Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification
A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by...
Saved in:
Published in | Immunogenetics (New York) Vol. 67; no. 11-12; pp. 641 - 650 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes.
NetMHCIIpan
is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4
+
T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method
NetMHCIIpan-3.1
significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core.
NetMHCIIpan
is publicly available at
http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1
. |
---|---|
AbstractList | A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4^sup +^ T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1. A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4 + T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 . A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4 super(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1. A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 . A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 .A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major histocompatibility complex class II (MHC class II) molecules. The bound peptide is then presented on the cell surface where it can be recognized by T helper lymphocytes. NetMHCIIpan is a state-of-the-art method for the quantitative prediction of peptide binding to any human or mouse MHC class II molecule of known sequence. In this paper, we describe an updated version of the method with improved peptide binding register identification. Binding register prediction is concerned with determining the minimal core region of nine residues directly in contact with the MHC binding cleft, a crucial piece of information both for the identification and design of CD4(+) T cell antigens. When applied to a set of 51 crystal structures of peptide-MHC complexes with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped to the epitope binding core. NetMHCIIpan is publicly available at http://www.cbs.dtu.dk/services/NetMHCIIpan-3.1 . |
Author | Andreatta, Massimo Stryhn, Anette Rasmussen, Michael Karosiene, Edita Nielsen, Morten Buus, Søren |
AuthorAffiliation | 1 Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP, San Martín, Buenos Aires, Argentina 3 Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark 2 Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA 4 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark |
AuthorAffiliation_xml | – name: 3 Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark – name: 2 Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA – name: 4 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark – name: 1 Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP, San Martín, Buenos Aires, Argentina |
Author_xml | – sequence: 1 givenname: Massimo surname: Andreatta fullname: Andreatta, Massimo organization: Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín – sequence: 2 givenname: Edita surname: Karosiene fullname: Karosiene, Edita organization: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology – sequence: 3 givenname: Michael surname: Rasmussen fullname: Rasmussen, Michael organization: Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen – sequence: 4 givenname: Anette surname: Stryhn fullname: Stryhn, Anette organization: Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen – sequence: 5 givenname: Søren surname: Buus fullname: Buus, Søren organization: Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen – sequence: 6 givenname: Morten surname: Nielsen fullname: Nielsen, Morten email: mniel@cbs.dtu.dk organization: Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26416257$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFB2CDLLFhE_B1nDjZIFUjoCMVsYG15djXU1cZO9hJ0bw9yUxblUogVl7c7xyf-3NGTkIMSMhrYO-BMfkhM8YrKBhUBWtkWeyfkRWIkhfAAU7IirG2LKQEOCVnOd-wGWx5_YKc8lpAzSu5IvnCmCnpEemgQ5EHNN55Q4eE1pvRx0CjowMOo7dYfL1cU9PrnOlmQzsfrA9bqp3zwY97-suP19TvhhRv0T6UTUxIZ3EYF2O9WL4kz53uM766e8_Jj8-fvq8vi6tvXzbri6vCVLIcC4edYB2CEB0yxuqygdah0dYJZ8FZDk5jJTtdYmuFblteWRBtK5uFr7rynHw8-g5Tt0Nr5gxJ92pIfqfTXkXt1Z-V4K_VNt4qUZcSWj4bvLszSPHnhHlUO58N9r0OGKesQIq6aUXV_A9agmxKXi3o2yfoTZxSmCdxoETDq8Pfbx6Hf0h9v7oZkEfApJhzQqeMHw_znXvxvQKmliNRxyNR8-7VciRqPyvhifLe_F8aftTkmQ1bTI9C_1X0G8rO0NY |
CitedBy_id | crossref_primary_10_1038_s41541_023_00671_5 crossref_primary_10_1038_s41551_017_0143_4 crossref_primary_10_1186_s12929_022_00866_3 crossref_primary_10_2337_db23_0925 crossref_primary_10_3390_ijms23116255 crossref_primary_10_4049_jimmunol_1801506 crossref_primary_10_1016_j_jmgm_2020_107645 crossref_primary_10_1186_s40425_019_0629_6 crossref_primary_10_3389_fcell_2020_00728 crossref_primary_10_2174_1574893614666190730104348 crossref_primary_10_3389_fimmu_2023_1177691 crossref_primary_10_1093_nar_gkx276 crossref_primary_10_1093_nar_gkz452 crossref_primary_10_1016_j_cplett_2016_12_015 crossref_primary_10_1016_j_virusres_2019_197750 crossref_primary_10_1038_s41571_020_00460_2 crossref_primary_10_1002_pbc_28127 crossref_primary_10_1016_j_dsx_2020_08_009 crossref_primary_10_3390_molecules23113034 crossref_primary_10_1021_acsomega_1c01032 crossref_primary_10_1007_s00251_019_01140_x crossref_primary_10_1158_2159_8290_CD_17_0256 crossref_primary_10_1016_j_asoc_2020_106326 crossref_primary_10_1016_j_jbi_2016_01_016 crossref_primary_10_1093_bioinformatics_bty715 crossref_primary_10_3389_fbioe_2022_819583 crossref_primary_10_1097_MOT_0000000000000544 crossref_primary_10_3389_fchem_2018_00106 crossref_primary_10_1016_j_celrep_2020_107885 crossref_primary_10_1016_j_jaut_2020_102402 crossref_primary_10_1038_s41598_021_84320_8 crossref_primary_10_3389_fcimb_2018_00156 crossref_primary_10_1016_j_biologicals_2018_02_003 crossref_primary_10_7717_peerj_5118 crossref_primary_10_1080_20477724_2018_1446773 crossref_primary_10_1093_bib_bbw025 crossref_primary_10_1016_j_ailsci_2022_100038 crossref_primary_10_1111_imm_13920 crossref_primary_10_1371_journal_pone_0205933 crossref_primary_10_1038_s10038_020_0771_5 crossref_primary_10_1002_pep2_24046 crossref_primary_10_1186_s43141_022_00340_5 crossref_primary_10_1371_journal_pone_0203715 crossref_primary_10_1093_bib_bbae302 crossref_primary_10_2147_IDR_S264573 crossref_primary_10_1038_s41598_021_89016_7 crossref_primary_10_1111_hae_13555 crossref_primary_10_2174_0109298673264899231206093930 crossref_primary_10_1016_j_isci_2020_101399 crossref_primary_10_1093_brain_awy109 crossref_primary_10_1016_j_addr_2021_01_007 crossref_primary_10_1080_19420862_2023_2215887 crossref_primary_10_3390_pharmaceutics14040867 crossref_primary_10_3390_nano10071274 crossref_primary_10_1007_s12033_023_00698_y crossref_primary_10_1021_acs_jcim_9b00403 crossref_primary_10_1002_cai2_26 crossref_primary_10_1021_acs_jproteome_9b00012 crossref_primary_10_1186_s13073_021_00910_1 crossref_primary_10_3389_fimmu_2019_00880 crossref_primary_10_1007_s10930_020_09886_0 crossref_primary_10_1093_database_bay111 crossref_primary_10_1186_s13073_016_0288_x crossref_primary_10_1038_s41551_019_0431_2 crossref_primary_10_1093_gbe_evw279 crossref_primary_10_3390_ijms20246337 crossref_primary_10_1126_science_adi2396 crossref_primary_10_1016_j_bbrc_2017_01_077 crossref_primary_10_1155_2022_8270305 crossref_primary_10_3389_fimmu_2022_975680 crossref_primary_10_1038_srep42768 crossref_primary_10_1186_s12859_021_04155_y crossref_primary_10_3389_fimmu_2024_1293706 crossref_primary_10_1007_s11756_023_01559_4 crossref_primary_10_1186_s12936_022_04186_7 crossref_primary_10_4049_jimmunol_1800683 crossref_primary_10_1111_imm_13101 crossref_primary_10_7774_cevr_2024_13_1_10 crossref_primary_10_1186_s12967_018_1382_1 crossref_primary_10_3389_fimmu_2022_862851 crossref_primary_10_3390_ijms22010012 crossref_primary_10_1038_s41587_019_0289_6 crossref_primary_10_1093_intimm_dxw019 crossref_primary_10_3389_fimmu_2019_02698 crossref_primary_10_1155_2018_7685371 crossref_primary_10_1371_journal_pone_0273494 crossref_primary_10_1016_j_smim_2023_101733 crossref_primary_10_1080_07391102_2020_1846625 crossref_primary_10_1002_aic_16697 crossref_primary_10_1016_j_aller_2020_02_006 crossref_primary_10_1007_s10989_022_10406_0 crossref_primary_10_3390_vaccines10122010 crossref_primary_10_1016_j_bbrc_2017_08_012 crossref_primary_10_1016_j_heliyon_2020_e05760 crossref_primary_10_3390_molecules23030526 crossref_primary_10_3389_fvets_2021_721061 crossref_primary_10_1109_TCBB_2021_3074927 crossref_primary_10_3390_arm91060036 crossref_primary_10_1016_j_kint_2018_06_005 crossref_primary_10_1212_NXI_0000000000000605 crossref_primary_10_2139_ssrn_3327220 crossref_primary_10_1016_j_imbio_2021_152091 crossref_primary_10_3390_vaccines12121355 crossref_primary_10_1016_j_biologicals_2019_03_003 crossref_primary_10_3389_fimmu_2021_666742 crossref_primary_10_1080_07391102_2022_2055648 crossref_primary_10_1093_bioinformatics_btaa1030 crossref_primary_10_1016_j_humimm_2021_12_002 crossref_primary_10_1038_s41568_019_0162_4 crossref_primary_10_1007_s12026_022_09351_3 crossref_primary_10_1038_s41587_019_0280_2 crossref_primary_10_1002_pmic_201700252 crossref_primary_10_3389_fimmu_2018_00872 crossref_primary_10_1155_2017_2748614 crossref_primary_10_3389_fimmu_2017_00984 crossref_primary_10_1016_j_immuni_2019_08_012 crossref_primary_10_1007_s11095_020_02817_9 crossref_primary_10_3892_mmr_2017_8066 crossref_primary_10_1002_ctm2_1461 crossref_primary_10_1007_s00262_017_1971_5 crossref_primary_10_6061_clinics_2018_e429s crossref_primary_10_1080_14760584_2021_1935248 crossref_primary_10_3389_fimmu_2022_926680 crossref_primary_10_3389_fimmu_2024_1500921 crossref_primary_10_1371_journal_pone_0265644 crossref_primary_10_1074_mcp_TIR117_000383 crossref_primary_10_1007_s12539_017_0238_3 crossref_primary_10_3390_vaccines8040630 crossref_primary_10_1128_spectrum_01148_22 crossref_primary_10_1016_j_compbiolchem_2022_107754 crossref_primary_10_1111_iji_12359 crossref_primary_10_4049_jimmunol_1600808 crossref_primary_10_1016_j_meegid_2017_08_002 crossref_primary_10_3389_fimmu_2020_01215 crossref_primary_10_1093_bioinformatics_btab687 crossref_primary_10_3389_fmolb_2021_636562 crossref_primary_10_1186_s13073_015_0240_5 crossref_primary_10_1007_s00251_019_01122_z crossref_primary_10_1016_j_meegid_2017_05_022 crossref_primary_10_3390_v10090480 crossref_primary_10_1016_j_jneuroim_2019_577139 crossref_primary_10_1002_vms3_1438 crossref_primary_10_1016_j_antiviral_2021_105105 crossref_primary_10_1016_j_vaccine_2024_01_087 crossref_primary_10_3390_ijms24087550 crossref_primary_10_1111_trf_13950 crossref_primary_10_1038_s41598_019_42729_2 crossref_primary_10_3390_microorganisms7080226 crossref_primary_10_1073_pnas_1806774115 crossref_primary_10_1126_scitranslmed_abj6824 crossref_primary_10_1371_journal_pone_0201299 crossref_primary_10_1186_s13073_018_0594_6 crossref_primary_10_3390_biology11060848 crossref_primary_10_1016_j_bbrc_2016_06_115 crossref_primary_10_1097_PPO_0000000000000248 crossref_primary_10_1186_s12929_024_01082_x crossref_primary_10_1038_s41598_023_41187_1 crossref_primary_10_1146_annurev_immunol_082119_124838 crossref_primary_10_1186_s40164_018_0120_y crossref_primary_10_1038_s41392_022_01270_x crossref_primary_10_1002_art_40484 crossref_primary_10_1128_JVI_01641_20 crossref_primary_10_1590_1414_431x20186213 crossref_primary_10_1093_infdis_jix497 crossref_primary_10_3389_fimmu_2020_01784 crossref_primary_10_1038_s41423_018_0181_1 crossref_primary_10_1016_j_csbj_2023_02_031 crossref_primary_10_1038_ng_3677 crossref_primary_10_3389_fimmu_2017_00278 crossref_primary_10_3389_fimmu_2017_01367 crossref_primary_10_1016_j_omton_2024_200835 crossref_primary_10_1038_nrg_2016_67 crossref_primary_10_1016_j_meegid_2021_104826 crossref_primary_10_1093_bioinformatics_btad785 crossref_primary_10_1016_j_annonc_2020_05_008 crossref_primary_10_22159_ijap_2023v15i1_46177 crossref_primary_10_3390_v13122360 crossref_primary_10_1080_20477724_2022_2072456 crossref_primary_10_1111_imm_12889 crossref_primary_10_1093_cei_uxab008 crossref_primary_10_1111_imm_12763 crossref_primary_10_1080_2162402X_2017_1316438 crossref_primary_10_1371_journal_pone_0206654 crossref_primary_10_1093_bioinformatics_btx820 crossref_primary_10_1186_s12859_019_3109_6 crossref_primary_10_1002_prot_26703 crossref_primary_10_1074_mcp_RA118_000956 crossref_primary_10_1093_bioinformatics_btac225 crossref_primary_10_1016_j_vaccine_2018_03_011 crossref_primary_10_1038_s41598_020_75410_0 crossref_primary_10_3389_fonc_2022_1054231 crossref_primary_10_1016_j_ympev_2018_01_008 crossref_primary_10_3389_fimmu_2018_01410 crossref_primary_10_1080_07391102_2021_1894986 crossref_primary_10_1038_s41467_021_22890_x crossref_primary_10_1016_j_molimm_2017_12_019 crossref_primary_10_3389_fcimb_2024_1351303 crossref_primary_10_1371_journal_pntd_0005177 crossref_primary_10_1371_journal_pone_0177140 crossref_primary_10_1016_j_imlet_2021_07_005 crossref_primary_10_1186_s40164_024_00504_8 crossref_primary_10_1093_bioinformatics_btaa616 crossref_primary_10_1016_j_compbiolchem_2017_01_011 crossref_primary_10_1111_imm_13279 crossref_primary_10_4049_jimmunol_1601157 crossref_primary_10_1016_j_bbrc_2017_05_123 crossref_primary_10_1016_j_kint_2019_06_015 crossref_primary_10_1080_2162402X_2016_1177691 crossref_primary_10_1038_s41598_021_95287_x crossref_primary_10_1136_jitc_2019_000217 crossref_primary_10_3390_antib13030061 crossref_primary_10_1016_j_phrs_2020_105372 crossref_primary_10_3389_fimmu_2020_00816 crossref_primary_10_1016_j_actatropica_2024_107478 crossref_primary_10_1016_j_compbiomed_2023_106864 crossref_primary_10_1126_sciimmunol_aaz3199 crossref_primary_10_3389_fimmu_2018_01795 crossref_primary_10_1002_art_39736 crossref_primary_10_1016_j_trim_2017_12_002 crossref_primary_10_1158_2326_6066_CIR_19_0155 |
Cites_doi | 10.1038/ni0901-797 10.1186/1745-7580-6-9 10.1093/bioinformatics/btg312 10.1073/pnas.89.22.10915 10.1038/ni835 10.4049/jimmunol.166.11.6720 10.4049/jimmunol.171.11.5683 10.1371/journal.pone.0001831 10.1371/journal.pone.0026781 10.1016/j.cell.2014.03.047 10.1016/S0198-8859(97)00078-5 10.1371/journal.pone.0073648 10.4049/jimmunol.164.11.5788 10.1084/jem.178.1.27 10.1111/j.1365-2567.2012.03579.x 10.1016/j.molimm.2003.11.022 10.1110/ps.0239403 10.1146/annurev.immunol.23.021704.115658 10.1186/1471-2105-10-296 10.1007/s00251-013-0720-y 10.4049/jimmunol.169.2.739 10.1186/1745-7580-5-2 10.1371/journal.pcbi.1000107 10.1038/nri3279 10.1038/9858 10.1016/0092-8674(94)90336-0 10.1371/journal.pone.0000796 10.1111/j.0105-2896.2010.00897.x 10.1111/j.0300-9475.2004.01349.x 10.1093/nar/gku1214 10.1093/nar/gku938 10.1007/s00251-005-0798-y 10.1016/S1074-7613(00)80360-X 10.1371/journal.pone.0094892 10.1371/journal.pone.0030483 10.3389/fimmu.2014.00541 10.1186/1471-2105-8-238 10.1109/34.58871 10.1186/1471-2105-7-463 10.4049/jimmunol.143.4.1265 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7T7 7TK 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM |
DOI | 10.1007/s00251-015-0873-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1432-1211 |
EndPage | 650 |
ExternalDocumentID | PMC4637192 3859075741 26416257 10_1007_s00251_015_0873_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Denmark La Jolla California United States--US |
GeographicLocations_xml | – name: Denmark – name: La Jolla California – name: United States--US |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: HHSN272201200010C – fundername: PHS HHS grantid: HHSN272201200010C |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TK 7U9 7XB 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM |
ID | FETCH-LOGICAL-c573t-feb40be144be00063819fecadf4fd1fd21fae57ba3e9d4a9925d149978be005b3 |
IEDL.DBID | 7X7 |
ISSN | 0093-7711 1432-1211 |
IngestDate | Thu Aug 21 18:27:13 EDT 2025 Fri Jul 11 11:55:42 EDT 2025 Fri Jul 11 10:10:48 EDT 2025 Fri Jul 25 19:21:14 EDT 2025 Thu Apr 03 07:09:45 EDT 2025 Tue Jul 01 00:24:17 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Fri Feb 21 02:37:21 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11-12 |
Keywords | T cell cross-reactivity Binding core MHC class II Peptide binding Peptide-MHC Artificial neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-feb40be144be00063819fecadf4fd1fd21fae57ba3e9d4a9925d149978be005b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00251-015-0873-y.pdf |
PMID | 26416257 |
PQID | 1731482592 |
PQPubID | 54024 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4637192 proquest_miscellaneous_1746894582 proquest_miscellaneous_1731783252 proquest_journals_1731482592 pubmed_primary_26416257 crossref_citationtrail_10_1007_s00251_015_0873_y crossref_primary_10_1007_s00251_015_0873_y springer_journals_10_1007_s00251_015_0873_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: New York |
PublicationTitle | Immunogenetics (New York) |
PublicationTitleAbbrev | Immunogenetics |
PublicationTitleAlternate | Immunogenetics |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Nielsen, Justesen, Lund (CR30) 2010; 6 Andreatta, Schafer-Nielsen, Lund (CR4) 2011; 6 Wan, Liu, Xu (CR37) 2006; 7 Arnold, La Gruta, Miller (CR5) 2002; 169 Welsh, Che, Brehm, Selin (CR38) 2010; 235 Sturniolo, Bono, Ding (CR35) 1999; 17 Vita, Overton, Greenbaum (CR36) 2015; 43 Nielsen, Lundegaard, Blicher (CR27) 2007; 2 Al-Attiyah, Mustafa (CR1) 2004; 59 Bui, Sidney, Peters (CR12) 2005; 57 Birnbaum, Mendoza, Sethi (CR8) 2014; 157 Nielsen, Lundegaard, Lund (CR28) 2007; 8 Castellino, Zhong, Germain (CR14) 1997; 54 Karosiene, Rasmussen, Blicher (CR23) 2013; 65 Sewell (CR34) 2012; 12 Andreatta, Nielsen (CR3) 2012; 136 Doytchinova, Flower (CR16) 2003; 19 Braendstrup, Justesen, Osterbye (CR9) 2013; 8 Nielsen, Lundegaard, Blicher (CR29) 2008; 4 Rudolph, Stanfield, Wilson (CR32) 2006; 24 Anderson, Gorski (CR2) 2003; 171 Henikoff, Henikoff (CR21) 1992; 89 Basu, Horvath, Matsumoto (CR6) 2000; 164 Benoist, Mathis (CR7) 2001; 2 Lang, Jacobsen, Ikemizu (CR24) 2002; 3 Justesen, Harndahl, Lamberth (CR22) 2009; 5 Chicz, Urban, Gorga (CR15) 1993; 178 Carson, Vignali, Woodland, Vignali (CR13) 1997; 7 Germain (CR18) 1994; 76 Godkin, Smith, Willis (CR19) 2001; 166 Braendstrup, Mortensen, Justesen (CR10) 2014; 9 Sette, Adorini, Colon (CR33) 1989; 143 Hansen, Salamon (CR20) 1990; 12 Frankild, de Boer, Lund (CR17) 2008; 3 Wilson, Wilson, Schroder (CR39) 2004; 40 Nielsen, Lund (CR25) 2009; 10 Nielsen, Lundegaard, Worning (CR26) 2003; 12 Rose, Prlić, Bi (CR31) 2015; 43 Zhang, Chen, Wong (CR40) 2012; 7 Bremel, Homan (CR11) 2014; 5 PY Arnold (873_CR5) 2002; 169 P Braendstrup (873_CR9) 2013; 8 M Nielsen (873_CR28) 2007; 8 R Al-Attiyah (873_CR1) 2004; 59 DB Wilson (873_CR39) 2004; 40 AK Sewell (873_CR34) 2012; 12 D Basu (873_CR6) 2000; 164 AJ Godkin (873_CR19) 2001; 166 A Sette (873_CR33) 1989; 143 RN Germain (873_CR18) 1994; 76 MW Anderson (873_CR2) 2003; 171 F Castellino (873_CR14) 1997; 54 M Andreatta (873_CR3) 2012; 136 S Henikoff (873_CR21) 1992; 89 M Nielsen (873_CR29) 2008; 4 S Frankild (873_CR17) 2008; 3 MG Rudolph (873_CR32) 2006; 24 M Nielsen (873_CR30) 2010; 6 RM Welsh (873_CR38) 2010; 235 T Sturniolo (873_CR35) 1999; 17 RM Chicz (873_CR15) 1993; 178 H-H Bui (873_CR12) 2005; 57 S Justesen (873_CR22) 2009; 5 IA Doytchinova (873_CR16) 2003; 19 M Nielsen (873_CR27) 2007; 2 PW Rose (873_CR31) 2015; 43 L Zhang (873_CR40) 2012; 7 C Benoist (873_CR7) 2001; 2 E Karosiene (873_CR23) 2013; 65 M Nielsen (873_CR25) 2009; 10 P Braendstrup (873_CR10) 2014; 9 RT Carson (873_CR13) 1997; 7 M Andreatta (873_CR4) 2011; 6 J Wan (873_CR37) 2006; 7 ME Birnbaum (873_CR8) 2014; 157 HLE Lang (873_CR24) 2002; 3 RD Bremel (873_CR11) 2014; 5 LK Hansen (873_CR20) 1990; 12 M Nielsen (873_CR26) 2003; 12 R Vita (873_CR36) 2015; 43 17726526 - PLoS One. 2007;2(8):e796 19416502 - Immunome Res. 2009 May 05;5:2 19765293 - BMC Bioinformatics. 2009;10:296 14723617 - Scand J Immunol. 2004 Jan;59(1):16-24 21073747 - Immunome Res. 2010 Nov 13;6:9 15868141 - Immunogenetics. 2005 Jun;57(5):304-14 12244309 - Nat Immunol. 2002 Oct;3(10):940-3 22918468 - Nat Rev Immunol. 2012 Sep;12(9):669-77 8293464 - Cell. 1994 Jan 28;76(2):287-99 18350167 - PLoS One. 2008;3(3):e1831 18604266 - PLoS Comput Biol. 2008;4(7):e1000107 23900783 - Immunogenetics. 2013 Oct;65(10):711-24 2787361 - J Immunol. 1989 Aug 15;143(4):1265-7 25428375 - Nucleic Acids Res. 2015 Jan;43(Database issue):D345-56 17059589 - BMC Bioinformatics. 2006;7:463 15036909 - Mol Immunol. 2004 Feb;40(14-15):1047-55 14634075 - J Immunol. 2003 Dec 1;171(11):5683-7 22352343 - Immunology. 2012 Jul;136(3):306-11 20536568 - Immunol Rev. 2010 May;235(1):244-66 25300482 - Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12 24023895 - PLoS One. 2013;8(9):e73648 25389426 - Front Immunol. 2014 Oct 28;5:541 11526389 - Nat Immunol. 2001 Sep;2(9):797-801 24760079 - PLoS One. 2014;9(4):e94892 9324359 - Immunity. 1997 Sep;7(3):387-99 24855945 - Cell. 2014 May 22;157(5):1073-87 17608956 - BMC Bioinformatics. 2007;8:238 10385319 - Nat Biotechnol. 1999 Jun;17(6):555-61 16551255 - Annu Rev Immunol. 2006;24:419-66 11359828 - J Immunol. 2001 Jun 1;166(11):6720-7 9297534 - Hum Immunol. 1997 May;54(2):159-69 22383964 - PLoS One. 2012;7(2):e30483 22073191 - PLoS One. 2011;6(11):e26781 1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9 8315383 - J Exp Med. 1993 Jul 1;178(1):27-47 10820257 - J Immunol. 2000 Jun 1;164(11):5788-96 12717023 - Protein Sci. 2003 May;12(5):1007-17 14630655 - Bioinformatics. 2003 Nov 22;19(17):2263-70 12097376 - J Immunol. 2002 Jul 15;169(2):739-49 |
References_xml | – volume: 2 start-page: 797 year: 2001 end-page: 801 ident: CR7 article-title: Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? publication-title: Nat Immunol doi: 10.1038/ni0901-797 – volume: 6 start-page: 9 year: 2010 ident: CR30 article-title: NetMHCIIpan-2.0—improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure publication-title: Immunome Res doi: 10.1186/1745-7580-6-9 – volume: 19 start-page: 2263 year: 2003 end-page: 2270 ident: CR16 article-title: Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg312 – volume: 89 start-page: 10915 year: 1992 end-page: 10919 ident: CR21 article-title: Amino acid substitution matrices from protein blocks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.22.10915 – volume: 3 start-page: 940 year: 2002 end-page: 943 ident: CR24 article-title: A functional and structural basis for TCR cross-reactivity in multiple sclerosis publication-title: Nat Immunol doi: 10.1038/ni835 – volume: 166 start-page: 6720 year: 2001 end-page: 6727 ident: CR19 article-title: Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions publication-title: J Immunol doi: 10.4049/jimmunol.166.11.6720 – volume: 171 start-page: 5683 year: 2003 end-page: 5687 ident: CR2 article-title: Cutting edge: TCR contacts as anchors: effects on affinity and HLA-DM stability publication-title: J Immunol doi: 10.4049/jimmunol.171.11.5683 – volume: 3 start-page: e1831 year: 2008 ident: CR17 article-title: Amino acid similarity accounts for T cell cross-reactivity and for “holes” in the T cell repertoire publication-title: PLoS One doi: 10.1371/journal.pone.0001831 – volume: 6 start-page: e26781 year: 2011 ident: CR4 article-title: NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data publication-title: PLoS One doi: 10.1371/journal.pone.0026781 – volume: 157 start-page: 1073 year: 2014 end-page: 1087 ident: CR8 article-title: Deconstructing the peptide-MHC specificity of T cell recognition publication-title: Cell doi: 10.1016/j.cell.2014.03.047 – volume: 54 start-page: 159 year: 1997 end-page: 169 ident: CR14 article-title: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture publication-title: Hum Immunol doi: 10.1016/S0198-8859(97)00078-5 – volume: 8 start-page: e73648 year: 2013 ident: CR9 article-title: MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides publication-title: PLoS One doi: 10.1371/journal.pone.0073648 – volume: 164 start-page: 5788 year: 2000 end-page: 5796 ident: CR6 article-title: Molecular basis for recognition of an arthritic peptide and a foreign epitope on distinct MHC molecules by a single TCR publication-title: J Immunol doi: 10.4049/jimmunol.164.11.5788 – volume: 178 start-page: 27 year: 1993 end-page: 47 ident: CR15 article-title: Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles publication-title: J Exp Med doi: 10.1084/jem.178.1.27 – volume: 136 start-page: 306 year: 2012 end-page: 311 ident: CR3 article-title: Characterizing the binding motifs of 11 common human HLA-DP and HLA-DQ molecules using NNAlign publication-title: Immunology doi: 10.1111/j.1365-2567.2012.03579.x – volume: 40 start-page: 1047 year: 2004 end-page: 1055 ident: CR39 article-title: Specificity and degeneracy of T cells publication-title: Mol Immunol doi: 10.1016/j.molimm.2003.11.022 – volume: 143 start-page: 1265 year: 1989 end-page: 1267 ident: CR33 article-title: Capacity of intact proteins to bind to MHC class II molecules publication-title: J Immunol – volume: 12 start-page: 1007 year: 2003 end-page: 1017 ident: CR26 article-title: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations publication-title: Protein Sci doi: 10.1110/ps.0239403 – volume: 24 start-page: 419 year: 2006 end-page: 466 ident: CR32 article-title: How TCRs bind MHCs, peptides, and coreceptors publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.23.021704.115658 – volume: 10 start-page: 296 year: 2009 ident: CR25 article-title: NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction publication-title: BMC Bioinf doi: 10.1186/1471-2105-10-296 – volume: 65 start-page: 711 year: 2013 end-page: 724 ident: CR23 article-title: NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ publication-title: Immunogenetics doi: 10.1007/s00251-013-0720-y – volume: 169 start-page: 739 year: 2002 end-page: 749 ident: CR5 article-title: The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues publication-title: J Immunol doi: 10.4049/jimmunol.169.2.739 – volume: 5 start-page: 2 year: 2009 ident: CR22 article-title: Functional recombinant MHC class II molecules and high-throughput peptide-binding assays publication-title: Immunome Res doi: 10.1186/1745-7580-5-2 – volume: 4 start-page: e1000107 year: 2008 ident: CR29 article-title: Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000107 – volume: 12 start-page: 669 year: 2012 end-page: 677 ident: CR34 article-title: Why must T cells be cross-reactive? publication-title: Nat Rev Immunol doi: 10.1038/nri3279 – volume: 17 start-page: 555 year: 1999 end-page: 561 ident: CR35 article-title: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices publication-title: Nat Biotechnol doi: 10.1038/9858 – volume: 76 start-page: 287 year: 1994 end-page: 299 ident: CR18 article-title: MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation publication-title: Cell doi: 10.1016/0092-8674(94)90336-0 – volume: 2 start-page: e796 year: 2007 ident: CR27 article-title: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence publication-title: PLoS One doi: 10.1371/journal.pone.0000796 – volume: 235 start-page: 244 year: 2010 end-page: 266 ident: CR38 article-title: Heterologous immunity between viruses publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2010.00897.x – volume: 59 start-page: 16 year: 2004 end-page: 24 ident: CR1 article-title: Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis publication-title: Scand J Immunol doi: 10.1111/j.0300-9475.2004.01349.x – volume: 43 start-page: D345 year: 2015 end-page: D356 ident: CR31 article-title: The RCSB Protein Data Bank: views of structural biology for basic and applied research and education publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1214 – volume: 43 start-page: D405 year: 2015 end-page: D412 ident: CR36 article-title: The immune epitope database (IEDB) 3.0 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku938 – volume: 57 start-page: 304 year: 2005 end-page: 314 ident: CR12 article-title: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications publication-title: Immunogenetics doi: 10.1007/s00251-005-0798-y – volume: 7 start-page: 387 year: 1997 end-page: 399 ident: CR13 article-title: T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage publication-title: Immunity doi: 10.1016/S1074-7613(00)80360-X – volume: 9 start-page: e94892 year: 2014 ident: CR10 article-title: Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2 publication-title: PLoS One doi: 10.1371/journal.pone.0094892 – volume: 7 start-page: e30483 year: 2012 ident: CR40 article-title: TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules publication-title: PLoS One doi: 10.1371/journal.pone.0030483 – volume: 5 start-page: 541 year: 2014 ident: CR11 article-title: Frequency patterns of T-cell exposed amino acid motifs in immunoglobulin heavy chain peptides presented by MHCs publication-title: Front Immunol doi: 10.3389/fimmu.2014.00541 – volume: 8 start-page: 238 year: 2007 ident: CR28 article-title: Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method publication-title: BMC Bioinf doi: 10.1186/1471-2105-8-238 – volume: 12 start-page: 993 year: 1990 end-page: 1001 ident: CR20 article-title: Neural network ensembles publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.58871 – volume: 7 start-page: 463 year: 2006 ident: CR37 article-title: SVRMHC prediction server for MHC-binding peptides publication-title: BMC Bioinf doi: 10.1186/1471-2105-7-463 – volume: 2 start-page: e796 year: 2007 ident: 873_CR27 publication-title: PLoS One doi: 10.1371/journal.pone.0000796 – volume: 12 start-page: 669 year: 2012 ident: 873_CR34 publication-title: Nat Rev Immunol doi: 10.1038/nri3279 – volume: 59 start-page: 16 year: 2004 ident: 873_CR1 publication-title: Scand J Immunol doi: 10.1111/j.0300-9475.2004.01349.x – volume: 43 start-page: D345 year: 2015 ident: 873_CR31 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1214 – volume: 7 start-page: e30483 year: 2012 ident: 873_CR40 publication-title: PLoS One doi: 10.1371/journal.pone.0030483 – volume: 178 start-page: 27 year: 1993 ident: 873_CR15 publication-title: J Exp Med doi: 10.1084/jem.178.1.27 – volume: 12 start-page: 993 year: 1990 ident: 873_CR20 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.58871 – volume: 76 start-page: 287 year: 1994 ident: 873_CR18 publication-title: Cell doi: 10.1016/0092-8674(94)90336-0 – volume: 43 start-page: D405 year: 2015 ident: 873_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku938 – volume: 65 start-page: 711 year: 2013 ident: 873_CR23 publication-title: Immunogenetics doi: 10.1007/s00251-013-0720-y – volume: 166 start-page: 6720 year: 2001 ident: 873_CR19 publication-title: J Immunol doi: 10.4049/jimmunol.166.11.6720 – volume: 12 start-page: 1007 year: 2003 ident: 873_CR26 publication-title: Protein Sci doi: 10.1110/ps.0239403 – volume: 235 start-page: 244 year: 2010 ident: 873_CR38 publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2010.00897.x – volume: 9 start-page: e94892 year: 2014 ident: 873_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0094892 – volume: 54 start-page: 159 year: 1997 ident: 873_CR14 publication-title: Hum Immunol doi: 10.1016/S0198-8859(97)00078-5 – volume: 2 start-page: 797 year: 2001 ident: 873_CR7 publication-title: Nat Immunol doi: 10.1038/ni0901-797 – volume: 7 start-page: 463 year: 2006 ident: 873_CR37 publication-title: BMC Bioinf doi: 10.1186/1471-2105-7-463 – volume: 57 start-page: 304 year: 2005 ident: 873_CR12 publication-title: Immunogenetics doi: 10.1007/s00251-005-0798-y – volume: 136 start-page: 306 year: 2012 ident: 873_CR3 publication-title: Immunology doi: 10.1111/j.1365-2567.2012.03579.x – volume: 157 start-page: 1073 year: 2014 ident: 873_CR8 publication-title: Cell doi: 10.1016/j.cell.2014.03.047 – volume: 19 start-page: 2263 year: 2003 ident: 873_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg312 – volume: 143 start-page: 1265 year: 1989 ident: 873_CR33 publication-title: J Immunol doi: 10.4049/jimmunol.143.4.1265 – volume: 17 start-page: 555 year: 1999 ident: 873_CR35 publication-title: Nat Biotechnol doi: 10.1038/9858 – volume: 3 start-page: e1831 year: 2008 ident: 873_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0001831 – volume: 24 start-page: 419 year: 2006 ident: 873_CR32 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.23.021704.115658 – volume: 4 start-page: e1000107 year: 2008 ident: 873_CR29 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000107 – volume: 5 start-page: 2 year: 2009 ident: 873_CR22 publication-title: Immunome Res doi: 10.1186/1745-7580-5-2 – volume: 169 start-page: 739 year: 2002 ident: 873_CR5 publication-title: J Immunol doi: 10.4049/jimmunol.169.2.739 – volume: 40 start-page: 1047 year: 2004 ident: 873_CR39 publication-title: Mol Immunol doi: 10.1016/j.molimm.2003.11.022 – volume: 8 start-page: e73648 year: 2013 ident: 873_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0073648 – volume: 89 start-page: 10915 year: 1992 ident: 873_CR21 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.22.10915 – volume: 5 start-page: 541 year: 2014 ident: 873_CR11 publication-title: Front Immunol doi: 10.3389/fimmu.2014.00541 – volume: 171 start-page: 5683 year: 2003 ident: 873_CR2 publication-title: J Immunol doi: 10.4049/jimmunol.171.11.5683 – volume: 7 start-page: 387 year: 1997 ident: 873_CR13 publication-title: Immunity doi: 10.1016/S1074-7613(00)80360-X – volume: 3 start-page: 940 year: 2002 ident: 873_CR24 publication-title: Nat Immunol doi: 10.1038/ni835 – volume: 10 start-page: 296 year: 2009 ident: 873_CR25 publication-title: BMC Bioinf doi: 10.1186/1471-2105-10-296 – volume: 6 start-page: 9 year: 2010 ident: 873_CR30 publication-title: Immunome Res doi: 10.1186/1745-7580-6-9 – volume: 8 start-page: 238 year: 2007 ident: 873_CR28 publication-title: BMC Bioinf doi: 10.1186/1471-2105-8-238 – volume: 6 start-page: e26781 year: 2011 ident: 873_CR4 publication-title: PLoS One doi: 10.1371/journal.pone.0026781 – volume: 164 start-page: 5788 year: 2000 ident: 873_CR6 publication-title: J Immunol doi: 10.4049/jimmunol.164.11.5788 – reference: 21073747 - Immunome Res. 2010 Nov 13;6:9 – reference: 15868141 - Immunogenetics. 2005 Jun;57(5):304-14 – reference: 19765293 - BMC Bioinformatics. 2009;10:296 – reference: 12717023 - Protein Sci. 2003 May;12(5):1007-17 – reference: 9324359 - Immunity. 1997 Sep;7(3):387-99 – reference: 22073191 - PLoS One. 2011;6(11):e26781 – reference: 16551255 - Annu Rev Immunol. 2006;24:419-66 – reference: 15036909 - Mol Immunol. 2004 Feb;40(14-15):1047-55 – reference: 8315383 - J Exp Med. 1993 Jul 1;178(1):27-47 – reference: 17726526 - PLoS One. 2007;2(8):e796 – reference: 2787361 - J Immunol. 1989 Aug 15;143(4):1265-7 – reference: 19416502 - Immunome Res. 2009 May 05;5:2 – reference: 24760079 - PLoS One. 2014;9(4):e94892 – reference: 25428375 - Nucleic Acids Res. 2015 Jan;43(Database issue):D345-56 – reference: 23900783 - Immunogenetics. 2013 Oct;65(10):711-24 – reference: 11359828 - J Immunol. 2001 Jun 1;166(11):6720-7 – reference: 25389426 - Front Immunol. 2014 Oct 28;5:541 – reference: 25300482 - Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12 – reference: 12244309 - Nat Immunol. 2002 Oct;3(10):940-3 – reference: 22383964 - PLoS One. 2012;7(2):e30483 – reference: 11526389 - Nat Immunol. 2001 Sep;2(9):797-801 – reference: 14634075 - J Immunol. 2003 Dec 1;171(11):5683-7 – reference: 12097376 - J Immunol. 2002 Jul 15;169(2):739-49 – reference: 18350167 - PLoS One. 2008;3(3):e1831 – reference: 24023895 - PLoS One. 2013;8(9):e73648 – reference: 10385319 - Nat Biotechnol. 1999 Jun;17(6):555-61 – reference: 24855945 - Cell. 2014 May 22;157(5):1073-87 – reference: 22918468 - Nat Rev Immunol. 2012 Sep;12(9):669-77 – reference: 20536568 - Immunol Rev. 2010 May;235(1):244-66 – reference: 17608956 - BMC Bioinformatics. 2007;8:238 – reference: 9297534 - Hum Immunol. 1997 May;54(2):159-69 – reference: 14630655 - Bioinformatics. 2003 Nov 22;19(17):2263-70 – reference: 1438297 - Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9 – reference: 17059589 - BMC Bioinformatics. 2006;7:463 – reference: 8293464 - Cell. 1994 Jan 28;76(2):287-99 – reference: 18604266 - PLoS Comput Biol. 2008;4(7):e1000107 – reference: 22352343 - Immunology. 2012 Jul;136(3):306-11 – reference: 10820257 - J Immunol. 2000 Jun 1;164(11):5788-96 – reference: 14723617 - Scand J Immunol. 2004 Jan;59(1):16-24 |
SSID | ssj0015926 |
Score | 2.5490737 |
Snippet | A key event in the generation of a cellular response against malicious organisms through the endocytic pathway is binding of peptidic antigens by major... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 641 |
SubjectTerms | Algorithms Allergology Amino Acid Sequence Amino acids Animals Antigens Binding Sites Biomedical and Life Sciences Biomedicine Cell Biology Cluster Analysis Computational Biology - methods Cytomegalovirus Databases, Protein Epitopes - immunology Experimental methods Gene Function Histocompatibility Antigens Class II - chemistry Histocompatibility Antigens Class II - immunology Histocompatibility Antigens Class II - metabolism Human Genetics Humans Identification Immune system Immunology Lymphocytes Mice Models, Molecular Molecular Sequence Data Neural networks Neural Networks (Computer) Original Paper Peptide Fragments - chemistry Peptide Fragments - metabolism Peptides Protein Binding Research methodology Sequence Homology, Amino Acid T cell receptors |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6alIZeQps2rZO0qNBTi2BlS5Z1XELDprA9dSE3oyc1BO-S3T3sv69GfpBNmkDPGgvZMyN_o5n5BPDVcx6YdJqqYB3lPnhaGVlSU4boH67SKh24zX-VswX_eSNu-j7u9VDtPqQk0049NrslOBxDX0EnlSzo7gBeihi6Yx3XIp-OqQOh0h1rGKpH6MjYkMr81xT7P6NHCPNxoeSDbGn6CV29geMePZJpp-638MK3J_Cqu09ydwJH8z5T_g7WU2u3SANBortT7KfEmiCyukMJVAZZBrLCkhbn6Xx2SSzCaHJ9TUyTGl2IDqGJ_r4jeFRLmnT44N04jPSXpHF9sVHS73tYXP34fTmj_QUL1ApZbGjwhk-MjzGV8R14YSp4q13gwbHgcha0F9LowivHtVK5cDGiioEnygtTnMJhu2z9RyBVsLnTesJwTh0xl6ksS32urnR5oTKYDF-6tj37OF6CcVuPvMlJOXVUTo3KqXcZfBsfWXXUG88JXwzqq3svXNdMFkhzGi0igy_jcPQfTIro1i-3nYyM25p4VoaXlcIMYwYfOosYVxQBJYsxpMxA7tnKKID83fsjbfMn8XjzspAM1_Z9sKp7S3_qRc_-S_ocXudo7ql58gION3db_ymiqI35nLzmLylpF20 priority: 102 providerName: Springer Nature |
Title | Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification |
URI | https://link.springer.com/article/10.1007/s00251-015-0873-y https://www.ncbi.nlm.nih.gov/pubmed/26416257 https://www.proquest.com/docview/1731482592 https://www.proquest.com/docview/1731783252 https://www.proquest.com/docview/1746894582 https://pubmed.ncbi.nlm.nih.gov/PMC4637192 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKxAXBOVlaKtF4gRa4fVr7RNKqoQUlAghIoWTtU_VEnJCkxzy75lZP2haNac97Nhae2Z257XfEPLBJonjwkhWOG1YYp1luRIZU5kD_TC5LHzAbTrLJvPk2yJdtAG3dVtW2e2JfqM2S40x8s9cxAhZmRbRl9Vfhl2jMLvattB4SI4RugylWix6hwtOat9uDb12sCI577KaoQcRhZMdHOmUhbmI2W7_XLpjbN6tmbyVOPXn0fgZedoaknTQcP45eWDrE_KoaS25OyGPp23S_AVZD7TeIiIEBc1neLUSy4Po6hopkC906egKq1uMZdPJBdVoUdPLS6oqf-eFSucqUP0dxagtrXwcwpp-GpEwaWXauiPP6pdkPh79upiwttcC06mIN8xZlYTKgnulbGPH8MJZLY1LnOHORNxJmwolY1uYRBZFlBpwrsAHRfpUxa_IUb2s7RtCc6cjI2XI8Z0SzC-Va-6vvJrMRHERkLD706VugcixH8afsodQ9swpgTklMqfcBeRj_8iqQeE4RHzasa9sFXJd_hefgLzvp0GVMD8ia7vcNjQCdrj0IE2S5QUmGwPyupGIfkVgW3JwJ0VAxJ6s9AQI5b0_U1dXHtI7yWLBcW2fOqm6sfT7PvTt4Q99R55EKN_-4uQpOdpcb-0ZWFAbde7V5JwcD8bD4QzHr7-_j2AcjmY_fsLsPBr8AwjTIAM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIh4XBOUVKLBIcAGt6vVr7QNCVaFKaNNTK-Vm1vsQlpATmkTIf4rfyMz6AaEit553bK09387OewDe2Dh2QhrFc6cNj62zPCtlysvU4fkwmcq9w216lo4v4i-zZLYDv_paGEqr7GWiF9RmrslHfiBkRC0rkzz8uPjBaWoURVf7ERotLE5s8xNNtuWHySfk79swPP58fjTm3VQBrhMZrbizZRyUFg2J0rY3tsid1cq42BnhTCicsoksVWRzE6s8DxODZgRaW0SflBG-9wbcxIs3IGNPzgYDDzUDP96NvASotQrRR1ED37QUNQk03BMeZDLizeY9eEW5vZqj-U-g1t9_x_fhXqe4ssMWaQ9gx9Z7cKsdZdnswe1pF6R_CMtDrdfUgYKhpOFUyknpSGxxSRSEAzZ3bEHZNMby6fiIadLg2WTCysrX2DDlXIWipmHkJWaV93tYMyxT501WmS7PyUPrEVxcCxcew249r-1TYJnToVEqEPROhepemWnhS2xNasIoH0HQ_-lCd43Paf7G92Jo2eyZUyBzCmJO0Yzg3fDIou36sY14v2df0QmAZfEHriN4PSzj0aV4jKrtfN3SSJSoyVaaOM1yCm6O4EmLiGFHqMsKNF_lCOQGVgYCah2-uVJX33wL8TiNpKC9ve9R9dfW__ehz7Z_6Cu4Mz6fnhank7OT53A3JKz7os192F1dru0L1N5W5Ut_ZBh8ve4z-htYAFjn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVFRcEJSXocAiwQW0qtevtQ8IlbZRQklUISr15q69uyJS5aRNIpS_xq9jZv2AUJFbzzu21p7HzuzMfAPw1kSRFVIrntlS88hYw9NCJrxILOqHTlXmLtxG42RwFn05j8-34FfbC0Nlla1NdIZaT0u6I98XMiTIyjgL9m1TFnF61P80u-I0QYoyre04jVpETszqJ4Zv84_DI-T1uyDoH38_HPBmwgAvYxkuuDVF5BcGg4rC1Ke3yKwplbaR1cLqQFhlYlmo0GQ6UlkWxBpDCoy8iD4uQnzvHdiWFBX1YPvz8fj0W5fDwK0mNQZmiD6sEG1O1XcQpuhXYBgfcz-VIV-tn4o3XN2bFZv_pG3dadh_APcbN5Yd1HL3ELZMtQt368GWq13YGTUp-0cwPyjLJeFRMLQ7nBo7qTiJza6JgqSCTS2bUW2NNnw0OGQl-fNsOGTFxHXcMGXtBA3PitGdMZu4WxCju2XC4WQT3VQ9OUF7DGe3wocn0KumlXkGLLVloJXyBb1TofNXpKVwDbc60UGYeeC3fzovGxh0msZxmXcAzo45OTInJ-bkKw_ed4_MagyQTcR7LfvyxhzM8z_C68GbbhkVmbIzqjLTZU0j0b7GG2miJM0o1enB01oiuh2hZyswmJUeyDVZ6QgISHx9pZr8cIDiURJKQXv70ErVX1v_34c-3_yhr2EH9TP_OhyfvIB7AYm66-Dcg97iemleoiu3KF41OsPg4rbV9Dc8Ml6C |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+pan-specific+prediction+of+peptide-MHC+class+II+binding+affinity+with+improved+binding+core+identification&rft.jtitle=Immunogenetics+%28New+York%29&rft.au=Andreatta%2C+Massimo&rft.au=Karosiene%2C+Edita&rft.au=Rasmussen%2C+Michael&rft.au=Stryhn%2C+Anette&rft.date=2015-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0093-7711&rft.eissn=1432-1211&rft.volume=67&rft.issue=11-12&rft.spage=641&rft_id=info:doi/10.1007%2Fs00251-015-0873-y&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3859075741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-7711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-7711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-7711&client=summon |