Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification

A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by...

Full description

Saved in:
Bibliographic Details
Published inImmunogenetics (New York) Vol. 67; no. 11-12; pp. 641 - 650
Main Authors Andreatta, Massimo, Karosiene, Edita, Rasmussen, Michael, Stryhn, Anette, Buus, Søren, Nielsen, Morten
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4 + T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .
AbstractList A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4^sup +^ T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1.
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4 + T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4 super(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1.
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .
Author Andreatta, Massimo
Stryhn, Anette
Rasmussen, Michael
Karosiene, Edita
Nielsen, Morten
Buus, Søren
AuthorAffiliation 1 Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP, San Martín, Buenos Aires, Argentina
3 Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
2 Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
4 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
AuthorAffiliation_xml – name: 3 Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
– name: 2 Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
– name: 4 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
– name: 1 Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP, San Martín, Buenos Aires, Argentina
Author_xml – sequence: 1
  givenname: Massimo
  surname: Andreatta
  fullname: Andreatta, Massimo
  organization: Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín
– sequence: 2
  givenname: Edita
  surname: Karosiene
  fullname: Karosiene, Edita
  organization: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology
– sequence: 3
  givenname: Michael
  surname: Rasmussen
  fullname: Rasmussen, Michael
  organization: Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen
– sequence: 4
  givenname: Anette
  surname: Stryhn
  fullname: Stryhn, Anette
  organization: Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen
– sequence: 5
  givenname: Søren
  surname: Buus
  fullname: Buus, Søren
  organization: Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen
– sequence: 6
  givenname: Morten
  surname: Nielsen
  fullname: Nielsen, Morten
  email: mniel@cbs.dtu.dk
  organization: Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26416257$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFB2CDLLFhE_B1nDjZIFUjoCMVsYG15djXU1cZO9hJ0bw9yUxblUogVl7c7xyf-3NGTkIMSMhrYO-BMfkhM8YrKBhUBWtkWeyfkRWIkhfAAU7IirG2LKQEOCVnOd-wGWx5_YKc8lpAzSu5IvnCmCnpEemgQ5EHNN55Q4eE1pvRx0CjowMOo7dYfL1cU9PrnOlmQzsfrA9bqp3zwY97-suP19TvhhRv0T6UTUxIZ3EYF2O9WL4kz53uM766e8_Jj8-fvq8vi6tvXzbri6vCVLIcC4edYB2CEB0yxuqygdah0dYJZ8FZDk5jJTtdYmuFblteWRBtK5uFr7rynHw8-g5Tt0Nr5gxJ92pIfqfTXkXt1Z-V4K_VNt4qUZcSWj4bvLszSPHnhHlUO58N9r0OGKesQIq6aUXV_A9agmxKXi3o2yfoTZxSmCdxoETDq8Pfbx6Hf0h9v7oZkEfApJhzQqeMHw_znXvxvQKmliNRxyNR8-7VciRqPyvhifLe_F8aftTkmQ1bTI9C_1X0G8rO0NY
CitedBy_id crossref_primary_10_1038_s41541_023_00671_5
crossref_primary_10_1038_s41551_017_0143_4
crossref_primary_10_1186_s12929_022_00866_3
crossref_primary_10_2337_db23_0925
crossref_primary_10_3390_ijms23116255
crossref_primary_10_4049_jimmunol_1801506
crossref_primary_10_1016_j_jmgm_2020_107645
crossref_primary_10_1186_s40425_019_0629_6
crossref_primary_10_3389_fcell_2020_00728
crossref_primary_10_2174_1574893614666190730104348
crossref_primary_10_3389_fimmu_2023_1177691
crossref_primary_10_1093_nar_gkx276
crossref_primary_10_1093_nar_gkz452
crossref_primary_10_1016_j_cplett_2016_12_015
crossref_primary_10_1016_j_virusres_2019_197750
crossref_primary_10_1038_s41571_020_00460_2
crossref_primary_10_1002_pbc_28127
crossref_primary_10_1016_j_dsx_2020_08_009
crossref_primary_10_3390_molecules23113034
crossref_primary_10_1021_acsomega_1c01032
crossref_primary_10_1007_s00251_019_01140_x
crossref_primary_10_1158_2159_8290_CD_17_0256
crossref_primary_10_1016_j_asoc_2020_106326
crossref_primary_10_1016_j_jbi_2016_01_016
crossref_primary_10_1093_bioinformatics_bty715
crossref_primary_10_3389_fbioe_2022_819583
crossref_primary_10_1097_MOT_0000000000000544
crossref_primary_10_3389_fchem_2018_00106
crossref_primary_10_1016_j_celrep_2020_107885
crossref_primary_10_1016_j_jaut_2020_102402
crossref_primary_10_1038_s41598_021_84320_8
crossref_primary_10_3389_fcimb_2018_00156
crossref_primary_10_1016_j_biologicals_2018_02_003
crossref_primary_10_7717_peerj_5118
crossref_primary_10_1080_20477724_2018_1446773
crossref_primary_10_1093_bib_bbw025
crossref_primary_10_1016_j_ailsci_2022_100038
crossref_primary_10_1111_imm_13920
crossref_primary_10_1371_journal_pone_0205933
crossref_primary_10_1038_s10038_020_0771_5
crossref_primary_10_1002_pep2_24046
crossref_primary_10_1186_s43141_022_00340_5
crossref_primary_10_1371_journal_pone_0203715
crossref_primary_10_1093_bib_bbae302
crossref_primary_10_2147_IDR_S264573
crossref_primary_10_1038_s41598_021_89016_7
crossref_primary_10_1111_hae_13555
crossref_primary_10_2174_0109298673264899231206093930
crossref_primary_10_1016_j_isci_2020_101399
crossref_primary_10_1093_brain_awy109
crossref_primary_10_1016_j_addr_2021_01_007
crossref_primary_10_1080_19420862_2023_2215887
crossref_primary_10_3390_pharmaceutics14040867
crossref_primary_10_3390_nano10071274
crossref_primary_10_1007_s12033_023_00698_y
crossref_primary_10_1021_acs_jcim_9b00403
crossref_primary_10_1002_cai2_26
crossref_primary_10_1021_acs_jproteome_9b00012
crossref_primary_10_1186_s13073_021_00910_1
crossref_primary_10_3389_fimmu_2019_00880
crossref_primary_10_1007_s10930_020_09886_0
crossref_primary_10_1093_database_bay111
crossref_primary_10_1186_s13073_016_0288_x
crossref_primary_10_1038_s41551_019_0431_2
crossref_primary_10_1093_gbe_evw279
crossref_primary_10_3390_ijms20246337
crossref_primary_10_1126_science_adi2396
crossref_primary_10_1016_j_bbrc_2017_01_077
crossref_primary_10_1155_2022_8270305
crossref_primary_10_3389_fimmu_2022_975680
crossref_primary_10_1038_srep42768
crossref_primary_10_1186_s12859_021_04155_y
crossref_primary_10_3389_fimmu_2024_1293706
crossref_primary_10_1007_s11756_023_01559_4
crossref_primary_10_1186_s12936_022_04186_7
crossref_primary_10_4049_jimmunol_1800683
crossref_primary_10_1111_imm_13101
crossref_primary_10_7774_cevr_2024_13_1_10
crossref_primary_10_1186_s12967_018_1382_1
crossref_primary_10_3389_fimmu_2022_862851
crossref_primary_10_3390_ijms22010012
crossref_primary_10_1038_s41587_019_0289_6
crossref_primary_10_1093_intimm_dxw019
crossref_primary_10_3389_fimmu_2019_02698
crossref_primary_10_1155_2018_7685371
crossref_primary_10_1371_journal_pone_0273494
crossref_primary_10_1016_j_smim_2023_101733
crossref_primary_10_1080_07391102_2020_1846625
crossref_primary_10_1002_aic_16697
crossref_primary_10_1016_j_aller_2020_02_006
crossref_primary_10_1007_s10989_022_10406_0
crossref_primary_10_3390_vaccines10122010
crossref_primary_10_1016_j_bbrc_2017_08_012
crossref_primary_10_1016_j_heliyon_2020_e05760
crossref_primary_10_3390_molecules23030526
crossref_primary_10_3389_fvets_2021_721061
crossref_primary_10_1109_TCBB_2021_3074927
crossref_primary_10_3390_arm91060036
crossref_primary_10_1016_j_kint_2018_06_005
crossref_primary_10_1212_NXI_0000000000000605
crossref_primary_10_2139_ssrn_3327220
crossref_primary_10_1016_j_imbio_2021_152091
crossref_primary_10_3390_vaccines12121355
crossref_primary_10_1016_j_biologicals_2019_03_003
crossref_primary_10_3389_fimmu_2021_666742
crossref_primary_10_1080_07391102_2022_2055648
crossref_primary_10_1093_bioinformatics_btaa1030
crossref_primary_10_1016_j_humimm_2021_12_002
crossref_primary_10_1038_s41568_019_0162_4
crossref_primary_10_1007_s12026_022_09351_3
crossref_primary_10_1038_s41587_019_0280_2
crossref_primary_10_1002_pmic_201700252
crossref_primary_10_3389_fimmu_2018_00872
crossref_primary_10_1155_2017_2748614
crossref_primary_10_3389_fimmu_2017_00984
crossref_primary_10_1016_j_immuni_2019_08_012
crossref_primary_10_1007_s11095_020_02817_9
crossref_primary_10_3892_mmr_2017_8066
crossref_primary_10_1002_ctm2_1461
crossref_primary_10_1007_s00262_017_1971_5
crossref_primary_10_6061_clinics_2018_e429s
crossref_primary_10_1080_14760584_2021_1935248
crossref_primary_10_3389_fimmu_2022_926680
crossref_primary_10_3389_fimmu_2024_1500921
crossref_primary_10_1371_journal_pone_0265644
crossref_primary_10_1074_mcp_TIR117_000383
crossref_primary_10_1007_s12539_017_0238_3
crossref_primary_10_3390_vaccines8040630
crossref_primary_10_1128_spectrum_01148_22
crossref_primary_10_1016_j_compbiolchem_2022_107754
crossref_primary_10_1111_iji_12359
crossref_primary_10_4049_jimmunol_1600808
crossref_primary_10_1016_j_meegid_2017_08_002
crossref_primary_10_3389_fimmu_2020_01215
crossref_primary_10_1093_bioinformatics_btab687
crossref_primary_10_3389_fmolb_2021_636562
crossref_primary_10_1186_s13073_015_0240_5
crossref_primary_10_1007_s00251_019_01122_z
crossref_primary_10_1016_j_meegid_2017_05_022
crossref_primary_10_3390_v10090480
crossref_primary_10_1016_j_jneuroim_2019_577139
crossref_primary_10_1002_vms3_1438
crossref_primary_10_1016_j_antiviral_2021_105105
crossref_primary_10_1016_j_vaccine_2024_01_087
crossref_primary_10_3390_ijms24087550
crossref_primary_10_1111_trf_13950
crossref_primary_10_1038_s41598_019_42729_2
crossref_primary_10_3390_microorganisms7080226
crossref_primary_10_1073_pnas_1806774115
crossref_primary_10_1126_scitranslmed_abj6824
crossref_primary_10_1371_journal_pone_0201299
crossref_primary_10_1186_s13073_018_0594_6
crossref_primary_10_3390_biology11060848
crossref_primary_10_1016_j_bbrc_2016_06_115
crossref_primary_10_1097_PPO_0000000000000248
crossref_primary_10_1186_s12929_024_01082_x
crossref_primary_10_1038_s41598_023_41187_1
crossref_primary_10_1146_annurev_immunol_082119_124838
crossref_primary_10_1186_s40164_018_0120_y
crossref_primary_10_1038_s41392_022_01270_x
crossref_primary_10_1002_art_40484
crossref_primary_10_1128_JVI_01641_20
crossref_primary_10_1590_1414_431x20186213
crossref_primary_10_1093_infdis_jix497
crossref_primary_10_3389_fimmu_2020_01784
crossref_primary_10_1038_s41423_018_0181_1
crossref_primary_10_1016_j_csbj_2023_02_031
crossref_primary_10_1038_ng_3677
crossref_primary_10_3389_fimmu_2017_00278
crossref_primary_10_3389_fimmu_2017_01367
crossref_primary_10_1016_j_omton_2024_200835
crossref_primary_10_1038_nrg_2016_67
crossref_primary_10_1016_j_meegid_2021_104826
crossref_primary_10_1093_bioinformatics_btad785
crossref_primary_10_1016_j_annonc_2020_05_008
crossref_primary_10_22159_ijap_2023v15i1_46177
crossref_primary_10_3390_v13122360
crossref_primary_10_1080_20477724_2022_2072456
crossref_primary_10_1111_imm_12889
crossref_primary_10_1093_cei_uxab008
crossref_primary_10_1111_imm_12763
crossref_primary_10_1080_2162402X_2017_1316438
crossref_primary_10_1371_journal_pone_0206654
crossref_primary_10_1093_bioinformatics_btx820
crossref_primary_10_1186_s12859_019_3109_6
crossref_primary_10_1002_prot_26703
crossref_primary_10_1074_mcp_RA118_000956
crossref_primary_10_1093_bioinformatics_btac225
crossref_primary_10_1016_j_vaccine_2018_03_011
crossref_primary_10_1038_s41598_020_75410_0
crossref_primary_10_3389_fonc_2022_1054231
crossref_primary_10_1016_j_ympev_2018_01_008
crossref_primary_10_3389_fimmu_2018_01410
crossref_primary_10_1080_07391102_2021_1894986
crossref_primary_10_1038_s41467_021_22890_x
crossref_primary_10_1016_j_molimm_2017_12_019
crossref_primary_10_3389_fcimb_2024_1351303
crossref_primary_10_1371_journal_pntd_0005177
crossref_primary_10_1371_journal_pone_0177140
crossref_primary_10_1016_j_imlet_2021_07_005
crossref_primary_10_1186_s40164_024_00504_8
crossref_primary_10_1093_bioinformatics_btaa616
crossref_primary_10_1016_j_compbiolchem_2017_01_011
crossref_primary_10_1111_imm_13279
crossref_primary_10_4049_jimmunol_1601157
crossref_primary_10_1016_j_bbrc_2017_05_123
crossref_primary_10_1016_j_kint_2019_06_015
crossref_primary_10_1080_2162402X_2016_1177691
crossref_primary_10_1038_s41598_021_95287_x
crossref_primary_10_1136_jitc_2019_000217
crossref_primary_10_3390_antib13030061
crossref_primary_10_1016_j_phrs_2020_105372
crossref_primary_10_3389_fimmu_2020_00816
crossref_primary_10_1016_j_actatropica_2024_107478
crossref_primary_10_1016_j_compbiomed_2023_106864
crossref_primary_10_1126_sciimmunol_aaz3199
crossref_primary_10_3389_fimmu_2018_01795
crossref_primary_10_1002_art_39736
crossref_primary_10_1016_j_trim_2017_12_002
crossref_primary_10_1158_2326_6066_CIR_19_0155
Cites_doi 10.1038/ni0901-797
10.1186/1745-7580-6-9
10.1093/bioinformatics/btg312
10.1073/pnas.89.22.10915
10.1038/ni835
10.4049/jimmunol.166.11.6720
10.4049/jimmunol.171.11.5683
10.1371/journal.pone.0001831
10.1371/journal.pone.0026781
10.1016/j.cell.2014.03.047
10.1016/S0198-8859(97)00078-5
10.1371/journal.pone.0073648
10.4049/jimmunol.164.11.5788
10.1084/jem.178.1.27
10.1111/j.1365-2567.2012.03579.x
10.1016/j.molimm.2003.11.022
10.1110/ps.0239403
10.1146/annurev.immunol.23.021704.115658
10.1186/1471-2105-10-296
10.1007/s00251-013-0720-y
10.4049/jimmunol.169.2.739
10.1186/1745-7580-5-2
10.1371/journal.pcbi.1000107
10.1038/nri3279
10.1038/9858
10.1016/0092-8674(94)90336-0
10.1371/journal.pone.0000796
10.1111/j.0105-2896.2010.00897.x
10.1111/j.0300-9475.2004.01349.x
10.1093/nar/gku1214
10.1093/nar/gku938
10.1007/s00251-005-0798-y
10.1016/S1074-7613(00)80360-X
10.1371/journal.pone.0094892
10.1371/journal.pone.0030483
10.3389/fimmu.2014.00541
10.1186/1471-2105-8-238
10.1109/34.58871
10.1186/1471-2105-7-463
10.4049/jimmunol.143.4.1265
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T5
7T7
7TK
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOI 10.1007/s00251-015-0873-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

AIDS and Cancer Research Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1432-1211
EndPage 650
ExternalDocumentID PMC4637192
3859075741
26416257
10_1007_s00251_015_0873_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Denmark
La Jolla California
United States--US
GeographicLocations_xml – name: Denmark
– name: La Jolla California
– name: United States--US
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: HHSN272201200010C
– fundername: PHS HHS
  grantid: HHSN272201200010C
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TK
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c573t-feb40be144be00063819fecadf4fd1fd21fae57ba3e9d4a9925d149978be005b3
IEDL.DBID 7X7
ISSN 0093-7711
1432-1211
IngestDate Thu Aug 21 18:27:13 EDT 2025
Fri Jul 11 11:55:42 EDT 2025
Fri Jul 11 10:10:48 EDT 2025
Fri Jul 25 19:21:14 EDT 2025
Thu Apr 03 07:09:45 EDT 2025
Tue Jul 01 00:24:17 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Fri Feb 21 02:37:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords T cell cross-reactivity
Binding core
MHC class II
Peptide binding
Peptide-MHC
Artificial neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-feb40be144be00063819fecadf4fd1fd21fae57ba3e9d4a9925d149978be005b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00251-015-0873-y.pdf
PMID 26416257
PQID 1731482592
PQPubID 54024
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4637192
proquest_miscellaneous_1746894582
proquest_miscellaneous_1731783252
proquest_journals_1731482592
pubmed_primary_26416257
crossref_citationtrail_10_1007_s00251_015_0873_y
crossref_primary_10_1007_s00251_015_0873_y
springer_journals_10_1007_s00251_015_0873_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: New York
PublicationTitle Immunogenetics (New York)
PublicationTitleAbbrev Immunogenetics
PublicationTitleAlternate Immunogenetics
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Nielsen, Justesen, Lund (CR30) 2010; 6
Andreatta, Schafer-Nielsen, Lund (CR4) 2011; 6
Wan, Liu, Xu (CR37) 2006; 7
Arnold, La Gruta, Miller (CR5) 2002; 169
Welsh, Che, Brehm, Selin (CR38) 2010; 235
Sturniolo, Bono, Ding (CR35) 1999; 17
Vita, Overton, Greenbaum (CR36) 2015; 43
Nielsen, Lundegaard, Blicher (CR27) 2007; 2
Al-Attiyah, Mustafa (CR1) 2004; 59
Bui, Sidney, Peters (CR12) 2005; 57
Birnbaum, Mendoza, Sethi (CR8) 2014; 157
Nielsen, Lundegaard, Lund (CR28) 2007; 8
Castellino, Zhong, Germain (CR14) 1997; 54
Karosiene, Rasmussen, Blicher (CR23) 2013; 65
Sewell (CR34) 2012; 12
Andreatta, Nielsen (CR3) 2012; 136
Doytchinova, Flower (CR16) 2003; 19
Braendstrup, Justesen, Osterbye (CR9) 2013; 8
Nielsen, Lundegaard, Blicher (CR29) 2008; 4
Rudolph, Stanfield, Wilson (CR32) 2006; 24
Anderson, Gorski (CR2) 2003; 171
Henikoff, Henikoff (CR21) 1992; 89
Basu, Horvath, Matsumoto (CR6) 2000; 164
Benoist, Mathis (CR7) 2001; 2
Lang, Jacobsen, Ikemizu (CR24) 2002; 3
Justesen, Harndahl, Lamberth (CR22) 2009; 5
Chicz, Urban, Gorga (CR15) 1993; 178
Carson, Vignali, Woodland, Vignali (CR13) 1997; 7
Germain (CR18) 1994; 76
Godkin, Smith, Willis (CR19) 2001; 166
Braendstrup, Mortensen, Justesen (CR10) 2014; 9
Sette, Adorini, Colon (CR33) 1989; 143
Hansen, Salamon (CR20) 1990; 12
Frankild, de Boer, Lund (CR17) 2008; 3
Wilson, Wilson, Schroder (CR39) 2004; 40
Nielsen, Lund (CR25) 2009; 10
Nielsen, Lundegaard, Worning (CR26) 2003; 12
Rose, Prlić, Bi (CR31) 2015; 43
Zhang, Chen, Wong (CR40) 2012; 7
Bremel, Homan (CR11) 2014; 5
PY Arnold (873_CR5) 2002; 169
P Braendstrup (873_CR9) 2013; 8
M Nielsen (873_CR28) 2007; 8
R Al-Attiyah (873_CR1) 2004; 59
DB Wilson (873_CR39) 2004; 40
AK Sewell (873_CR34) 2012; 12
D Basu (873_CR6) 2000; 164
AJ Godkin (873_CR19) 2001; 166
A Sette (873_CR33) 1989; 143
RN Germain (873_CR18) 1994; 76
MW Anderson (873_CR2) 2003; 171
F Castellino (873_CR14) 1997; 54
M Andreatta (873_CR3) 2012; 136
S Henikoff (873_CR21) 1992; 89
M Nielsen (873_CR29) 2008; 4
S Frankild (873_CR17) 2008; 3
MG Rudolph (873_CR32) 2006; 24
M Nielsen (873_CR30) 2010; 6
RM Welsh (873_CR38) 2010; 235
T Sturniolo (873_CR35) 1999; 17
RM Chicz (873_CR15) 1993; 178
H-H Bui (873_CR12) 2005; 57
S Justesen (873_CR22) 2009; 5
IA Doytchinova (873_CR16) 2003; 19
M Nielsen (873_CR27) 2007; 2
PW Rose (873_CR31) 2015; 43
L Zhang (873_CR40) 2012; 7
C Benoist (873_CR7) 2001; 2
E Karosiene (873_CR23) 2013; 65
M Nielsen (873_CR25) 2009; 10
P Braendstrup (873_CR10) 2014; 9
RT Carson (873_CR13) 1997; 7
M Andreatta (873_CR4) 2011; 6
J Wan (873_CR37) 2006; 7
ME Birnbaum (873_CR8) 2014; 157
HLE Lang (873_CR24) 2002; 3
RD Bremel (873_CR11) 2014; 5
LK Hansen (873_CR20) 1990; 12
M Nielsen (873_CR26) 2003; 12
R Vita (873_CR36) 2015; 43
17726526 - PLoS One. 2007;2(8):e796
19416502 - Immunome Res. 2009 May 05;5:2
19765293 - BMC Bioinformatics. 2009;10:296
14723617 - Scand J Immunol. 2004 Jan;59(1):16-24
21073747 - Immunome Res. 2010 Nov 13;6:9
15868141 - Immunogenetics. 2005 Jun;57(5):304-14
12244309 - Nat Immunol. 2002 Oct;3(10):940-3
22918468 - Nat Rev Immunol. 2012 Sep;12(9):669-77
8293464 - Cell. 1994 Jan 28;76(2):287-99
18350167 - PLoS One. 2008;3(3):e1831
18604266 - PLoS Comput Biol. 2008;4(7):e1000107
23900783 - Immunogenetics. 2013 Oct;65(10):711-24
2787361 - J Immunol. 1989 Aug 15;143(4):1265-7
25428375 - Nucleic Acids Res. 2015 Jan;43(Database issue):D345-56
17059589 - BMC Bioinformatics. 2006;7:463
15036909 - Mol Immunol. 2004 Feb;40(14-15):1047-55
14634075 - J Immunol. 2003 Dec 1;171(11):5683-7
22352343 - Immunology. 2012 Jul;136(3):306-11
20536568 - Immunol Rev. 2010 May;235(1):244-66
25300482 - Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12
24023895 - PLoS One. 2013;8(9):e73648
25389426 - Front Immunol. 2014 Oct 28;5:541
11526389 - Nat Immunol. 2001 Sep;2(9):797-801
24760079 - PLoS One. 2014;9(4):e94892
9324359 - Immunity. 1997 Sep;7(3):387-99
24855945 - Cell. 2014 May 22;157(5):1073-87
17608956 - BMC Bioinformatics. 2007;8:238
10385319 - Nat Biotechnol. 1999 Jun;17(6):555-61
16551255 - Annu Rev Immunol. 2006;24:419-66
11359828 - J Immunol. 2001 Jun 1;166(11):6720-7
9297534 - Hum Immunol. 1997 May;54(2):159-69
22383964 - PLoS One. 2012;7(2):e30483
22073191 - PLoS One. 2011;6(11):e26781
1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9
8315383 - J Exp Med. 1993 Jul 1;178(1):27-47
10820257 - J Immunol. 2000 Jun 1;164(11):5788-96
12717023 - Protein Sci. 2003 May;12(5):1007-17
14630655 - Bioinformatics. 2003 Nov 22;19(17):2263-70
12097376 - J Immunol. 2002 Jul 15;169(2):739-49
References_xml – volume: 2
  start-page: 797
  year: 2001
  end-page: 801
  ident: CR7
  article-title: Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry?
  publication-title: Nat Immunol
  doi: 10.1038/ni0901-797
– volume: 6
  start-page: 9
  year: 2010
  ident: CR30
  article-title: NetMHCIIpan-2.0—improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-6-9
– volume: 19
  start-page: 2263
  year: 2003
  end-page: 2270
  ident: CR16
  article-title: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg312
– volume: 89
  start-page: 10915
  year: 1992
  end-page: 10919
  ident: CR21
  article-title: Amino acid substitution matrices from protein blocks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.22.10915
– volume: 3
  start-page: 940
  year: 2002
  end-page: 943
  ident: CR24
  article-title: A functional and structural basis for TCR cross-reactivity in multiple sclerosis
  publication-title: Nat Immunol
  doi: 10.1038/ni835
– volume: 166
  start-page: 6720
  year: 2001
  end-page: 6727
  ident: CR19
  article-title: Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.11.6720
– volume: 171
  start-page: 5683
  year: 2003
  end-page: 5687
  ident: CR2
  article-title: Cutting edge: TCR contacts as anchors: effects on affinity and HLA-DM stability
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.11.5683
– volume: 3
  start-page: e1831
  year: 2008
  ident: CR17
  article-title: Amino acid similarity accounts for T cell cross-reactivity and for “holes” in the T cell repertoire
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001831
– volume: 6
  start-page: e26781
  year: 2011
  ident: CR4
  article-title: NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026781
– volume: 157
  start-page: 1073
  year: 2014
  end-page: 1087
  ident: CR8
  article-title: Deconstructing the peptide-MHC specificity of T cell recognition
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.047
– volume: 54
  start-page: 159
  year: 1997
  end-page: 169
  ident: CR14
  article-title: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(97)00078-5
– volume: 8
  start-page: e73648
  year: 2013
  ident: CR9
  article-title: MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0073648
– volume: 164
  start-page: 5788
  year: 2000
  end-page: 5796
  ident: CR6
  article-title: Molecular basis for recognition of an arthritic peptide and a foreign epitope on distinct MHC molecules by a single TCR
  publication-title: J Immunol
  doi: 10.4049/jimmunol.164.11.5788
– volume: 178
  start-page: 27
  year: 1993
  end-page: 47
  ident: CR15
  article-title: Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles
  publication-title: J Exp Med
  doi: 10.1084/jem.178.1.27
– volume: 136
  start-page: 306
  year: 2012
  end-page: 311
  ident: CR3
  article-title: Characterizing the binding motifs of 11 common human HLA-DP and HLA-DQ molecules using NNAlign
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2012.03579.x
– volume: 40
  start-page: 1047
  year: 2004
  end-page: 1055
  ident: CR39
  article-title: Specificity and degeneracy of T cells
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2003.11.022
– volume: 143
  start-page: 1265
  year: 1989
  end-page: 1267
  ident: CR33
  article-title: Capacity of intact proteins to bind to MHC class II molecules
  publication-title: J Immunol
– volume: 12
  start-page: 1007
  year: 2003
  end-page: 1017
  ident: CR26
  article-title: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
  publication-title: Protein Sci
  doi: 10.1110/ps.0239403
– volume: 24
  start-page: 419
  year: 2006
  end-page: 466
  ident: CR32
  article-title: How TCRs bind MHCs, peptides, and coreceptors
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.23.021704.115658
– volume: 10
  start-page: 296
  year: 2009
  ident: CR25
  article-title: NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-10-296
– volume: 65
  start-page: 711
  year: 2013
  end-page: 724
  ident: CR23
  article-title: NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ
  publication-title: Immunogenetics
  doi: 10.1007/s00251-013-0720-y
– volume: 169
  start-page: 739
  year: 2002
  end-page: 749
  ident: CR5
  article-title: The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.2.739
– volume: 5
  start-page: 2
  year: 2009
  ident: CR22
  article-title: Functional recombinant MHC class II molecules and high-throughput peptide-binding assays
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-5-2
– volume: 4
  start-page: e1000107
  year: 2008
  ident: CR29
  article-title: Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000107
– volume: 12
  start-page: 669
  year: 2012
  end-page: 677
  ident: CR34
  article-title: Why must T cells be cross-reactive?
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3279
– volume: 17
  start-page: 555
  year: 1999
  end-page: 561
  ident: CR35
  article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices
  publication-title: Nat Biotechnol
  doi: 10.1038/9858
– volume: 76
  start-page: 287
  year: 1994
  end-page: 299
  ident: CR18
  article-title: MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90336-0
– volume: 2
  start-page: e796
  year: 2007
  ident: CR27
  article-title: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000796
– volume: 235
  start-page: 244
  year: 2010
  end-page: 266
  ident: CR38
  article-title: Heterologous immunity between viruses
  publication-title: Immunol Rev
  doi: 10.1111/j.0105-2896.2010.00897.x
– volume: 59
  start-page: 16
  year: 2004
  end-page: 24
  ident: CR1
  article-title: Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis
  publication-title: Scand J Immunol
  doi: 10.1111/j.0300-9475.2004.01349.x
– volume: 43
  start-page: D345
  year: 2015
  end-page: D356
  ident: CR31
  article-title: The RCSB Protein Data Bank: views of structural biology for basic and applied research and education
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1214
– volume: 43
  start-page: D405
  year: 2015
  end-page: D412
  ident: CR36
  article-title: The immune epitope database (IEDB) 3.0
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku938
– volume: 57
  start-page: 304
  year: 2005
  end-page: 314
  ident: CR12
  article-title: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications
  publication-title: Immunogenetics
  doi: 10.1007/s00251-005-0798-y
– volume: 7
  start-page: 387
  year: 1997
  end-page: 399
  ident: CR13
  article-title: T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80360-X
– volume: 9
  start-page: e94892
  year: 2014
  ident: CR10
  article-title: Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094892
– volume: 7
  start-page: e30483
  year: 2012
  ident: CR40
  article-title: TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030483
– volume: 5
  start-page: 541
  year: 2014
  ident: CR11
  article-title: Frequency patterns of T-cell exposed amino acid motifs in immunoglobulin heavy chain peptides presented by MHCs
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00541
– volume: 8
  start-page: 238
  year: 2007
  ident: CR28
  article-title: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-8-238
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: CR20
  article-title: Neural network ensembles
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.58871
– volume: 7
  start-page: 463
  year: 2006
  ident: CR37
  article-title: SVRMHC prediction server for MHC-binding peptides
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-7-463
– volume: 2
  start-page: e796
  year: 2007
  ident: 873_CR27
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000796
– volume: 12
  start-page: 669
  year: 2012
  ident: 873_CR34
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3279
– volume: 59
  start-page: 16
  year: 2004
  ident: 873_CR1
  publication-title: Scand J Immunol
  doi: 10.1111/j.0300-9475.2004.01349.x
– volume: 43
  start-page: D345
  year: 2015
  ident: 873_CR31
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1214
– volume: 7
  start-page: e30483
  year: 2012
  ident: 873_CR40
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030483
– volume: 178
  start-page: 27
  year: 1993
  ident: 873_CR15
  publication-title: J Exp Med
  doi: 10.1084/jem.178.1.27
– volume: 12
  start-page: 993
  year: 1990
  ident: 873_CR20
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.58871
– volume: 76
  start-page: 287
  year: 1994
  ident: 873_CR18
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90336-0
– volume: 43
  start-page: D405
  year: 2015
  ident: 873_CR36
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku938
– volume: 65
  start-page: 711
  year: 2013
  ident: 873_CR23
  publication-title: Immunogenetics
  doi: 10.1007/s00251-013-0720-y
– volume: 166
  start-page: 6720
  year: 2001
  ident: 873_CR19
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.11.6720
– volume: 12
  start-page: 1007
  year: 2003
  ident: 873_CR26
  publication-title: Protein Sci
  doi: 10.1110/ps.0239403
– volume: 235
  start-page: 244
  year: 2010
  ident: 873_CR38
  publication-title: Immunol Rev
  doi: 10.1111/j.0105-2896.2010.00897.x
– volume: 9
  start-page: e94892
  year: 2014
  ident: 873_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094892
– volume: 54
  start-page: 159
  year: 1997
  ident: 873_CR14
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(97)00078-5
– volume: 2
  start-page: 797
  year: 2001
  ident: 873_CR7
  publication-title: Nat Immunol
  doi: 10.1038/ni0901-797
– volume: 7
  start-page: 463
  year: 2006
  ident: 873_CR37
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-7-463
– volume: 57
  start-page: 304
  year: 2005
  ident: 873_CR12
  publication-title: Immunogenetics
  doi: 10.1007/s00251-005-0798-y
– volume: 136
  start-page: 306
  year: 2012
  ident: 873_CR3
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2012.03579.x
– volume: 157
  start-page: 1073
  year: 2014
  ident: 873_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.047
– volume: 19
  start-page: 2263
  year: 2003
  ident: 873_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg312
– volume: 143
  start-page: 1265
  year: 1989
  ident: 873_CR33
  publication-title: J Immunol
  doi: 10.4049/jimmunol.143.4.1265
– volume: 17
  start-page: 555
  year: 1999
  ident: 873_CR35
  publication-title: Nat Biotechnol
  doi: 10.1038/9858
– volume: 3
  start-page: e1831
  year: 2008
  ident: 873_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001831
– volume: 24
  start-page: 419
  year: 2006
  ident: 873_CR32
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.23.021704.115658
– volume: 4
  start-page: e1000107
  year: 2008
  ident: 873_CR29
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000107
– volume: 5
  start-page: 2
  year: 2009
  ident: 873_CR22
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-5-2
– volume: 169
  start-page: 739
  year: 2002
  ident: 873_CR5
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.2.739
– volume: 40
  start-page: 1047
  year: 2004
  ident: 873_CR39
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2003.11.022
– volume: 8
  start-page: e73648
  year: 2013
  ident: 873_CR9
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0073648
– volume: 89
  start-page: 10915
  year: 1992
  ident: 873_CR21
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.22.10915
– volume: 5
  start-page: 541
  year: 2014
  ident: 873_CR11
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00541
– volume: 171
  start-page: 5683
  year: 2003
  ident: 873_CR2
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.11.5683
– volume: 7
  start-page: 387
  year: 1997
  ident: 873_CR13
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80360-X
– volume: 3
  start-page: 940
  year: 2002
  ident: 873_CR24
  publication-title: Nat Immunol
  doi: 10.1038/ni835
– volume: 10
  start-page: 296
  year: 2009
  ident: 873_CR25
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-10-296
– volume: 6
  start-page: 9
  year: 2010
  ident: 873_CR30
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-6-9
– volume: 8
  start-page: 238
  year: 2007
  ident: 873_CR28
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-8-238
– volume: 6
  start-page: e26781
  year: 2011
  ident: 873_CR4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0026781
– volume: 164
  start-page: 5788
  year: 2000
  ident: 873_CR6
  publication-title: J Immunol
  doi: 10.4049/jimmunol.164.11.5788
– reference: 21073747 - Immunome Res. 2010 Nov 13;6:9
– reference: 15868141 - Immunogenetics. 2005 Jun;57(5):304-14
– reference: 19765293 - BMC Bioinformatics. 2009;10:296
– reference: 12717023 - Protein Sci. 2003 May;12(5):1007-17
– reference: 9324359 - Immunity. 1997 Sep;7(3):387-99
– reference: 22073191 - PLoS One. 2011;6(11):e26781
– reference: 16551255 - Annu Rev Immunol. 2006;24:419-66
– reference: 15036909 - Mol Immunol. 2004 Feb;40(14-15):1047-55
– reference: 8315383 - J Exp Med. 1993 Jul 1;178(1):27-47
– reference: 17726526 - PLoS One. 2007;2(8):e796
– reference: 2787361 - J Immunol. 1989 Aug 15;143(4):1265-7
– reference: 19416502 - Immunome Res. 2009 May 05;5:2
– reference: 24760079 - PLoS One. 2014;9(4):e94892
– reference: 25428375 - Nucleic Acids Res. 2015 Jan;43(Database issue):D345-56
– reference: 23900783 - Immunogenetics. 2013 Oct;65(10):711-24
– reference: 11359828 - J Immunol. 2001 Jun 1;166(11):6720-7
– reference: 25389426 - Front Immunol. 2014 Oct 28;5:541
– reference: 25300482 - Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12
– reference: 12244309 - Nat Immunol. 2002 Oct;3(10):940-3
– reference: 22383964 - PLoS One. 2012;7(2):e30483
– reference: 11526389 - Nat Immunol. 2001 Sep;2(9):797-801
– reference: 14634075 - J Immunol. 2003 Dec 1;171(11):5683-7
– reference: 12097376 - J Immunol. 2002 Jul 15;169(2):739-49
– reference: 18350167 - PLoS One. 2008;3(3):e1831
– reference: 24023895 - PLoS One. 2013;8(9):e73648
– reference: 10385319 - Nat Biotechnol. 1999 Jun;17(6):555-61
– reference: 24855945 - Cell. 2014 May 22;157(5):1073-87
– reference: 22918468 - Nat Rev Immunol. 2012 Sep;12(9):669-77
– reference: 20536568 - Immunol Rev. 2010 May;235(1):244-66
– reference: 17608956 - BMC Bioinformatics. 2007;8:238
– reference: 9297534 - Hum Immunol. 1997 May;54(2):159-69
– reference: 14630655 - Bioinformatics. 2003 Nov 22;19(17):2263-70
– reference: 1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9
– reference: 17059589 - BMC Bioinformatics. 2006;7:463
– reference: 8293464 - Cell. 1994 Jan 28;76(2):287-99
– reference: 18604266 - PLoS Comput Biol. 2008;4(7):e1000107
– reference: 22352343 - Immunology. 2012 Jul;136(3):306-11
– reference: 10820257 - J Immunol. 2000 Jun 1;164(11):5788-96
– reference: 14723617 - Scand J Immunol. 2004 Jan;59(1):16-24
SSID ssj0015926
Score 2.5490737
Snippet A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 641
SubjectTerms Algorithms
Allergology
Amino Acid Sequence
Amino acids
Animals
Antigens
Binding Sites
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cluster Analysis
Computational Biology - methods
Cytomegalovirus
Databases, Protein
Epitopes - immunology
Experimental methods
Gene Function
Histocompatibility Antigens Class II - chemistry
Histocompatibility Antigens Class II - immunology
Histocompatibility Antigens Class II - metabolism
Human Genetics
Humans
Identification
Immune system
Immunology
Lymphocytes
Mice
Models, Molecular
Molecular Sequence Data
Neural networks
Neural Networks (Computer)
Original Paper
Peptide Fragments - chemistry
Peptide Fragments - metabolism
Peptides
Protein Binding
Research methodology
Sequence Homology, Amino Acid
T cell receptors
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6alIZeQps2rZO0qNBTi2BlS5Z1XELDprA9dSE3oyc1BO-S3T3sv69GfpBNmkDPGgvZMyN_o5n5BPDVcx6YdJqqYB3lPnhaGVlSU4boH67SKh24zX-VswX_eSNu-j7u9VDtPqQk0049NrslOBxDX0EnlSzo7gBeihi6Yx3XIp-OqQOh0h1rGKpH6MjYkMr81xT7P6NHCPNxoeSDbGn6CV29geMePZJpp-638MK3J_Cqu09ydwJH8z5T_g7WU2u3SANBortT7KfEmiCyukMJVAZZBrLCkhbn6Xx2SSzCaHJ9TUyTGl2IDqGJ_r4jeFRLmnT44N04jPSXpHF9sVHS73tYXP34fTmj_QUL1ApZbGjwhk-MjzGV8R14YSp4q13gwbHgcha0F9LowivHtVK5cDGiioEnygtTnMJhu2z9RyBVsLnTesJwTh0xl6ksS32urnR5oTKYDF-6tj37OF6CcVuPvMlJOXVUTo3KqXcZfBsfWXXUG88JXwzqq3svXNdMFkhzGi0igy_jcPQfTIro1i-3nYyM25p4VoaXlcIMYwYfOosYVxQBJYsxpMxA7tnKKID83fsjbfMn8XjzspAM1_Z9sKp7S3_qRc_-S_ocXudo7ql58gION3db_ymiqI35nLzmLylpF20
  priority: 102
  providerName: Springer Nature
Title Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification
URI https://link.springer.com/article/10.1007/s00251-015-0873-y
https://www.ncbi.nlm.nih.gov/pubmed/26416257
https://www.proquest.com/docview/1731482592
https://www.proquest.com/docview/1731783252
https://www.proquest.com/docview/1746894582
https://pubmed.ncbi.nlm.nih.gov/PMC4637192
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKxAXBOVlaKtF4gRa4fVr7RNKqoQUlAghIoWTtU_VEnJCkxzy75lZP2haNac97Nhae2Z257XfEPLBJonjwkhWOG1YYp1luRIZU5kD_TC5LHzAbTrLJvPk2yJdtAG3dVtW2e2JfqM2S40x8s9cxAhZmRbRl9Vfhl2jMLvattB4SI4RugylWix6hwtOat9uDb12sCI577KaoQcRhZMdHOmUhbmI2W7_XLpjbN6tmbyVOPXn0fgZedoaknTQcP45eWDrE_KoaS25OyGPp23S_AVZD7TeIiIEBc1neLUSy4Po6hopkC906egKq1uMZdPJBdVoUdPLS6oqf-eFSucqUP0dxagtrXwcwpp-GpEwaWXauiPP6pdkPh79upiwttcC06mIN8xZlYTKgnulbGPH8MJZLY1LnOHORNxJmwolY1uYRBZFlBpwrsAHRfpUxa_IUb2s7RtCc6cjI2XI8Z0SzC-Va-6vvJrMRHERkLD706VugcixH8afsodQ9swpgTklMqfcBeRj_8iqQeE4RHzasa9sFXJd_hefgLzvp0GVMD8ia7vcNjQCdrj0IE2S5QUmGwPyupGIfkVgW3JwJ0VAxJ6s9AQI5b0_U1dXHtI7yWLBcW2fOqm6sfT7PvTt4Q99R55EKN_-4uQpOdpcb-0ZWFAbde7V5JwcD8bD4QzHr7-_j2AcjmY_fsLsPBr8AwjTIAM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIh4XBOUVKLBIcAGt6vVr7QNCVaFKaNNTK-Vm1vsQlpATmkTIf4rfyMz6AaEit553bK09387OewDe2Dh2QhrFc6cNj62zPCtlysvU4fkwmcq9w216lo4v4i-zZLYDv_paGEqr7GWiF9RmrslHfiBkRC0rkzz8uPjBaWoURVf7ERotLE5s8xNNtuWHySfk79swPP58fjTm3VQBrhMZrbizZRyUFg2J0rY3tsid1cq42BnhTCicsoksVWRzE6s8DxODZgRaW0SflBG-9wbcxIs3IGNPzgYDDzUDP96NvASotQrRR1ED37QUNQk03BMeZDLizeY9eEW5vZqj-U-g1t9_x_fhXqe4ssMWaQ9gx9Z7cKsdZdnswe1pF6R_CMtDrdfUgYKhpOFUyknpSGxxSRSEAzZ3bEHZNMby6fiIadLg2WTCysrX2DDlXIWipmHkJWaV93tYMyxT501WmS7PyUPrEVxcCxcew249r-1TYJnToVEqEPROhepemWnhS2xNasIoH0HQ_-lCd43Paf7G92Jo2eyZUyBzCmJO0Yzg3fDIou36sY14v2df0QmAZfEHriN4PSzj0aV4jKrtfN3SSJSoyVaaOM1yCm6O4EmLiGFHqMsKNF_lCOQGVgYCah2-uVJX33wL8TiNpKC9ve9R9dfW__ehz7Z_6Cu4Mz6fnhank7OT53A3JKz7os192F1dru0L1N5W5Ut_ZBh8ve4z-htYAFjn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVFRcEJSXocAiwQW0qtevtQ8IlbZRQklUISr15q69uyJS5aRNIpS_xq9jZv2AUJFbzzu21p7HzuzMfAPw1kSRFVIrntlS88hYw9NCJrxILOqHTlXmLtxG42RwFn05j8-34FfbC0Nlla1NdIZaT0u6I98XMiTIyjgL9m1TFnF61P80u-I0QYoyre04jVpETszqJ4Zv84_DI-T1uyDoH38_HPBmwgAvYxkuuDVF5BcGg4rC1Ke3yKwplbaR1cLqQFhlYlmo0GQ6UlkWxBpDCoy8iD4uQnzvHdiWFBX1YPvz8fj0W5fDwK0mNQZmiD6sEG1O1XcQpuhXYBgfcz-VIV-tn4o3XN2bFZv_pG3dadh_APcbN5Yd1HL3ELZMtQt368GWq13YGTUp-0cwPyjLJeFRMLQ7nBo7qTiJza6JgqSCTS2bUW2NNnw0OGQl-fNsOGTFxHXcMGXtBA3PitGdMZu4WxCju2XC4WQT3VQ9OUF7DGe3wocn0KumlXkGLLVloJXyBb1TofNXpKVwDbc60UGYeeC3fzovGxh0msZxmXcAzo45OTInJ-bkKw_ed4_MagyQTcR7LfvyxhzM8z_C68GbbhkVmbIzqjLTZU0j0b7GG2miJM0o1enB01oiuh2hZyswmJUeyDVZ6QgISHx9pZr8cIDiURJKQXv70ErVX1v_34c-3_yhr2EH9TP_OhyfvIB7AYm66-Dcg97iemleoiu3KF41OsPg4rbV9Dc8Ml6C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+pan-specific+prediction+of+peptide-MHC+class+II+binding+affinity+with+improved+binding+core+identification&rft.jtitle=Immunogenetics+%28New+York%29&rft.au=Andreatta%2C+Massimo&rft.au=Karosiene%2C+Edita&rft.au=Rasmussen%2C+Michael&rft.au=Stryhn%2C+Anette&rft.date=2015-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0093-7711&rft.eissn=1432-1211&rft.volume=67&rft.issue=11-12&rft.spage=641&rft_id=info:doi/10.1007%2Fs00251-015-0873-y&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3859075741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-7711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-7711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-7711&client=summon