3D Deep Learning on Medical Images: A Review

The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 18; p. 5097
Main Authors Singh, Satya P., Wang, Lipo, Gupta, Sukrit, Goli, Haveesh, Padmanabhan, Parasuraman, Gulyás, Balázs
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.09.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.
AbstractList The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.
The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.
Author Singh, Satya P.
Wang, Lipo
Gulyás, Balázs
Gupta, Sukrit
Padmanabhan, Parasuraman
Goli, Haveesh
AuthorAffiliation 1 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore; satya@ntu.edu.sg (S.P.S.); balazs.gulyas@ntu.edu.sg (B.G.)
5 Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
2 Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore
3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; elpwang@ntu.edu.sg
4 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; SUKRIT001@e.ntu.edu.sg (S.G.); HAVEESH001@e.ntu.edu.sg (H.G.)
AuthorAffiliation_xml – name: 5 Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
– name: 3 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; elpwang@ntu.edu.sg
– name: 2 Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore
– name: 4 School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; SUKRIT001@e.ntu.edu.sg (S.G.); HAVEESH001@e.ntu.edu.sg (H.G.)
– name: 1 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore; satya@ntu.edu.sg (S.P.S.); balazs.gulyas@ntu.edu.sg (B.G.)
Author_xml – sequence: 1
  givenname: Satya P.
  orcidid: 0000-0003-3159-3622
  surname: Singh
  fullname: Singh, Satya P.
– sequence: 2
  givenname: Lipo
  orcidid: 0000-0002-4257-7639
  surname: Wang
  fullname: Wang, Lipo
– sequence: 3
  givenname: Sukrit
  surname: Gupta
  fullname: Gupta, Sukrit
– sequence: 4
  givenname: Haveesh
  orcidid: 0000-0001-9437-2654
  surname: Goli
  fullname: Goli, Haveesh
– sequence: 5
  givenname: Parasuraman
  orcidid: 0000-0003-4112-4600
  surname: Padmanabhan
  fullname: Padmanabhan, Parasuraman
– sequence: 6
  givenname: Balázs
  surname: Gulyás
  fullname: Gulyás, Balázs
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32906819$$D View this record in MEDLINE/PubMed
BookMark eNptkVtrFDEYhoNU7EEv_AMy4I0F1345zCTxQiith4UVQfQ65PDNmmU2WZPZiv--025d2uJVQvLkyZu8x-Qg5YSEvKTwjnMNZ5UBVS1o-YQcUcHETDEGB_fmh-S41hUA45yrZ-SQMw2dovqIvOWXzSXiplmgLSmmZZNT8xVD9HZo5mu7xPq-OW--41XEP8_J094OFV_cjSfk56ePPy6-zBbfPs8vzhcz30o-zvqe9Wq6wUmuJATJBAPZSdtZNaXV3AvZ9py2oqeATKHonQqK2pZR1YN2_ITMd96Q7cpsSlzb8tdkG83tQi5LY8sY_YDGByu4DwxQW0EdOC994NRJRYV1LkyuDzvXZuvWGDymsdjhgfThToq_zDJfGdlKkCAmwZs7Qcm_t1hHs47V4zDYhHlbDROCdsB0qyf09SN0lbclTV91S0mmOoCJenU_0T7Kv1Im4HQH-JJrLdjvEQrmpnCzL3xizx6xPo52jPnmMXH4z4lroRmoHA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3454374
crossref_primary_10_1155_2022_6347307
crossref_primary_10_1109_JIOT_2023_3306435
crossref_primary_10_3390_app132413267
crossref_primary_10_1038_s41598_023_49514_2
crossref_primary_10_26599_BDMA_2024_9020090
crossref_primary_10_1007_s13755_024_00322_6
crossref_primary_10_1186_s12943_025_02240_x
crossref_primary_10_3390_s21113691
crossref_primary_10_1148_radiol_222217
crossref_primary_10_32604_cmes_2022_021225
crossref_primary_10_1038_s41524_023_01134_0
crossref_primary_10_5090_jcs_22_083
crossref_primary_10_1109_ACCESS_2023_3336590
crossref_primary_10_1186_s12859_022_04872_y
crossref_primary_10_1002_btm2_10641
crossref_primary_10_1109_ACCESS_2023_3257345
crossref_primary_10_3390_a16110521
crossref_primary_10_1016_j_mtcomm_2024_109717
crossref_primary_10_1038_s41598_025_92954_1
crossref_primary_10_1080_21681163_2023_2258998
crossref_primary_10_1142_S1469026824420045
crossref_primary_10_3390_jcm12227082
crossref_primary_10_3390_s23031694
crossref_primary_10_3390_su13169470
crossref_primary_10_2147_JHC_S493478
crossref_primary_10_1063_5_0082741
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_1137_23M1562202
crossref_primary_10_1016_j_ymeth_2021_04_022
crossref_primary_10_3390_electronics12030604
crossref_primary_10_1080_00032719_2024_2417349
crossref_primary_10_1155_2022_4093658
crossref_primary_10_1038_s41598_023_45314_w
crossref_primary_10_1007_s11547_024_01791_1
crossref_primary_10_32604_cmc_2024_047754
crossref_primary_10_2196_60616
crossref_primary_10_7717_peerj_cs_806
crossref_primary_10_34133_2021_8786793
crossref_primary_10_1109_JSEN_2020_3023471
crossref_primary_10_1016_j_vrih_2024_04_001
crossref_primary_10_1109_ACCESS_2020_3032612
crossref_primary_10_3390_s23146580
crossref_primary_10_1016_j_media_2022_102429
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_3390_diagnostics12123197
crossref_primary_10_1016_j_wneu_2022_07_041
crossref_primary_10_3390_s22093272
crossref_primary_10_1016_j_neucom_2022_01_044
crossref_primary_10_3748_wjg_v27_i35_5978
crossref_primary_10_1038_s41598_022_05990_6
crossref_primary_10_1016_j_imavis_2024_104991
crossref_primary_10_3934_mbe_2022366
crossref_primary_10_1016_j_compbiomed_2022_106366
crossref_primary_10_3390_bioengineering12010081
crossref_primary_10_1016_j_clinimag_2024_110254
crossref_primary_10_1038_s41524_022_00725_7
crossref_primary_10_1109_JBHI_2021_3097735
crossref_primary_10_1016_j_ajodo_2024_09_009
crossref_primary_10_1016_j_ymeth_2021_04_005
crossref_primary_10_3389_fonc_2022_844197
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125149
crossref_primary_10_1109_ACCESS_2022_3194529
crossref_primary_10_34088_kojose_1081402
crossref_primary_10_1007_s00238_023_02152_3
crossref_primary_10_3390_bioengineering11121191
crossref_primary_10_5194_se_13_1475_2022
crossref_primary_10_1007_s11696_023_03137_z
crossref_primary_10_3788_IRLA20240204
crossref_primary_10_1007_s11042_022_11925_0
crossref_primary_10_1364_OE_507476
crossref_primary_10_1002_jbio_202100142
crossref_primary_10_1016_j_jhepr_2024_101219
crossref_primary_10_7717_peerj_cs_1994
crossref_primary_10_3390_healthcare9111545
crossref_primary_10_1038_s41598_024_55092_8
crossref_primary_10_1515_revneuro_2022_0122
crossref_primary_10_1007_s00256_021_03773_0
crossref_primary_10_1016_j_ymssp_2024_111173
crossref_primary_10_1016_j_ejmp_2024_104504
crossref_primary_10_1109_JBHI_2024_3407116
crossref_primary_10_1051_matecconf_202134205003
crossref_primary_10_1016_j_acra_2024_12_011
crossref_primary_10_1002_acm2_14559
crossref_primary_10_1016_j_neucom_2025_129816
crossref_primary_10_1002_mp_15804
crossref_primary_10_1007_s00521_024_09859_9
crossref_primary_10_1117_1_JMI_11_4_045501
crossref_primary_10_1371_journal_pcbi_1011815
crossref_primary_10_3389_frai_2023_1232640
crossref_primary_10_1007_s11042_024_19579_w
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1016_j_patrec_2025_01_002
crossref_primary_10_3390_info14060301
crossref_primary_10_1016_j_compmedimag_2024_102452
crossref_primary_10_1016_j_media_2023_102919
crossref_primary_10_1002_jbio_202300209
crossref_primary_10_1038_s41598_022_06076_z
crossref_primary_10_1111_coin_70000
crossref_primary_10_1016_j_compbiomed_2023_107302
crossref_primary_10_3390_biomedicines12112561
crossref_primary_10_1038_s41598_022_07186_4
crossref_primary_10_1109_TMM_2023_3304896
crossref_primary_10_1016_j_neucom_2024_127672
crossref_primary_10_1016_j_neuroimage_2024_120646
crossref_primary_10_3390_s22166129
crossref_primary_10_1002_mds_28775
crossref_primary_10_62762_TIS_2025_367320
crossref_primary_10_1002_mp_15150
crossref_primary_10_1080_00207721_2023_2169059
crossref_primary_10_3390_s23125723
crossref_primary_10_3390_tomography9060169
crossref_primary_10_3390_su15075930
crossref_primary_10_32604_cmes_2024_055723
crossref_primary_10_1016_j_compbiomed_2024_108379
crossref_primary_10_3390_bioengineering11070662
crossref_primary_10_1007_s11831_024_10176_6
crossref_primary_10_1016_j_bspc_2023_105773
crossref_primary_10_3390_cancers13163944
crossref_primary_10_1016_j_media_2024_103198
crossref_primary_10_1088_1361_6560_ac5297
crossref_primary_10_1007_s40031_024_01176_y
crossref_primary_10_1007_s13139_023_00802_9
crossref_primary_10_1016_j_eswa_2023_120655
crossref_primary_10_1007_s10916_024_02040_8
crossref_primary_10_1145_3605149
crossref_primary_10_1109_ACCESS_2021_3078295
crossref_primary_10_1016_j_cell_2024_03_035
crossref_primary_10_1142_S1793962324410083
crossref_primary_10_1016_j_jbi_2023_104357
crossref_primary_10_1016_j_jdent_2024_104862
crossref_primary_10_1145_3638044
crossref_primary_10_3389_fonc_2023_1105100
crossref_primary_10_1002_brb3_70427
crossref_primary_10_1097_MNM_0000000000001634
crossref_primary_10_1115_1_4066575
crossref_primary_10_1038_s41746_020_00376_2
crossref_primary_10_32604_cmc_2021_013966
crossref_primary_10_3788_LOP240499
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_3390_app12136318
crossref_primary_10_3390_s22114226
crossref_primary_10_25699_SSSB_2023_51_5_005
crossref_primary_10_3389_fdmed_2024_1479380
crossref_primary_10_3390_s21134550
crossref_primary_10_1007_s11517_021_02383_1
crossref_primary_10_1007_s13735_021_00218_1
crossref_primary_10_3390_bioengineering11101034
crossref_primary_10_1016_j_ymeth_2021_05_007
crossref_primary_10_1016_j_ymeth_2021_05_005
crossref_primary_10_2147_JIR_S484485
crossref_primary_10_3233_WEB_220129
crossref_primary_10_1016_j_compmedimag_2023_102241
crossref_primary_10_1016_j_compbiomed_2024_108035
crossref_primary_10_1016_j_neuroimage_2023_119898
crossref_primary_10_3389_fonc_2022_895515
crossref_primary_10_3390_brainsci13040685
crossref_primary_10_1007_s10462_020_09924_4
crossref_primary_10_1177_2192568220961353
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1109_JBHI_2022_3228603
crossref_primary_10_1007_s10489_022_03666_2
crossref_primary_10_1016_j_compmedimag_2021_102009
crossref_primary_10_1007_s11119_023_10096_8
crossref_primary_10_47164_ijngc_v13i3_711
crossref_primary_10_3389_fnins_2022_926486
crossref_primary_10_1016_j_imu_2024_101551
crossref_primary_10_3390_app12031246
crossref_primary_10_1016_j_apradiso_2024_111540
crossref_primary_10_1002_mp_16694
crossref_primary_10_1016_j_fmre_2021_06_013
crossref_primary_10_1016_j_compbiomed_2024_108168
crossref_primary_10_1016_j_ymeth_2021_02_013
crossref_primary_10_1007_s00521_021_06430_8
crossref_primary_10_1007_s12559_021_09946_2
crossref_primary_10_3389_fnagi_2024_1410844
crossref_primary_10_1007_s13198_024_02377_w
crossref_primary_10_1016_j_eclinm_2023_102385
crossref_primary_10_3390_bioengineering11050485
crossref_primary_10_1053_j_sodo_2021_05_007
crossref_primary_10_1007_s10278_025_01402_z
crossref_primary_10_1093_neuonc_noad202
crossref_primary_10_1109_ACCESS_2024_3388841
crossref_primary_10_3390_jpm12101739
crossref_primary_10_1146_annurev_anchem_091222_092734
crossref_primary_10_3390_sym14010007
crossref_primary_10_3390_cancers15051428
crossref_primary_10_3390_diagnostics13182987
crossref_primary_10_3390_biomimetics8070519
crossref_primary_10_1109_ACCESS_2023_3314380
crossref_primary_10_1186_s12938_023_01172_1
crossref_primary_10_32604_cmc_2023_035888
crossref_primary_10_3390_sym13112080
crossref_primary_10_3390_app14135898
crossref_primary_10_3390_s21237990
crossref_primary_10_1016_j_eswa_2022_119287
crossref_primary_10_1080_01431161_2022_2133579
crossref_primary_10_1186_s13640_022_00581_x
crossref_primary_10_3390_s23177443
crossref_primary_10_54097_hset_v65i_11459
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_1007_s11227_021_04046_2
crossref_primary_10_1002_jemt_24705
crossref_primary_10_1007_s12551_024_01231_4
crossref_primary_10_1016_j_neucom_2022_04_065
crossref_primary_10_3390_electronics10040431
crossref_primary_10_1016_j_ymeth_2022_03_009
crossref_primary_10_1111_1759_7714_15428
crossref_primary_10_1038_s41598_023_45269_y
crossref_primary_10_3390_biomedicines9020159
crossref_primary_10_1186_s12903_023_03607_6
crossref_primary_10_3390_s22072547
crossref_primary_10_1007_s00246_024_03470_4
crossref_primary_10_3389_fnins_2021_630747
crossref_primary_10_1007_s11042_024_19541_w
crossref_primary_10_1007_s00521_022_07885_z
crossref_primary_10_1016_j_media_2023_102850
crossref_primary_10_3390_s22218366
crossref_primary_10_3389_fbinf_2024_1497539
crossref_primary_10_3390_app11041574
crossref_primary_10_1016_j_ajo_2024_04_030
crossref_primary_10_14245_ns_2347022_511
crossref_primary_10_3389_fnins_2024_1245791
crossref_primary_10_1016_j_ejrad_2021_110073
crossref_primary_10_1016_j_rineng_2024_103071
crossref_primary_10_1007_s00521_023_09301_6
crossref_primary_10_3389_fnagi_2022_1073909
crossref_primary_10_3389_frai_2022_884749
crossref_primary_10_3390_electronics12030554
crossref_primary_10_1016_j_compbiomed_2022_106422
crossref_primary_10_1007_s11831_023_09967_0
crossref_primary_10_1016_j_bspc_2023_104858
crossref_primary_10_1063_5_0180494
crossref_primary_10_1016_j_knosys_2025_113166
crossref_primary_10_1016_j_tafmec_2024_104759
crossref_primary_10_1016_j_imu_2021_100709
crossref_primary_10_1016_j_media_2021_102159
crossref_primary_10_1109_JSEN_2020_3045135
crossref_primary_10_14316_pmp_2024_35_4_106
crossref_primary_10_1371_journal_pone_0243253
crossref_primary_10_1371_journal_pone_0296985
crossref_primary_10_3390_electronics12071710
crossref_primary_10_1007_s11814_023_1452_9
crossref_primary_10_1016_j_optlastec_2023_109331
crossref_primary_10_1007_s13246_020_00957_1
crossref_primary_10_1016_j_compbiomed_2023_106615
crossref_primary_10_1016_j_hfc_2021_11_005
crossref_primary_10_1016_j_ejro_2024_100624
crossref_primary_10_3390_s20247121
crossref_primary_10_1093_dmfr_twaf006
crossref_primary_10_3390_make6010033
crossref_primary_10_1016_j_oooo_2024_07_010
crossref_primary_10_1007_s00256_024_04590_x
crossref_primary_10_3390_cancers14051341
crossref_primary_10_1007_s11042_024_18622_0
crossref_primary_10_1016_j_jinf_2025_106455
crossref_primary_10_3390_cancers16213702
crossref_primary_10_1016_j_cmpb_2022_106861
crossref_primary_10_3390_jimaging10050100
crossref_primary_10_1109_JSEN_2024_3424556
crossref_primary_10_3390_math10234472
crossref_primary_10_1186_s40658_022_00522_7
crossref_primary_10_1016_j_ymeth_2021_07_004
crossref_primary_10_1117_1_JMI_11_1_014503
crossref_primary_10_1109_TBME_2021_3117407
crossref_primary_10_1007_s10462_021_10061_9
crossref_primary_10_1016_j_ymeth_2021_07_001
crossref_primary_10_1109_TPAMI_2023_3339130
crossref_primary_10_1016_j_ymeth_2021_07_006
crossref_primary_10_1080_03091902_2021_1905895
Cites_doi 10.1109/TPAMI.2012.59
10.1016/j.media.2019.03.010
10.1016/S1361-8415(01)80026-8
10.1109/MSP.2010.936730
10.1016/j.imu.2018.12.001
10.3390/s19092167
10.3390/jimaging6070065
10.1002/ima.22368
10.1561/0600000035
10.1109/CVPR.2015.7298594
10.1006/nimg.2002.1148
10.1109/ACCESS.2019.2913847
10.1007/s11548-018-1888-2
10.1007/s10916-016-0454-0
10.1016/j.media.2016.10.004
10.1088/1361-6560/ab083a
10.1016/j.media.2018.11.009
10.1007/BF02457822
10.1117/12.2293719
10.1117/12.2293926
10.1117/12.2214876
10.1101/697003
10.3390/s19030732
10.1109/CVPR.2017.243
10.1109/TITB.2006.884364
10.1002/mp.13950
10.1109/TBME.2016.2613502
10.1093/jamia/ocy098
10.3389/fninf.2016.00024
10.2214/ajr.171.5.9798848
10.1016/j.media.2018.04.004
10.1109/42.563664
10.3389/fninf.2013.00045
10.1109/34.824822
10.2214/AJR.18.20094
10.1007/978-3-319-24553-9_72
10.1016/j.neuroimage.2019.03.041
10.1186/s40537-014-0007-7
10.1038/s41592-018-0235-4
10.1016/j.media.2017.05.001
10.1146/annurev-bioeng-071516-044442
10.1145/2733373.2807412
10.1016/j.media.2019.02.006
10.1117/12.2292276
10.1109/TMI.2017.2673121
10.1109/3DV.2018.00083
10.1109/ISBI.2017.7950542
10.1109/TMI.2016.2528129
10.1016/j.neuroimage.2017.04.039
10.1007/s10278-018-0114-7
10.1145/1143844.1143897
10.1145/3065386
10.1016/j.neuroimage.2012.01.083
10.1038/s41598-019-54548-6
10.1371/journal.pmed.1000097
10.1162/neco.2006.18.7.1527
10.1109/TMI.2018.2845918
10.1007/978-4-431-56469-0_19
10.1109/TMI.2009.2035616
10.1148/radiol.09090094
10.1016/j.ymeth.2016.08.014
10.1109/CVPR.2018.00964
10.1186/s12859-017-1702-0
10.1609/aaai.v31i1.11231
10.1109/ACCESS.2017.2788044
10.1016/j.compmedimag.2018.03.001
10.1118/1.2789499
10.7717/peerj.4750
10.1007/s10916-018-0932-7
10.1007/978-3-319-46723-8_68
10.1006/cviu.1999.0816
10.1109/TIP.2020.2973510
10.1007/s11548-019-01979-1
10.1109/TMI.2017.2702100
10.1007/978-3-319-55524-9_14
10.1109/JBHI.2019.2951024
10.1117/12.2294016
10.1016/j.media.2016.08.006
10.1016/j.media.2018.10.005
10.1109/TMI.2018.2866442
10.1056/NEJMhpr0808703
10.1148/radiol.11100978
10.1038/s41598-017-18171-7
10.1007/978-3-319-46723-8_25
10.1016/j.jaci.2018.02.025
10.1016/j.cmpb.2016.10.007
10.1016/j.cviu.2017.04.002
10.1109/JBHI.2018.2879449
10.1016/j.compmedimag.2007.02.002
10.1016/j.compbiomed.2018.10.011
10.1002/jmri.26721
10.1117/12.2293725
10.1109/42.730403
10.1109/42.996338
10.1016/j.media.2018.01.004
10.1109/ACCESS.2014.2325029
10.1007/s11633-017-1082-y
10.1016/j.media.2018.10.008
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20185097
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals - NZ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_cda43cd20e9a41b0bc7cd31b7814abbd
PMC7570704
32906819
10_3390_s20185097
Genre Journal Article
Review
GrantInformation_xml – fundername: Lee Kong Chian School of Medicine and Data Science and AI Research (DSAIR) center of NTU
  grantid: ADH-11/2017-DSAIR
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c573t-ff2f8290b73870d72420767a6a839093c475f3154f10e28e4fb8d81a5218f09b3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:10:30 EDT 2025
Thu Aug 21 18:43:08 EDT 2025
Fri Jul 11 01:21:57 EDT 2025
Fri Jul 25 20:26:19 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
Tue Jul 01 03:55:48 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords localization
segmentation
detection
3D convolutional neural networks
classification
3D medical images
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-ff2f8290b73870d72420767a6a839093c475f3154f10e28e4fb8d81a5218f09b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9437-2654
0000-0003-4112-4600
0000-0003-3159-3622
0000-0002-4257-7639
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20185097
PMID 32906819
PQID 2441728600
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_cda43cd20e9a41b0bc7cd31b7814abbd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570704
proquest_miscellaneous_2441602959
proquest_journals_2441728600
pubmed_primary_32906819
crossref_primary_10_3390_s20185097
crossref_citationtrail_10_3390_s20185097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200907
PublicationDateYYYYMMDD 2020-09-07
PublicationDate_xml – month: 9
  year: 2020
  text: 20200907
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wernick (ref_18) 2010; 27
ref_91
Ker (ref_35) 2018; 6
Dou (ref_86) 2016; 35
Sokooti (ref_103) 2017; Volume 10433
Milletari (ref_61) 2017; 164
Marin (ref_8) 2010; 254
Wolterink (ref_96) 2017; 36
ref_131
Shen (ref_11) 2017; 19
ref_95
Gong (ref_94) 2019; 14
ref_16
ref_15
Ambellan (ref_71) 2019; 52
Dolz (ref_62) 2018; 170
Oh (ref_84) 2019; 9
ref_126
Ji (ref_22) 2013; 35
Parker (ref_45) 2017; 35
ref_127
ref_129
ref_25
ref_23
ref_21
ref_124
ref_123
Feng (ref_76) 2019; 7
ref_29
ref_28
Kruthika (ref_75) 2019; 14
ref_26
Li (ref_101) 2018; 45
Kascenas (ref_99) 2019; Volume 11131
Zhou (ref_110) 2019; Volume 11764
ref_72
Wang (ref_120) 2016; 111
Singh (ref_20) 2016; 40
Li (ref_52) 2009; Volume 5636
Maes (ref_47) 1997; 16
ref_79
ref_77
Khan (ref_100) 2019; 38
Thibault (ref_7) 2007; 34
Penney (ref_50) 1998; 17
Srivastava (ref_27) 2014; 15
Ahmed (ref_51) 2002; 21
Hinton (ref_122) 2006; 18
Yang (ref_39) 2018; 2018
ref_89
Winkels (ref_93) 2019; 55
ref_87
Dou (ref_90) 2017; 64
Dubost (ref_42) 2019; 51
Ha (ref_81) 2019; 32
Isensee (ref_59) 2018; Volume 10670
Blendowski (ref_105) 2019; 14
Lowekamp (ref_106) 2013; 7
Chen (ref_74) 2020; 47
Criminisi (ref_19) 2012; 7
Dou (ref_64) 2017; 41
Duncan (ref_118) 2000; 22
Huo (ref_97) 2019; 194
Li (ref_70) 2018; 37
ref_58
ref_55
Chen (ref_82) 2019; 64
ref_53
Iglehart (ref_119) 2009; 360
Ronneberger (ref_33) 2015; Volume 9351
Gao (ref_78) 2017; 138
Yang (ref_67) 2018; Volume 10663
Najafabadi (ref_115) 2015; 2
Avants (ref_107) 2009; 2
Pluim (ref_49) 2000; 77
Huang (ref_128) 2017; 14
Krizhevsky (ref_14) 2017; 60
Heinrich (ref_73) 2019; 54
Zhou (ref_56) 2020; 29
Huang (ref_98) 2018; 47
Wang (ref_13) 2018; 42
Abdulkadir (ref_34) 2016; Volume 9901
Lyu (ref_125) 2017; 7
ref_66
Shapiro (ref_5) 1998; 171
Gruetzemacher (ref_12) 2018; 25
ref_63
Shaish (ref_83) 2019; 212
Zhao (ref_111) 2020; 24
Zeng (ref_65) 2017; Volume 10541
Mehta (ref_130) 2018; 141
Matsumoto (ref_6) 2011; 259
Yu (ref_69) 2017; Volume 10129
Gu (ref_92) 2018; 103
ref_117
Doi (ref_1) 2007; 31
ref_36
ref_32
Roth (ref_68) 2018; 66
ref_31
Kamnitsas (ref_54) 2017; 36
ref_30
Chen (ref_57) 2019; Volume 11384
ref_113
Maintz (ref_48) 1998; 2
Wolterink (ref_88) 2019; 51
Klein (ref_112) 2010; 29
ref_38
ref_37
Amidi (ref_85) 2018; 6
ref_104
Wang (ref_114) 2017; 36
Prasoon (ref_121) 2013; Volume 8150
Pezeshk (ref_24) 2019; 23
ref_108
Jones (ref_40) 2002; 17
ref_109
Peng (ref_60) 2019; 30
Chen (ref_116) 2014; 2
Gimi (ref_10) 2020; Volume 11317
Rahman (ref_17) 2007; 11
ref_44
ref_43
ref_41
ref_102
Goebel (ref_46) 2012; 62
Zhou (ref_80) 2019; 50
ref_3
Miller (ref_2) 1992; 30
ref_9
ref_4
References_xml – volume: 35
  start-page: 221
  year: 2013
  ident: ref_22
  article-title: 3D Convolutional Neural Networks for Human Action Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– volume: 55
  start-page: 15
  year: 2019
  ident: ref_93
  article-title: Pulmonary nodule detection in CT scans with equivariant CNNs
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.010
– volume: Volume 9901
  start-page: 424
  year: 2016
  ident: ref_34
  article-title: 3D U-net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 2
  start-page: 1
  year: 1998
  ident: ref_48
  article-title: A survey of medical image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(01)80026-8
– volume: 27
  start-page: 25
  year: 2010
  ident: ref_18
  article-title: Machine Learning in Medical Imaging
  publication-title: IEEE Signal. Process. Mag.
  doi: 10.1109/MSP.2010.936730
– volume: 14
  start-page: 59
  year: 2019
  ident: ref_75
  article-title: CBIR system using Capsule Networks and 3D CNN for Alzheimer’s disease diagnosis
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2018.12.001
– ident: ref_9
  doi: 10.3390/s19092167
– ident: ref_102
  doi: 10.3390/jimaging6070065
– volume: 30
  start-page: 5
  year: 2019
  ident: ref_60
  article-title: Multi-Scale 3D U-Nets: An approach to automatic segmentation of brain tumor
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22368
– ident: ref_108
– volume: 7
  start-page: 81
  year: 2012
  ident: ref_19
  article-title: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
  publication-title: Found. Trends® Comput. Graph. Vis.
  doi: 10.1561/0600000035
– ident: ref_15
  doi: 10.1109/CVPR.2015.7298594
– volume: 17
  start-page: 592
  year: 2002
  ident: ref_40
  article-title: Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1148
– volume: 7
  start-page: 63605
  year: 2019
  ident: ref_76
  article-title: Deep Learning Framework for Alzheimer’s Disease Diagnosis via 3D-CNN and FSBi-LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913847
– ident: ref_123
– volume: 14
  start-page: 43
  year: 2019
  ident: ref_105
  article-title: Combining MRF-based deformable registration and deep binary 3D-CNN descriptors for large lung motion estimation in COPD patients
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1888-2
– volume: 40
  start-page: 105
  year: 2016
  ident: ref_20
  article-title: An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0454-0
– volume: 36
  start-page: 61
  year: 2017
  ident: ref_54
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: Volume 10129
  start-page: 103
  year: 2017
  ident: ref_69
  article-title: 3D FractalNet: Dense volumetric segmentation for cardiovascular MRI volumes
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 64
  start-page: 075011
  year: 2019
  ident: ref_82
  article-title: Combining many-objective radiomics and 3-dimensional convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab083a
– volume: 52
  start-page: 109
  year: 2019
  ident: ref_71
  article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.11.009
– ident: ref_4
– volume: 30
  start-page: 449
  year: 1992
  ident: ref_2
  article-title: Review of neural network applications in medical imaging and signal processing
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02457822
– ident: ref_77
  doi: 10.1117/12.2293719
– volume: Volume 8150
  start-page: 246
  year: 2013
  ident: ref_121
  article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– ident: ref_72
  doi: 10.1117/12.2293926
– ident: ref_89
  doi: 10.1117/12.2214876
– ident: ref_126
  doi: 10.1101/697003
– ident: ref_124
  doi: 10.3390/s19030732
– ident: ref_109
  doi: 10.1109/CVPR.2017.243
– volume: 11
  start-page: 58
  year: 2007
  ident: ref_17
  article-title: A Framework for Medical Image Retrieval Using Machine Learning and Statistical Similarity Matching Techniques With Relevance Feedback
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.884364
– ident: ref_28
– volume: 47
  start-page: 552
  year: 2020
  ident: ref_74
  article-title: Automatic multi-organ segmentation in dual-energy CT (DECT) with dedicated 3D fully convolutional DECT networks
  publication-title: Med. Phys.
  doi: 10.1002/mp.13950
– volume: 64
  start-page: 1558
  year: 2017
  ident: ref_90
  article-title: Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2613502
– ident: ref_30
– volume: 25
  start-page: 1301
  year: 2018
  ident: ref_12
  article-title: 3D deep learning for detecting pulmonary nodules in CT scans
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy098
– ident: ref_44
  doi: 10.3389/fninf.2016.00024
– volume: 171
  start-page: 1203
  year: 1998
  ident: ref_5
  article-title: Tissue harmonic imaging sonography: Evaluation of image quality compared with conventional sonography
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.171.5.9798848
– ident: ref_3
– volume: 47
  start-page: 127
  year: 2018
  ident: ref_98
  article-title: VP-Nets: Efficient automatic localization of key brain structures in 3D fetal neurosonography
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.04.004
– volume: 16
  start-page: 187
  year: 1997
  ident: ref_47
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.563664
– volume: 7
  start-page: 45
  year: 2013
  ident: ref_106
  article-title: The Design of SimpleITK
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2013.00045
– volume: 22
  start-page: 85
  year: 2000
  ident: ref_118
  article-title: Medical image analysis: Progress over two decades and the challenges ahead
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824822
– volume: 212
  start-page: 238
  year: 2019
  ident: ref_83
  article-title: Prediction of lymph node maximum standardized uptake value in patients with cancer using a 3D convolutional neural network: A proof-of-concept study
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.18.20094
– volume: Volume 10670
  start-page: 287
  year: 2018
  ident: ref_59
  article-title: Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: Volume 11764
  start-page: 478
  year: 2019
  ident: ref_110
  article-title: Fast and accurate electron microscopy image registration with 3D convolution
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– ident: ref_95
  doi: 10.1007/978-3-319-24553-9_72
– volume: 194
  start-page: 105
  year: 2019
  ident: ref_97
  article-title: 3D whole brain segmentation using spatially localized atlas network tiles
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.041
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_115
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: Volume 10663
  start-page: 215
  year: 2018
  ident: ref_67
  article-title: Hybrid loss guided convolutional networks for whole heart parsing
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– ident: ref_37
  doi: 10.1038/s41592-018-0235-4
– volume: 41
  start-page: 40
  year: 2017
  ident: ref_64
  article-title: 3D deeply supervised network for automated segmentation of volumetric medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.05.001
– volume: Volume 11384
  start-page: 358
  year: 2019
  ident: ref_57
  article-title: S3D-UNET: Separable 3D U-Net for brain tumor segmentation
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 19
  start-page: 221
  year: 2017
  ident: ref_11
  article-title: Deep Learning in Medical Image Analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: ref_25
– ident: ref_117
  doi: 10.1145/2733373.2807412
– volume: 54
  start-page: 1
  year: 2019
  ident: ref_73
  article-title: OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.02.006
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_27
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_63
  doi: 10.1117/12.2292276
– volume: 36
  start-page: 1470
  year: 2017
  ident: ref_96
  article-title: ConvNet-Based Localization of Anatomical Structures in 3-D Medical Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2673121
– ident: ref_66
  doi: 10.1109/3DV.2018.00083
– ident: ref_91
  doi: 10.1109/ISBI.2017.7950542
– volume: Volume 11317
  start-page: 11
  year: 2020
  ident: ref_10
  article-title: Deep learning of volumetric 3D CNN for fMRI in Alzheimer’s disease classification
  publication-title: Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, Houston, TX, USA, 2020
– volume: 35
  start-page: 1182
  year: 2016
  ident: ref_86
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 170
  start-page: 456
  year: 2018
  ident: ref_62
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.039
– volume: 32
  start-page: 141
  year: 2019
  ident: ref_81
  article-title: Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0114-7
– ident: ref_16
  doi: 10.1145/1143844.1143897
– ident: ref_36
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 62
  start-page: 748
  year: 2012
  ident: ref_46
  article-title: Brain Voyager—Past, present, future
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.083
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_84
  article-title: Classification and Visualization of Alzheimer’s Disease using Volumetric Convolutional Neural Network and Transfer Learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54548-6
– ident: ref_23
  doi: 10.1371/journal.pmed.1000097
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_122
  article-title: A Fast Learning Algorithm for Deep Belief Nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 37
  start-page: 2663
  year: 2018
  ident: ref_70
  article-title: H-DenseUNet: Hybrid Densely Connected UNet for Liver and Liver Tumor Segmentation from CT Volumes
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2845918
– ident: ref_32
– ident: ref_55
– ident: ref_129
  doi: 10.1007/978-4-431-56469-0_19
– ident: ref_26
– volume: Volume 11131
  start-page: 470
  year: 2019
  ident: ref_99
  article-title: Attaining human-level performance with atlas location autocontext for anatomical landmark detection in 3D CT data
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 29
  start-page: 196
  year: 2010
  ident: ref_112
  article-title: Elastix: A toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 254
  start-page: 145
  year: 2010
  ident: ref_8
  article-title: Low-Tube-Voltage, High-Tube-Current Multidetector Abdominal CT: Improved Image Quality and Decreased Radiation Dose with Adaptive Statistical Iterative Reconstruction Algorithm—Initial Clinical Experience
  publication-title: Radiology
  doi: 10.1148/radiol.09090094
– volume: Volume 10433
  start-page: 232
  year: 2017
  ident: ref_103
  article-title: Nonrigid image registration using multi-scale 3D convolutional neural networks
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 111
  start-page: 21
  year: 2016
  ident: ref_120
  article-title: Feature selection methods for big data bioinformatics: A survey from the search perspective
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.08.014
– ident: ref_113
  doi: 10.1109/CVPR.2018.00964
– ident: ref_104
  doi: 10.1186/s12859-017-1702-0
– ident: ref_127
– ident: ref_31
  doi: 10.1609/aaai.v31i1.11231
– volume: 6
  start-page: 9375
  year: 2018
  ident: ref_35
  article-title: Deep Learning Applications in Medical Image Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788044
– ident: ref_58
– volume: 66
  start-page: 90
  year: 2018
  ident: ref_68
  article-title: Computerized Medical Imaging and Graphics An application of cascaded 3D fully convolutional networks for medical image segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.03.001
– volume: 34
  start-page: 4526
  year: 2007
  ident: ref_7
  article-title: A three-dimensional statistical approach to improved image quality for multislice helical CT
  publication-title: Med. Phys.
  doi: 10.1118/1.2789499
– volume: 6
  start-page: e4750
  year: 2018
  ident: ref_85
  article-title: EnzyNet: Enzyme classification using 3D convolutional neural networks on spatial representation
  publication-title: PeerJ
  doi: 10.7717/peerj.4750
– volume: 42
  start-page: 85
  year: 2018
  ident: ref_13
  article-title: Classification of Alzheimer’s Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0932-7
– volume: 2
  start-page: 1
  year: 2009
  ident: ref_107
  article-title: Advanced Normalization Tools (ANTS)
  publication-title: Insight J.
– ident: ref_38
  doi: 10.1007/978-3-319-46723-8_68
– volume: 77
  start-page: 211
  year: 2000
  ident: ref_49
  article-title: Interpolation Artefacts in Mutual Information Based Image Registration
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1999.0816
– volume: 29
  start-page: 4516
  year: 2020
  ident: ref_56
  article-title: One-pass Multi-task Networks with Cross-task Guided Attention for Brain Tumor Segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2973510
– volume: 14
  start-page: 1969
  year: 2019
  ident: ref_94
  article-title: Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-019-01979-1
– volume: 36
  start-page: 1939
  year: 2017
  ident: ref_114
  article-title: Dynamic 2-D/3-D rigid registration framework using point-to-plane correspondence model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2702100
– ident: ref_53
  doi: 10.1007/978-3-319-55524-9_14
– volume: 24
  start-page: 1394
  year: 2020
  ident: ref_111
  article-title: Unsupervised 3D End-to-End Medical Image Registration with Volume Tweening Network
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2019.2951024
– ident: ref_87
  doi: 10.1117/12.2294016
– volume: 35
  start-page: 434
  year: 2017
  ident: ref_45
  article-title: Optimal slice timing correction and its interaction with fMRI parameters and artifacts
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.006
– volume: 51
  start-page: 46
  year: 2019
  ident: ref_88
  article-title: Coronary Artery Centerline Extraction in Cardiac CT Angiography
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.10.005
– volume: 38
  start-page: 470
  year: 2019
  ident: ref_100
  article-title: Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2866442
– volume: 360
  start-page: 1030
  year: 2009
  ident: ref_119
  article-title: Health Insurers and Medical-Imaging Policy—A Work in Progress
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMhpr0808703
– ident: ref_131
– volume: 259
  start-page: 257
  year: 2011
  ident: ref_6
  article-title: Virtual Monochromatic Spectral Imaging with Fast Kilovoltage Switching: Improved Image Quality as Compared with That Obtained with Conventional 120-kVp CT
  publication-title: Radiology
  doi: 10.1148/radiol.11100978
– volume: 7
  start-page: 17865
  year: 2017
  ident: ref_125
  article-title: Deep-learning-based ghost imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18171-7
– ident: ref_79
  doi: 10.1007/978-3-319-46723-8_25
– volume: 141
  start-page: 2019
  year: 2018
  ident: ref_130
  article-title: Machine Learning, Natural Language Programming, and Electronic Health Records: The next step in the Artificial Intelligence Journey?
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2018.02.025
– volume: 138
  start-page: 49
  year: 2017
  ident: ref_78
  article-title: Classification of CT brain images based on deep learning networks
  publication-title: Omput. Methods Prog. Biomed. Elsevier
  doi: 10.1016/j.cmpb.2016.10.007
– volume: 164
  start-page: 92
  year: 2017
  ident: ref_61
  article-title: Hough-CNN: Deep Learning for Segmentation of Deep Brain Regions in MRI and Ultrasound
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.04.002
– volume: 23
  start-page: 2080
  year: 2019
  ident: ref_24
  article-title: 3-D Convolutional Neural Networks for Automatic Detection of Pulmonary Nodules in Chest CT
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2018.2879449
– volume: 31
  start-page: 198
  year: 2007
  ident: ref_1
  article-title: Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.02.002
– ident: ref_21
– volume: 103
  start-page: 220
  year: 2018
  ident: ref_92
  article-title: Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.10.011
– volume: 50
  start-page: 1144
  year: 2019
  ident: ref_80
  article-title: Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26721
– ident: ref_41
  doi: 10.1117/12.2293725
– ident: ref_29
– volume: 17
  start-page: 586
  year: 1998
  ident: ref_50
  article-title: A comparison of similarity measures for use in 2-D-3-D medical image registration
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/42.730403
– volume: 21
  start-page: 193
  year: 2002
  ident: ref_51
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 45
  start-page: 41
  year: 2018
  ident: ref_101
  article-title: 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.01.004
– volume: 2
  start-page: 514
  year: 2014
  ident: ref_116
  article-title: Big data deep learning: Challenges and perspectives
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2325029
– volume: Volume 9351
  start-page: 234
  year: 2015
  ident: ref_33
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: Volume 10541
  start-page: 274
  year: 2017
  ident: ref_65
  article-title: 3D U-net with multi-level deep supervision: Fully automatic segmentation of proximal femur in 3D MR images
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: Volume 5636
  start-page: 288
  year: 2009
  ident: ref_52
  article-title: MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 14
  start-page: 520
  year: 2017
  ident: ref_128
  article-title: Imitating the brain with neurocomputer a “new” way towards artificial general intelligence
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-017-1082-y
– volume: 51
  start-page: 89
  year: 2019
  ident: ref_42
  article-title: 3D Regression Neural Network for the Quantification of Enlarged Perivascular Spaces in Brain MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.10.008
– ident: ref_43
– volume: 2018
  start-page: 1571
  year: 2018
  ident: ref_39
  article-title: Visual Explanations from Deep 3D Convolutional Neural Networks for Alzheimer’s Disease Classification
  publication-title: AMIA Annu. Symp. Proc. AMIA Symp.
SSID ssj0023338
Score 2.687684
SecondaryResourceType review_article
Snippet The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5097
SubjectTerms 3D convolutional neural networks
3D medical images
Algorithms
Automation
Classification
Deep Learning
detection
Humans
Imaging, Three-Dimensional
localization
Machine Learning
Magnetic resonance imaging
Medical imaging
Neural networks
Neural Networks, Computer
Review
segmentation
Systematic review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals - NZ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDLYQEwyIN-WlgBgYqGibtEnYeAqQYAKJrUrSBJCgh7jj_2O3veoOIbGwNh5Su8nnr04-AxwUijttTRqneSVjUeki1oh0sRSIzcYHyT1dTr67L64fxe1T_jTR6ovOhLXywK3jjl1lBHdVlnhtRGoT66SreGpJqslYW9Hui5g3JlMd1eLIvFodIY6k_niIMKfyRtlpAn0akf7fMsufByQnEOdqERa6VJGdtlNcghlfL8P8hIDgChzxC3bh_QfrZFKf2aBmXe2F3bzjXjE8YaesLQCswuPV5cP5ddz1P4hdLvkoDiELVOe0kuOqqiSiaSILaQqDWU2iuRMyDxxzoJAmPlNeBKsqlRpEZBUSbfkazNaD2m8AU_SDJ3AieAhbidNKGG2InXKdWxciOBz7pXSdODj1qHgrkSSQC8vehRHs96YfrSLGb0Zn5NzegESsmwcY2rILbflXaCPYHoem7FbWsMyoZ1qmME-LYK8fxjVBhQ5T-8FXa1Mkmc51BOttJPuZcNK3xzQoAjkV46mpTo_Ury-N7rbMJW6QYvM_3m0L5jJi7lSaktswO_r88juY3ozsbvMlfwNcnPY_
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9UwDLZgXOCAGANW2FCYOHCgWtukTbLLNBjTQIITk96tys8NibWPvbf_H7vN695DE9fGh8iO_dlx-hngfaO409aUeVl7mQuvm1wj0uVSIDabECUP9HPy9x_N-YX4Nqtn6cJtkZ5VrmLiEKh97-iO_LCiWVmVQnw-nv_JaWoUdVfTCI2H8Iioy-hJl5zdFVwc66-RTYhjaX-4QLBT9cDvtIZBA1X_ffnlv88k13Dn7Bk8TQkjOxktvA0PQvccnqzRCO7AR37KTkOYs0SWesn6jqUODPt6jRFjccRO2NgGeAEXZ19-fj7P0xSE3NWSL_MYq0jdTis5-paXiKmFbKRpDOY2heZOyDpyzIRiWYRKBRGt8qo0iMsqFtryl7DV9V3YBabomidyKvMQvAqnlTDaUI3KdW1dzODDSi-tSxThNKnid4ulAqmwnVSYwcEkOh95Me4T-kTKnQSIynr40N9ctskzWueN4M5XRdBGlLawTjrPS0tcXMZan8HeyjRt8q9Fe3caMng3LaNnULvDdKG_HWWaotK1zuDVaMlpJ5xY7jEZykBu2Hhjq5sr3a-rgX1b1hLDpHj9_229gccVVebUepJ7sLW8uQ37mL4s7dvhjP4Flxjr9g
  priority: 102
  providerName: ProQuest
Title 3D Deep Learning on Medical Images: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/32906819
https://www.proquest.com/docview/2441728600
https://www.proquest.com/docview/2441602959
https://pubmed.ncbi.nlm.nih.gov/PMC7570704
https://doaj.org/article/cda43cd20e9a41b0bc7cd31b7814abbd
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IaH2gHgTKCuDOHAgkMRObCMh1NIuBakVQqy0t8h27FKpZMvuVoJ_z0xe2kV74pJDMpGsscfffJ7kG4CXheJOW5PGaV7JWFS6iDUiXSwFYrPxQXJPPyefnRenE_Flmk-3oO-x2TlwsZHaUT-pyfzqze9ffz5gwL8nxomU_e0CQUwh8Mlt2EVAkhSfZ2IoJmQcaVgrKrRuvge3OKmdK5LZWUGlRrx_U8b574eTK0g0vgO3uxSSHbZzfhe2fH0P9leEBe_Da37Mjr2_Zp186gWb1ayrybDPP3EPWbxjh6wtDDyAyfjk-8fTuOuLELtc8mUcQhao_mklx2irJKJsIgtpCoPZTqK5EzIPHHOjkCY-U14EqyqVGkRqFRJt-UPYqWe1fwxM0cFP4ET8EM4Sp5Uw2hBr5Tq3LkTwqvdL6TrRcOpdcVUieSBvloM3I3gxmF63ShmbjI7IuYMBiVs3N2bzi7KLldJVRnBXZYnXRqQ2sU66iqeW1LmMtVUEB_3UlP2CKTPqpZYpzN8ieD48xlihAoip_eymtSmSTOc6gkftTA4j6VdCBHJtjteGuv6kvvzR6HHLXOLGKZ7895tPYS8jGk91KnkAO8v5jX-Guc7SjmBbTiVe1fjTCHaPTs6_fhs15wajZo3_BZQJ_yE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEO8GChgEEgeiJnYSx0gIFZZqlz5OrbS3YDt2QYJk6W5V9U_xG5nJq7uo4tZrYlnWeGa-GY_9DcDrLBdWGR2HcVrKMClVFipEulAmiM3aeSkcPU4-OMzGx8nXaTpdgz_9Wxi6Vtn7xMZRl7WlM_JtTr2yeI74_HH2O6SuUVRd7VtotGqx5y7OMWWbf5iMcH_fcL775ejzOOy6CoQ2lWIRes89VQ-NFKirpUSMwlxe6kxjrID5vU1k6gVGFj6OHM9d4k1e5rFGnMt9pIzAeW_ATQTeiCxKTi8TPIH5XsteJHCq7TmCa542fFJLmNe0Brgqnv33WuYSzu3ehTtdgMp2Wo26B2uuug8bS7SFD-CdGLGRczPWkbOesLpiXcWHTX6hh5q_ZzusLTs8hONrkc8jWK_qym0Cy-lYyQtKKxEsI6vyRCtNObFQqbE-gLe9XArbUZJTZ4yfBaYmJMJiEGEAr4ahs5aH46pBn0i4wwCizm4-1KcnRWeJhS11ImzJI6d0EpvIWGlLERvi_tLGlAFs9VtTdPY8Ly61L4CXw2-0RCqv6MrVZ-2YLOIqVQE8bndyWIkgVn0MvgKQK3u8stTVP9WP7w3bt0wluuXkyf-X9QJujY8O9ov9yeHeU7jN6VSAyl5yC9YXp2fuGYZOC_O80VcG367bQP4CD9Umig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLwbWsAgkDgQbWIncYyEUGFZdSlUHKi0t2A7dkGCZNvdCvHX-HXM5NVdVHHrNbEsazwz34zH_gbgWZYLq4yOwzgtZZiUKgsVIl0oE8Rm7bwUjh4nfzrM9o-SD7N0tgF_-rcwdK2y94mNoy5rS2fkI069sniO-Dzy3bWIz-PJm_lJSB2kqNLat9NoVeTA_f6F6dvi9XSMe_2c88n7L-_2w67DQGhTKZah99xTJdFIgXpbSsQrzOulzjTGDZjr20SmXmCU4ePI8dwl3uRlHmvEvNxHygic9wpclSKNycbk7DzZE5j7tUxGAqcaLRBo87ThllrBv6ZNwEWx7b9XNFcwb3ITbnTBKttrtesWbLjqNmytUBjegZdizMbOzVlH1HrM6op11R82_YneavGK7bG2BHEXji5FPvdgs6ortw0spyMmLyjFROCMrMoTrTTlx0KlxvoAXvRyKWxHT05dMn4UmKaQCItBhAE8HYbOW06Oiwa9JeEOA4hGu_lQnx4XnVUWttSJsCWPnNJJbCJjpS1FbIgHTBtTBrDbb03R2faiONfEAJ4Mv9EqqdSiK1eftWOyiKtUBXC_3clhJYIY9jEQC0Cu7fHaUtf_VN-_NczfMpXoopMH_1_WY7iGplF8nB4e7MB1TgcEVAGTu7C5PD1zDzGKWppHjboy-HrZ9vEX4DAqwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Deep+Learning+on+Medical+Images%3A+A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Singh%2C+Satya+P.&rft.au=Wang%2C+Lipo&rft.au=Gupta%2C+Sukrit&rft.au=Goli%2C+Haveesh&rft.date=2020-09-07&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185097&rft_id=info%3Apmid%2F32906819&rft.externalDocID=PMC7570704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon