Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation
Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcript...
Saved in:
Published in | Genome Vol. 54; no. 6; pp. 471 - 483 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Canada
NRC Research Press
01.06.2011
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes. |
---|---|
AbstractList | Three genes encoding fatty acid desaturase 3 fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. [alpha]- Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes. Three genes encoding fatty acid desaturase 3 fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. [alpha]- Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes. Key words: [alpha]-linolenic acid, fatty acid desaturase, FAD3, flax, real-time PCR, omega-3 fatty acids. Trois genes codant pour des desaturases 3 fad3a, fad3b et l'inedit fad3c), impliques dans la synthese des acides gras, ont ete clones chez quatre genotypes du lin differant pour ce qui est de leur teneur en acide linolenique. La PCR en temps reel a ete employee pour mesurer l'expression des trois genes fad3 au cours du developpement des graines. De grandes quantites de transcrits de fad3a et fad3b ont ete observees et ont atteint un sommet 20 jours apres l'anthese, sauf pour fad3a chez SP2047 ou seul un faible niveau a ete observe tout au cours du developpement. L'abondance du transcrit du gene fad3c etait egalement tres faible. Le profil en acides gras a ete analyse chez tous les genotypes a tous les stades de developpement pour le comparer a l'expression des genes fad3. L'acide [alpha]-linolenique s'accumule graduellement tout au long du developpement de la graine tandis que l acide linoleique s accumulait transitoirement avant de diminuer chez M5791, UGG-5 et AC McDuff. Au contraire, chez SP2047, l acide linolenique, present au debut du developpement, disparait presque completement tandis que l acide linoleique s accumule progressivement. Chez SP2047, une lignee a faible teneur en acide linolenique, le gene fad3a code pour une proteine tronquee en raison d un codon stop premature resultant d une mutation ponctuelle. La faible abondance du transcrit chez ce genotype serait vraisemblablement due a la degradation des ARNm non-sens causee par l interruption prematuree de la traduction en raison de ce codon stop. En depit d une accumulation importante du transcrit fad3b chez SP2047, le clonage de ce gene a revele une mutation qui entraine un changement d acide amine au sein de la premiere boite histidine. L expression heterologue des genes fad3b de SP2047 et UGG5-5 a montre que la mutation dans la boite histidine chez SP2047 rendait l enzyme inactive. Ensemble, ces resultats montrent que fad3a et fad3b sont responsables de l accumulation d acide linolenique chez les graines de lin, tandis que fad3c ne jouerait pas de role majeur. Ces observations ont ete davantage supportees par un examen phenotypique et genotypique d une population d haploides doubles. L expression des genes fad3a et fad3b etait etroitement correlee avec la teneur en acide linolenique au cours du developpement des graines, sauf pour fad3b chez SP2047, genotype chez lequel l absence d activite decoule de la mutation dans la boite His malgre l abondance du transcrit qui est semblable a ce qui est observe chez les autres genotypes. Mots-cles : acide [alpha]-linolenique, desaturases d'acides gras, FAD3, lin, PCR en temps reel, acides gras omega-3. [Traduit par la Redaction] Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes. Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes. [PUBLICATION ABSTRACT] |
Abstract_FL | Trois gènes codant pour des désaturases 3 (fad3a, fad3b et l’inédit fad3c), impliqués dans la synthèse des acides gras, ont été clonés chez quatre génotypes du lin différant pour ce qui est de leur teneur en acide linolénique. La PCR en temps réel a été employée pour mesurer l’expression des trois gènes fad3 au cours du développement des graines. De grandes quantités de transcrits de fad3a et fad3b ont été observées et ont atteint un sommet 20 jours après l’anthèse, sauf pour fad3a chez SP2047 où seul un faible niveau a été observé tout au cours du développement. L’abondance du transcrit du gène fad3c était également très faible. Le profil en acides gras a été analysé chez tous les génotypes à tous les stades de développement pour le comparer à l’expression des gènes fad3. L’acide α-linolénique s’accumule graduellement tout au long du développement de la graine tandis que l’acide linoléique s’accumulait transitoirement avant de diminuer chez M5791, UGG-5 et AC McDuff. Au contraire, chez SP2047, l’acide linolénique, présent au début du développement, disparaît presque complètement tandis que l’acide linoléique s’accumule progressivement. Chez SP2047, une lignée à faible teneur en acide linolénique, le gène fad3a code pour une protéine tronquée en raison d’un codon stop prématuré résultant d’une mutation ponctuelle. La faible abondance du transcrit chez ce génotype serait vraisemblablement due à la dégradation des ARNm non-sens causée par l’interruption prématurée de la traduction en raison de ce codon stop. En dépit d’une accumulation importante du transcrit fad3b chez SP2047, le clonage de ce gène a révélé une mutation qui entraîne un changement d’acide aminé au sein de la première boîte histidine. L’expression hétérologue des gènes fad3b de SP2047 et UGG5-5 a montré que la mutation dans la boîte histidine chez SP2047 rendait l’enzyme inactive. Ensemble, ces résultats montrent que fad3a et fad3b sont responsables de l’accumulation d’acide linolénique chez les graines de lin, tandis que fad3c ne jouerait pas de rôle majeur. Ces observations ont été davantage supportées par un examen phénotypique et génotypique d’une population d’haploïdes doublés. L’expression des gènes fad3a et fad3b était étroitement corrélée avec la teneur en acide linolénique au cours du développement des graines, sauf pour fad3b chez SP2047, génotype chez lequel l’absence d’activité découle de la mutation dans la boîte His malgré l’abondance du transcrit qui est semblable à ce qui est observé chez les autres génotypes. |
Audience | Academic |
Author | Duguid, Scott Cloutier, Sylvie Banik, Mitali |
Author_xml | – sequence: 1 givenname: Mitali surname: Banik fullname: Banik, Mitali organization: Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, MB R3T 2M9, Canada – sequence: 2 givenname: Scott surname: Duguid fullname: Duguid, Scott – sequence: 3 givenname: Sylvie surname: Cloutier fullname: Cloutier, Sylvie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21627464$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkmuL1DAUhousuBfFfyBhBXVlOyZNp5ePy-JlYVDQ9XPIJKdtljbtJinu-EP9PZ7OjOIso2D7oRee8yS8eY-jA9tbiKKnjM4Y4-WbmrGYMv4gOmJpQWPOE3YQHdGCszjJy-wwOvb-hlJGeckeRYcJy5I8zdKj6Me1k9YrZ4ZABtdXpjW2JtJqUoMFohrppArgzHcZTG9JX5HQOABSyRBWRCqjiQYvw-ikh_WQJ8aSxtTNOel6DU4GOF8b2_4bQX3fgjVqM4p8H1YDzqC4auUdebUwduzI6E3AFb03HX4tZmdrQ2jAOOLQMK1xzyWVGruxXe_zcfSwkq2HJ9vnSfT13dvryw_x4tP7q8uLRazmOQ-x4vNsmaaVzmgBPE1luZwrqHKFl06TudRFmtGcpbzkTE3_dVnqOU-UWuYFvpxELzdezO52BB9EZ7yCtpUW-tGLImeYeppP5Ok98qYfncXNIZTThCcJRej5BqplC8LYqg8Y_6QUF0mGp0lTmiEV76Gm6J1ssRd4iLDLn-7h1WBuxZ_QbA-Et4bOqL3Ws50BZALchVqO3ourL5__g_24y24jVa733kElBmc66VaCUTGVXWDZBZYdyWfbSMdlB_o396vdCLzeANYpBx6kU80_bC_-Dm8hMeiK_wQnMxWX |
CODEN | GENOE3 |
CitedBy_id | crossref_primary_10_1016_j_phytochem_2013_12_002 crossref_primary_10_3390_agronomy12061432 crossref_primary_10_3390_ijms19082303 crossref_primary_10_1016_j_scienta_2018_09_002 crossref_primary_10_1371_journal_pone_0154300 crossref_primary_10_3390_plants11233207 crossref_primary_10_3390_ijms241914885 crossref_primary_10_1590_fst_93721 crossref_primary_10_1007_s00122_014_2264_4 crossref_primary_10_3390_genes14050967 crossref_primary_10_1080_13102818_2018_1480421 crossref_primary_10_1111_ijfs_15039 crossref_primary_10_1186_s12864_020_6692_z crossref_primary_10_1016_j_plantsci_2019_06_004 crossref_primary_10_1186_s12864_021_07594_2 crossref_primary_10_1186_s12870_020_02499_w crossref_primary_10_1021_pr300984r crossref_primary_10_3390_agronomy14020381 crossref_primary_10_1007_s00122_012_1953_0 crossref_primary_10_1007_s13353_014_0222_0 crossref_primary_10_3390_plants12010095 crossref_primary_10_1002_jsfa_7775 crossref_primary_10_1007_s12033_014_9737_1 crossref_primary_10_1371_journal_pone_0191910 crossref_primary_10_1007_s00122_013_2161_2 crossref_primary_10_3390_plants13070956 crossref_primary_10_1371_journal_pone_0069124 crossref_primary_10_18699_VJ18_424 crossref_primary_10_1007_s11295_014_0765_6 crossref_primary_10_1371_journal_pone_0191432 crossref_primary_10_1007_s12298_021_01016_z crossref_primary_10_30901_2227_8834_2021_3_91_100 crossref_primary_10_1016_j_cj_2016_03_001 crossref_primary_10_1007_s10142_016_0494_z crossref_primary_10_1007_s00299_016_2053_4 crossref_primary_10_1002_ece3_57 |
Cites_doi | 10.1104/pp.105.063743 10.1007/s12033-009-9150-3 10.1111/j.1467-7652.2008.00346.x 10.1046/j.1365-313X.1998.00229.x 10.1104/pp.103.2.467 10.2135/cropsci2005.0202 10.1016/S0140-6736(94)92580-1 10.1016/j.plantsci.2004.01.025 10.1104/pp.105.2.635 10.1101/gr.9.9.868 10.1111/j.1365-313X.2004.01949.x 10.1093/nar/22.22.4673 10.4141/P99-053 10.1104/pp.122.3.715 10.1007/s00438-007-0241-1 10.2135/cropsci1992.0011183X003200030016x 10.1111/j.1365-313X.2006.02802.x 10.1105/tpc.109.067736 10.1146/annurev.arplant.49.1.611 10.1007/BF00224393 10.1093/nar/8.19.4321 10.1105/tpc.7.7.957 10.1093/oxfordjournals.pcp.a029468 10.4141/P03-183 10.2135/cropsci2000.402383x 10.1007/s00122-009-1016-3 10.4141/P02-040 10.1073/pnas.0808902106 10.1006/meth.2001.1262 10.1007/s11746-007-1106-9 10.4141/P04-051 10.1016/S0165-022X(00)00129-9 10.4141/cjps91-054 10.1186/1471-2229-10-71 10.1038/emboj.2008.88 10.1007/BF00021128 10.1093/ajcn/69.3.395 10.1104/pp.105.1.443 10.2135/cropsci2003.1833 10.4141/cjps86-068 10.1105/tpc.1.4.427 10.1021/jf902684v 10.4141/P05-082 10.1101/gr.8.3.175 10.4141/cjps96-057 10.1016/j.plantsci.2005.02.016 10.1007/s001220050414 10.1016/S0021-9258(19)85427-3 10.1111/j.1365-313X.2006.02771.x 10.1007/BF02667435 10.1007/s11745-006-5021-x 10.1001/archinte.158.11.1181 10.1104/pp.105.064451 10.1126/science.1455229 10.1104/pp.125.3.1388 10.1016/S0981-9428(99)80072-2 10.1128/MCB.26.8.2965-2975.2006 10.1093/ajcn/69.5.890 10.1042/bj2350025 10.1007/s11032-010-9494-1 10.1104/pp.106.4.1609 10.4141/cjps95-036 10.1007/BF00224392 10.1016/j.bbalip.2008.12.019 10.1105/tpc.108.061143 10.1093/jxb/erj138 10.1079/BJN19930046 10.1104/pp.104.3.1075 10.1016/S0021-9258(20)80498-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 NRC Research Press Copyright National Research Council of Canada Jun 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 NRC Research Press – notice: Copyright National Research Council of Canada Jun 2011 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISN ISR 7SS 7TK 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
DOI | 10.1139/g11-013 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Canada Science In Context Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Entomology Abstracts Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Entomology Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1480-3321 |
Editor | Belzile, Francois |
Editor_xml | – sequence: 1 givenname: Francois surname: Belzile fullname: Belzile, Francois |
EndPage | 483 |
ExternalDocumentID | 2400001101 A268310406 10_1139_g11_013 21627464 g11-013 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | 02 08R 0R 1AW 29H 3O- 3V. 4.4 4IJ 53G 5GY 5RE 5RP 7X2 7X7 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FQ 8G5 ABDBF ABFLS ABPTK ABUWG ACGFS ACGOD ACNCT ACPRK ADACO AENEX AFKRA AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BBAFP BBNVY BCR BENPR BHPHI BLC BPHCQ BVXVI CAG COF CS3 D8U DATHI DU5 DWQXO EAD EAP EBD EBS ECC EDH EJD EMK EPL EST ESX ET F5P FYUFA G8K GJ GNUQQ GUQSH HCIFZ HZ H~9 IAG IAO ICQ IGS IHR INH INR IOF IPNFZ ISN ISR ITC KM L7B LK8 M0K M0L M1P M2O M2P M2Q M3C M3G M7P MV1 NMEPN NRXXU NYCZX O9- OVD PADUT PQEST PQQKQ PQUKI PRINS PROAC PSQYO PV9 QF4 QM4 QM9 QN7 QO4 QRP RIG RRCRK RRP RZL TR2 TUS U5U X XHC YYQ ZCG ZGI -ET -~X .GJ 00T 0R~ 2QL 36B AAHBH ABJNI ACGFO AEGXH ALIPV APEBS CCPQU CGR CUY CVF ECM EIF EMB EMOBN GJPHO HMCUK HZ~ NPM ONR SV3 TEORI UKHRP VQG ~02 ~KM AAYXX CITATION 7SS 7TK 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c573t-c356b44fd608e344a9b5cef7ccccd425ad84607143931cf7ccd99d532ccb78d53 |
ISSN | 0831-2796 |
IngestDate | Fri Oct 25 05:24:14 EDT 2024 Thu Oct 10 20:52:47 EDT 2024 Thu Feb 22 23:35:31 EST 2024 Fri Feb 02 05:13:15 EST 2024 Tue Dec 12 21:19:39 EST 2023 Fri Feb 02 04:28:43 EST 2024 Thu Aug 01 20:08:14 EDT 2024 Thu Aug 01 19:31:16 EDT 2024 Fri Aug 23 00:32:49 EDT 2024 Tue Oct 15 23:44:54 EDT 2024 Wed Apr 14 12:49:36 EDT 2021 Thu May 23 14:20:11 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c573t-c356b44fd608e344a9b5cef7ccccd425ad84607143931cf7ccd99d532ccb78d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21627464 |
PQID | 877023220 |
PQPubID | 34326 |
PageCount | 13 |
ParticipantIDs | gale_infotraccpiq_268310406 gale_incontextgauss_ISR_A268310406 gale_infotracmisc_A268310406 proquest_miscellaneous_871001475 gale_infotracacademiconefile_A268310406 gale_incontextgauss_ISN_A268310406 nrcresearch_primary_10_1139_g11_013 crossref_primary_10_1139_g11_013 proquest_journals_877023220 gale_infotracgeneralonefile_A268310406 pubmed_primary_21627464 |
PublicationCentury | 2000 |
PublicationDate | 20110600 2011-Jun 2011-06-00 20110601 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 20110600 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Ottawa |
PublicationTitle | Genome |
PublicationTitleAlternate | Genome |
PublicationYear | 2011 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg47/ref47 refg65/ref65 refg18/ref18 refg22/ref22 refg76/ref76 Chung C.-H. (refg10/ref10) 1999; 40 refg51/ref51 refg72/ref72 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg26/ref26 refg5/ref5 refg54/ref54 refg68/ref68 refg57/ref57 refg19/ref19 Browse J. (refg7/ref7) 1986; 235 refg21/ref21 refg75/ref75 refg4/ref4 refg46/ref46 refg48/ref48 refg1/ref1 refg32/ref32 McConn M. (refg52/ref52) 1994; 106 refg35/ref35 refg59/ref59 refg61/ref61 refg53/ref53 Sung M.K. (refg70/ref70) 1998; 18 refg78/ref78 refg42/ref42 refg24/ref24 refg16/ref16 refg50/ref50 refg64/ref64 refg67/ref67 refg13/ref13 refg56/ref56 refg74/ref74 refg20/ref20 refg38/ref38 refg45/ref45 refg49/ref49 refg31/ref31 Indo Y. (refg37/ref37) 2009; 1791 refg34/ref34 refg71/ref71 Cunnane S.C. (refg14/ref14) 1993; 69 refg60/ref60 refg63/ref63 refg77/ref77 refg2/ref2 refg23/ref23 refg17/ref17 Browse J. (refg8/ref8) 1993; 268 Bustin S.A. (refg9/ref9) 2004; 15 refg30/ref30 refg66/ref66 Hu F.B. (refg33/ref33) 1999; 69 refg12/ref12 refg28/ref28 refg41/ref41 refg55/ref55 refg39/ref39 refg3/ref3 refg69/ref69 Fofana B. (refg27/ref27) 2006; 41 Jenkins D.J. (refg40/ref40) 1999; 69 refg62/ref62 refg44/ref44 Iba K. (refg36/ref36) 1993; 268 refg58/ref58 refg73/ref73 |
References_xml | – ident: refg15/ref15 doi: 10.1104/pp.105.063743 – ident: refg43/ref43 doi: 10.1007/s12033-009-9150-3 – ident: refg31/ref31 doi: 10.1111/j.1467-7652.2008.00346.x – ident: refg51/ref51 doi: 10.1046/j.1365-313X.1998.00229.x – ident: refg56/ref56 – ident: refg77/ref77 doi: 10.1104/pp.103.2.467 – ident: refg54/ref54 doi: 10.2135/cropsci2005.0202 – ident: refg16/ref16 doi: 10.1016/S0140-6736(94)92580-1 – ident: refg26/ref26 doi: 10.1016/j.plantsci.2004.01.025 – ident: refg32/ref32 doi: 10.1104/pp.105.2.635 – ident: refg34/ref34 doi: 10.1101/gr.9.9.868 – ident: refg65/ref65 – ident: refg50/ref50 doi: 10.1111/j.1365-313X.2004.01949.x – ident: refg73/ref73 doi: 10.1093/nar/22.22.4673 – ident: refg20/ref20 doi: 10.4141/P99-053 – ident: refg59/ref59 doi: 10.1104/pp.122.3.715 – ident: refg61/ref61 doi: 10.1007/s00438-007-0241-1 – ident: refg5/ref5 doi: 10.2135/cropsci1992.0011183X003200030016x – volume: 15 start-page: 155 issue: 3 year: 2004 ident: refg9/ref9 publication-title: J. Biomol. Tech. contributor: fullname: Bustin S.A. – ident: refg3/ref3 doi: 10.1111/j.1365-313X.2006.02802.x – ident: refg44/ref44 doi: 10.1105/tpc.109.067736 – ident: refg67/ref67 doi: 10.1146/annurev.arplant.49.1.611 – ident: refg39/ref39 doi: 10.1007/BF00224393 – ident: refg53/ref53 doi: 10.1093/nar/8.19.4321 – ident: refg55/ref55 doi: 10.1105/tpc.7.7.957 – volume: 40 start-page: 114 issue: 1 year: 1999 ident: refg10/ref10 publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a029468 contributor: fullname: Chung C.-H. – ident: refg13/ref13 – ident: refg22/ref22 doi: 10.4141/P03-183 – ident: refg62/ref62 doi: 10.2135/cropsci2000.402383x – ident: refg11/ref11 doi: 10.1007/s00122-009-1016-3 – ident: refg21/ref21 doi: 10.4141/P02-040 – ident: refg46/ref46 doi: 10.1073/pnas.0808902106 – ident: refg48/ref48 doi: 10.1006/meth.2001.1262 – volume: 18 start-page: 1405 year: 1998 ident: refg70/ref70 publication-title: Anticancer Res. contributor: fullname: Sung M.K. – ident: refg45/ref45 doi: 10.1007/s11746-007-1106-9 – ident: refg23/ref23 doi: 10.4141/P04-051 – ident: refg66/ref66 doi: 10.1016/S0165-022X(00)00129-9 – ident: refg63/ref63 doi: 10.4141/cjps91-054 – ident: refg35/ref35 doi: 10.1186/1471-2229-10-71 – ident: refg42/ref42 doi: 10.1038/emboj.2008.88 – ident: refg29/ref29 doi: 10.1007/BF00021128 – volume: 69 start-page: 395 issue: 3 year: 1999 ident: refg40/ref40 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/69.3.395 contributor: fullname: Jenkins D.J. – ident: refg49/ref49 doi: 10.1104/pp.105.1.443 – ident: refg6/ref6 doi: 10.2135/cropsci2003.1833 – ident: refg28/ref28 doi: 10.4141/cjps86-068 – ident: refg41/ref41 doi: 10.1105/tpc.1.4.427 – ident: refg2/ref2 – ident: refg72/ref72 doi: 10.1021/jf902684v – ident: refg24/ref24 doi: 10.4141/P05-082 – ident: refg25/ref25 doi: 10.1101/gr.8.3.175 – ident: refg19/ref19 doi: 10.4141/cjps96-057 – ident: refg1/ref1 doi: 10.1016/j.plantsci.2005.02.016 – ident: refg58/ref58 doi: 10.1007/s001220050414 – volume: 268 start-page: 16345 issue: 22 year: 1993 ident: refg8/ref8 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)85427-3 contributor: fullname: Browse J. – ident: refg78/ref78 doi: 10.1111/j.1365-313X.2006.02771.x – ident: refg69/ref69 doi: 10.1007/BF02667435 – volume: 41 start-page: 705 issue: 7 year: 2006 ident: refg27/ref27 publication-title: Lipids doi: 10.1007/s11745-006-5021-x contributor: fullname: Fofana B. – ident: refg17/ref17 doi: 10.1001/archinte.158.11.1181 – ident: refg76/ref76 doi: 10.1104/pp.105.064451 – ident: refg4/ref4 doi: 10.1126/science.1455229 – ident: refg38/ref38 doi: 10.1104/pp.125.3.1388 – ident: refg57/ref57 doi: 10.1016/S0981-9428(99)80072-2 – ident: refg60/ref60 doi: 10.1128/MCB.26.8.2965-2975.2006 – ident: refg64/ref64 – volume: 69 start-page: 890 year: 1999 ident: refg33/ref33 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/69.5.890 contributor: fullname: Hu F.B. – volume: 235 start-page: 25 issue: 1 year: 1986 ident: refg7/ref7 publication-title: Biochem. J. doi: 10.1042/bj2350025 contributor: fullname: Browse J. – ident: refg12/ref12 doi: 10.1007/s11032-010-9494-1 – volume: 106 start-page: 1609 issue: 4 year: 1994 ident: refg52/ref52 publication-title: Plant Physiol. doi: 10.1104/pp.106.4.1609 contributor: fullname: McConn M. – ident: refg18/ref18 doi: 10.4141/cjps95-036 – ident: refg47/ref47 doi: 10.1007/BF00224392 – ident: refg71/ref71 – ident: refg75/ref75 – volume: 1791 start-page: 183 issue: 3 year: 2009 ident: refg37/ref37 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2008.12.019 contributor: fullname: Indo Y. – ident: refg74/ref74 doi: 10.1105/tpc.108.061143 – ident: refg30/ref30 doi: 10.1093/jxb/erj138 – volume: 69 start-page: 443 issue: 2 year: 1993 ident: refg14/ref14 publication-title: Br. J. Nutr. doi: 10.1079/BJN19930046 contributor: fullname: Cunnane S.C. – ident: refg68/ref68 doi: 10.1104/pp.104.3.1075 – volume: 268 start-page: 24099 issue: 32 year: 1993 ident: refg36/ref36 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)80498-0 contributor: fullname: Iba K. |
SSID | ssj0010391 |
Score | 2.196047 |
Snippet | Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content.... Three genes encoding fatty acid desaturase 3 fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time... |
SourceID | proquest gale crossref pubmed nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 471 |
SubjectTerms | Accumulation acide α-linolénique acides gras omega-3 alpha-Linolenic Acid - biosynthesis Amino Acid Sequence Amino acids Chemical properties Cloning Cloning, Molecular Codon, Nonsense Developmental stages DNA, Plant - isolation & purification désaturases d’acides gras Enzymes FAD3 fatty acid desaturase Fatty acid desaturases Fatty Acid Desaturases - genetics Fatty acids Flax Flax - enzymology Flax - genetics Gene Expression Profiling Gene Expression Regulation, Plant Genes, Plant Genetic aspects Genotype Genotype & phenotype Genotypes Haploidy lin Linolenic acids Molecular Sequence Data Mutation omega-3 fatty acids PCR en temps réel Physiological aspects Polymerase Chain Reaction Proteins real-time PCR RNA, Messenger RNA, Plant - isolation & purification Sequence Analysis, DNA Yeasts α-linolenic acid |
Title | Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/g11-013 https://www.ncbi.nlm.nih.gov/pubmed/21627464 https://www.proquest.com/docview/877023220 https://search.proquest.com/docview/871001475 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkhwQLxZWsACBIdtyiZ2Xse20BYkeiit1FvkOM4Ssc0u3SzQ_jb4b8zYzqu0UmEPUWSPHa_nix_xzDeEvFJ-mqWZCh0RCM_hUew6KXcjJxd-mAZRyPwcT3Q_7Qd7R_zjsX-8tPSrY7W0qNINeX6pX8n_aBXSQK_oJfsPmm0qhQS4B_3CFTQM1-vpGCca_doPTezt2uMQSij06bVczOfNurAC1alhLipYewtZZMNMzZHaE-YyXUhbxyKFMXY9RslBJonawnMy_TGER-BJPrK8YnGkeMWvuNogJJ-In7VFZnFqDBehugtFhJSLExs0rLs03oWqTtozflEWX41dP3I0tuvt8aIwn7KRVKI5QZlMoZttDLGzyfdCdb9muB2rK2PscbDdmBz2jFD0eMhcxwtjy5xtxmsewTTCjJN1PaAbVmoL3O7ozE20l79nDYakq7vaw5C1E2NtDPDh834_0fAFewEGaePI974CzWLRMlnZ3Hq3tbPSRtAwERvrhhunbXzcW_uw3mrIrglulafSMj19uXrfo9c_h3fIbbtxoZsGhXfJkirvkRsmlOnZffK7xSJtsEgBDBRhRS9ikU5zqrFINRYpIoO2WNSF5rQoKWJxndZIXNc1Ag5pAypTtMEhVow41IIahxRxiFVdKNLF4QNytPP-cHvPsaFBHOmHrHIk84OU8zwLRpFinIs49aXKQwm_DKYhkcG6Gn3zWMxcielZHGc-86RMwwhuHpLlclqqx4RKtApjTGUwpvKc5xH3U-GORCpC3xN-PgARq6JkZhhgEr1zZnEyht0zFB6QF6i6BPlUSjTYGovFfJ4AbpIWJVcKHfSE3lihfFqBXoR1koGmIk9bT3K1Jylnxbekk_u6lzs2HPaXVbPWE4TJRfayX3bQePX_f36ZlM1NZhl04mqN48QOoPMkCkPYMXjeCLq4ycUGoN1nqaYLFEGOOB76A_LIoL-p3XMxbFjAn1yn81fJzXa0WSPL1elCPYXdRJU-sy_tHw9MKFw |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcript+profiling+and+gene+characterization+of+three+fatty+acid+desaturase+genes+in+high%2C+moderate%2C+and+low+linolenic+acid+genotypes+of+flax+and+their+role+in+linolenic+acid+accumulation&rft.jtitle=Genome&rft.au=Banik%2C+Mitali&rft.au=Duguid%2C+Scott&rft.au=Cloutier%2C+Sylvie&rft.date=2011-06-01&rft.pub=NRC+Research+Press&rft.issn=0831-2796&rft.eissn=1480-3321&rft.volume=54&rft.issue=6&rft.spage=471&rft_id=info:doi/10.1139%2FG11-013&rft.externalDBID=ISN&rft.externalDocID=A268310406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0831-2796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0831-2796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0831-2796&client=summon |