Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation

Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcript...

Full description

Saved in:
Bibliographic Details
Published inGenome Vol. 54; no. 6; pp. 471 - 483
Main Authors Banik, Mitali, Duguid, Scott, Cloutier, Sylvie
Format Journal Article
LanguageEnglish
Published Canada NRC Research Press 01.06.2011
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes.
AbstractList Three genes encoding fatty acid desaturase 3 fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. [alpha]- Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes.
Three genes encoding fatty acid desaturase 3 fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. [alpha]- Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes. Key words: [alpha]-linolenic acid, fatty acid desaturase, FAD3, flax, real-time PCR, omega-3 fatty acids. Trois genes codant pour des desaturases 3 fad3a, fad3b et l'inedit fad3c), impliques dans la synthese des acides gras, ont ete clones chez quatre genotypes du lin differant pour ce qui est de leur teneur en acide linolenique. La PCR en temps reel a ete employee pour mesurer l'expression des trois genes fad3 au cours du developpement des graines. De grandes quantites de transcrits de fad3a et fad3b ont ete observees et ont atteint un sommet 20 jours apres l'anthese, sauf pour fad3a chez SP2047 ou seul un faible niveau a ete observe tout au cours du developpement. L'abondance du transcrit du gene fad3c etait egalement tres faible. Le profil en acides gras a ete analyse chez tous les genotypes a tous les stades de developpement pour le comparer a l'expression des genes fad3. L'acide [alpha]-linolenique s'accumule graduellement tout au long du developpement de la graine tandis que l acide linoleique s accumulait transitoirement avant de diminuer chez M5791, UGG-5 et AC McDuff. Au contraire, chez SP2047, l acide linolenique, present au debut du developpement, disparait presque completement tandis que l acide linoleique s accumule progressivement. Chez SP2047, une lignee a faible teneur en acide linolenique, le gene fad3a code pour une proteine tronquee en raison d un codon stop premature resultant d une mutation ponctuelle. La faible abondance du transcrit chez ce genotype serait vraisemblablement due a la degradation des ARNm non-sens causee par l interruption prematuree de la traduction en raison de ce codon stop. En depit d une accumulation importante du transcrit fad3b chez SP2047, le clonage de ce gene a revele une mutation qui entraine un changement d acide amine au sein de la premiere boite histidine. L expression heterologue des genes fad3b de SP2047 et UGG5-5 a montre que la mutation dans la boite histidine chez SP2047 rendait l enzyme inactive. Ensemble, ces resultats montrent que fad3a et fad3b sont responsables de l accumulation d acide linolenique chez les graines de lin, tandis que fad3c ne jouerait pas de role majeur. Ces observations ont ete davantage supportees par un examen phenotypique et genotypique d une population d haploides doubles. L expression des genes fad3a et fad3b etait etroitement correlee avec la teneur en acide linolenique au cours du developpement des graines, sauf pour fad3b chez SP2047, genotype chez lequel l absence d activite decoule de la mutation dans la boite His malgre l abondance du transcrit qui est semblable a ce qui est observe chez les autres genotypes. Mots-cles : acide [alpha]-linolenique, desaturases d'acides gras, FAD3, lin, PCR en temps reel, acides gras omega-3. [Traduit par la Redaction]
Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes.
Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes. [PUBLICATION ABSTRACT]
Abstract_FL Trois gènes codant pour des désaturases 3 (fad3a, fad3b et l’inédit fad3c), impliqués dans la synthèse des acides gras, ont été clonés chez quatre génotypes du lin différant pour ce qui est de leur teneur en acide linolénique. La PCR en temps réel a été employée pour mesurer l’expression des trois gènes fad3 au cours du développement des graines. De grandes quantités de transcrits de fad3a et fad3b ont été observées et ont atteint un sommet 20 jours après l’anthèse, sauf pour fad3a chez SP2047 où seul un faible niveau a été observé tout au cours du développement. L’abondance du transcrit du gène fad3c était également très faible. Le profil en acides gras a été analysé chez tous les génotypes à tous les stades de développement pour le comparer à l’expression des gènes fad3. L’acide α-linolénique s’accumule graduellement tout au long du développement de la graine tandis que l’acide linoléique s’accumulait transitoirement avant de diminuer chez M5791, UGG-5 et AC McDuff. Au contraire, chez SP2047, l’acide linolénique, présent au début du développement, disparaît presque complètement tandis que l’acide linoléique s’accumule progressivement. Chez SP2047, une lignée à faible teneur en acide linolénique, le gène fad3a code pour une protéine tronquée en raison d’un codon stop prématuré résultant d’une mutation ponctuelle. La faible abondance du transcrit chez ce génotype serait vraisemblablement due à la dégradation des ARNm non-sens causée par l’interruption prématurée de la traduction en raison de ce codon stop. En dépit d’une accumulation importante du transcrit fad3b chez SP2047, le clonage de ce gène a révélé une mutation qui entraîne un changement d’acide aminé au sein de la première boîte histidine. L’expression hétérologue des gènes fad3b de SP2047 et UGG5-5 a montré que la mutation dans la boîte histidine chez SP2047 rendait l’enzyme inactive. Ensemble, ces résultats montrent que fad3a et fad3b sont responsables de l’accumulation d’acide linolénique chez les graines de lin, tandis que fad3c ne jouerait pas de rôle majeur. Ces observations ont été davantage supportées par un examen phénotypique et génotypique d’une population d’haploïdes doublés. L’expression des gènes fad3a et fad3b était étroitement corrélée avec la teneur en acide linolénique au cours du développement des graines, sauf pour fad3b chez SP2047, génotype chez lequel l’absence d’activité découle de la mutation dans la boîte His malgré l’abondance du transcrit qui est semblable à ce qui est observé chez les autres génotypes.
Audience Academic
Author Duguid, Scott
Cloutier, Sylvie
Banik, Mitali
Author_xml – sequence: 1
  givenname: Mitali
  surname: Banik
  fullname: Banik, Mitali
  organization: Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada
– sequence: 2
  givenname: Scott
  surname: Duguid
  fullname: Duguid, Scott
– sequence: 3
  givenname: Sylvie
  surname: Cloutier
  fullname: Cloutier, Sylvie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21627464$$D View this record in MEDLINE/PubMed
BookMark eNqVkmuL1DAUhousuBfFfyBhBXVlOyZNp5ePy-JlYVDQ9XPIJKdtljbtJinu-EP9PZ7OjOIso2D7oRee8yS8eY-jA9tbiKKnjM4Y4-WbmrGYMv4gOmJpQWPOE3YQHdGCszjJy-wwOvb-hlJGeckeRYcJy5I8zdKj6Me1k9YrZ4ZABtdXpjW2JtJqUoMFohrppArgzHcZTG9JX5HQOABSyRBWRCqjiQYvw-ikh_WQJ8aSxtTNOel6DU4GOF8b2_4bQX3fgjVqM4p8H1YDzqC4auUdebUwduzI6E3AFb03HX4tZmdrQ2jAOOLQMK1xzyWVGruxXe_zcfSwkq2HJ9vnSfT13dvryw_x4tP7q8uLRazmOQ-x4vNsmaaVzmgBPE1luZwrqHKFl06TudRFmtGcpbzkTE3_dVnqOU-UWuYFvpxELzdezO52BB9EZ7yCtpUW-tGLImeYeppP5Ok98qYfncXNIZTThCcJRej5BqplC8LYqg8Y_6QUF0mGp0lTmiEV76Gm6J1ssRd4iLDLn-7h1WBuxZ_QbA-Et4bOqL3Ws50BZALchVqO3ourL5__g_24y24jVa733kElBmc66VaCUTGVXWDZBZYdyWfbSMdlB_o396vdCLzeANYpBx6kU80_bC_-Dm8hMeiK_wQnMxWX
CODEN GENOE3
CitedBy_id crossref_primary_10_1016_j_phytochem_2013_12_002
crossref_primary_10_3390_agronomy12061432
crossref_primary_10_3390_ijms19082303
crossref_primary_10_1016_j_scienta_2018_09_002
crossref_primary_10_1371_journal_pone_0154300
crossref_primary_10_3390_plants11233207
crossref_primary_10_3390_ijms241914885
crossref_primary_10_1590_fst_93721
crossref_primary_10_1007_s00122_014_2264_4
crossref_primary_10_3390_genes14050967
crossref_primary_10_1080_13102818_2018_1480421
crossref_primary_10_1111_ijfs_15039
crossref_primary_10_1186_s12864_020_6692_z
crossref_primary_10_1016_j_plantsci_2019_06_004
crossref_primary_10_1186_s12864_021_07594_2
crossref_primary_10_1186_s12870_020_02499_w
crossref_primary_10_1021_pr300984r
crossref_primary_10_3390_agronomy14020381
crossref_primary_10_1007_s00122_012_1953_0
crossref_primary_10_1007_s13353_014_0222_0
crossref_primary_10_3390_plants12010095
crossref_primary_10_1002_jsfa_7775
crossref_primary_10_1007_s12033_014_9737_1
crossref_primary_10_1371_journal_pone_0191910
crossref_primary_10_1007_s00122_013_2161_2
crossref_primary_10_3390_plants13070956
crossref_primary_10_1371_journal_pone_0069124
crossref_primary_10_18699_VJ18_424
crossref_primary_10_1007_s11295_014_0765_6
crossref_primary_10_1371_journal_pone_0191432
crossref_primary_10_1007_s12298_021_01016_z
crossref_primary_10_30901_2227_8834_2021_3_91_100
crossref_primary_10_1016_j_cj_2016_03_001
crossref_primary_10_1007_s10142_016_0494_z
crossref_primary_10_1007_s00299_016_2053_4
crossref_primary_10_1002_ece3_57
Cites_doi 10.1104/pp.105.063743
10.1007/s12033-009-9150-3
10.1111/j.1467-7652.2008.00346.x
10.1046/j.1365-313X.1998.00229.x
10.1104/pp.103.2.467
10.2135/cropsci2005.0202
10.1016/S0140-6736(94)92580-1
10.1016/j.plantsci.2004.01.025
10.1104/pp.105.2.635
10.1101/gr.9.9.868
10.1111/j.1365-313X.2004.01949.x
10.1093/nar/22.22.4673
10.4141/P99-053
10.1104/pp.122.3.715
10.1007/s00438-007-0241-1
10.2135/cropsci1992.0011183X003200030016x
10.1111/j.1365-313X.2006.02802.x
10.1105/tpc.109.067736
10.1146/annurev.arplant.49.1.611
10.1007/BF00224393
10.1093/nar/8.19.4321
10.1105/tpc.7.7.957
10.1093/oxfordjournals.pcp.a029468
10.4141/P03-183
10.2135/cropsci2000.402383x
10.1007/s00122-009-1016-3
10.4141/P02-040
10.1073/pnas.0808902106
10.1006/meth.2001.1262
10.1007/s11746-007-1106-9
10.4141/P04-051
10.1016/S0165-022X(00)00129-9
10.4141/cjps91-054
10.1186/1471-2229-10-71
10.1038/emboj.2008.88
10.1007/BF00021128
10.1093/ajcn/69.3.395
10.1104/pp.105.1.443
10.2135/cropsci2003.1833
10.4141/cjps86-068
10.1105/tpc.1.4.427
10.1021/jf902684v
10.4141/P05-082
10.1101/gr.8.3.175
10.4141/cjps96-057
10.1016/j.plantsci.2005.02.016
10.1007/s001220050414
10.1016/S0021-9258(19)85427-3
10.1111/j.1365-313X.2006.02771.x
10.1007/BF02667435
10.1007/s11745-006-5021-x
10.1001/archinte.158.11.1181
10.1104/pp.105.064451
10.1126/science.1455229
10.1104/pp.125.3.1388
10.1016/S0981-9428(99)80072-2
10.1128/MCB.26.8.2965-2975.2006
10.1093/ajcn/69.5.890
10.1042/bj2350025
10.1007/s11032-010-9494-1
10.1104/pp.106.4.1609
10.4141/cjps95-036
10.1007/BF00224392
10.1016/j.bbalip.2008.12.019
10.1105/tpc.108.061143
10.1093/jxb/erj138
10.1079/BJN19930046
10.1104/pp.104.3.1075
10.1016/S0021-9258(20)80498-0
ContentType Journal Article
Copyright COPYRIGHT 2011 NRC Research Press
Copyright National Research Council of Canada Jun 2011
Copyright_xml – notice: COPYRIGHT 2011 NRC Research Press
– notice: Copyright National Research Council of Canada Jun 2011
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISN
ISR
7SS
7TK
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1139/g11-013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Canada
Science In Context
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList




MEDLINE

Entomology Abstracts
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1480-3321
Editor Belzile, Francois
Editor_xml – sequence: 1
  givenname: Francois
  surname: Belzile
  fullname: Belzile, Francois
EndPage 483
ExternalDocumentID 2400001101
A268310406
10_1139_g11_013
21627464
g11-013
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID 02
08R
0R
1AW
29H
3O-
3V.
4.4
4IJ
53G
5GY
5RE
5RP
7X2
7X7
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FQ
8G5
ABDBF
ABFLS
ABPTK
ABUWG
ACGFS
ACGOD
ACNCT
ACPRK
ADACO
AENEX
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BBAFP
BBNVY
BCR
BENPR
BHPHI
BLC
BPHCQ
BVXVI
CAG
COF
CS3
D8U
DATHI
DU5
DWQXO
EAD
EAP
EBD
EBS
ECC
EDH
EJD
EMK
EPL
EST
ESX
ET
F5P
FYUFA
G8K
GJ
GNUQQ
GUQSH
HCIFZ
HZ
H~9
IAG
IAO
ICQ
IGS
IHR
INH
INR
IOF
IPNFZ
ISN
ISR
ITC
KM
L7B
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M3C
M3G
M7P
MV1
NMEPN
NRXXU
NYCZX
O9-
OVD
PADUT
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
PV9
QF4
QM4
QM9
QN7
QO4
QRP
RIG
RRCRK
RRP
RZL
TR2
TUS
U5U
X
XHC
YYQ
ZCG
ZGI
-ET
-~X
.GJ
00T
0R~
2QL
36B
AAHBH
ABJNI
ACGFO
AEGXH
ALIPV
APEBS
CCPQU
CGR
CUY
CVF
ECM
EIF
EMB
EMOBN
GJPHO
HMCUK
HZ~
NPM
ONR
SV3
TEORI
UKHRP
VQG
~02
~KM
AAYXX
CITATION
7SS
7TK
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c573t-c356b44fd608e344a9b5cef7ccccd425ad84607143931cf7ccd99d532ccb78d53
ISSN 0831-2796
IngestDate Fri Oct 25 05:24:14 EDT 2024
Thu Oct 10 20:52:47 EDT 2024
Thu Feb 22 23:35:31 EST 2024
Fri Feb 02 05:13:15 EST 2024
Tue Dec 12 21:19:39 EST 2023
Fri Feb 02 04:28:43 EST 2024
Thu Aug 01 20:08:14 EDT 2024
Thu Aug 01 19:31:16 EDT 2024
Fri Aug 23 00:32:49 EDT 2024
Tue Oct 15 23:44:54 EDT 2024
Wed Apr 14 12:49:36 EDT 2021
Thu May 23 14:20:11 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c573t-c356b44fd608e344a9b5cef7ccccd425ad84607143931cf7ccd99d532ccb78d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21627464
PQID 877023220
PQPubID 34326
PageCount 13
ParticipantIDs gale_infotraccpiq_268310406
gale_incontextgauss_ISR_A268310406
gale_infotracmisc_A268310406
proquest_miscellaneous_871001475
gale_infotracacademiconefile_A268310406
gale_incontextgauss_ISN_A268310406
nrcresearch_primary_10_1139_g11_013
crossref_primary_10_1139_g11_013
proquest_journals_877023220
gale_infotracgeneralonefile_A268310406
pubmed_primary_21627464
PublicationCentury 2000
PublicationDate 20110600
2011-Jun
2011-06-00
20110601
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 20110600
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Ottawa
PublicationTitle Genome
PublicationTitleAlternate Genome
PublicationYear 2011
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg47/ref47
refg65/ref65
refg18/ref18
refg22/ref22
refg76/ref76
Chung C.-H. (refg10/ref10) 1999; 40
refg51/ref51
refg72/ref72
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg26/ref26
refg5/ref5
refg54/ref54
refg68/ref68
refg57/ref57
refg19/ref19
Browse J. (refg7/ref7) 1986; 235
refg21/ref21
refg75/ref75
refg4/ref4
refg46/ref46
refg48/ref48
refg1/ref1
refg32/ref32
McConn M. (refg52/ref52) 1994; 106
refg35/ref35
refg59/ref59
refg61/ref61
refg53/ref53
Sung M.K. (refg70/ref70) 1998; 18
refg78/ref78
refg42/ref42
refg24/ref24
refg16/ref16
refg50/ref50
refg64/ref64
refg67/ref67
refg13/ref13
refg56/ref56
refg74/ref74
refg20/ref20
refg38/ref38
refg45/ref45
refg49/ref49
refg31/ref31
Indo Y. (refg37/ref37) 2009; 1791
refg34/ref34
refg71/ref71
Cunnane S.C. (refg14/ref14) 1993; 69
refg60/ref60
refg63/ref63
refg77/ref77
refg2/ref2
refg23/ref23
refg17/ref17
Browse J. (refg8/ref8) 1993; 268
Bustin S.A. (refg9/ref9) 2004; 15
refg30/ref30
refg66/ref66
Hu F.B. (refg33/ref33) 1999; 69
refg12/ref12
refg28/ref28
refg41/ref41
refg55/ref55
refg39/ref39
refg3/ref3
refg69/ref69
Fofana B. (refg27/ref27) 2006; 41
Jenkins D.J. (refg40/ref40) 1999; 69
refg62/ref62
refg44/ref44
Iba K. (refg36/ref36) 1993; 268
refg58/ref58
refg73/ref73
References_xml – ident: refg15/ref15
  doi: 10.1104/pp.105.063743
– ident: refg43/ref43
  doi: 10.1007/s12033-009-9150-3
– ident: refg31/ref31
  doi: 10.1111/j.1467-7652.2008.00346.x
– ident: refg51/ref51
  doi: 10.1046/j.1365-313X.1998.00229.x
– ident: refg56/ref56
– ident: refg77/ref77
  doi: 10.1104/pp.103.2.467
– ident: refg54/ref54
  doi: 10.2135/cropsci2005.0202
– ident: refg16/ref16
  doi: 10.1016/S0140-6736(94)92580-1
– ident: refg26/ref26
  doi: 10.1016/j.plantsci.2004.01.025
– ident: refg32/ref32
  doi: 10.1104/pp.105.2.635
– ident: refg34/ref34
  doi: 10.1101/gr.9.9.868
– ident: refg65/ref65
– ident: refg50/ref50
  doi: 10.1111/j.1365-313X.2004.01949.x
– ident: refg73/ref73
  doi: 10.1093/nar/22.22.4673
– ident: refg20/ref20
  doi: 10.4141/P99-053
– ident: refg59/ref59
  doi: 10.1104/pp.122.3.715
– ident: refg61/ref61
  doi: 10.1007/s00438-007-0241-1
– ident: refg5/ref5
  doi: 10.2135/cropsci1992.0011183X003200030016x
– volume: 15
  start-page: 155
  issue: 3
  year: 2004
  ident: refg9/ref9
  publication-title: J. Biomol. Tech.
  contributor:
    fullname: Bustin S.A.
– ident: refg3/ref3
  doi: 10.1111/j.1365-313X.2006.02802.x
– ident: refg44/ref44
  doi: 10.1105/tpc.109.067736
– ident: refg67/ref67
  doi: 10.1146/annurev.arplant.49.1.611
– ident: refg39/ref39
  doi: 10.1007/BF00224393
– ident: refg53/ref53
  doi: 10.1093/nar/8.19.4321
– ident: refg55/ref55
  doi: 10.1105/tpc.7.7.957
– volume: 40
  start-page: 114
  issue: 1
  year: 1999
  ident: refg10/ref10
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029468
  contributor:
    fullname: Chung C.-H.
– ident: refg13/ref13
– ident: refg22/ref22
  doi: 10.4141/P03-183
– ident: refg62/ref62
  doi: 10.2135/cropsci2000.402383x
– ident: refg11/ref11
  doi: 10.1007/s00122-009-1016-3
– ident: refg21/ref21
  doi: 10.4141/P02-040
– ident: refg46/ref46
  doi: 10.1073/pnas.0808902106
– ident: refg48/ref48
  doi: 10.1006/meth.2001.1262
– volume: 18
  start-page: 1405
  year: 1998
  ident: refg70/ref70
  publication-title: Anticancer Res.
  contributor:
    fullname: Sung M.K.
– ident: refg45/ref45
  doi: 10.1007/s11746-007-1106-9
– ident: refg23/ref23
  doi: 10.4141/P04-051
– ident: refg66/ref66
  doi: 10.1016/S0165-022X(00)00129-9
– ident: refg63/ref63
  doi: 10.4141/cjps91-054
– ident: refg35/ref35
  doi: 10.1186/1471-2229-10-71
– ident: refg42/ref42
  doi: 10.1038/emboj.2008.88
– ident: refg29/ref29
  doi: 10.1007/BF00021128
– volume: 69
  start-page: 395
  issue: 3
  year: 1999
  ident: refg40/ref40
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/69.3.395
  contributor:
    fullname: Jenkins D.J.
– ident: refg49/ref49
  doi: 10.1104/pp.105.1.443
– ident: refg6/ref6
  doi: 10.2135/cropsci2003.1833
– ident: refg28/ref28
  doi: 10.4141/cjps86-068
– ident: refg41/ref41
  doi: 10.1105/tpc.1.4.427
– ident: refg2/ref2
– ident: refg72/ref72
  doi: 10.1021/jf902684v
– ident: refg24/ref24
  doi: 10.4141/P05-082
– ident: refg25/ref25
  doi: 10.1101/gr.8.3.175
– ident: refg19/ref19
  doi: 10.4141/cjps96-057
– ident: refg1/ref1
  doi: 10.1016/j.plantsci.2005.02.016
– ident: refg58/ref58
  doi: 10.1007/s001220050414
– volume: 268
  start-page: 16345
  issue: 22
  year: 1993
  ident: refg8/ref8
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)85427-3
  contributor:
    fullname: Browse J.
– ident: refg78/ref78
  doi: 10.1111/j.1365-313X.2006.02771.x
– ident: refg69/ref69
  doi: 10.1007/BF02667435
– volume: 41
  start-page: 705
  issue: 7
  year: 2006
  ident: refg27/ref27
  publication-title: Lipids
  doi: 10.1007/s11745-006-5021-x
  contributor:
    fullname: Fofana B.
– ident: refg17/ref17
  doi: 10.1001/archinte.158.11.1181
– ident: refg76/ref76
  doi: 10.1104/pp.105.064451
– ident: refg4/ref4
  doi: 10.1126/science.1455229
– ident: refg38/ref38
  doi: 10.1104/pp.125.3.1388
– ident: refg57/ref57
  doi: 10.1016/S0981-9428(99)80072-2
– ident: refg60/ref60
  doi: 10.1128/MCB.26.8.2965-2975.2006
– ident: refg64/ref64
– volume: 69
  start-page: 890
  year: 1999
  ident: refg33/ref33
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/69.5.890
  contributor:
    fullname: Hu F.B.
– volume: 235
  start-page: 25
  issue: 1
  year: 1986
  ident: refg7/ref7
  publication-title: Biochem. J.
  doi: 10.1042/bj2350025
  contributor:
    fullname: Browse J.
– ident: refg12/ref12
  doi: 10.1007/s11032-010-9494-1
– volume: 106
  start-page: 1609
  issue: 4
  year: 1994
  ident: refg52/ref52
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.4.1609
  contributor:
    fullname: McConn M.
– ident: refg18/ref18
  doi: 10.4141/cjps95-036
– ident: refg47/ref47
  doi: 10.1007/BF00224392
– ident: refg71/ref71
– ident: refg75/ref75
– volume: 1791
  start-page: 183
  issue: 3
  year: 2009
  ident: refg37/ref37
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2008.12.019
  contributor:
    fullname: Indo Y.
– ident: refg74/ref74
  doi: 10.1105/tpc.108.061143
– ident: refg30/ref30
  doi: 10.1093/jxb/erj138
– volume: 69
  start-page: 443
  issue: 2
  year: 1993
  ident: refg14/ref14
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN19930046
  contributor:
    fullname: Cunnane S.C.
– ident: refg68/ref68
  doi: 10.1104/pp.104.3.1075
– volume: 268
  start-page: 24099
  issue: 32
  year: 1993
  ident: refg36/ref36
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)80498-0
  contributor:
    fullname: Iba K.
SSID ssj0010391
Score 2.196047
Snippet Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content....
Three genes encoding fatty acid desaturase 3 fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time...
SourceID proquest
gale
crossref
pubmed
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 471
SubjectTerms Accumulation
acide α-linolénique
acides gras omega-3
alpha-Linolenic Acid - biosynthesis
Amino Acid Sequence
Amino acids
Chemical properties
Cloning
Cloning, Molecular
Codon, Nonsense
Developmental stages
DNA, Plant - isolation & purification
désaturases d’acides gras
Enzymes
FAD3
fatty acid desaturase
Fatty acid desaturases
Fatty Acid Desaturases - genetics
Fatty acids
Flax
Flax - enzymology
Flax - genetics
Gene Expression Profiling
Gene Expression Regulation, Plant
Genes, Plant
Genetic aspects
Genotype
Genotype & phenotype
Genotypes
Haploidy
lin
Linolenic acids
Molecular Sequence Data
Mutation
omega-3 fatty acids
PCR en temps réel
Physiological aspects
Polymerase Chain Reaction
Proteins
real-time PCR
RNA, Messenger
RNA, Plant - isolation & purification
Sequence Analysis, DNA
Yeasts
α-linolenic acid
Title Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation
URI http://www.nrcresearchpress.com/doi/abs/10.1139/g11-013
https://www.ncbi.nlm.nih.gov/pubmed/21627464
https://www.proquest.com/docview/877023220
https://search.proquest.com/docview/871001475
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkhwQLxZWsACBIdtyiZ2Xse20BYkeiit1FvkOM4Ssc0u3SzQ_jb4b8zYzqu0UmEPUWSPHa_nix_xzDeEvFJ-mqWZCh0RCM_hUew6KXcjJxd-mAZRyPwcT3Q_7Qd7R_zjsX-8tPSrY7W0qNINeX6pX8n_aBXSQK_oJfsPmm0qhQS4B_3CFTQM1-vpGCca_doPTezt2uMQSij06bVczOfNurAC1alhLipYewtZZMNMzZHaE-YyXUhbxyKFMXY9RslBJonawnMy_TGER-BJPrK8YnGkeMWvuNogJJ-In7VFZnFqDBehugtFhJSLExs0rLs03oWqTtozflEWX41dP3I0tuvt8aIwn7KRVKI5QZlMoZttDLGzyfdCdb9muB2rK2PscbDdmBz2jFD0eMhcxwtjy5xtxmsewTTCjJN1PaAbVmoL3O7ozE20l79nDYakq7vaw5C1E2NtDPDh834_0fAFewEGaePI974CzWLRMlnZ3Hq3tbPSRtAwERvrhhunbXzcW_uw3mrIrglulafSMj19uXrfo9c_h3fIbbtxoZsGhXfJkirvkRsmlOnZffK7xSJtsEgBDBRhRS9ikU5zqrFINRYpIoO2WNSF5rQoKWJxndZIXNc1Ag5pAypTtMEhVow41IIahxRxiFVdKNLF4QNytPP-cHvPsaFBHOmHrHIk84OU8zwLRpFinIs49aXKQwm_DKYhkcG6Gn3zWMxcielZHGc-86RMwwhuHpLlclqqx4RKtApjTGUwpvKc5xH3U-GORCpC3xN-PgARq6JkZhhgEr1zZnEyht0zFB6QF6i6BPlUSjTYGovFfJ4AbpIWJVcKHfSE3lihfFqBXoR1koGmIk9bT3K1Jylnxbekk_u6lzs2HPaXVbPWE4TJRfayX3bQePX_f36ZlM1NZhl04mqN48QOoPMkCkPYMXjeCLq4ycUGoN1nqaYLFEGOOB76A_LIoL-p3XMxbFjAn1yn81fJzXa0WSPL1elCPYXdRJU-sy_tHw9MKFw
link.rule.ids 315,783,787,27938,27939
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcript+profiling+and+gene+characterization+of+three+fatty+acid+desaturase+genes+in+high%2C+moderate%2C+and+low+linolenic+acid+genotypes+of+flax+and+their+role+in+linolenic+acid+accumulation&rft.jtitle=Genome&rft.au=Banik%2C+Mitali&rft.au=Duguid%2C+Scott&rft.au=Cloutier%2C+Sylvie&rft.date=2011-06-01&rft.pub=NRC+Research+Press&rft.issn=0831-2796&rft.eissn=1480-3321&rft.volume=54&rft.issue=6&rft.spage=471&rft_id=info:doi/10.1139%2FG11-013&rft.externalDBID=ISN&rft.externalDocID=A268310406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0831-2796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0831-2796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0831-2796&client=summon