Mapping urban air quality in near real-time using observations from low-cost sensors and model information
The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they...
Saved in:
Published in | Environment international Vol. 106; pp. 234 - 247 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.09.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.
•A method is presented to map urban air quality in real time with low-cost sensors.•The method merges low-cost sensor data with time-invariant model output.•Resulting maps exhibit realistic spatial patterns of urban air pollution.•Comparison against station data shows good replication of temporal daily cycle.•Validation indicates an R2 value of 0.89 against reference observations. |
---|---|
AbstractList | The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R
of 0.89 and a root mean squared error of 14.3 μg m
. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. •A method is presented to map urban air quality in real time with low-cost sensors.•The method merges low-cost sensor data with time-invariant model output.•Resulting maps exhibit realistic spatial patterns of urban air pollution.•Comparison against station data shows good replication of temporal daily cycle.•Validation indicates an R2 value of 0.89 against reference observations. The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m−3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. Keywords: Air quality, Urban air quality, Crowdsourcing, Mapping, Low-cost microsensors, Nitrogen dioxide The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m-3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R2 of 0.89 and a root mean squared error of 14.3 μg m-3. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network. |
Author | Lahoz, William A. Bartonova, Alena Schneider, Philipp Dauge, Franck R. Vogt, Matthias Castell, Nuria |
Author_xml | – sequence: 1 givenname: Philipp surname: Schneider fullname: Schneider, Philipp email: ps@nilu.no – sequence: 2 givenname: Nuria surname: Castell fullname: Castell, Nuria – sequence: 3 givenname: Matthias surname: Vogt fullname: Vogt, Matthias – sequence: 4 givenname: Franck R. surname: Dauge fullname: Dauge, Franck R. – sequence: 5 givenname: William A. surname: Lahoz fullname: Lahoz, William A. – sequence: 6 givenname: Alena surname: Bartonova fullname: Bartonova, Alena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28668173$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1r3DAURU1JaSZp_0EpWnZjV7Itye6iUEI_AindtGvxLD0FDbY0keQJ-ffVzCRddNGsBOLcg7i6F9WZDx6r6i2jDaNMfNg26PfO56alTDaUN5TyF9WGDbKrheT0rNoUjNY9a-l5dZHSllLa9gN_VZ23gxADk92m2v6A3c75W7LGCTwBF8ndCrPLD8R54hEiiQhznd2CZE0HMkwJ4x6yCz4RG8NC5nBf65AySehTiImAN2QJBucisSEuR_h19dLCnPDN43lZ_f765dfV9_rm57frq883teayy7WWYtK94C0HKe3ERcdGPlir0Q7CjHoU2vZSjJx30GpuOBiKGnoBgjNh-u6yuj55TYCt2kW3QHxQAZw6XoR4qyBmp2dUosPSiAU5Sd1zOxS3ZEPXGzQMuKXF9f7k2sVwt2LKanFJ4zyDx7Am1ZZOOzkMY_ssykbGOZetOFjfPaLrtKD5-8anbynAxxOgY0gpolXa5WOJOYKbFaPqsAG1VacNqMMGFOWqbKCE-3_CT_5nYp9OMSx_s3cYVdIOvUbjIupcynP_F_wBaAzOCQ |
CitedBy_id | crossref_primary_10_3389_fbuil_2022_971523 crossref_primary_10_1016_j_atmosenv_2019_117134 crossref_primary_10_1007_s12613_021_2378_z crossref_primary_10_1080_02786826_2019_1619915 crossref_primary_10_1109_JSEN_2024_3442874 crossref_primary_10_1016_j_envint_2018_10_045 crossref_primary_10_1016_j_scitotenv_2023_162336 crossref_primary_10_3390_ijerph19031647 crossref_primary_10_1088_1757_899X_648_1_012037 crossref_primary_10_3390_app14083282 crossref_primary_10_5194_acp_20_625_2020 crossref_primary_10_1007_s11356_019_04772_4 crossref_primary_10_3390_atmos10020041 crossref_primary_10_1109_ACCESS_2023_3302348 crossref_primary_10_1007_s11837_018_3165_9 crossref_primary_10_1016_j_jclepro_2020_122347 crossref_primary_10_5194_acp_21_12463_2021 crossref_primary_10_1016_j_icte_2020_06_004 crossref_primary_10_3390_rs14215576 crossref_primary_10_5194_amt_12_2933_2019 crossref_primary_10_1029_2020WR029121 crossref_primary_10_1007_s10661_024_13356_w crossref_primary_10_3390_s23052815 crossref_primary_10_3390_atmos11020122 crossref_primary_10_3390_atmos13081282 crossref_primary_10_1108_OIR_09_2018_0269 crossref_primary_10_3390_su12219045 crossref_primary_10_3390_ijgi11020132 crossref_primary_10_3390_s20030786 crossref_primary_10_3389_fceng_2022_842514 crossref_primary_10_4000_developpementdurable_17647 crossref_primary_10_1007_s11869_024_01566_7 crossref_primary_10_1016_j_compenvurbsys_2023_101939 crossref_primary_10_3390_s19010209 crossref_primary_10_1007_s41064_022_00231_x crossref_primary_10_3390_en14113264 crossref_primary_10_1016_j_aeaoa_2019_100027 crossref_primary_10_1016_j_atmosenv_2020_117287 crossref_primary_10_1029_2021EA001743 crossref_primary_10_3390_antiox11101908 crossref_primary_10_1109_JSEN_2022_3216071 crossref_primary_10_3390_pr11082338 crossref_primary_10_1016_j_eti_2022_102551 crossref_primary_10_3390_atmos14030540 crossref_primary_10_1016_j_scs_2023_104680 crossref_primary_10_1016_j_trd_2019_10_019 crossref_primary_10_1016_j_snb_2020_128897 crossref_primary_10_1080_15275922_2024_2431330 crossref_primary_10_3390_land11101635 crossref_primary_10_5194_amt_14_37_2021 crossref_primary_10_3390_ijgi7120468 crossref_primary_10_1016_j_trd_2019_06_009 crossref_primary_10_1038_s41597_024_03767_2 crossref_primary_10_1021_acssensors_9b01455 crossref_primary_10_3390_atmos11121284 crossref_primary_10_1007_s13762_022_04513_0 crossref_primary_10_1039_C9LC00035F crossref_primary_10_5194_amt_15_4047_2022 crossref_primary_10_5194_acp_22_4615_2022 crossref_primary_10_17645_up_v5i4_3165 crossref_primary_10_1109_JIOT_2022_3196154 crossref_primary_10_1017_eds_2024_18 crossref_primary_10_1016_j_envres_2017_10_019 crossref_primary_10_5194_gmd_16_2193_2023 crossref_primary_10_3390_ijerph182111614 crossref_primary_10_3390_toxics10010033 crossref_primary_10_2478_bipie_2021_0014 crossref_primary_10_1021_acs_analchem_3c02719 crossref_primary_10_1016_j_envint_2018_04_018 crossref_primary_10_1088_1748_9326_acf7d5 crossref_primary_10_3390_atmos12060736 crossref_primary_10_1016_j_snb_2020_127869 crossref_primary_10_1016_j_envint_2020_105965 crossref_primary_10_1016_j_jaerosci_2020_105716 crossref_primary_10_1021_acs_est_3c03661 crossref_primary_10_1016_j_buildenv_2024_112463 crossref_primary_10_1016_j_envsci_2021_03_020 crossref_primary_10_1016_j_atmosenv_2020_117479 crossref_primary_10_3390_atmos11070736 crossref_primary_10_3390_app10030856 crossref_primary_10_1016_j_atmosenv_2023_119756 crossref_primary_10_3390_ijerph16071252 crossref_primary_10_3390_ijgi7050187 crossref_primary_10_1016_j_envpol_2020_114549 crossref_primary_10_5194_hess_22_391_2018 crossref_primary_10_5194_amt_15_3261_2022 crossref_primary_10_1016_j_buildenv_2023_110330 crossref_primary_10_3390_atmos12020179 crossref_primary_10_3390_s22010394 crossref_primary_10_5194_amt_13_4601_2020 crossref_primary_10_1007_s10661_023_11319_1 crossref_primary_10_1016_j_scitotenv_2021_148378 crossref_primary_10_3390_s22031093 crossref_primary_10_3390_s23084116 crossref_primary_10_3389_fenvs_2022_867434 crossref_primary_10_1021_acs_est_0c02341 crossref_primary_10_3390_atmos10080445 crossref_primary_10_3390_ijgi12090350 crossref_primary_10_1016_j_atmosenv_2018_09_030 crossref_primary_10_1021_acs_est_9b03950 crossref_primary_10_1016_j_scs_2023_104614 crossref_primary_10_1016_j_atmosenv_2019_117092 crossref_primary_10_1016_j_ifacol_2022_07_631 crossref_primary_10_3390_toxics12040233 crossref_primary_10_1021_acssensors_8b00074 crossref_primary_10_1016_j_scitotenv_2018_12_202 crossref_primary_10_1016_j_uclim_2021_100972 crossref_primary_10_5194_amt_14_4139_2021 crossref_primary_10_1016_j_envsoft_2022_105460 crossref_primary_10_1016_j_snb_2021_130958 crossref_primary_10_3390_s20071919 crossref_primary_10_1016_j_jenvman_2021_114157 crossref_primary_10_1088_1748_9326_ada397 crossref_primary_10_3390_s21062160 crossref_primary_10_5194_amt_13_3277_2020 crossref_primary_10_1109_JSEN_2024_3450898 crossref_primary_10_1109_LES_2022_3196543 crossref_primary_10_3390_atmos12030300 crossref_primary_10_3390_atmos14020368 crossref_primary_10_1016_j_uclim_2021_100968 crossref_primary_10_3390_s24092786 crossref_primary_10_3389_fpubh_2022_933665 crossref_primary_10_1038_s41598_022_19929_4 crossref_primary_10_3390_atmos11060669 crossref_primary_10_1016_j_scs_2024_105896 crossref_primary_10_3390_atmos10090539 crossref_primary_10_3390_ijerph18042194 crossref_primary_10_1088_1755_1315_1123_1_012068 crossref_primary_10_1080_15567036_2021_1968076 crossref_primary_10_3390_s19112503 crossref_primary_10_1021_acssensors_4c03164 crossref_primary_10_1145_3340847 crossref_primary_10_1016_j_buildenv_2023_110403 crossref_primary_10_1007_s11869_024_01683_3 crossref_primary_10_5194_acp_25_2745_2025 crossref_primary_10_1016_j_atmosenv_2018_08_028 crossref_primary_10_1021_acsestair_4c00125 crossref_primary_10_3390_s22031295 crossref_primary_10_1016_j_atmosenv_2020_118099 crossref_primary_10_1016_j_ufug_2020_126801 crossref_primary_10_1029_2024CSJ000084 crossref_primary_10_1007_s41742_024_00659_6 crossref_primary_10_1016_j_envsoft_2020_104837 crossref_primary_10_1016_j_jes_2020_09_009 crossref_primary_10_1109_TII_2021_3100501 crossref_primary_10_3390_atmos9030086 crossref_primary_10_1016_j_envres_2021_112207 crossref_primary_10_3390_s20113073 crossref_primary_10_1016_j_scs_2023_104607 crossref_primary_10_1513_AnnalsATS_201906_477ST crossref_primary_10_3389_fenvs_2022_1026842 crossref_primary_10_3390_s21051876 crossref_primary_10_1029_2018RG000616 crossref_primary_10_1007_s11270_021_05363_1 crossref_primary_10_1016_j_apr_2021_03_010 crossref_primary_10_1016_j_apr_2021_101205 crossref_primary_10_3390_atmos11020212 crossref_primary_10_3389_feart_2019_00221 crossref_primary_10_1126_science_adq3678 crossref_primary_10_3390_s23041859 crossref_primary_10_3390_s25041236 crossref_primary_10_1002_asmb_2713 crossref_primary_10_1007_s10666_023_09909_x crossref_primary_10_3390_atmos12080961 crossref_primary_10_5194_amt_12_5161_2019 crossref_primary_10_3390_s18093008 crossref_primary_10_1029_2021GH000451 crossref_primary_10_3390_rs12182885 crossref_primary_10_3390_atmos13122042 crossref_primary_10_1016_j_scitotenv_2019_134698 crossref_primary_10_3390_su10103434 crossref_primary_10_1080_01431161_2024_2373338 crossref_primary_10_1016_j_uclim_2025_102344 crossref_primary_10_1038_s41612_024_00837_5 crossref_primary_10_1109_ACCESS_2020_2975741 crossref_primary_10_3390_s24185915 crossref_primary_10_1038_s41370_020_0255_x crossref_primary_10_1016_j_envint_2019_105022 crossref_primary_10_1016_j_envpol_2020_115363 crossref_primary_10_1109_TIM_2023_3331428 crossref_primary_10_1007_s13198_024_02697_x crossref_primary_10_1016_j_envpol_2020_116334 crossref_primary_10_3390_s21103338 crossref_primary_10_3390_atmos10100610 crossref_primary_10_1016_j_atmosenv_2019_04_048 crossref_primary_10_1149_1945_7111_ab74bd crossref_primary_10_1016_j_atmosenv_2024_120652 crossref_primary_10_3390_atmos12101246 crossref_primary_10_3390_signals5010004 crossref_primary_10_3390_atmos12010091 crossref_primary_10_1007_s10661_019_7838_9 crossref_primary_10_1016_j_scitotenv_2020_141286 crossref_primary_10_1016_j_atmosenv_2020_117410 crossref_primary_10_1021_acs_est_9b00282 crossref_primary_10_1016_j_envpol_2021_116763 crossref_primary_10_3390_en14238028 |
Cites_doi | 10.1021/es505362x 10.1016/j.atmosenv.2014.09.017 10.1016/j.atmosenv.2014.03.039 10.1016/j.atmosenv.2012.11.060 10.1016/j.atmosenv.2015.01.017 10.1002/jgrd.50233 10.1016/j.scitotenv.2010.06.021 10.4209/aaqr.2012.06.0152 10.1021/es4022602 10.1016/j.envint.2016.12.007 10.1016/j.atmosenv.2016.09.050 10.1016/j.envint.2014.11.019 10.1016/j.atmosenv.2008.05.057 10.1016/j.atmosenv.2013.02.037 10.1016/j.envpol.2012.12.032 10.1016/j.cageo.2007.05.001 10.1016/j.atmosenv.2015.01.049 10.5194/amt-7-3325-2014 10.1080/01621459.1979.10481038 10.1016/j.scitotenv.2012.10.098 10.1016/j.pmcj.2014.11.008 10.1016/j.snb.2015.03.031 10.1016/j.atmosenv.2015.11.059 10.1016/j.atmosenv.2008.05.058 10.5194/acp-15-1205-2015 10.1016/j.uclim.2014.08.002 10.1504/IJEP.2009.021820 10.1038/466685a 10.5194/gmd-8-2777-2015 10.1016/j.atmosenv.2015.11.033 10.1111/j.1751-5823.2003.tb00194.x |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.envint.2017.05.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
EndPage | 247 |
ExternalDocumentID | oai_doaj_org_article_63e248fa7b7c45f896c71834ded1a5f0 28668173 10_1016_j_envint_2017_05_005 S0160412016310741 |
Genre | Journal Article |
GeographicLocations | Norway |
GeographicLocations_xml | – name: Norway |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c573t-c76bc46525a77fb5631958ffcef86d9c96cf4769553a2c5d5ad0eca46a6516d43 |
IEDL.DBID | .~1 |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:17:14 EDT 2025 Tue Aug 05 09:56:19 EDT 2025 Fri Jul 11 01:55:46 EDT 2025 Wed Feb 19 02:40:41 EST 2025 Tue Jul 01 01:23:13 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Fri Feb 23 02:31:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Urban air quality Crowdsourcing Air quality Mapping Low-cost microsensors Nitrogen dioxide |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-c76bc46525a77fb5631958ffcef86d9c96cf4769553a2c5d5ad0eca46a6516d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0160412016310741 |
PMID | 28668173 |
PQID | 1915557260 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_63e248fa7b7c45f896c71834ded1a5f0 proquest_miscellaneous_2000378892 proquest_miscellaneous_1915557260 pubmed_primary_28668173 crossref_citationtrail_10_1016_j_envint_2017_05_005 crossref_primary_10_1016_j_envint_2017_05_005 elsevier_sciencedirect_doi_10_1016_j_envint_2017_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment international |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | (bb0145) 2010 Hand (bb0090) 2010; 466 Mueller, Hasenfratz, Saukh, Fierz, Hueglin (bb0165) 2016; 126 Petersen (bb0195) 1980 Peters, Van den Bossche, Reggente, Van Poppel, De Baets, Theunis (bb0190) 2014; 92 Horálek, Smet, Kurfürst, Leeuw, Benešová (bb0115) 2013 Cleveland (bb0045) 1979; 74 Peters, Theunis, van Poppel, Berghmans (bb0185) 2013; 13 Kumar, Morawska, Martani, Biskos, Neophytou, Di Sabatino, Bell, Norford, Britter (bb0140) 2015; 75 Denby, Sundvor, Cassiani, de Smet, de Leeuw, Horálek (bb0070) 2010; 408 Baklanov, Molina, Gauss (bb0010) 2016; 126 Oftedal, Walker, Gram, McInnes, Nafstad (bb0180) 2009; 36 Van den Bossche, Peters, Verwaeren, Botteldooren, Theunis, De Baets (bb0245) 2015; 105 De Nazelle, Seto, Donaire-Gonzalez, Mendez, Matamala, Nieuwenhuijsen, Jerrett (bb0055) 2013; 176 Denby, Sundvor, Schneider, Thanh (bb0075) 2014 Hengl, Heuvelink, Rossiter (bb0100) 2007; 33 Kalnay (bb0130) 2003 Isaaks, Srivastava (bb0125) 1989 Nieuwenhuijsen, Donaire-Gonzalez, Rivas, de Castro, Cirach, Hoek, Seto, Jerrett, Sunyer (bb0175) 2015; 49 Chilès, Delfiner (bb0040) 2012 Cressie (bb0050) 1993 Snyder (bb0225) 2013; 47 Guerreiro, Foltescu, de Leeuw (bb0085) 2014; 98 Kitanidis (bb0135) 1997 Webster, Oliver (bb0255) 2007 Sarma (bb0205) 2009 (bb0260) 2016 Hoek, Beelen, de Hoogh, Vienneau, Gulliver, Fischer, Briggs (bb0105) 2008; 42 Marécal (bb0155) 2015; 8 Spinelle, Gerboles, Villani, Aleixandre, Bonavitacola (bb0230) 2015; 215 Howe (bb0120) 2006; 14 Schneider, Lahoz, van der A (bb0210) 2015; 15 Beelen (bb0015) 2013, jun; 72 Denby, Schaap, Segers, Builtjes, Horálek (bb0065) 2008; 42 Horálek, de Smet, Kurfürst, Leeuw, Benešová (bb0110) 2014 Piedrahita (bb0200) 2014; 3 Borrego (bb0025) 2016; 147 Castell, Dauge, Schneider, Vogt, Lerner, Fishbain, Broday, Bartonova (bb0030) 2017; 99 Bertino, Evensen, Wackernagel (bb0020) 2003; 71 Mead (bb0160) 2013; 70 Slørdal, Walker, Solberg (bb0220) 2003 Steinle, Reis, Eric (bb0235) 2013; 443 Castell, Kobernus, Liu, Schneider, Lahoz, Berre, Noll (bb0035) 2014; 14 Lahoz, Schneider (bb0150) 2014; 2 Hasenfratz, Saukh, Walser, Hueglin, Fierz, Arn, Beutel, Thiele (bb0095) 2015; 16 Goovaerts (bb0080) 1997 Wackernagel (bb0250) 2003 Aleixandre, Gerboles (bb0005) 2012; 30 Mueller, Wagner, Barmpadimos, Hueglin (bb0170) 2015; 106 De Smet, Horálek, Conková, Kurfürst, De Leeuw, Denby (bb0060) 2010 Serrano Sanz, Holocher-Ertl, Kieslinger, Sanz Garcia, Silva (bb0215) 2014 Tilloy, Mallet, Poulet, Pesin, Brocheton (bb0240) 2013; 118 Bertino (10.1016/j.envint.2017.05.005_bb0020) 2003; 71 (10.1016/j.envint.2017.05.005_bb0145) 2010 Spinelle (10.1016/j.envint.2017.05.005_bb0230) 2015; 215 Denby (10.1016/j.envint.2017.05.005_bb0075) 2014 Howe (10.1016/j.envint.2017.05.005_bb0120) 2006; 14 (10.1016/j.envint.2017.05.005_bb0260) 2016 Mueller (10.1016/j.envint.2017.05.005_bb0170) 2015; 106 Kitanidis (10.1016/j.envint.2017.05.005_bb0135) 1997 Sarma (10.1016/j.envint.2017.05.005_bb0205) 2009 Piedrahita (10.1016/j.envint.2017.05.005_bb0200) 2014; 3 Cleveland (10.1016/j.envint.2017.05.005_bb0045) 1979; 74 Aleixandre (10.1016/j.envint.2017.05.005_bb0005) 2012; 30 Cressie (10.1016/j.envint.2017.05.005_bb0050) 1993 Peters (10.1016/j.envint.2017.05.005_bb0185) 2013; 13 Denby (10.1016/j.envint.2017.05.005_bb0065) 2008; 42 Nieuwenhuijsen (10.1016/j.envint.2017.05.005_bb0175) 2015; 49 Wackernagel (10.1016/j.envint.2017.05.005_bb0250) 2003 Chilès (10.1016/j.envint.2017.05.005_bb0040) 2012 Borrego (10.1016/j.envint.2017.05.005_bb0025) 2016; 147 Hengl (10.1016/j.envint.2017.05.005_bb0100) 2007; 33 De Nazelle (10.1016/j.envint.2017.05.005_bb0055) 2013; 176 Steinle (10.1016/j.envint.2017.05.005_bb0235) 2013; 443 Tilloy (10.1016/j.envint.2017.05.005_bb0240) 2013; 118 Isaaks (10.1016/j.envint.2017.05.005_bb0125) 1989 Peters (10.1016/j.envint.2017.05.005_bb0190) 2014; 92 Petersen (10.1016/j.envint.2017.05.005_bb0195) 1980 Serrano Sanz (10.1016/j.envint.2017.05.005_bb0215) 2014 De Smet (10.1016/j.envint.2017.05.005_bb0060) 2010 Van den Bossche (10.1016/j.envint.2017.05.005_bb0245) 2015; 105 Hand (10.1016/j.envint.2017.05.005_bb0090) 2010; 466 Horálek (10.1016/j.envint.2017.05.005_bb0110) 2014 Oftedal (10.1016/j.envint.2017.05.005_bb0180) 2009; 36 Webster (10.1016/j.envint.2017.05.005_bb0255) 2007 Hasenfratz (10.1016/j.envint.2017.05.005_bb0095) 2015; 16 Slørdal (10.1016/j.envint.2017.05.005_bb0220) 2003 Kalnay (10.1016/j.envint.2017.05.005_bb0130) 2003 Marécal (10.1016/j.envint.2017.05.005_bb0155) 2015; 8 Goovaerts (10.1016/j.envint.2017.05.005_bb0080) 1997 Guerreiro (10.1016/j.envint.2017.05.005_bb0085) 2014; 98 Baklanov (10.1016/j.envint.2017.05.005_bb0010) 2016; 126 Kumar (10.1016/j.envint.2017.05.005_bb0140) 2015; 75 Mead (10.1016/j.envint.2017.05.005_bb0160) 2013; 70 Mueller (10.1016/j.envint.2017.05.005_bb0165) 2016; 126 Castell (10.1016/j.envint.2017.05.005_bb0030) 2017; 99 Lahoz (10.1016/j.envint.2017.05.005_bb0150) 2014; 2 Hoek (10.1016/j.envint.2017.05.005_bb0105) 2008; 42 Castell (10.1016/j.envint.2017.05.005_bb0035) 2014; 14 Snyder (10.1016/j.envint.2017.05.005_bb0225) 2013; 47 Schneider (10.1016/j.envint.2017.05.005_bb0210) 2015; 15 Beelen (10.1016/j.envint.2017.05.005_bb0015) 2013; 72 Horálek (10.1016/j.envint.2017.05.005_bb0115) 2013 Denby (10.1016/j.envint.2017.05.005_bb0070) 2010; 408 |
References_xml | – volume: 98 start-page: 376 year: 2014 end-page: 384 ident: bb0085 article-title: Air quality status and trends in Europe publication-title: Atmos. Environ. – volume: 30 year: 2012 ident: bb0005 article-title: Review of small commercial sensors for indicative monitoring of ambient gas review of small commercial sensors for indicative monitoring of ambient gas publication-title: Chem. Eng. Trans. – volume: 126 start-page: 171 year: 2016 end-page: 181 ident: bb0165 article-title: Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network publication-title: Atmos. Environ. – volume: 42 start-page: 7122 year: 2008 end-page: 7134 ident: bb0065 article-title: Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale publication-title: Atmos. Environ. – volume: 408 start-page: 4795 year: 2010 end-page: 4806 ident: bb0070 article-title: Spatial mapping of ozone and SO2 trends in Europe publication-title: Sci. Total Environ. – volume: 215 start-page: 249 year: 2015 end-page: 257 ident: bb0230 article-title: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: ozone and nitrogen dioxide publication-title: Sens. Actuators B – volume: 33 start-page: 1301 year: 2007 end-page: 1315 ident: bb0100 article-title: About regression-kriging: from equations to case studies publication-title: Comput. Geosci. – volume: 42 start-page: 7561 year: 2008 end-page: 7578 ident: bb0105 article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution publication-title: Atmos. Environ. – volume: 2 start-page: 1 year: 2014 end-page: 28 ident: bb0150 article-title: Data assimilation: making sense of earth observation publication-title: Front. Environ. Sci. – volume: 14 start-page: 370 year: 2014 end-page: 382 ident: bb0035 article-title: Mobile technologies and services for environmental monitoring: the citi-sense-MOB approach publication-title: Urban Climate – start-page: 249 year: 1997 ident: bb0135 article-title: Introduction to Geostatistics: Applications in Hydrogeology – year: 2013 ident: bb0115 article-title: European air quality maps of PM and ozone for 2011 and their uncertainty publication-title: Tech. Rep. ETC/ACM Technical Paper 2008/8 – volume: 71 start-page: 223 year: 2003 end-page: 241 ident: bb0020 article-title: Sequential data assimilation techniques in oceanography publication-title: Int. Stat. Rev. – volume: 16 start-page: 268 year: 2015 end-page: 285 ident: bb0095 article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes publication-title: Pervasive Mob. Comput. – year: 2010 ident: bb0145 article-title: Data assimilation – start-page: 726 year: 2012 ident: bb0040 article-title: Geostatistics: Modeling Spatial Uncertainty – volume: 13 start-page: 509 year: 2013 end-page: 522 ident: bb0185 article-title: Monitoring PM10 and ultrafine particles in urban environments using mobile measurements publication-title: Aerosol Air Qual. Res. – volume: 99 start-page: 293 year: 2017 end-page: 302 ident: bb0030 article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? publication-title: Environ. Int. – volume: 15 start-page: 1205 year: 2015 end-page: 1220 ident: bb0210 article-title: Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide publication-title: Atmos. Chem. Phys. – start-page: 387 year: 2003 ident: bb0250 article-title: Multivariate Geostatistics – volume: 92 start-page: 31 year: 2014 end-page: 43 ident: bb0190 article-title: Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium publication-title: Atmos. Environ. – year: 2003 ident: bb0130 article-title: Atmospheric Modeling, Data Assimilation and Predictability – start-page: 483 year: 1997 ident: bb0080 article-title: Geostatistics for Natural Resources Evaluation – volume: 176 start-page: 92 year: 2013 end-page: 99 ident: bb0055 article-title: Improving estimates of air pollution exposure through ubiquitous sensing technologies publication-title: Environ. Pollut. – start-page: 330 year: 2007 ident: bb0255 article-title: Geostatistics for Environmental Scientists – volume: 74 start-page: 829 year: 1979 end-page: 836 ident: bb0045 article-title: Robust locally weighted regression and smoothing scatterplots publication-title: J. Am. Stat. Assoc. – volume: 75 start-page: 199 year: 2015 end-page: 205 ident: bb0140 article-title: The rise of low-cost sensing for managing air pollution in cities publication-title: Environ. Int. – volume: 3 start-page: 3325 year: 2014 end-page: 3336 ident: bb0200 article-title: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring publication-title: Atmos. Meas. Tech. – volume: 70 start-page: 186 year: 2013 end-page: 203 ident: bb0160 article-title: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks publication-title: Atmos. Environ. – year: 2014 ident: bb0075 article-title: Air quality maps of NO2 and PM10 for the region including Stavanger sandnes randaberg and sola publication-title: Tech. Rep. TR 1/2014 – start-page: 224 year: 2009 ident: bb0205 article-title: Geostatistics with Applications in Earth Sciences – volume: 36 start-page: 110 year: 2009 end-page: 126 ident: bb0180 article-title: Modelling long-term averages of local ambient air pollution in Oslo, Norway: evaluation of nitrogen dioxide, PM10 and PM2.5 publication-title: Int. J. Environ. Pollut. – year: 2016 ident: bb0260 article-title: Ambient air pollution: a global assessment of exposure and burden of disease publication-title: Tech. rep – volume: 147 start-page: 246 year: 2016 end-page: 263 ident: bb0025 article-title: Assessment of air quality microsensors versus reference methods: the eunetair joint exercise publication-title: Atmos. Environ. – start-page: 561 year: 1989 ident: bb0125 article-title: Applied Geostatistics – volume: 106 start-page: 1 year: 2015 end-page: 10 ident: bb0170 article-title: Two-week NO2 maps for the city of Zurich, Switzerland, derived by statistical modelling utilizing data from a routine passive diffusion sampler network publication-title: Atmos. Environ. – volume: 47 start-page: 369 year: 2013 end-page: 377 ident: bb0225 article-title: The changing paradigm of air pollution monitoring publication-title: Environ. Sci. Technol. – year: 2014 ident: bb0110 article-title: European air quality maps of PM and ozone for 2010 and their uncertainty publication-title: Tech. Rep. 2014/4 – start-page: 900 year: 1993 ident: bb0050 article-title: Statistics for Spatial Data – volume: 72 start-page: 10 year: 2013, jun end-page: 23 ident: bb0015 article-title: Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in europe the ESCAPE project publication-title: Atmos. Environ. – year: 2003 ident: bb0220 article-title: The urban air dispersion model EPISODE applied in AirQUIS 2003 - technical description publication-title: Tech. rep – year: 2014 ident: bb0215 article-title: Socientize - White Paper on Citizen Science for Europe – volume: 443 start-page: 184 year: 2013 end-page: 193 ident: bb0235 article-title: Science of the total environment quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment publication-title: Sci. Total Environ. – year: 2010 ident: bb0060 article-title: European air quality maps of ozone and PM10 for 2008 and their uncertainty analysis publication-title: Tech. Rep. ETC/ACC Technical Paper 2010/10 – volume: 126 start-page: 235 year: 2016 end-page: 249 ident: bb0010 article-title: Megacities, air quality and climate publication-title: Atmos. Environ. – volume: 466 start-page: 685 year: 2010 end-page: 687 ident: bb0090 article-title: Citizen Science - People power publication-title: Nature – volume: 14 year: 2006 ident: bb0120 article-title: The rise of crowdsourcing publication-title: Wired Mag. – year: 1980 ident: bb0195 article-title: User's guide for HIWAY-2 - a highway air pollution model publication-title: Tech. Rep. EPA-600/8-80-018 – volume: 8 start-page: 2777 year: 2015 end-page: 2813 ident: bb0155 article-title: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production publication-title: Geosci. Model Dev. – volume: 118 start-page: 2031 year: 2013 end-page: 2040 ident: bb0240 article-title: BLUE-based NO2 data assimilation at urban scale publication-title: J. Geophys. Res. Atmos. – volume: 49 start-page: 2977 year: 2015 end-page: 2982 ident: bb0175 article-title: Variability in and agreement between modelled and personal continuously measured black carbon levels using novel smartphone and sensor technologies publication-title: Environ. Sci. Technol. – volume: 105 start-page: 148 year: 2015 end-page: 161 ident: bb0245 article-title: Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset publication-title: Atmos. Environ. – volume: 49 start-page: 2977 year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0175 article-title: Variability in and agreement between modelled and personal continuously measured black carbon levels using novel smartphone and sensor technologies publication-title: Environ. Sci. Technol. doi: 10.1021/es505362x – volume: 98 start-page: 376 year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0085 article-title: Air quality status and trends in Europe publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.09.017 – volume: 92 start-page: 31 year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0190 article-title: Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.03.039 – volume: 70 start-page: 186 year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0160 article-title: The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.11.060 – volume: 105 start-page: 148 year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0245 article-title: Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.01.017 – start-page: 483 year: 1997 ident: 10.1016/j.envint.2017.05.005_bb0080 – start-page: 900 year: 1993 ident: 10.1016/j.envint.2017.05.005_bb0050 – volume: 118 start-page: 2031 issue: 4 year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0240 article-title: BLUE-based NO2 data assimilation at urban scale publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50233 – volume: 14 issue: 06 year: 2006 ident: 10.1016/j.envint.2017.05.005_bb0120 article-title: The rise of crowdsourcing publication-title: Wired Mag. – volume: 408 start-page: 4795 issue: 20 year: 2010 ident: 10.1016/j.envint.2017.05.005_bb0070 article-title: Spatial mapping of ozone and SO2 trends in Europe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.06.021 – volume: 13 start-page: 509 year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0185 article-title: Monitoring PM10 and ultrafine particles in urban environments using mobile measurements publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2012.06.0152 – year: 2016 ident: 10.1016/j.envint.2017.05.005_bb0260 article-title: Ambient air pollution: a global assessment of exposure and burden of disease – year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0110 article-title: European air quality maps of PM and ozone for 2010 and their uncertainty – volume: 47 start-page: 369 issue: 20 year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0225 article-title: The changing paradigm of air pollution monitoring publication-title: Environ. Sci. Technol. doi: 10.1021/es4022602 – volume: 99 start-page: 293 year: 2017 ident: 10.1016/j.envint.2017.05.005_bb0030 article-title: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? publication-title: Environ. Int. doi: 10.1016/j.envint.2016.12.007 – volume: 147 start-page: 246 issue: 2 year: 2016 ident: 10.1016/j.envint.2017.05.005_bb0025 article-title: Assessment of air quality microsensors versus reference methods: the eunetair joint exercise publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.09.050 – volume: 75 start-page: 199 year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0140 article-title: The rise of low-cost sensing for managing air pollution in cities publication-title: Environ. Int. doi: 10.1016/j.envint.2014.11.019 – volume: 30 year: 2012 ident: 10.1016/j.envint.2017.05.005_bb0005 article-title: Review of small commercial sensors for indicative monitoring of ambient gas review of small commercial sensors for indicative monitoring of ambient gas publication-title: Chem. Eng. Trans. – volume: 42 start-page: 7561 issue: 33 year: 2008 ident: 10.1016/j.envint.2017.05.005_bb0105 article-title: A review of land-use regression models to assess spatial variation of outdoor air pollution publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.05.057 – year: 1980 ident: 10.1016/j.envint.2017.05.005_bb0195 article-title: User's guide for HIWAY-2 - a highway air pollution model – volume: 72 start-page: 10 issue: 2 year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0015 article-title: Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in europe the ESCAPE project publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.02.037 – volume: 176 start-page: 92 year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0055 article-title: Improving estimates of air pollution exposure through ubiquitous sensing technologies publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.12.032 – volume: 33 start-page: 1301 issue: 10 year: 2007 ident: 10.1016/j.envint.2017.05.005_bb0100 article-title: About regression-kriging: from equations to case studies publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2007.05.001 – year: 2003 ident: 10.1016/j.envint.2017.05.005_bb0220 article-title: The urban air dispersion model EPISODE applied in AirQUIS 2003 - technical description – start-page: 249 year: 1997 ident: 10.1016/j.envint.2017.05.005_bb0135 – volume: 106 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0170 article-title: Two-week NO2 maps for the city of Zurich, Switzerland, derived by statistical modelling utilizing data from a routine passive diffusion sampler network publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.01.049 – volume: 3 start-page: 3325 issue: 2 year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0200 article-title: The next generation of low-cost personal air quality sensors for quantitative exposure monitoring publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-7-3325-2014 – volume: 74 start-page: 829 issue: 368 year: 1979 ident: 10.1016/j.envint.2017.05.005_bb0045 article-title: Robust locally weighted regression and smoothing scatterplots publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1979.10481038 – start-page: 561 year: 1989 ident: 10.1016/j.envint.2017.05.005_bb0125 – start-page: 726 year: 2012 ident: 10.1016/j.envint.2017.05.005_bb0040 – year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0075 article-title: Air quality maps of NO2 and PM10 for the region including Stavanger sandnes randaberg and sola – start-page: 224 year: 2009 ident: 10.1016/j.envint.2017.05.005_bb0205 – volume: 443 start-page: 184 year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0235 article-title: Science of the total environment quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.10.098 – volume: 16 start-page: 268 issue: PB year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0095 article-title: Deriving high-resolution urban air pollution maps using mobile sensor nodes publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2014.11.008 – volume: 215 start-page: 249 year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0230 article-title: Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: ozone and nitrogen dioxide publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.03.031 – volume: 126 start-page: 235 year: 2016 ident: 10.1016/j.envint.2017.05.005_bb0010 article-title: Megacities, air quality and climate publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.11.059 – volume: 42 start-page: 7122 issue: 30 year: 2008 ident: 10.1016/j.envint.2017.05.005_bb0065 article-title: Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.05.058 – start-page: 387 year: 2003 ident: 10.1016/j.envint.2017.05.005_bb0250 – volume: 15 start-page: 1205 year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0210 article-title: Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-1205-2015 – year: 2013 ident: 10.1016/j.envint.2017.05.005_bb0115 article-title: European air quality maps of PM and ozone for 2011 and their uncertainty – volume: 14 start-page: 370 year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0035 article-title: Mobile technologies and services for environmental monitoring: the citi-sense-MOB approach publication-title: Urban Climate doi: 10.1016/j.uclim.2014.08.002 – volume: 36 start-page: 110 issue: 2 year: 2009 ident: 10.1016/j.envint.2017.05.005_bb0180 article-title: Modelling long-term averages of local ambient air pollution in Oslo, Norway: evaluation of nitrogen dioxide, PM10 and PM2.5 publication-title: Int. J. Environ. Pollut. doi: 10.1504/IJEP.2009.021820 – year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0215 – year: 2010 ident: 10.1016/j.envint.2017.05.005_bb0060 article-title: European air quality maps of ozone and PM10 for 2008 and their uncertainty analysis – volume: 466 start-page: 685 issue: August year: 2010 ident: 10.1016/j.envint.2017.05.005_bb0090 article-title: Citizen Science - People power publication-title: Nature doi: 10.1038/466685a – volume: 8 start-page: 2777 issue: 9 year: 2015 ident: 10.1016/j.envint.2017.05.005_bb0155 article-title: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-2777-2015 – year: 2010 ident: 10.1016/j.envint.2017.05.005_bb0145 article-title: Data assimilation – volume: 126 start-page: 171 year: 2016 ident: 10.1016/j.envint.2017.05.005_bb0165 article-title: Statistical modelling of particle number concentration in Zurich at high spatio-temporal resolution utilizing data from a mobile sensor network publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.11.033 – start-page: 330 year: 2007 ident: 10.1016/j.envint.2017.05.005_bb0255 – volume: 71 start-page: 223 issue: 2 year: 2003 ident: 10.1016/j.envint.2017.05.005_bb0020 article-title: Sequential data assimilation techniques in oceanography publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2003.tb00194.x – volume: 2 start-page: 1 issue: 16 year: 2014 ident: 10.1016/j.envint.2017.05.005_bb0150 article-title: Data assimilation: making sense of earth observation publication-title: Front. Environ. Sci. – year: 2003 ident: 10.1016/j.envint.2017.05.005_bb0130 |
SSID | ssj0002485 |
Score | 2.6175933 |
Snippet | The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 234 |
SubjectTerms | Air Pollutants - analysis air pollution Air Pollution - analysis Air quality Cities Crowdsourcing data collection Environmental Monitoring - methods geostatistics instrumentation Low-cost microsensors Mapping Models, Theoretical monitoring Nitrogen dioxide Nitrogen Dioxide - analysis Norway space and time uncertainty Urban air quality urban areas |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQTyCEykJheclIXC2S-JljQa0qpHKiUm_WxI9qq5WDNrtC_Hs8cbIsh2ovXKNJYntmPDP2zDeEfPKi9nXVRgYAnOVdMjBQRjITDUhjuOABjwauv6urG_HtVt4etPrCnLACD1wW7rPioREmgu60EzKaVrm8nXLhg69BxjFazzZvDqamPRiBugqqd5UH0FRz0dyY2YUlZAnzKOuC2omt6w6M0ojd_49tesj3HG3Q5Sl5NjmP9LwM-jl5FNKCPDmAFFyQs4u_lWuZdFLdYUGelgM6WuqOXpD7a0Bohju623SQKKw2tBRY_qarRFNWAJr9yTXD5vMUs-PvaN_tj3AHinUpdN3_Yq4ftnTI0XC_GSgkT8fmOnRCZEXil-Tm8uLH1ys2NV5gTmq-ZU6rzgklGwlax04qjpA0MboQjfKtyzyIQqtWSg6Nk16Cr4IDoUDJWnnBz8hJ6lN4TShUQYboofFYgdvoNihXddAq2QlZQbMkfF556yZUcmyOsbZz-tm9LfyyyC9bSZv5tSRs_9bPgspxhP4LMnVPi5ja44MsaXaSNHtM0pZEzyJhJ_ekuB35U6sjv_84S5DN2otXMpBCvxtsjfD8Uueg8mGaZgQJMqbNi_WqiN9-Io1RytSav_kfE3xLHuOgSwbdO3Ky3ezC--xybbsPo3b9Ae0oKWk priority: 102 providerName: Directory of Open Access Journals |
Title | Mapping urban air quality in near real-time using observations from low-cost sensors and model information |
URI | https://dx.doi.org/10.1016/j.envint.2017.05.005 https://www.ncbi.nlm.nih.gov/pubmed/28668173 https://www.proquest.com/docview/1915557260 https://www.proquest.com/docview/2000378892 https://doaj.org/article/63e248fa7b7c45f896c71834ded1a5f0 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvbSU0m6bZvtYVOhVXdt6-piGhG1LcmkDuQlZj2XDYgd7l5JLfns1lr1JDiHQo8X4odFII43n-wahr47lLs_KQIwxlMRV0hMjFCcqKMOVoox6CA2cnYvFBft5yS_30PGIhYG0ymHtT2t6v1oPLfNBm_Pr1Wr-G7jRWB4dmKCQVdgj2JkEK_92e5fmAZRdid87IyA9wuf6HC8Ak9WQUZkn_k4oYnfPPfUs_g-81GO70N4bnb5Gr4ZtJD5KX_oG7fl6gl7cIxecoIOTOwxbFB0mcTdBL1OoDicE0lt0dWaApGGJt21lamxWLU5Qyxu8qnEdpwKOO8s1gTL0GPLkl7ipdsHcDgNCBa-bv8Q23QZ38VzctB02tcN9mR08cLOC8Dt0cXry53hBhhIMxHJJN8RKUVkmeMGNlKHiUdUlVyFYH5RwpS2FDVHnJefUFJY7blzmrWHCCJ4Lx-gB2q-b2h8ibDLPfXCmcIDFLWTphc0qUwpeMZ6ZYoroqHltB35yKJOx1mMi2pVO46VhvHTGdRyvKSK7u64TP8cT8t9hUHeywK7dNzTtUg_mpQX10WyCkZW0jAcVexldOGXOu9zwkE2RHE1CPzDW-KjVE6__MlqQjvMYfs6Y2jfbTudA1M9lPF4-LlP0dEFKlVFZ75P57TpSKCFULumH__62j-g5XKUEuk9of9Nu_ee449pUs35KzdCzox-_FuezPm7xDycqLOw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2hLKe22SbdPFXoVa1tPH9OQsGmye2kCuQlZj7BhscN6l9J_X41lb5NDCPQqj2w95iV55huEvjuWuzwrAzHGUBK1pCdGKE5UUIYrRRn1cDUwX4jZFft5za_30PGQCwNhlb3uTzq909Z9y7Rfzendcjn9BdhoLI8GTFCIKoxHoH1Ap-IjtH90dj5b7BQyoHYliO-MQIchg64L84J8shqCKvME4Ql17O5ZqA7I_4GheswR7QzS6Wv0qvck8VEa7Bu05-sxenEPX3CMDk7-pbFF0l6O2zF6mW7rcEpCeotu5wZwGm7wdl2ZGpvlGqdsyz94WeM6SgOOzuWKQCV6DKHyN7ipdve5LYYkFbxqfhPbtBvcxqNxs26xqR3uKu3gHp4ViN-hq9OTy-MZ6aswEMsl3RArRWWZ4AU3UoaKx9UuuQrB-qCEK20pbGBSlJxTU1juuHGZt4YJI3guHKMHaFQ3tX-PsMk898GZwkE6biFLL2xWmVLwivHMFBNEh5XXtocoh0oZKz3Eot3qtF8a9ktnXMf9miCy63WXIDqeoP8Bm7qjBYDtrqFZ3-iew7SgPrJNMLKSlvGg4iyjFafMeZcbHrIJkgNL6Af8Gl-1fOLz3wYO0lGU4f-MqX2zbXUOWP1cxhPm4zRFhxikVBkX6zCx324ihRJC5ZJ--O-xfUXPZpfzC31xtjj_iJ7DkxRP9wmNNuut_xwdsE31pRewv0bTLqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+urban+air+quality+in+near+real-time+using+observations+from+low-cost+sensors+and+model+information&rft.jtitle=Environment+international&rft.au=Schneider%2C+Philipp&rft.au=Castell%2C+Nuria&rft.au=Vogt%2C+Matthias&rft.au=Dauge%2C+Franck+R.&rft.date=2017-09-01&rft.pub=Elsevier+Ltd&rft.issn=0160-4120&rft.eissn=1873-6750&rft.volume=106&rft.spage=234&rft.epage=247&rft_id=info:doi/10.1016%2Fj.envint.2017.05.005&rft.externalDocID=S0160412016310741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |