-6560/ab083a 10.1016/j.media.2018.11.009 10.1007/BF02457822 10.1117/12.2293719 10.1117/12.2293926 10.1117/12.2214876 10.1101/697003 10.3390/s19030732 10.1109/CVPR.2017.243 10.1109/TITB.2006.884364 10.1002/mp.13950 10.1109/TBME.2016.2613502 10.1093/jamia/ocy098 10.3389/fninf.2016.00024 10.2214/ajr.171.5.9798848 10.1016/j.media.2018.04.004 10.1109/42.563664 10.3389/fninf.2013.00045 10.1109/34.824822 10.2214/AJR.18.20094 10.1007/978-3-319-24553-9_72 10.1016/j.neuroimage.2019.03.041 10.1186/s40537-014-0007-7 10.1038/s41592-018-0235-4 10.1016/j.media.2017.05.001 10.1146/annurev-bioeng-071516-044442 10.1145/2733373.2807412 10.1016/j.media.2019.02.006 10.1117/12.2292276 10.1109/TMI.2017.2673121 10.1109/3DV.2018.00083 10.1109/ISBI.2017.7950542 10.1109/TMI.2016.2528129 10.1016/j.neuroimage.2017.04.039 10.1007/s10278-018-0114-7 10.1145/1143844.1143897 10.1145/3065386 10.1016/j.neuroimage.2012.01.083 10.1038/s41598-019-54548-6 10.1371/journal.pmed.1000097 10.1162/neco.2006.18.7.1527 10.1109/TMI.2018.2845918 10.1007/978-4-431-56469-0_19 10.1109/TMI.2009.2035616 10.1148/radiol.09090094 10.1016/j.ymeth.2016.08.014 10.1109/CVPR.2018.00964 10.1186/s12859-017-1702-0 10.1609/aaai.v31i1.11231 10.1109/ACCESS.2017.2788044 10.1016/j.compmedimag.2018.03.001 10.1118/1.2789499 10.7717/peerj.4750 10.1007/s10916-018-0932-7 10.1007/978-3-319-46723-8_68 10.1006/cviu.1999.0816 10.1109/TIP.2020.2973510 10.1007/s11548-019-01979-1 10.1109/TMI.2017.2702100 10.1007/978-3-319-55524-9_14 10.1109/JBHI.2019.2951024 10.1117/12.2294016 10.1016/j.media.2016.08.006 10.1016/j.media.2018.10.005 10.1109/TMI.2018.2866442 10.1056/NEJMhpr0808703 10.1148/radiol.11100978 10.1038/s41598-017-18171-7 10.1007/978-3-319-46723-8_25 10.1016/j.jaci.2018.02.025 10.1016/j.cmpb.2016.10.007 10.1016/j.cviu.2017.04.002 10.1109/JBHI.2018.2879449 10.1016/j.compmedimag.2007.02.002 10.1016/j.compbiomed.2018.10.011 10.1002/jmri.26721 10.1117/12.2293725 10.1109/42.730403 10.1109/42.996338 10.1016/j.media.2018.01.004 10.1109/ACCESS.2014.2325029 10.1007/s11633-017-1082-y 10.1016/j.media.2018.10.008 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s20185097 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals - NZ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_cda43cd20e9a41b0bc7cd31b7814abbd PMC7570704 32906819 10_3390_s20185097 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Lee Kong Chian School of Medicine and Data Science and AI Research (DSAIR) center of NTU grantid: ADH-11/2017-DSAIR |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c573t-ff2f8290b73870d72420767a6a839093c475f3154f10e28e4fb8d81a5218f09b3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:10:30 EDT 2025 Thu Aug 21 18:43:08 EDT 2025 Fri Jul 11 01:21:57 EDT 2025 Fri Jul 25 20:26:19 EDT 2025 Thu Apr 03 06:58:39 EDT 2025 Tue Jul 01 03:55:48 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | localization segmentation detection 3D convolutional neural networks classification 3D medical images |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-ff2f8290b73870d72420767a6a839093c475f3154f10e28e4fb8d81a5218f09b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9437-2654 0000-0003-4112-4600 0000-0003-3159-3622 0000-0002-4257-7639 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20185097 |
PMID | 32906819 |
PQID | 2441728600 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cda43cd20e9a41b0bc7cd31b7814abbd pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570704 proquest_miscellaneous_2441602959 proquest_journals_2441728600 pubmed_primary_32906819 crossref_primary_10_3390_s20185097 crossref_citationtrail_10_3390_s20185097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200907 |
PublicationDateYYYYMMDD | 2020-09-07 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200907 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wernick (ref_18) 2010; 27 ref_91 Ker (ref_35) 2018; 6 Dou (ref_86) 2016; 35 Sokooti (ref_103) 2017; Volume 10433 Milletari (ref_61) 2017; 164 Marin (ref_8) 2010; 254 Wolterink (ref_96) 2017; 36 ref_131 Shen (ref_11) 2017; 19 ref_95 Gong (ref_94) 2019; 14 ref_16 ref_15 Ambellan (ref_71) 2019; 52 Dolz (ref_62) 2018; 170 Oh (ref_84) 2019; 9 ref_126 Ji (ref_22) 2013; 35 Parker (ref_45) 2017; 35 ref_127 ref_129 ref_25 ref_23 ref_21 ref_124 ref_123 Feng (ref_76) 2019; 7 ref_29 ref_28 Kruthika (ref_75) 2019; 14 ref_26 Li (ref_101) 2018; 45 Kascenas (ref_99) 2019; Volume 11131 Zhou (ref_110) 2019; Volume 11764 ref_72 Wang (ref_120) 2016; 111 Singh (ref_20) 2016; 40 Li (ref_52) 2009; Volume 5636 Maes (ref_47) 1997; 16 ref_79 ref_77 Khan (ref_100) 2019; 38 Thibault (ref_7) 2007; 34 Penney (ref_50) 1998; 17 Srivastava (ref_27) 2014; 15 Ahmed (ref_51) 2002; 21 Hinton (ref_122) 2006; 18 Yang (ref_39) 2018; 2018 ref_89 Winkels (ref_93) 2019; 55 ref_87 Dou (ref_90) 2017; 64 Dubost (ref_42) 2019; 51 Ha (ref_81) 2019; 32 Isensee (ref_59) 2018; Volume 10670 Blendowski (ref_105) 2019; 14 Lowekamp (ref_106) 2013; 7 Chen (ref_74) 2020; 47 Criminisi (ref_19) 2012; 7 Dou (ref_64) 2017; 41 Duncan (ref_118) 2000; 22 Huo (ref_97) 2019; 194 Li (ref_70) 2018; 37 ref_58 ref_55 Chen (ref_82) 2019; 64 ref_53 Iglehart (ref_119) 2009; 360 Ronneberger (ref_33) 2015; Volume 9351 Gao (ref_78) 2017; 138 Yang (ref_67) 2018; Volume 10663 Najafabadi (ref_115) 2015; 2 Avants (ref_107) 2009; 2 Pluim (ref_49) 2000; 77 Huang (ref_128) 2017; 14 Krizhevsky (ref_14) 2017; 60 Heinrich (ref_73) 2019; 54 Zhou (ref_56) 2020; 29 Huang (ref_98) 2018; 47 Wang (ref_13) 2018; 42 Abdulkadir (ref_34) 2016; Volume 9901 Lyu (ref_125) 2017; 7 ref_66 Shapiro (ref_5) 1998; 171 Gruetzemacher (ref_12) 2018; 25 ref_63 Shaish (ref_83) 2019; 212 Zhao (ref_111) 2020; 24 Zeng (ref_65) 2017; Volume 10541 Mehta (ref_130) 2018; 141 Matsumoto (ref_6) 2011; 259 Yu (ref_69) 2017; Volume 10129 Gu (ref_92) 2018; 103 ref_117 Doi (ref_1) 2007; 31 ref_36 ref_32 Roth (ref_68) 2018; 66 ref_31 Kamnitsas (ref_54) 2017; 36 ref_30 Chen (ref_57) 2019; Volume 11384 ref_113 Maintz (ref_48) 1998; 2 Wolterink (ref_88) 2019; 51 Klein (ref_112) 2010; 29 ref_38 ref_37 Amidi (ref_85) 2018; 6 ref_104 Wang (ref_114) 2017; 36 Prasoon (ref_121) 2013; Volume 8150 Pezeshk (ref_24) 2019; 23 ref_108 Jones (ref_40) 2002; 17 ref_109 Peng (ref_60) 2019; 30 Chen (ref_116) 2014; 2 Gimi (ref_10) 2020; Volume 11317 Rahman (ref_17) 2007; 11 ref_44 ref_43 ref_41 ref_102 Goebel (ref_46) 2012; 62 Zhou (ref_80) 2019; 50 ref_3 Miller (ref_2) 1992; 30 ref_9 ref_4 |
References_xml | – volume: 35 start-page: 221 year: 2013 ident: ref_22 article-title: 3D Convolutional Neural Networks for Human Action Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.59 – volume: 55 start-page: 15 year: 2019 ident: ref_93 article-title: Pulmonary nodule detection in CT scans with equivariant CNNs publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.010 – volume: Volume 9901 start-page: 424 year: 2016 ident: ref_34 article-title: 3D U-net: Learning dense volumetric segmentation from sparse annotation publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 2 start-page: 1 year: 1998 ident: ref_48 article-title: A survey of medical image registration publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(01)80026-8 – volume: 27 start-page: 25 year: 2010 ident: ref_18 article-title: Machine Learning in Medical Imaging publication-title: IEEE Signal. Process. Mag. doi: 10.1109/MSP.2010.936730 – volume: 14 start-page: 59 year: 2019 ident: ref_75 article-title: CBIR system using Capsule Networks and 3D CNN for Alzheimer’s disease diagnosis publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2018.12.001 – ident: ref_9 doi: 10.3390/s19092167 – ident: ref_102 doi: 10.3390/jimaging6070065 – volume: 30 start-page: 5 year: 2019 ident: ref_60 article-title: Multi-Scale 3D U-Nets: An approach to automatic segmentation of brain tumor publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22368 – ident: ref_108 – volume: 7 start-page: 81 year: 2012 ident: ref_19 article-title: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning publication-title: Found. Trends® Comput. Graph. Vis. doi: 10.1561/0600000035 – ident: ref_15 doi: 10.1109/CVPR.2015.7298594 – volume: 17 start-page: 592 year: 2002 ident: ref_40 article-title: Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets publication-title: Neuroimage doi: 10.1006/nimg.2002.1148 – volume: 7 start-page: 63605 year: 2019 ident: ref_76 article-title: Deep Learning Framework for Alzheimer’s Disease Diagnosis via 3D-CNN and FSBi-LSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913847 – ident: ref_123 – volume: 14 start-page: 43 year: 2019 ident: ref_105 article-title: Combining MRF-based deformable registration and deep binary 3D-CNN descriptors for large lung motion estimation in COPD patients publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-018-1888-2 – volume: 40 start-page: 105 year: 2016 ident: ref_20 article-title: An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0454-0 – volume: 36 start-page: 61 year: 2017 ident: ref_54 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – volume: Volume 10129 start-page: 103 year: 2017 ident: ref_69 article-title: 3D FractalNet: Dense volumetric segmentation for cardiovascular MRI volumes publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 64 start-page: 075011 year: 2019 ident: ref_82 article-title: Combining many-objective radiomics and 3-dimensional convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab083a – volume: 52 start-page: 109 year: 2019 ident: ref_71 article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.11.009 – ident: ref_4 – volume: 30 start-page: 449 year: 1992 ident: ref_2 article-title: Review of neural network applications in medical imaging and signal processing publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02457822 – ident: ref_77 doi: 10.1117/12.2293719 – volume: Volume 8150 start-page: 246 year: 2013 ident: ref_121 article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – ident: ref_72 doi: 10.1117/12.2293926 – ident: ref_89 doi: 10.1117/12.2214876 – ident: ref_126 doi: 10.1101/697003 – ident: ref_124 doi: 10.3390/s19030732 – ident: ref_109 doi: 10.1109/CVPR.2017.243 – volume: 11 start-page: 58 year: 2007 ident: ref_17 article-title: A Framework for Medical Image Retrieval Using Machine Learning and Statistical Similarity Matching Techniques With Relevance Feedback publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.884364 – ident: ref_28 – volume: 47 start-page: 552 year: 2020 ident: ref_74 article-title: Automatic multi-organ segmentation in dual-energy CT (DECT) with dedicated 3D fully convolutional DECT networks publication-title: Med. Phys. doi: 10.1002/mp.13950 – volume: 64 start-page: 1558 year: 2017 ident: ref_90 article-title: Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2613502 – ident: ref_30 – volume: 25 start-page: 1301 year: 2018 ident: ref_12 article-title: 3D deep learning for detecting pulmonary nodules in CT scans publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy098 – ident: ref_44 doi: 10.3389/fninf.2016.00024 – volume: 171 start-page: 1203 year: 1998 ident: ref_5 article-title: Tissue harmonic imaging sonography: Evaluation of image quality compared with conventional sonography publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.171.5.9798848 – ident: ref_3 – volume: 47 start-page: 127 year: 2018 ident: ref_98 article-title: VP-Nets: Efficient automatic localization of key brain structures in 3D fetal neurosonography publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.04.004 – volume: 16 start-page: 187 year: 1997 ident: ref_47 article-title: Multimodality image registration by maximization of mutual information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.563664 – volume: 7 start-page: 45 year: 2013 ident: ref_106 article-title: The Design of SimpleITK publication-title: Front. Neuroinform. doi: 10.3389/fninf.2013.00045 – volume: 22 start-page: 85 year: 2000 ident: ref_118 article-title: Medical image analysis: Progress over two decades and the challenges ahead publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824822 – volume: 212 start-page: 238 year: 2019 ident: ref_83 article-title: Prediction of lymph node maximum standardized uptake value in patients with cancer using a 3D convolutional neural network: A proof-of-concept study publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.18.20094 – volume: Volume 10670 start-page: 287 year: 2018 ident: ref_59 article-title: Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: Volume 11764 start-page: 478 year: 2019 ident: ref_110 article-title: Fast and accurate electron microscopy image registration with 3D convolution publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – ident: ref_95 doi: 10.1007/978-3-319-24553-9_72 – volume: 194 start-page: 105 year: 2019 ident: ref_97 article-title: 3D whole brain segmentation using spatially localized atlas network tiles publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.03.041 – volume: 2 start-page: 1 year: 2015 ident: ref_115 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: Volume 10663 start-page: 215 year: 2018 ident: ref_67 article-title: Hybrid loss guided convolutional networks for whole heart parsing publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – ident: ref_37 doi: 10.1038/s41592-018-0235-4 – volume: 41 start-page: 40 year: 2017 ident: ref_64 article-title: 3D deeply supervised network for automated segmentation of volumetric medical images publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.05.001 – volume: Volume 11384 start-page: 358 year: 2019 ident: ref_57 article-title: S3D-UNET: Separable 3D U-Net for brain tumor segmentation publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 19 start-page: 221 year: 2017 ident: ref_11 article-title: Deep Learning in Medical Image Analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – ident: ref_25 – ident: ref_117 doi: 10.1145/2733373.2807412 – volume: 54 start-page: 1 year: 2019 ident: ref_73 article-title: OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.02.006 – volume: 15 start-page: 1929 year: 2014 ident: ref_27 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – ident: ref_63 doi: 10.1117/12.2292276 – volume: 36 start-page: 1470 year: 2017 ident: ref_96 article-title: ConvNet-Based Localization of Anatomical Structures in 3-D Medical Images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2673121 – ident: ref_66 doi: 10.1109/3DV.2018.00083 – ident: ref_91 doi: 10.1109/ISBI.2017.7950542 – volume: Volume 11317 start-page: 11 year: 2020 ident: ref_10 article-title: Deep learning of volumetric 3D CNN for fMRI in Alzheimer’s disease classification publication-title: Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, Houston, TX, USA, 2020 – volume: 35 start-page: 1182 year: 2016 ident: ref_86 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528129 – volume: 170 start-page: 456 year: 2018 ident: ref_62 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.039 – volume: 32 start-page: 141 year: 2019 ident: ref_81 article-title: Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement publication-title: J. Digit. Imaging doi: 10.1007/s10278-018-0114-7 – ident: ref_16 doi: 10.1145/1143844.1143897 – ident: ref_36 – volume: 60 start-page: 84 year: 2017 ident: ref_14 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 62 start-page: 748 year: 2012 ident: ref_46 article-title: Brain Voyager—Past, present, future publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.083 – volume: 9 start-page: 1 year: 2019 ident: ref_84 article-title: Classification and Visualization of Alzheimer’s Disease using Volumetric Convolutional Neural Network and Transfer Learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-54548-6 – ident: ref_23 doi: 10.1371/journal.pmed.1000097 – volume: 18 start-page: 1527 year: 2006 ident: ref_122 article-title: A Fast Learning Algorithm for Deep Belief Nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 37 start-page: 2663 year: 2018 ident: ref_70 article-title: H-DenseUNet: Hybrid Densely Connected UNet for Liver and Liver Tumor Segmentation from CT Volumes publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2845918 – ident: ref_32 – ident: ref_55 – ident: ref_129 doi: 10.1007/978-4-431-56469-0_19 – ident: ref_26 – volume: Volume 11131 start-page: 470 year: 2019 ident: ref_99 article-title: Attaining human-level performance with atlas location autocontext for anatomical landmark detection in 3D CT data publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 29 start-page: 196 year: 2010 ident: ref_112 article-title: Elastix: A toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035616 – volume: 254 start-page: 145 year: 2010 ident: ref_8 article-title: Low-Tube-Voltage, High-Tube-Current Multidetector Abdominal CT: Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm—Initial Clinical Experience publication-title: Radiology doi: 10.1148/radiol.09090094 – volume: Volume 10433 start-page: 232 year: 2017 ident: ref_103 article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 111 start-page: 21 year: 2016 ident: ref_120 article-title: Feature selection methods for big data bioinformatics: A survey from the search perspective publication-title: Methods doi: 10.1016/j.ymeth.2016.08.014 – ident: ref_113 doi: 10.1109/CVPR.2018.00964 – ident: ref_104 doi: 10.1186/s12859-017-1702-0 – ident: ref_127 – ident: ref_31 doi: 10.1609/aaai.v31i1.11231 – volume: 6 start-page: 9375 year: 2018 ident: ref_35 article-title: Deep Learning Applications in Medical Image Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2788044 – ident: ref_58 – volume: 66 start-page: 90 year: 2018 ident: ref_68 article-title: Computerized Medical Imaging and Graphics An application of cascaded 3D fully convolutional networks for medical image segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.03.001 – volume: 34 start-page: 4526 year: 2007 ident: ref_7 article-title: A three-dimensional statistical approach to improved image quality for multislice helical CT publication-title: Med. Phys. doi: 10.1118/1.2789499 – volume: 6 start-page: e4750 year: 2018 ident: ref_85 article-title: EnzyNet: Enzyme classification using 3D convolutional neural networks on spatial representation publication-title: PeerJ doi: 10.7717/peerj.4750 – volume: 42 start-page: 85 year: 2018 ident: ref_13 article-title: Classification of Alzheimer’s Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0932-7 – volume: 2 start-page: 1 year: 2009 ident: ref_107 article-title: Advanced Normalization Tools (ANTS) publication-title: Insight J. – ident: ref_38 doi: 10.1007/978-3-319-46723-8_68 – volume: 77 start-page: 211 year: 2000 ident: ref_49 article-title: Interpolation Artefacts in Mutual Information Based Image Registration publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1999.0816 – volume: 29 start-page: 4516 year: 2020 ident: ref_56 article-title: One-pass Multi-task Networks with Cross-task Guided Attention for Brain Tumor Segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2973510 – volume: 14 start-page: 1969 year: 2019 ident: ref_94 article-title: Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-019-01979-1 – volume: 36 start-page: 1939 year: 2017 ident: ref_114 article-title: Dynamic 2-D/3-D rigid registration framework using point-to-plane correspondence model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2702100 – ident: ref_53 doi: 10.1007/978-3-319-55524-9_14 – volume: 24 start-page: 1394 year: 2020 ident: ref_111 article-title: Unsupervised 3D End-to-End Medical Image Registration with Volume Tweening Network publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2019.2951024 – ident: ref_87 doi: 10.1117/12.2294016 – volume: 35 start-page: 434 year: 2017 ident: ref_45 article-title: Optimal slice timing correction and its interaction with fMRI parameters and artifacts publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.006 – volume: 51 start-page: 46 year: 2019 ident: ref_88 article-title: Coronary Artery Centerline Extraction in Cardiac CT Angiography publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.10.005 – volume: 38 start-page: 470 year: 2019 ident: ref_100 article-title: Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2866442 – volume: 360 start-page: 1030 year: 2009 ident: ref_119 article-title: Health Insurers and Medical-Imaging Policy—A Work in Progress publication-title: N. Engl. J. Med. doi: 10.1056/NEJMhpr0808703 – ident: ref_131 – volume: 259 start-page: 257 year: 2011 ident: ref_6 article-title: Virtual Monochromatic Spectral Imaging with Fast Kilovoltage Switching: Improved Image Quality as Compared with That Obtained with Conventional 120-kVp CT publication-title: Radiology doi: 10.1148/radiol.11100978 – volume: 7 start-page: 17865 year: 2017 ident: ref_125 article-title: Deep-learning-based ghost imaging publication-title: Sci. Rep. doi: 10.1038/s41598-017-18171-7 – ident: ref_79 doi: 10.1007/978-3-319-46723-8_25 – volume: 141 start-page: 2019 year: 2018 ident: ref_130 article-title: Machine Learning, Natural Language Programming, and Electronic Health Records: The next step in the Artificial Intelligence Journey? publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2018.02.025 – volume: 138 start-page: 49 year: 2017 ident: ref_78 article-title: Classification of CT brain images based on deep learning networks publication-title: Omput. Methods Prog. Biomed. Elsevier doi: 10.1016/j.cmpb.2016.10.007 – volume: 164 start-page: 92 year: 2017 ident: ref_61 article-title: Hough-CNN: Deep Learning for Segmentation of Deep Brain Regions in MRI and Ultrasound publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2017.04.002 – volume: 23 start-page: 2080 year: 2019 ident: ref_24 article-title: 3-D Convolutional Neural Networks for Automatic Detection of Pulmonary Nodules in Chest CT publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2018.2879449 – volume: 31 start-page: 198 year: 2007 ident: ref_1 article-title: Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.02.002 – ident: ref_21 – volume: 103 start-page: 220 year: 2018 ident: ref_92 article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.10.011 – volume: 50 start-page: 1144 year: 2019 ident: ref_80 article-title: Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26721 – ident: ref_41 doi: 10.1117/12.2293725 – ident: ref_29 – volume: 17 start-page: 586 year: 1998 ident: ref_50 article-title: A comparison of similarity measures for use in 2-D-3-D medical image registration publication-title: Med. Imaging IEEE Trans. doi: 10.1109/42.730403 – volume: 21 start-page: 193 year: 2002 ident: ref_51 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 45 start-page: 41 year: 2018 ident: ref_101 article-title: 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.01.004 – volume: 2 start-page: 514 year: 2014 ident: ref_116 article-title: Big data deep learning: Challenges and perspectives publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2325029 – volume: Volume 9351 start-page: 234 year: 2015 ident: ref_33 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: Volume 10541 start-page: 274 year: 2017 ident: ref_65 article-title: 3D U-net with multi-level deep supervision: Fully automatic segmentation of proximal femur in 3D MR images publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: Volume 5636 start-page: 288 year: 2009 ident: ref_52 article-title: MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 14 start-page: 520 year: 2017 ident: ref_128 article-title: Imitating the brain with neurocomputer a “new” way towards artificial general intelligence publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-017-1082-y – volume: 51 start-page: 89 year: 2019 ident: ref_42 article-title: 3D Regression Neural Network for the Quantification of Enlarged Perivascular Spaces in Brain MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.10.008 – ident: ref_43 – volume: 2018 start-page: 1571 year: 2018 ident: ref_39 article-title: Visual Explanations from Deep 3D Convolutional Neural Networks for Alzheimer’s Disease Classification publication-title: AMIA Annu. Symp. Proc. AMIA Symp. |
SSID | ssj0023338 |
Score | 2.687684 |
SecondaryResourceType | review_article |
Snippet | The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5097 |
SubjectTerms | 3D convolutional neural networks 3D medical images Algorithms Automation Classification Deep Learning detection Humans Imaging, Three-Dimensional localization Machine Learning Magnetic resonance imaging Medical imaging Neural networks Neural Networks, Computer Review segmentation Systematic review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals - NZ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDLYQEwyIN-WlgBgYqGibtEnYeAqQYAKJrUrSBJCgh7jj_2O3veoOIbGwNh5Su8nnr04-AxwUijttTRqneSVjUeki1oh0sRSIzcYHyT1dTr67L64fxe1T_jTR6ovOhLXywK3jjl1lBHdVlnhtRGoT66SreGpJqslYW9Hui5g3JlMd1eLIvFodIY6k_niIMKfyRtlpAn0akf7fMsufByQnEOdqERa6VJGdtlNcghlfL8P8hIDgChzxC3bh_QfrZFKf2aBmXe2F3bzjXjE8YaesLQCswuPV5cP5ddz1P4hdLvkoDiELVOe0kuOqqiSiaSILaQqDWU2iuRMyDxxzoJAmPlNeBKsqlRpEZBUSbfkazNaD2m8AU_SDJ3AieAhbidNKGG2InXKdWxciOBz7pXSdODj1qHgrkSSQC8vehRHs96YfrSLGb0Zn5NzegESsmwcY2rILbflXaCPYHoem7FbWsMyoZ1qmME-LYK8fxjVBhQ5T-8FXa1Mkmc51BOttJPuZcNK3xzQoAjkV46mpTo_Ury-N7rbMJW6QYvM_3m0L5jJi7lSaktswO_r88juY3ozsbvMlfwNcnPY_ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9UwDLZgXOCAGANW2FCYOHCgWtukTbLLNBjTQIITk96tys8NibWPvbf_H7vN695DE9fGh8iO_dlx-hngfaO409aUeVl7mQuvm1wj0uVSIDabECUP9HPy9x_N-YX4Nqtn6cJtkZ5VrmLiEKh97-iO_LCiWVmVQnw-nv_JaWoUdVfTCI2H8Iioy-hJl5zdFVwc66-RTYhjaX-4QLBT9cDvtIZBA1X_ffnlv88k13Dn7Bk8TQkjOxktvA0PQvccnqzRCO7AR37KTkOYs0SWesn6jqUODPt6jRFjccRO2NgGeAEXZ19-fj7P0xSE3NWSL_MYq0jdTis5-paXiKmFbKRpDOY2heZOyDpyzIRiWYRKBRGt8qo0iMsqFtryl7DV9V3YBabomidyKvMQvAqnlTDaUI3KdW1dzODDSi-tSxThNKnid4ulAqmwnVSYwcEkOh95Me4T-kTKnQSIynr40N9ctskzWueN4M5XRdBGlLawTjrPS0tcXMZan8HeyjRt8q9Fe3caMng3LaNnULvDdKG_HWWaotK1zuDVaMlpJ5xY7jEZykBu2Hhjq5sr3a-rgX1b1hLDpHj9_229gccVVebUepJ7sLW8uQ37mL4s7dvhjP4Flxjr9g priority: 102 providerName: ProQuest |
Title | 3D Deep Learning on Medical Images: A Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32906819 https://www.proquest.com/docview/2441728600 https://www.proquest.com/docview/2441602959 https://pubmed.ncbi.nlm.nih.gov/PMC7570704 https://doaj.org/article/cda43cd20e9a41b0bc7cd31b7814abbd |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaH2gHgTKCuDOHAgkMRObCMh1NIuBakVQqy0t8h27FKpZMvuVoJ_z0xe2kV74pJDMpGsscfffJ7kG4CXheJOW5PGaV7JWFS6iDUiXSwFYrPxQXJPPyefnRenE_Flmk-3oO-x2TlwsZHaUT-pyfzqze9ffz5gwL8nxomU_e0CQUwh8Mlt2EVAkhSfZ2IoJmQcaVgrKrRuvge3OKmdK5LZWUGlRrx_U8b574eTK0g0vgO3uxSSHbZzfhe2fH0P9leEBe_Da37Mjr2_Zp186gWb1ayrybDPP3EPWbxjh6wtDDyAyfjk-8fTuOuLELtc8mUcQhao_mklx2irJKJsIgtpCoPZTqK5EzIPHHOjkCY-U14EqyqVGkRqFRJt-UPYqWe1fwxM0cFP4ET8EM4Sp5Uw2hBr5Tq3LkTwqvdL6TrRcOpdcVUieSBvloM3I3gxmF63ShmbjI7IuYMBiVs3N2bzi7KLldJVRnBXZYnXRqQ2sU66iqeW1LmMtVUEB_3UlP2CKTPqpZYpzN8ieD48xlihAoip_eymtSmSTOc6gkftTA4j6VdCBHJtjteGuv6kvvzR6HHLXOLGKZ7895tPYS8jGk91KnkAO8v5jX-Guc7SjmBbTiVe1fjTCHaPTs6_fhs15wajZo3_BZQJ_yE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8GChgEEgeiJnYSx0gIFZZqlz5OrbS3YDt2QYJk6W5V9U_xG5nJq7uo4tZrYlnWeGa-GY_9DcDrLBdWGR2HcVrKMClVFipEulAmiM3aeSkcPU4-OMzGx8nXaTpdgz_9Wxi6Vtn7xMZRl7WlM_JtTr2yeI74_HH2O6SuUVRd7VtotGqx5y7OMWWbf5iMcH_fcL775ejzOOy6CoQ2lWIRes89VQ-NFKirpUSMwlxe6kxjrID5vU1k6gVGFj6OHM9d4k1e5rFGnMt9pIzAeW_ATQTeiCxKTi8TPIH5XsteJHCq7TmCa542fFJLmNe0Brgqnv33WuYSzu3ehTtdgMp2Wo26B2uuug8bS7SFD-CdGLGRczPWkbOesLpiXcWHTX6hh5q_ZzusLTs8hONrkc8jWK_qym0Cy-lYyQtKKxEsI6vyRCtNObFQqbE-gLe9XArbUZJTZ4yfBaYmJMJiEGEAr4ahs5aH46pBn0i4wwCizm4-1KcnRWeJhS11ImzJI6d0EpvIWGlLERvi_tLGlAFs9VtTdPY8Ly61L4CXw2-0RCqv6MrVZ-2YLOIqVQE8bndyWIkgVn0MvgKQK3u8stTVP9WP7w3bt0wluuXkyf-X9QJujY8O9ov9yeHeU7jN6VSAyl5yC9YXp2fuGYZOC_O80VcG367bQP4CD9Umig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLwbWsAgkDgQbWIncYyEUGFZdSlUHKi0t2A7dkGCZNvdCvHX-HXM5NVdVHHrNbEsazwz34zH_gbgWZYLq4yOwzgtZZiUKgsVIl0oE8Rm7bwUjh4nfzrM9o-SD7N0tgF_-rcwdK2y94mNoy5rS2fkI069sniO-Dzy3bWIz-PJm_lJSB2kqNLat9NoVeTA_f6F6dvi9XSMe_2c88n7L-_2w67DQGhTKZah99xTJdFIgXpbSsQrzOulzjTGDZjr20SmXmCU4ePI8dwl3uRlHmvEvNxHygic9wpclSKNycbk7DzZE5j7tUxGAqcaLRBo87ThllrBv6ZNwEWx7b9XNFcwb3ITbnTBKttrtesWbLjqNmytUBjegZdizMbOzVlH1HrM6op11R82_YneavGK7bG2BHEXji5FPvdgs6ortw0spyMmLyjFROCMrMoTrTTlx0KlxvoAXvRyKWxHT05dMn4UmKaQCItBhAE8HYbOW06Oiwa9JeEOA4hGu_lQnx4XnVUWttSJsCWPnNJJbCJjpS1FbIgHTBtTBrDbb03R2faiONfEAJ4Mv9EqqdSiK1eftWOyiKtUBXC_3clhJYIY9jEQC0Cu7fHaUtf_VN-_NczfMpXoopMH_1_WY7iGplF8nB4e7MB1TgcEVAGTu7C5PD1zDzGKWppHjboy-HrZ9vEX4DAqwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Deep+Learning+on+Medical+Images%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Singh%2C+Satya+P.&rft.au=Wang%2C+Lipo&rft.au=Gupta%2C+Sukrit&rft.au=Goli%2C+Haveesh&rft.date=2020-09-07&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185097&rft_id=info%3Apmid%2F32906819&rft.externalDocID=PMC7570704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |