Mapping urban air quality in near real-time using observations from low-cost sensors and model information

The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 106; pp. 234 - 247
Main Authors Schneider, Philipp, Castell, Nuria, Vogt, Matthias, Dauge, Franck R., Lahoz, William A., Bartonova, Alena
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. •A method is presented to map urban air quality in real time with low-cost sensors.•The method merges low-cost sensor data with time-invariant model output.•Resulting maps exhibit realistic spatial patterns of urban air pollution.•Comparison against station data shows good replication of temporal daily cycle.•Validation indicates an R2 value of 0.89 against reference observations.
AbstractList The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R of 0.89 and a root mean squared error of 14.3 μg m . It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.
The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. •A method is presented to map urban air quality in real time with low-cost sensors.•The method merges low-cost sensor data with time-invariant model output.•Resulting maps exhibit realistic spatial patterns of urban air pollution.•Comparison against station data shows good replication of temporal daily cycle.•Validation indicates an R2 value of 0.89 against reference observations.
The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.
The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. Keywords: Air quality, Urban air quality, Crowdsourcing, Mapping, Low-cost microsensors, Nitrogen dioxide
The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m-3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m-3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.
Author Lahoz, William A.
Bartonova, Alena
Schneider, Philipp
Dauge, Franck R.
Vogt, Matthias
Castell, Nuria
Author_xml – sequence: 1
  givenname: Philipp
  surname: Schneider
  fullname: Schneider, Philipp
  email: ps@nilu.no
– sequence: 2
  givenname: Nuria
  surname: Castell
  fullname: Castell, Nuria
– sequence: 3
  givenname: Matthias
  surname: Vogt
  fullname: Vogt, Matthias
– sequence: 4
  givenname: Franck R.
  surname: Dauge
  fullname: Dauge, Franck R.
– sequence: 5
  givenname: William A.
  surname: Lahoz
  fullname: Lahoz, William A.
– sequence: 6
  givenname: Alena
  surname: Bartonova
  fullname: Bartonova, Alena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28668173$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1r3DAURU1JaSZp_0EpWnZjV7Itye6iUEI_AindtGvxLD0FDbY0keQJ-ffVzCRddNGsBOLcg7i6F9WZDx6r6i2jDaNMfNg26PfO56alTDaUN5TyF9WGDbKrheT0rNoUjNY9a-l5dZHSllLa9gN_VZ23gxADk92m2v6A3c75W7LGCTwBF8ndCrPLD8R54hEiiQhznd2CZE0HMkwJ4x6yCz4RG8NC5nBf65AySehTiImAN2QJBucisSEuR_h19dLCnPDN43lZ_f765dfV9_rm57frq883teayy7WWYtK94C0HKe3ERcdGPlir0Q7CjHoU2vZSjJx30GpuOBiKGnoBgjNh-u6yuj55TYCt2kW3QHxQAZw6XoR4qyBmp2dUosPSiAU5Sd1zOxS3ZEPXGzQMuKXF9f7k2sVwt2LKanFJ4zyDx7Am1ZZOOzkMY_ssykbGOZetOFjfPaLrtKD5-8anbynAxxOgY0gpolXa5WOJOYKbFaPqsAG1VacNqMMGFOWqbKCE-3_CT_5nYp9OMSx_s3cYVdIOvUbjIupcynP_F_wBaAzOCQ
CitedBy_id crossref_primary_10_3389_fbuil_2022_971523
crossref_primary_10_1016_j_atmosenv_2019_117134
crossref_primary_10_1007_s12613_021_2378_z
crossref_primary_10_1080_02786826_2019_1619915
crossref_primary_10_1109_JSEN_2024_3442874
crossref_primary_10_1016_j_envint_2018_10_045
crossref_primary_10_1016_j_scitotenv_2023_162336
crossref_primary_10_3390_ijerph19031647
crossref_primary_10_1088_1757_899X_648_1_012037
crossref_primary_10_3390_app14083282
crossref_primary_10_5194_acp_20_625_2020
crossref_primary_10_1007_s11356_019_04772_4
crossref_primary_10_3390_atmos10020041
crossref_primary_10_1109_ACCESS_2023_3302348
crossref_primary_10_1007_s11837_018_3165_9
crossref_primary_10_1016_j_jclepro_2020_122347
crossref_primary_10_5194_acp_21_12463_2021
crossref_primary_10_1016_j_icte_2020_06_004
crossref_primary_10_3390_rs14215576
crossref_primary_10_5194_amt_12_2933_2019
crossref_primary_10_1029_2020WR029121
crossref_primary_10_1007_s10661_024_13356_w
crossref_primary_10_3390_s23052815
crossref_primary_10_3390_atmos11020122
crossref_primary_10_3390_atmos13081282
crossref_primary_10_1108_OIR_09_2018_0269
crossref_primary_10_3390_su12219045
crossref_primary_10_3390_ijgi11020132
crossref_primary_10_3390_s20030786
crossref_primary_10_3389_fceng_2022_842514
crossref_primary_10_4000_developpementdurable_17647
crossref_primary_10_1007_s11869_024_01566_7
crossref_primary_10_1016_j_compenvurbsys_2023_101939
crossref_primary_10_3390_s19010209
crossref_primary_10_1007_s41064_022_00231_x
crossref_primary_10_3390_en14113264
crossref_primary_10_1016_j_aeaoa_2019_100027
crossref_primary_10_1016_j_atmosenv_2020_117287
crossref_primary_10_1029_2021EA001743
crossref_primary_10_3390_antiox11101908
crossref_primary_10_1109_JSEN_2022_3216071
crossref_primary_10_3390_pr11082338
crossref_primary_10_1016_j_eti_2022_102551
crossref_primary_10_3390_atmos14030540
crossref_primary_10_1016_j_scs_2023_104680
crossref_primary_10_1016_j_trd_2019_10_019
crossref_primary_10_1016_j_snb_2020_128897
crossref_primary_10_1080_15275922_2024_2431330
crossref_primary_10_3390_land11101635
crossref_primary_10_5194_amt_14_37_2021
crossref_primary_10_3390_ijgi7120468
crossref_primary_10_1016_j_trd_2019_06_009
crossref_primary_10_1038_s41597_024_03767_2
crossref_primary_10_1021_acssensors_9b01455
crossref_primary_10_3390_atmos11121284
crossref_primary_10_1007_s13762_022_04513_0
crossref_primary_10_1039_C9LC00035F
crossref_primary_10_5194_amt_15_4047_2022
crossref_primary_10_5194_acp_22_4615_2022
crossref_primary_10_17645_up_v5i4_3165
crossref_primary_10_1109_JIOT_2022_3196154
crossref_primary_10_1017_eds_2024_18
crossref_primary_10_1016_j_envres_2017_10_019
crossref_primary_10_5194_gmd_16_2193_2023
crossref_primary_10_3390_ijerph182111614
crossref_primary_10_3390_toxics10010033
crossref_primary_10_2478_bipie_2021_0014
crossref_primary_10_1021_acs_analchem_3c02719
crossref_primary_10_1016_j_envint_2018_04_018
crossref_primary_10_1088_1748_9326_acf7d5
crossref_primary_10_3390_atmos12060736
crossref_primary_10_1016_j_snb_2020_127869
crossref_primary_10_1016_j_envint_2020_105965
crossref_primary_10_1016_j_jaerosci_2020_105716
crossref_primary_10_1021_acs_est_3c03661
crossref_primary_10_1016_j_buildenv_2024_112463
crossref_primary_10_1016_j_envsci_2021_03_020
crossref_primary_10_1016_j_atmosenv_2020_117479
crossref_primary_10_3390_atmos11070736
crossref_primary_10_3390_app10030856
crossref_primary_10_1016_j_atmosenv_2023_119756
crossref_primary_10_3390_ijerph16071252
crossref_primary_10_3390_ijgi7050187
crossref_primary_10_1016_j_envpol_2020_114549
crossref_primary_10_5194_hess_22_391_2018
crossref_primary_10_5194_amt_15_3261_2022
crossref_primary_10_1016_j_buildenv_2023_110330
crossref_primary_10_3390_atmos12020179
crossref_primary_10_3390_s22010394
crossref_primary_10_5194_amt_13_4601_2020
crossref_primary_10_1007_s10661_023_11319_1
crossref_primary_10_1016_j_scitotenv_2021_148378
crossref_primary_10_3390_s22031093
crossref_primary_10_3390_s23084116
crossref_primary_10_3389_fenvs_2022_867434
crossref_primary_10_1021_acs_est_0c02341
crossref_primary_10_3390_atmos10080445
crossref_primary_10_3390_ijgi12090350
crossref_primary_10_1016_j_atmosenv_2018_09_030
crossref_primary_10_1021_acs_est_9b03950
crossref_primary_10_1016_j_scs_2023_104614
crossref_primary_10_1016_j_atmosenv_2019_117092
crossref_primary_10_1016_j_ifacol_2022_07_631
crossref_primary_10_3390_toxics12040233
crossref_primary_10_1021_acssensors_8b00074
crossref_primary_10_1016_j_scitotenv_2018_12_202
crossref_primary_10_1016_j_uclim_2021_100972
crossref_primary_10_5194_amt_14_4139_2021
crossref_primary_10_1016_j_envsoft_2022_105460
crossref_primary_10_1016_j_snb_2021_130958
crossref_primary_10_3390_s20071919
crossref_primary_10_1016_j_jenvman_2021_114157
crossref_primary_10_1088_1748_9326_ada397
crossref_primary_10_3390_s21062160
crossref_primary_10_5194_amt_13_3277_2020
crossref_primary_10_1109_JSEN_2024_3450898
crossref_primary_10_1109_LES_2022_3196543
crossref_primary_10_3390_atmos12030300
crossref_primary_10_3390_atmos14020368
crossref_primary_10_1016_j_uclim_2021_100968
crossref_primary_10_3390_s24092786
crossref_primary_10_3389_fpubh_2022_933665
crossref_primary_10_1038_s41598_022_19929_4
crossref_primary_10_3390_atmos11060669
crossref_primary_10_1016_j_scs_2024_105896
crossref_primary_10_3390_atmos10090539
crossref_primary_10_3390_ijerph18042194
crossref_primary_10_1088_1755_1315_1123_1_012068
crossref_primary_10_1080_15567036_2021_1968076
crossref_primary_10_3390_s19112503
crossref_primary_10_1021_acssensors_4c03164
crossref_primary_10_1145_3340847
crossref_primary_10_1016_j_buildenv_2023_110403
crossref_primary_10_1007_s11869_024_01683_3
crossref_primary_10_5194_acp_25_2745_2025
crossref_primary_10_1016_j_atmosenv_2018_08_028
crossref_primary_10_1021_acsestair_4c00125
crossref_primary_10_3390_s22031295
crossref_primary_10_1016_j_atmosenv_2020_118099
crossref_primary_10_1016_j_ufug_2020_126801
crossref_primary_10_1029_2024CSJ000084
crossref_primary_10_1007_s41742_024_00659_6
crossref_primary_10_1016_j_envsoft_2020_104837
crossref_primary_10_1016_j_jes_2020_09_009
crossref_primary_10_1109_TII_2021_3100501
crossref_primary_10_3390_atmos9030086
crossref_primary_10_1016_j_envres_2021_112207
crossref_primary_10_3390_s20113073
crossref_primary_10_1016_j_scs_2023_104607
crossref_primary_10_1513_AnnalsATS_201906_477ST
crossref_primary_10_3389_fenvs_2022_1026842
crossref_primary_10_3390_s21051876
crossref_primary_10_1029_2018RG000616
crossref_primary_10_1007_s11270_021_05363_1
crossref_primary_10_1016_j_apr_2021_03_010
crossref_primary_10_1016_j_apr_2021_101205
crossref_primary_10_3390_atmos11020212
crossref_primary_10_3389_feart_2019_00221
crossref_primary_10_1126_science_adq3678
crossref_primary_10_3390_s23041859
crossref_primary_10_3390_s25041236
crossref_primary_10_1002_asmb_2713
crossref_primary_10_1007_s10666_023_09909_x
crossref_primary_10_3390_atmos12080961
crossref_primary_10_5194_amt_12_5161_2019
crossref_primary_10_3390_s18093008
crossref_primary_10_1029_2021GH000451
crossref_primary_10_3390_rs12182885
crossref_primary_10_3390_atmos13122042
crossref_primary_10_1016_j_scitotenv_2019_134698
crossref_primary_10_3390_su10103434
crossref_primary_10_1080_01431161_2024_2373338
crossref_primary_10_1016_j_uclim_2025_102344
crossref_primary_10_1038_s41612_024_00837_5
crossref_primary_10_1109_ACCESS_2020_2975741
crossref_primary_10_3390_s24185915
crossref_primary_10_1038_s41370_020_0255_x
crossref_primary_10_1016_j_envint_2019_105022
crossref_primary_10_1016_j_envpol_2020_115363
crossref_primary_10_1109_TIM_2023_3331428
crossref_primary_10_1007_s13198_024_02697_x
crossref_primary_10_1016_j_envpol_2020_116334
crossref_primary_10_3390_s21103338
crossref_primary_10_3390_atmos10100610
crossref_primary_10_1016_j_atmosenv_2019_04_048
crossref_primary_10_1149_1945_7111_ab74bd
crossref_primary_10_1016_j_atmosenv_2024_120652
crossref_primary_10_3390_atmos12101246
crossref_primary_10_3390_signals5010004
crossref_primary_10_3390_atmos12010091
crossref_primary_10_1007_s10661_019_7838_9
crossref_primary_10_1016_j_scitotenv_2020_141286
crossref_primary_10_1016_j_atmosenv_2020_117410
crossref_primary_10_1021_acs_est_9b00282
crossref_primary_10_1016_j_envpol_2021_116763
crossref_primary_10_3390_en14238028
Cites_doi 10.1021/es505362x
10.1016/j.atmosenv.2014.09.017
10.1016/j.atmosenv.2014.03.039
10.1016/j.atmosenv.2012.11.060
10.1016/j.atmosenv.2015.01.017
10.1002/jgrd.50233
10.1016/j.scitotenv.2010.06.021
10.4209/aaqr.2012.06.0152
10.1021/es4022602
10.1016/j.envint.2016.12.007
10.1016/j.atmosenv.2016.09.050
10.1016/j.envint.2014.11.019
10.1016/j.atmosenv.2008.05.057
10.1016/j.atmosenv.2013.02.037
10.1016/j.envpol.2012.12.032
10.1016/j.cageo.2007.05.001
10.1016/j.atmosenv.2015.01.049
10.5194/amt-7-3325-2014
10.1080/01621459.1979.10481038
10.1016/j.scitotenv.2012.10.098
10.1016/j.pmcj.2014.11.008
10.1016/j.snb.2015.03.031
10.1016/j.atmosenv.2015.11.059
10.1016/j.atmosenv.2008.05.058
10.5194/acp-15-1205-2015
10.1016/j.uclim.2014.08.002
10.1504/IJEP.2009.021820
10.1038/466685a
10.5194/gmd-8-2777-2015
10.1016/j.atmosenv.2015.11.033
10.1111/j.1751-5823.2003.tb00194.x
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.envint.2017.05.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
EndPage 247
ExternalDocumentID oai_doaj_org_article_63e248fa7b7c45f896c71834ded1a5f0
28668173
10_1016_j_envint_2017_05_005
S0160412016310741
Genre Journal Article
GeographicLocations Norway
GeographicLocations_xml – name: Norway
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c573t-c76bc46525a77fb5631958ffcef86d9c96cf4769553a2c5d5ad0eca46a6516d43
IEDL.DBID .~1
ISSN 0160-4120
1873-6750
IngestDate Wed Aug 27 01:17:14 EDT 2025
Tue Aug 05 09:56:19 EDT 2025
Fri Jul 11 01:55:46 EDT 2025
Wed Feb 19 02:40:41 EST 2025
Tue Jul 01 01:23:13 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Fri Feb 23 02:31:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Urban air quality
Crowdsourcing
Air quality
Mapping
Low-cost microsensors
Nitrogen dioxide
Language English
License This is an open access article under the CC BY license.
Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-c76bc46525a77fb5631958ffcef86d9c96cf4769553a2c5d5ad0eca46a6516d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0160412016310741
PMID 28668173
PQID 1915557260
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_63e248fa7b7c45f896c71834ded1a5f0
proquest_miscellaneous_2000378892
proquest_miscellaneous_1915557260
pubmed_primary_28668173
crossref_citationtrail_10_1016_j_envint_2017_05_005
crossref_primary_10_1016_j_envint_2017_05_005
elsevier_sciencedirect_doi_10_1016_j_envint_2017_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environment international
PublicationTitleAlternate Environ Int
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (bb0145) 2010
Hand (bb0090) 2010; 466
Mueller, Hasenfratz, Saukh, Fierz, Hueglin (bb0165) 2016; 126
Petersen (bb0195) 1980
Peters, Van den Bossche, Reggente, Van Poppel, De Baets, Theunis (bb0190) 2014; 92
Horálek, Smet, Kurfürst, Leeuw, Benešová (bb0115) 2013
Cleveland (bb0045) 1979; 74
Peters, Theunis, van Poppel, Berghmans (bb0185) 2013; 13
Kumar, Morawska, Martani, Biskos, Neophytou, Di Sabatino, Bell, Norford, Britter (bb0140) 2015; 75
Denby, Sundvor, Cassiani, de Smet, de Leeuw, Horálek (bb0070) 2010; 408
Baklanov, Molina, Gauss (bb0010) 2016; 126
Oftedal, Walker, Gram, McInnes, Nafstad (bb0180) 2009; 36
Van den Bossche, Peters, Verwaeren, Botteldooren, Theunis, De Baets (bb0245) 2015; 105
De Nazelle, Seto, Donaire-Gonzalez, Mendez, Matamala, Nieuwenhuijsen, Jerrett (bb0055) 2013; 176
Denby, Sundvor, Schneider, Thanh (bb0075) 2014
Hengl, Heuvelink, Rossiter (bb0100) 2007; 33
Kalnay (bb0130) 2003
Isaaks, Srivastava (bb0125) 1989
Nieuwenhuijsen, Donaire-Gonzalez, Rivas, de Castro, Cirach, Hoek, Seto, Jerrett, Sunyer (bb0175) 2015; 49
Chilès, Delfiner (bb0040) 2012
Cressie (bb0050) 1993
Snyder (bb0225) 2013; 47
Guerreiro, Foltescu, de Leeuw (bb0085) 2014; 98
Kitanidis (bb0135) 1997
Webster, Oliver (bb0255) 2007
Sarma (bb0205) 2009
(bb0260) 2016
Hoek, Beelen, de Hoogh, Vienneau, Gulliver, Fischer, Briggs (bb0105) 2008; 42
Marécal (bb0155) 2015; 8
Spinelle, Gerboles, Villani, Aleixandre, Bonavitacola (bb0230) 2015; 215
Howe (bb0120) 2006; 14
Schneider, Lahoz, van der A (bb0210) 2015; 15
Beelen (bb0015) 2013, jun; 72
Denby, Schaap, Segers, Builtjes, Horálek (bb0065) 2008; 42
Horálek, de Smet, Kurfürst, Leeuw, Benešová (bb0110) 2014
Piedrahita (bb0200) 2014; 3
Borrego (bb0025) 2016; 147
Castell, Dauge, Schneider, Vogt, Lerner, Fishbain, Broday, Bartonova (bb0030) 2017; 99
Bertino, Evensen, Wackernagel (bb0020) 2003; 71
Mead (bb0160) 2013; 70
Slørdal, Walker, Solberg (bb0220) 2003
Steinle, Reis, Eric (bb0235) 2013; 443
Castell, Kobernus, Liu, Schneider, Lahoz, Berre, Noll (bb0035) 2014; 14
Lahoz, Schneider (bb0150) 2014; 2
Hasenfratz, Saukh, Walser, Hueglin, Fierz, Arn, Beutel, Thiele (bb0095) 2015; 16
Goovaerts (bb0080) 1997
Wackernagel (bb0250) 2003
Aleixandre, Gerboles (bb0005) 2012; 30
Mueller, Wagner, Barmpadimos, Hueglin (bb0170) 2015; 106
De Smet, Horálek, Conková, Kurfürst, De Leeuw, Denby (bb0060) 2010
Serrano Sanz, Holocher-Ertl, Kieslinger, Sanz Garcia, Silva (bb0215) 2014
Tilloy, Mallet, Poulet, Pesin, Brocheton (bb0240) 2013; 118
Bertino (10.1016/j.envint.2017.05.005_bb0020) 2003; 71
(10.1016/j.envint.2017.05.005_bb0145) 2010
Spinelle (10.1016/j.envint.2017.05.005_bb0230) 2015; 215
Denby (10.1016/j.envint.2017.05.005_bb0075) 2014
Howe (10.1016/j.envint.2017.05.005_bb0120) 2006; 14
(10.1016/j.envint.2017.05.005_bb0260) 2016
Mueller (10.1016/j.envint.2017.05.005_bb0170) 2015; 106
Kitanidis (10.1016/j.envint.2017.05.005_bb0135) 1997
Sarma (10.1016/j.envint.2017.05.005_bb0205) 2009
Piedrahita (10.1016/j.envint.2017.05.005_bb0200) 2014; 3
Cleveland (10.1016/j.envint.2017.05.005_bb0045) 1979; 74
Aleixandre (10.1016/j.envint.2017.05.005_bb0005) 2012; 30
Cressie (10.1016/j.envint.2017.05.005_bb0050) 1993
Peters (10.1016/j.envint.2017.05.005_bb0185) 2013; 13
Denby (10.1016/j.envint.2017.05.005_bb0065) 2008; 42
Nieuwenhuijsen (10.1016/j.envint.2017.05.005_bb0175) 2015; 49
Wackernagel (10.1016/j.envint.2017.05.005_bb0250) 2003
Chilès (10.1016/j.envint.2017.05.005_bb0040) 2012
Borrego (10.1016/j.envint.2017.05.005_bb0025) 2016; 147
Hengl (10.1016/j.envint.2017.05.005_bb0100) 2007; 33
De Nazelle (10.1016/j.envint.2017.05.005_bb0055) 2013; 176
Steinle (10.1016/j.envint.2017.05.005_bb0235) 2013; 443
Tilloy (10.1016/j.envint.2017.05.005_bb0240) 2013; 118
Isaaks (10.1016/j.envint.2017.05.005_bb0125) 1989
Peters (10.1016/j.envint.2017.05.005_bb0190) 2014; 92
Petersen (10.1016/j.envint.2017.05.005_bb0195) 1980
Serrano Sanz (10.1016/j.envint.2017.05.005_bb0215) 2014
De Smet (10.1016/j.envint.2017.05.005_bb0060) 2010
Van den Bossche (10.1016/j.envint.2017.05.005_bb0245) 2015; 105
Hand (10.1016/j.envint.2017.05.005_bb0090) 2010; 466
Horálek (10.1016/j.envint.2017.05.005_bb0110) 2014
Oftedal (10.1016/j.envint.2017.05.005_bb0180) 2009; 36
Webster (10.1016/j.envint.2017.05.005_bb0255) 2007
Hasenfratz (10.1016/j.envint.2017.05.005_bb0095) 2015; 16
Slørdal (10.1016/j.envint.2017.05.005_bb0220) 2003
Kalnay (10.1016/j.envint.2017.05.005_bb0130) 2003
Marécal (10.1016/j.envint.2017.05.005_bb0155) 2015; 8
Goovaerts (10.1016/j.envint.2017.05.005_bb0080) 1997
Guerreiro (10.1016/j.envint.2017.05.005_bb0085) 2014; 98
Baklanov (10.1016/j.envint.2017.05.005_bb0010) 2016; 126
Kumar (10.1016/j.envint.2017.05.005_bb0140) 2015; 75
Mead (10.1016/j.envint.2017.05.005_bb0160) 2013; 70
Mueller (10.1016/j.envint.2017.05.005_bb0165) 2016; 126
Castell (10.1016/j.envint.2017.05.005_bb0030) 2017; 99
Lahoz (10.1016/j.envint.2017.05.005_bb0150) 2014; 2
Hoek (10.1016/j.envint.2017.05.005_bb0105) 2008; 42
Castell (10.1016/j.envint.2017.05.005_bb0035) 2014; 14
Snyder (10.1016/j.envint.2017.05.005_bb0225) 2013; 47
Schneider (10.1016/j.envint.2017.05.005_bb0210) 2015; 15
Beelen (10.1016/j.envint.2017.05.005_bb0015) 2013; 72
Horálek (10.1016/j.envint.2017.05.005_bb0115) 2013
Denby (10.1016/j.envint.2017.05.005_bb0070) 2010; 408
References_xml – volume: 98
  start-page: 376
  year: 2014
  end-page: 384
  ident: bb0085
  article-title: Air quality status and trends in Europe
  publication-title: Atmos. Environ.
– volume: 30
  year: 2012
  ident: bb0005
  article-title: Review of small commercial sensors for indicative monitoring of ambient gas review of small commercial sensors for indicative monitoring of ambient gas
  publication-title: Chem. Eng. Trans.
– volume: 126
  start-page: 171
  year: 2016
  end-page: 181
  ident: bb0165
  article-title: Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network
  publication-title: Atmos. Environ.
– volume: 42
  start-page: 7122
  year: 2008
  end-page: 7134
  ident: bb0065
  article-title: Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale
  publication-title: Atmos. Environ.
– volume: 408
  start-page: 4795
  year: 2010
  end-page: 4806
  ident: bb0070
  article-title: Spatial mapping of ozone and SO2 trends in Europe
  publication-title: Sci. Total Environ.
– volume: 215
  start-page: 249
  year: 2015
  end-page: 257
  ident: bb0230
  article-title: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: ozone and nitrogen dioxide
  publication-title: Sens. Actuators B
– volume: 33
  start-page: 1301
  year: 2007
  end-page: 1315
  ident: bb0100
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput. Geosci.
– volume: 42
  start-page: 7561
  year: 2008
  end-page: 7578
  ident: bb0105
  article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution
  publication-title: Atmos. Environ.
– volume: 2
  start-page: 1
  year: 2014
  end-page: 28
  ident: bb0150
  article-title: Data assimilation: making sense of earth observation
  publication-title: Front. Environ. Sci.
– volume: 14
  start-page: 370
  year: 2014
  end-page: 382
  ident: bb0035
  article-title: Mobile technologies and services for environmental monitoring: the citi-sense-MOB approach
  publication-title: Urban Climate
– start-page: 249
  year: 1997
  ident: bb0135
  article-title: Introduction to Geostatistics: Applications in Hydrogeology
– year: 2013
  ident: bb0115
  article-title: European air quality maps of PM and ozone for 2011 and their uncertainty
  publication-title: Tech. Rep. ETC/ACM Technical Paper 2008/8
– volume: 71
  start-page: 223
  year: 2003
  end-page: 241
  ident: bb0020
  article-title: Sequential data assimilation techniques in oceanography
  publication-title: Int. Stat. Rev.
– volume: 16
  start-page: 268
  year: 2015
  end-page: 285
  ident: bb0095
  article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes
  publication-title: Pervasive Mob. Comput.
– year: 2010
  ident: bb0145
  article-title: Data assimilation
– start-page: 726
  year: 2012
  ident: bb0040
  article-title: Geostatistics: Modeling Spatial Uncertainty
– volume: 13
  start-page: 509
  year: 2013
  end-page: 522
  ident: bb0185
  article-title: Monitoring PM10 and ultrafine particles in urban environments using mobile measurements
  publication-title: Aerosol Air Qual. Res.
– volume: 99
  start-page: 293
  year: 2017
  end-page: 302
  ident: bb0030
  article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?
  publication-title: Environ. Int.
– volume: 15
  start-page: 1205
  year: 2015
  end-page: 1220
  ident: bb0210
  article-title: Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide
  publication-title: Atmos. Chem. Phys.
– start-page: 387
  year: 2003
  ident: bb0250
  article-title: Multivariate Geostatistics
– volume: 92
  start-page: 31
  year: 2014
  end-page: 43
  ident: bb0190
  article-title: Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium
  publication-title: Atmos. Environ.
– year: 2003
  ident: bb0130
  article-title: Atmospheric Modeling, Data Assimilation and Predictability
– start-page: 483
  year: 1997
  ident: bb0080
  article-title: Geostatistics for Natural Resources Evaluation
– volume: 176
  start-page: 92
  year: 2013
  end-page: 99
  ident: bb0055
  article-title: Improving estimates of air pollution exposure through ubiquitous sensing technologies
  publication-title: Environ. Pollut.
– start-page: 330
  year: 2007
  ident: bb0255
  article-title: Geostatistics for Environmental Scientists
– volume: 74
  start-page: 829
  year: 1979
  end-page: 836
  ident: bb0045
  article-title: Robust locally weighted regression and smoothing scatterplots
  publication-title: J. Am. Stat. Assoc.
– volume: 75
  start-page: 199
  year: 2015
  end-page: 205
  ident: bb0140
  article-title: The rise of low-cost sensing for managing air pollution in cities
  publication-title: Environ. Int.
– volume: 3
  start-page: 3325
  year: 2014
  end-page: 3336
  ident: bb0200
  article-title: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
  publication-title: Atmos. Meas. Tech.
– volume: 70
  start-page: 186
  year: 2013
  end-page: 203
  ident: bb0160
  article-title: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks
  publication-title: Atmos. Environ.
– year: 2014
  ident: bb0075
  article-title: Air quality maps of NO2 and PM10 for the region including Stavanger sandnes randaberg and sola
  publication-title: Tech. Rep. TR 1/2014
– start-page: 224
  year: 2009
  ident: bb0205
  article-title: Geostatistics with Applications in Earth Sciences
– volume: 36
  start-page: 110
  year: 2009
  end-page: 126
  ident: bb0180
  article-title: Modelling long-term averages of local ambient air pollution in Oslo, Norway: evaluation of nitrogen dioxide, PM10 and PM2.5
  publication-title: Int. J. Environ. Pollut.
– year: 2016
  ident: bb0260
  article-title: Ambient air pollution: a global assessment of exposure and burden of disease
  publication-title: Tech. rep
– volume: 147
  start-page: 246
  year: 2016
  end-page: 263
  ident: bb0025
  article-title: Assessment of air quality microsensors versus reference methods: the eunetair joint exercise
  publication-title: Atmos. Environ.
– start-page: 561
  year: 1989
  ident: bb0125
  article-title: Applied Geostatistics
– volume: 106
  start-page: 1
  year: 2015
  end-page: 10
  ident: bb0170
  article-title: Two-week NO2 maps for the city of Zurich, Switzerland, derived by statistical modelling utilizing data from a routine passive diffusion sampler network
  publication-title: Atmos. Environ.
– volume: 47
  start-page: 369
  year: 2013
  end-page: 377
  ident: bb0225
  article-title: The changing paradigm of air pollution monitoring
  publication-title: Environ. Sci. Technol.
– year: 2014
  ident: bb0110
  article-title: European air quality maps of PM and ozone for 2010 and their uncertainty
  publication-title: Tech. Rep. 2014/4
– start-page: 900
  year: 1993
  ident: bb0050
  article-title: Statistics for Spatial Data
– volume: 72
  start-page: 10
  year: 2013, jun
  end-page: 23
  ident: bb0015
  article-title: Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in europe the ESCAPE project
  publication-title: Atmos. Environ.
– year: 2003
  ident: bb0220
  article-title: The urban air dispersion model EPISODE applied in AirQUIS 2003 - technical description
  publication-title: Tech. rep
– year: 2014
  ident: bb0215
  article-title: Socientize - White Paper on Citizen Science for Europe
– volume: 443
  start-page: 184
  year: 2013
  end-page: 193
  ident: bb0235
  article-title: Science of the total environment quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment
  publication-title: Sci. Total Environ.
– year: 2010
  ident: bb0060
  article-title: European air quality maps of ozone and PM10 for 2008 and their uncertainty analysis
  publication-title: Tech. Rep. ETC/ACC Technical Paper 2010/10
– volume: 126
  start-page: 235
  year: 2016
  end-page: 249
  ident: bb0010
  article-title: Megacities, air quality and climate
  publication-title: Atmos. Environ.
– volume: 466
  start-page: 685
  year: 2010
  end-page: 687
  ident: bb0090
  article-title: Citizen Science - People power
  publication-title: Nature
– volume: 14
  year: 2006
  ident: bb0120
  article-title: The rise of crowdsourcing
  publication-title: Wired Mag.
– year: 1980
  ident: bb0195
  article-title: User's guide for HIWAY-2 - a highway air pollution model
  publication-title: Tech. Rep. EPA-600/8-80-018
– volume: 8
  start-page: 2777
  year: 2015
  end-page: 2813
  ident: bb0155
  article-title: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production
  publication-title: Geosci. Model Dev.
– volume: 118
  start-page: 2031
  year: 2013
  end-page: 2040
  ident: bb0240
  article-title: BLUE-based NO2 data assimilation at urban scale
  publication-title: J. Geophys. Res. Atmos.
– volume: 49
  start-page: 2977
  year: 2015
  end-page: 2982
  ident: bb0175
  article-title: Variability in and agreement between modelled and personal continuously measured black carbon levels using novel smartphone and sensor technologies
  publication-title: Environ. Sci. Technol.
– volume: 105
  start-page: 148
  year: 2015
  end-page: 161
  ident: bb0245
  article-title: Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset
  publication-title: Atmos. Environ.
– volume: 49
  start-page: 2977
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0175
  article-title: Variability in and agreement between modelled and personal continuously measured black carbon levels using novel smartphone and sensor technologies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505362x
– volume: 98
  start-page: 376
  year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0085
  article-title: Air quality status and trends in Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.09.017
– volume: 92
  start-page: 31
  year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0190
  article-title: Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.03.039
– volume: 70
  start-page: 186
  year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0160
  article-title: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.11.060
– volume: 105
  start-page: 148
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0245
  article-title: Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.01.017
– start-page: 483
  year: 1997
  ident: 10.1016/j.envint.2017.05.005_bb0080
– start-page: 900
  year: 1993
  ident: 10.1016/j.envint.2017.05.005_bb0050
– volume: 118
  start-page: 2031
  issue: 4
  year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0240
  article-title: BLUE-based NO2 data assimilation at urban scale
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50233
– volume: 14
  issue: 06
  year: 2006
  ident: 10.1016/j.envint.2017.05.005_bb0120
  article-title: The rise of crowdsourcing
  publication-title: Wired Mag.
– volume: 408
  start-page: 4795
  issue: 20
  year: 2010
  ident: 10.1016/j.envint.2017.05.005_bb0070
  article-title: Spatial mapping of ozone and SO2 trends in Europe
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.06.021
– volume: 13
  start-page: 509
  year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0185
  article-title: Monitoring PM10 and ultrafine particles in urban environments using mobile measurements
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2012.06.0152
– year: 2016
  ident: 10.1016/j.envint.2017.05.005_bb0260
  article-title: Ambient air pollution: a global assessment of exposure and burden of disease
– year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0110
  article-title: European air quality maps of PM and ozone for 2010 and their uncertainty
– volume: 47
  start-page: 369
  issue: 20
  year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0225
  article-title: The changing paradigm of air pollution monitoring
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4022602
– volume: 99
  start-page: 293
  year: 2017
  ident: 10.1016/j.envint.2017.05.005_bb0030
  article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.12.007
– volume: 147
  start-page: 246
  issue: 2
  year: 2016
  ident: 10.1016/j.envint.2017.05.005_bb0025
  article-title: Assessment of air quality microsensors versus reference methods: the eunetair joint exercise
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.09.050
– volume: 75
  start-page: 199
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0140
  article-title: The rise of low-cost sensing for managing air pollution in cities
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.11.019
– volume: 30
  year: 2012
  ident: 10.1016/j.envint.2017.05.005_bb0005
  article-title: Review of small commercial sensors for indicative monitoring of ambient gas review of small commercial sensors for indicative monitoring of ambient gas
  publication-title: Chem. Eng. Trans.
– volume: 42
  start-page: 7561
  issue: 33
  year: 2008
  ident: 10.1016/j.envint.2017.05.005_bb0105
  article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.05.057
– year: 1980
  ident: 10.1016/j.envint.2017.05.005_bb0195
  article-title: User's guide for HIWAY-2 - a highway air pollution model
– volume: 72
  start-page: 10
  issue: 2
  year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0015
  article-title: Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in europe the ESCAPE project
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.02.037
– volume: 176
  start-page: 92
  year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0055
  article-title: Improving estimates of air pollution exposure through ubiquitous sensing technologies
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.12.032
– volume: 33
  start-page: 1301
  issue: 10
  year: 2007
  ident: 10.1016/j.envint.2017.05.005_bb0100
  article-title: About regression-kriging: from equations to case studies
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.05.001
– year: 2003
  ident: 10.1016/j.envint.2017.05.005_bb0220
  article-title: The urban air dispersion model EPISODE applied in AirQUIS 2003 - technical description
– start-page: 249
  year: 1997
  ident: 10.1016/j.envint.2017.05.005_bb0135
– volume: 106
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0170
  article-title: Two-week NO2 maps for the city of Zurich, Switzerland, derived by statistical modelling utilizing data from a routine passive diffusion sampler network
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.01.049
– volume: 3
  start-page: 3325
  issue: 2
  year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0200
  article-title: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-7-3325-2014
– volume: 74
  start-page: 829
  issue: 368
  year: 1979
  ident: 10.1016/j.envint.2017.05.005_bb0045
  article-title: Robust locally weighted regression and smoothing scatterplots
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1979.10481038
– start-page: 561
  year: 1989
  ident: 10.1016/j.envint.2017.05.005_bb0125
– start-page: 726
  year: 2012
  ident: 10.1016/j.envint.2017.05.005_bb0040
– year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0075
  article-title: Air quality maps of NO2 and PM10 for the region including Stavanger sandnes randaberg and sola
– start-page: 224
  year: 2009
  ident: 10.1016/j.envint.2017.05.005_bb0205
– volume: 443
  start-page: 184
  year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0235
  article-title: Science of the total environment quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.10.098
– volume: 16
  start-page: 268
  issue: PB
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0095
  article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2014.11.008
– volume: 215
  start-page: 249
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0230
  article-title: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: ozone and nitrogen dioxide
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.03.031
– volume: 126
  start-page: 235
  year: 2016
  ident: 10.1016/j.envint.2017.05.005_bb0010
  article-title: Megacities, air quality and climate
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.11.059
– volume: 42
  start-page: 7122
  issue: 30
  year: 2008
  ident: 10.1016/j.envint.2017.05.005_bb0065
  article-title: Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.05.058
– start-page: 387
  year: 2003
  ident: 10.1016/j.envint.2017.05.005_bb0250
– volume: 15
  start-page: 1205
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0210
  article-title: Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-1205-2015
– year: 2013
  ident: 10.1016/j.envint.2017.05.005_bb0115
  article-title: European air quality maps of PM and ozone for 2011 and their uncertainty
– volume: 14
  start-page: 370
  year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0035
  article-title: Mobile technologies and services for environmental monitoring: the citi-sense-MOB approach
  publication-title: Urban Climate
  doi: 10.1016/j.uclim.2014.08.002
– volume: 36
  start-page: 110
  issue: 2
  year: 2009
  ident: 10.1016/j.envint.2017.05.005_bb0180
  article-title: Modelling long-term averages of local ambient air pollution in Oslo, Norway: evaluation of nitrogen dioxide, PM10 and PM2.5
  publication-title: Int. J. Environ. Pollut.
  doi: 10.1504/IJEP.2009.021820
– year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0215
– year: 2010
  ident: 10.1016/j.envint.2017.05.005_bb0060
  article-title: European air quality maps of ozone and PM10 for 2008 and their uncertainty analysis
– volume: 466
  start-page: 685
  issue: August
  year: 2010
  ident: 10.1016/j.envint.2017.05.005_bb0090
  article-title: Citizen Science - People power
  publication-title: Nature
  doi: 10.1038/466685a
– volume: 8
  start-page: 2777
  issue: 9
  year: 2015
  ident: 10.1016/j.envint.2017.05.005_bb0155
  article-title: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-2777-2015
– year: 2010
  ident: 10.1016/j.envint.2017.05.005_bb0145
  article-title: Data assimilation
– volume: 126
  start-page: 171
  year: 2016
  ident: 10.1016/j.envint.2017.05.005_bb0165
  article-title: Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.11.033
– start-page: 330
  year: 2007
  ident: 10.1016/j.envint.2017.05.005_bb0255
– volume: 71
  start-page: 223
  issue: 2
  year: 2003
  ident: 10.1016/j.envint.2017.05.005_bb0020
  article-title: Sequential data assimilation techniques in oceanography
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2003.tb00194.x
– volume: 2
  start-page: 1
  issue: 16
  year: 2014
  ident: 10.1016/j.envint.2017.05.005_bb0150
  article-title: Data assimilation: making sense of earth observation
  publication-title: Front. Environ. Sci.
– year: 2003
  ident: 10.1016/j.envint.2017.05.005_bb0130
SSID ssj0002485
Score 2.6175933
Snippet The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 234
SubjectTerms Air Pollutants - analysis
air pollution
Air Pollution - analysis
Air quality
Cities
Crowdsourcing
data collection
Environmental Monitoring - methods
geostatistics
instrumentation
Low-cost microsensors
Mapping
Models, Theoretical
monitoring
Nitrogen dioxide
Nitrogen Dioxide - analysis
Norway
space and time
uncertainty
Urban air quality
urban areas
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQTyCEykJheclIXC2S-JljQa0qpHKiUm_WxI9qq5WDNrtC_Hs8cbIsh2ovXKNJYntmPDP2zDeEfPKi9nXVRgYAnOVdMjBQRjITDUhjuOABjwauv6urG_HtVt4etPrCnLACD1wW7rPioREmgu60EzKaVrm8nXLhg69BxjFazzZvDqamPRiBugqqd5UH0FRz0dyY2YUlZAnzKOuC2omt6w6M0ojd_49tesj3HG3Q5Sl5NjmP9LwM-jl5FNKCPDmAFFyQs4u_lWuZdFLdYUGelgM6WuqOXpD7a0Bohju623SQKKw2tBRY_qarRFNWAJr9yTXD5vMUs-PvaN_tj3AHinUpdN3_Yq4ftnTI0XC_GSgkT8fmOnRCZEXil-Tm8uLH1ys2NV5gTmq-ZU6rzgklGwlax04qjpA0MboQjfKtyzyIQqtWSg6Nk16Cr4IDoUDJWnnBz8hJ6lN4TShUQYboofFYgdvoNihXddAq2QlZQbMkfF556yZUcmyOsbZz-tm9LfyyyC9bSZv5tSRs_9bPgspxhP4LMnVPi5ja44MsaXaSNHtM0pZEzyJhJ_ekuB35U6sjv_84S5DN2otXMpBCvxtsjfD8Uueg8mGaZgQJMqbNi_WqiN9-Io1RytSav_kfE3xLHuOgSwbdO3Ky3ezC--xybbsPo3b9Ae0oKWk
  priority: 102
  providerName: Directory of Open Access Journals
Title Mapping urban air quality in near real-time using observations from low-cost sensors and model information
URI https://dx.doi.org/10.1016/j.envint.2017.05.005
https://www.ncbi.nlm.nih.gov/pubmed/28668173
https://www.proquest.com/docview/1915557260
https://www.proquest.com/docview/2000378892
https://doaj.org/article/63e248fa7b7c45f896c71834ded1a5f0
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSU0m6bZvtYVOhVXdt6-piGhG1LcmkDuQlZj2XDYgd7l5JLfns1lr1JDiHQo8X4odFII43n-wahr47lLs_KQIwxlMRV0hMjFCcqKMOVoox6CA2cnYvFBft5yS_30PGIhYG0ymHtT2t6v1oPLfNBm_Pr1Wr-G7jRWB4dmKCQVdgj2JkEK_92e5fmAZRdid87IyA9wuf6HC8Ak9WQUZkn_k4oYnfPPfUs_g-81GO70N4bnb5Gr4ZtJD5KX_oG7fl6gl7cIxecoIOTOwxbFB0mcTdBL1OoDicE0lt0dWaApGGJt21lamxWLU5Qyxu8qnEdpwKOO8s1gTL0GPLkl7ipdsHcDgNCBa-bv8Q23QZ38VzctB02tcN9mR08cLOC8Dt0cXry53hBhhIMxHJJN8RKUVkmeMGNlKHiUdUlVyFYH5RwpS2FDVHnJefUFJY7blzmrWHCCJ4Lx-gB2q-b2h8ibDLPfXCmcIDFLWTphc0qUwpeMZ6ZYoroqHltB35yKJOx1mMi2pVO46VhvHTGdRyvKSK7u64TP8cT8t9hUHeywK7dNzTtUg_mpQX10WyCkZW0jAcVexldOGXOu9zwkE2RHE1CPzDW-KjVE6__MlqQjvMYfs6Y2jfbTudA1M9lPF4-LlP0dEFKlVFZ75P57TpSKCFULumH__62j-g5XKUEuk9of9Nu_ee449pUs35KzdCzox-_FuezPm7xDycqLOw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2hLKe22SbdPFXoVa1tPH9OQsGmye2kCuQlZj7BhscN6l9J_X41lb5NDCPQqj2w95iV55huEvjuWuzwrAzHGUBK1pCdGKE5UUIYrRRn1cDUwX4jZFft5za_30PGQCwNhlb3uTzq909Z9y7Rfzendcjn9BdhoLI8GTFCIKoxHoH1Ap-IjtH90dj5b7BQyoHYliO-MQIchg64L84J8shqCKvME4Ql17O5ZqA7I_4GheswR7QzS6Wv0qvck8VEa7Bu05-sxenEPX3CMDk7-pbFF0l6O2zF6mW7rcEpCeotu5wZwGm7wdl2ZGpvlGqdsyz94WeM6SgOOzuWKQCV6DKHyN7ipdve5LYYkFbxqfhPbtBvcxqNxs26xqR3uKu3gHp4ViN-hq9OTy-MZ6aswEMsl3RArRWWZ4AU3UoaKx9UuuQrB-qCEK20pbGBSlJxTU1juuHGZt4YJI3guHKMHaFQ3tX-PsMk898GZwkE6biFLL2xWmVLwivHMFBNEh5XXtocoh0oZKz3Eot3qtF8a9ktnXMf9miCy63WXIDqeoP8Bm7qjBYDtrqFZ3-iew7SgPrJNMLKSlvGg4iyjFafMeZcbHrIJkgNL6Af8Gl-1fOLz3wYO0lGU4f-MqX2zbXUOWP1cxhPm4zRFhxikVBkX6zCx324ihRJC5ZJ--O-xfUXPZpfzC31xtjj_iJ7DkxRP9wmNNuut_xwdsE31pRewv0bTLqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+urban+air+quality+in+near+real-time+using+observations+from+low-cost+sensors+and+model+information&rft.jtitle=Environment+international&rft.au=Schneider%2C+Philipp&rft.au=Castell%2C+Nuria&rft.au=Vogt%2C+Matthias&rft.au=Dauge%2C+Franck+R.&rft.date=2017-09-01&rft.pub=Elsevier+Ltd&rft.issn=0160-4120&rft.eissn=1873-6750&rft.volume=106&rft.spage=234&rft.epage=247&rft_id=info:doi/10.1016%2Fj.envint.2017.05.005&rft.externalDocID=S0160412016310741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon