A new experimental mouse model of water intoxication with sustained increased intracranial pressure and mild hyponatremia without side effects of antidiuretics
The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies...
Saved in:
Published in | Experimental Animals Vol. 69; no. 1; pp. 92 - 103 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Association for Laboratory Animal Science
01.01.2020
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg−1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO3, 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication. |
---|---|
AbstractList | The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg
desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO
, 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication. The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg−1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO3, 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication. The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µ g·kg −1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO 3 , 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication. |
Author | Bordoni, Luca Jiménez, Eugenio Gutiérrez Nielsen, Søren Østergaard, Leif Frische, Sebastian |
Author_xml | – sequence: 1 fullname: Bordoni, Luca organization: Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, 8000, Aarhus, Denmark – sequence: 2 fullname: Jiménez, Eugenio Gutiérrez organization: Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 99, Aarhus University Hospital, 8200, Aarhus N, Denmark – sequence: 3 fullname: Nielsen, Søren organization: Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg Ø, Denmark – sequence: 4 fullname: Østergaard, Leif organization: Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 99, Aarhus University Hospital, 8200, Aarhus N, Denmark – sequence: 5 fullname: Frische, Sebastian organization: Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, 8000, Aarhus, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31534063$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1v3CAQhlGVqPnqubcKqWcnYGxjLpWiKP2QIvWSnBHGQ5aVDS7gbvJr8leLd7dWe-Fr3nlmmPcCnTjvAKGPlFzTmrU38DIpZ8drKgpCKvIOndO2pQWnZXmSz6yiBWU1P0MXMW4JKTkvxXt0xnJyRRp2jt5usYMdzhwIdgSX1IBHP0fIaw8D9gbvVIKArUv-xWqVrHd4Z9MGxzkmZR30OaYDqLg_paB0yD1lzhQgxjkAVq7Hox16vHmdvFMpwGjVHuLnhKPtAYMxoFNc6imXbG9zXrI6XqFTo4YIH477JXr6ev949714-Pntx93tQ6FrzlLRtYYJyghZrrRiHalFZTgXveB9A4zVLTWMm4pBzXnTdF2VHw0jVKhGUc4u0ZcDd5q7EXoNy0cGOeWhqPAqvbLy_4izG_nsf0ue595SmgGfj4Dgf80Qk9z6ObjcsyxZJVpWtqTKqpuDSgcfYwCzVqBELo7Ko6OSCrk4mjM-_dvYqv9rYRbcHwTbbMczrAIV8vwGWIGNkHS_HMBrXG9UkODYH2onvdM |
CitedBy_id | crossref_primary_10_1089_neu_2019_6901 crossref_primary_10_1002_glia_24439 crossref_primary_10_1002_glia_24515 |
Cites_doi | 10.1111/eci.13022 10.33549/physiolres.932566 10.1007/s12028-011-9630-8 10.1172/JCI100674 10.1152/ajpregu.00544.2010 10.1371/journal.pone.0050752 10.1152/ajpregu.1983.244.5.R724 10.1016/j.wneu.2017.10.086 10.1073/pnas.192457099 10.1074/jbc.M801425200 10.1152/ajprenal.1985.248.5.F711 10.1016/j.amjmed.2006.05.013 10.1113/EP085751 10.1097/MNH.0000000000000200 10.1152/ajplegacy.1956.185.2.281 10.1016/j.resp.2011.11.015 10.1007/s003950070029 10.1096/fj.03-0869fje 10.1001/archneur.1960.00450050033005 10.1002/glia.20664 10.1016/j.semnephrol.2009.03.004 10.1681/ASN.2014121196 10.1371/journal.pone.0080451 10.1089/neu.2015.3981 10.1111/imj.12623 10.1016/j.neuroscience.2019.01.034 10.1073/pnas.1015217108 10.1146/annurev.me.44.020193.001445 10.1093/ndt/gfi082 10.1016/S0006-2952(97)00070-1 10.1538/expanim.14-0050 10.1016/0306-4522(96)00003-6 10.1038/72256 10.1152/ajpendo.1984.247.4.E540 10.1002/brb3.1005 10.1152/physrev.00035.2011 10.3390/ijms16059949 10.1152/ajpregu.1989.256.4.R880 10.1152/ajplegacy.1937.119.3.557 10.1111/jgs.12468 10.1172/JCI105882 10.1152/ajplegacy.1949.156.2.163 10.1038/jcbfm.2009.175 10.1002/9780470942390.mo100149 10.1152/ajpregu.00139.2010 10.1097/00005792-197603000-00002 |
ContentType | Journal Article |
Copyright | 2020 Japanese Association for Laboratory Animal Science Copyright Japan Science and Technology Agency 2020 2020 Japanese Association for Laboratory Animal Science 2020 |
Copyright_xml | – notice: 2020 Japanese Association for Laboratory Animal Science – notice: Copyright Japan Science and Technology Agency 2020 – notice: 2020 Japanese Association for Laboratory Animal Science 2020 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 RC3 5PM |
DOI | 10.1538/expanim.19-0040 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1881-7122 |
EndPage | 103 |
ExternalDocumentID | 10_1538_expanim_19_0040 31534063 article_expanim_69_1_69_19_0040_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29G 2WC 3O- 53G 5GY AAUGY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EMOBN FRP GX1 HYE JSF JSH KQ8 M48 M~E OK1 P2P RJT RNS RPM RZJ TKC TR2 X7M XSB CGR CUY CVF ECM EIF NPM AAYXX CITATION PGMZT 7QO 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c573t-b8f391300c573143b0594f779d97d6e33581f37f43e57766bb4e33f3019a6a173 |
IEDL.DBID | RPM |
ISSN | 1341-1357 |
IngestDate | Tue Sep 17 21:22:15 EDT 2024 Thu Oct 10 22:02:59 EDT 2024 Fri Aug 23 03:09:14 EDT 2024 Sat Sep 18 03:08:35 EDT 2021 Thu Aug 17 20:28:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | intracranial pressure mouse model water intoxication hyponatremia desmopressin |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-b8f391300c573143b0594f779d97d6e33581f37f43e57766bb4e33f3019a6a173 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004811/ |
PMID | 31534063 |
PQID | 2349832804 |
PQPubID | 2048505 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004811 proquest_journals_2349832804 crossref_primary_10_1538_expanim_19_0040 pubmed_primary_31534063 jstage_primary_article_expanim_69_1_69_19_0040_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Experimental Animals |
PublicationTitleAlternate | Exp Anim |
PublicationYear | 2020 |
Publisher | Japanese Association for Laboratory Animal Science Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Association for Laboratory Animal Science – name: Japan Science and Technology Agency |
References | 53. Verbalis J.G. 1984. An experimental model of syndrome of inappropriate antidiuretic hormone secretion in the rat. Am. J. Physiol. 247: E540–E553. 25. Manley G.T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A.W., Chan P. and Verkman A.S. 2000. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6: 159–163. 43. Sterns R.H. and Silver S.M. 2016. Complications and management of hyponatremia. Curr. Opin. Nephrol. Hypertens. 25: 114–119. 1. Amiry-Moghaddam M., Xue R., Haug F.M., Neely J.D., Bhardwaj A., Agre P., Adams M.E., Froehner S.C., Mori S. and Ottersen O.P. 2004. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 18: 542–544. 20. Iversen N.K., Malte H., Baatrup E. and Wang T. 2012. The normal acid-base status of mice. Respir. Physiol. Neurobiol. 180: 252–257. 41. Ślusarz M.J., Ślusarz R. and Ciarkowski J. 2006. Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: molecular dynamics simulation of the agonist-bound state in the membrane-aqueous system. Biopolymers 81: 321–338. 12. Fraser C.L., Kucharczyk J., Arieff A.I., Rollin C., Sarnacki P. and Norman D. 1989. Sex differences result in increased morbidity from hyponatremia in female rats. Am. J. Physiol. 256: R880–R885. 26. May M. and Jordan J. 2011. The osmopressor response to water drinking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300: R40–R46. 7. Corona G., Giuliani C., Parenti G., Norello D., Verbalis J.G., Forti G., Maggi M. and Peri A. 2013. Moderate hyponatremia is associated with increased risk of mortality: evidence from a meta-analysis. PLoS One 8: e80451. 13. Fujisawa H., Sugimura Y., Takagi H., Mizoguchi H., Takeuchi H., Izumida H., Nakashima K., Ochiai H., Takeuchi S., Kiyota A., Fukumoto K., Iwama S., Takagishi Y., Hayashi Y., Arima H., Komatsu Y., Murata Y. and Oiso Y. 2016. Chronic hyponatremia causes neurologic and psychologic impairments. J. Am. Soc. Nephrol. 27: 766–780. 29. Michinaga S. and Koyama Y. 2015. Pathogenesis of brain edema and investigation into anti-edema drugs. Int. J. Mol. Sci. 16: 9949–9975. 52. Vajda Z., Pedersen M., Füchtbauer E.M., Wertz K., Stødkilde-Jørgensen H., Sulyok E., Dóczi T., Neely J.D., Agre P., Frøkiaer J. and Nielsen S. 2002. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc. Natl. Acad. Sci. USA 99: 13131–13136. 10. Dodge P.R., Crawford J.D. and Probst T.H. 1960. Studies in experimental water intoxication. Arch. Neurol. 3: 513–529. 23. Koshimizu T.A., Nakamura K., Egashira N., Hiroyama M., Nonoguchi H. and Tanoue A. 2012. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev. 92: 1813–1864. 48. Thrane A.S., Rappold P.M., Fujita T., Torres A., Bekar L.K., Takano T., Peng W., Wang F., Rangroo Thrane V., Enger R., Haj-Yasein N.N., Skare Ø., Holen T., Klungland A., Ottersen O.P., Nedergaard M. and Nagelhus E.A. 2011. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc. Natl. Acad. Sci. USA 108: 846–851. 45. Swinyard E.A. 1949. Effect of extracellular electrolyte depletion on brain electrolyte pattern and electroshock seizure threshold. Am. J. Physiol. 156: 163–169. 18. Holliday M.A., Kalayci M.N. and Harrah J. 1968. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia. J. Clin. Invest. 47: 1916–1928. 56. Yang B., Zador Z. and Verkman A.S. 2008. Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J. Biol. Chem. 283: 15280–15286. 27. Melton J.E. and Nattie E.E. 1983. Brain and CSF water and ions during dilutional and isosmotic hyponatremia in the rat. Am. J. Physiol. 244: R724–R732. 15. Gullans S.R. and Verbalis J.G. 1993. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu. Rev. Med. 44: 289–301. 4. Ayus J.C., Krothapalli R.K. and Armstrong D.L. 1985. Rapid correction of severe hyponatremia in the rat: histopathological changes in the brain. Am. J. Physiol. 248: F711–F719. 14. Gargiulo S., Greco A., Gramanzini M., Esposito S., Affuso A., Brunetti A. and Vesce G. 2012. Mice anesthesia, analgesia, and care, Part I: anesthetic considerations in preclinical research. ILAR J. 53: E55–E69. 42. Sorrentino E., Diedler J., Kasprowicz M., Budohoski K.P., Haubrich C., Smielewski P., Outtrim J.G., Manktelow A., Hutchinson P.J., Pickard J.D., Menon D.K. and Czosnyka M. 2012. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit. Care 16: 258–266. 54. Verbalis J.G., Goldsmith S.R., Greenberg A., Korzelius C., Schrier R.W., Sterns R.H. and Thompson C.J. 2013. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am. J. Med. 126:(Suppl 1): S1–S42. 5. Balling L., Gustafsson F., Goetze J.P., Dalsgaard M., Nielsen H., Boesgaard S., Bay M., Kirk V., Nielsen O.W., Køber L. and Iversen K. 2015. Hyponatraemia at hospital admission is a predictor of overall mortality. Intern. Med. J. 45: 195–202. 47. Thompson C., and Hoorn E.J. 2012. Hyponatraemia: an overview of frequency, clinical presentation and complications. Best Pract. Res. Clin. Endocrinol. Metab. 26:(Suppl 1): S1–S6. 28. Meyfroidt G. and Citerio G. 2017. Letter: guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 81: E1. 19. Hoorn E.J., Lindemans J. and Zietse R. 2006. Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol. Dial. Transplant. 21: 70–76. 44. Swingle W.W., Parkins W.M., Taylor A.R. and Hays H.W. 1937. A Study of Water Intoxication in the Intact and Adrenalectomized Dog and the Influence of Adrenal Cortical Hormone Upon Fluid and Electrolyte Distribution. Am. J. Physiol. 119: 557–566. 51. Vajda Z., Pedersen M., Dóczi T., Sulyok 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 35 doi: 10.1111/eci.13022 – ident: 23 doi: 10.33549/physiolres.932566 – ident: 40 doi: 10.1007/s12028-011-9630-8 – ident: 8 doi: 10.1172/JCI100674 – ident: 25 doi: 10.1152/ajpregu.00544.2010 – ident: 44 doi: 10.1371/journal.pone.0050752 – ident: 26 doi: 10.1152/ajpregu.1983.244.5.R724 – ident: 33 doi: 10.1016/j.wneu.2017.10.086 – ident: 50 doi: 10.1073/pnas.192457099 – ident: 54 doi: 10.1074/jbc.M801425200 – ident: 4 doi: 10.1152/ajprenal.1985.248.5.F711 – ident: 49 – ident: 45 – ident: 9 doi: 10.1016/j.amjmed.2006.05.013 – ident: 31 doi: 10.1113/EP085751 – ident: 41 doi: 10.1097/MNH.0000000000000200 – ident: 53 doi: 10.1152/ajplegacy.1956.185.2.281 – ident: 19 doi: 10.1016/j.resp.2011.11.015 – ident: 39 doi: 10.1007/s003950070029 – ident: 1 doi: 10.1096/fj.03-0869fje – ident: 10 doi: 10.1001/archneur.1960.00450050033005 – ident: 30 doi: 10.1002/glia.20664 – ident: 34 – ident: 48 doi: 10.1016/j.semnephrol.2009.03.004 – ident: 27 – ident: 13 doi: 10.1681/ASN.2014121196 – ident: 7 doi: 10.1371/journal.pone.0080451 – ident: 21 doi: 10.1089/neu.2015.3981 – ident: 37 – ident: 5 doi: 10.1111/imj.12623 – ident: 11 doi: 10.1016/j.neuroscience.2019.01.034 – ident: 46 doi: 10.1073/pnas.1015217108 – ident: 14 – ident: 15 doi: 10.1146/annurev.me.44.020193.001445 – ident: 18 doi: 10.1093/ndt/gfi082 – ident: 38 doi: 10.1016/S0006-2952(97)00070-1 – ident: 47 doi: 10.1538/expanim.14-0050 – ident: 3 – ident: 29 doi: 10.1016/0306-4522(96)00003-6 – ident: 24 doi: 10.1038/72256 – ident: 36 – ident: 51 doi: 10.1152/ajpendo.1984.247.4.E540 – ident: 20 doi: 10.1002/brb3.1005 – ident: 22 doi: 10.1152/physrev.00035.2011 – ident: 28 doi: 10.3390/ijms16059949 – ident: 52 – ident: 12 doi: 10.1152/ajpregu.1989.256.4.R880 – ident: 42 doi: 10.1152/ajplegacy.1937.119.3.557 – ident: 16 doi: 10.1111/jgs.12468 – ident: 17 doi: 10.1172/JCI105882 – ident: 43 doi: 10.1152/ajplegacy.1949.156.2.163 – ident: 55 doi: 10.1038/jcbfm.2009.175 – ident: 6 – ident: 56 doi: 10.1002/9780470942390.mo100149 – ident: 32 doi: 10.1152/ajpregu.00139.2010 – ident: 2 doi: 10.1097/00005792-197603000-00002 |
SSID | ssj0027729 |
Score | 2.2640102 |
Snippet | The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with... The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with... |
SourceID | pubmedcentral proquest crossref pubmed jstage |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 92 |
SubjectTerms | Acetic acid Animals Antidiuretic Agents - administration & dosage Antidiuretics Blood pressure Body weight Brain stem Deamino Arginine Vasopressin - administration & dosage Desmopressin Disease Models, Animal Diuresis Extreme values Hyponatremia Hyponatremia - chemically induced Hyponatremia - physiopathology Injection Injections, Intraperitoneal Intoxication Intracranial Hypertension - chemically induced Intracranial Hypertension - physiopathology Intracranial Pressure Male Mice Mice, Inbred C57BL mouse model Original Potassium chloride Side effects Sodium bicarbonate Sodium chloride Urine water intoxication Water Intoxication - physiopathology |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLKs8GCvKBA5eUJnb8OACqKqoKCU6sVHGJ4sSmQd2kzWbF9tfwV5lxsmkX7Y1LlMSOY2XG9jcTzzcAb01SIrDlZSyFT2OBkCQuhE3itCpMplMnraHY4a_f5OlMfDnLzm7SAY0fcLHVtKN8UrPu4mB1df0JB_yHkL2H6_duhQOnnh9QOA7q5F24lwo002kfn9A31pcKKcuIwCxOeKZGnp8tDWwsUfd_IUr76bYB0H_3Ud5amE524dGIKNnRoAKP4Y5rnsCDH23wlz-FP0cMkTO7zeTPyNx3LCTBYa1nvxFvdqxu-nY1evAYuWfZYgiuchWWEbhchDPsQ4kLHOotC5tol51jRVOxeX1RsfPrS3LHd25eF6GRdtkzygjKxo0j9D4UZl3VyxA_uXgGs5PP349P4zErQ1xmivex1Z4b-glGl4i2LDG-eKVMZVQlHSdCNc-VF9xlSklprcCbHicSU8giUfw57DRt4_aA6fJQ-9SgcS-5sM5bqytufOG8Nmg56QjerQWRXw7kGzkZLSizfJRZnpicZBbBx0FQU8Vx5E0VpcmTcBgemMopug2niAj21wLO11qYp1wYnPL0oYjgxSDrqX2O3UA0xCNQG1owVSDi7s2Spj4PBN4qsPQkL_-3z6_gYUrmf_AI7cNO3y3da8RIvX0TdP8vpDUZBA priority: 102 providerName: Scholars Portal |
Title | A new experimental mouse model of water intoxication with sustained increased intracranial pressure and mild hyponatremia without side effects of antidiuretics |
URI | https://www.jstage.jst.go.jp/article/expanim/69/1/69_19-0040/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/31534063 https://www.proquest.com/docview/2349832804 https://pubmed.ncbi.nlm.nih.gov/PMC7004811 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental Animals, 2020, Vol.69(1), pp.92-103 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6yoS25lL7rNg069NCLd2NL1uNSCKEhFDbk0EDoxVi21DjE9rLrpemv6V_tSJZNtvTUi7Cthw0zkr4Zz3wC-KiSEoEtLWPObBozhCRxwXQSp1WhMpkarpXLHV5e8PMr9vU6u96DbMyF8UH7pa7n7V0zb-sbH1u5asrFGCe2uFyeCs9ykixmMEMFHU300coS_mgyR1QWJzQTgc8HJ_bC3OMMq5u5y9tB5T2AJxSf45ZGd3alR7cIzH6Yf2HOv0MnH-xFZ8_gaQCR5GT42OewZ9oX8Ph7513kL-H3CUGwTB6S9xNn4Rviz70hnSU_EWKuSd323X1w2hHnkSWbIZ_KVFjn8OTGX-E3lLinoaoSHze7XRtStBVp6ruK3PxaOQ_82jR14Qfptj1xh4CSECvi3ofyq6t661MmN6_g6uzLt9PzOBzEEJeZoH2spaXK_fdytwiwtCN5sUKoSomKG-o41CwVllGTCcG51gwfWlw7VMGLRNDXsN92rXkLRJbH0qYK7XlOmTZWa1lRZQtjpUJjSUbwaRREvhr4NnJnp6D48iC-PFG5E18EnwdBTQ2DjkwNucoTXwwdpnqX0IarQgSHo4DzMHM3eUqZwlVOHrMI3gyynsYftSUCsaMFUwPH1b1bgyrsObuDyr77757v4SB1pr73_hzCfr_emg-Ih3p9BLMlk1heXC6P_Fz4A1FYEn0 |
link.rule.ids | 230,315,730,783,787,888,2228,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8uoF8SZtAR84cMluEyd2fKlUVa0W6FYcWqniYsWJTYOaZLWbFeXX8FcZO07URZy4RIntOJZmbH8zmfkM8EFEBQJbWoQsMXGYICQJ80RFYVzmIs1izZSwucPzcza7TD5fpVdbkA65MC5ov1DVpLmpJ0117WIrF3UxHeLEpl_nx9yxnETTe3Af5-tBMhjpg53F3eFklqosjGjKPaMPNp3qW5xjVT2xmTuovjvwiGI5bmp0Y1968AOh2Xf9L9T5d_Dknd3o9Ck88TCSHPXDfQZbunkOD7-1zkn-An4fEYTL5C59P7E2vibu5BvSGvITQeaSVE3X3nq3HbE-WbLqM6p0iXUWUa7cHY6hwF0NlZW4yNn1UpO8KUld3ZTk-tfC-uCXuq5y10m77og9BpT4aBH7PZRgVVZrlzS5egmXpycXx7PQH8UQFimnXagyQ4X982UfEWIpS_NiOBel4CXT1LKoGcpNQnXKOWNKJVhocPUQOcsjTl_BdtM2-g2QrDjITCzQomc0UdoolZVUmFybTKC5lAXwcRCEXPSMG9JaKig-6cUnIyGt-AI47AU1NvRaMjZkQkbu0r8w1tuUNlwXAtgfBCz93F3JmCYC1znUqwBe97Ie-x-0JQC-oQVjA8vWvVmDSuxYu73S7v73m-_h8exifibPPp1_2YOd2Br-zhe0D9vdcq3fIjrq1Ds3F_4A8xET7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB61aRvlEvVdmqT1oYdeWBYMNr5UitKu0keiHBop6gVhsBOqAKtdVkl-Tf9qx8ag3SqnXhBgY5BmbH8zzHwD8EGEBQJbWvgs1pEfIyTx81iGflTmIkkjxaQwucMnp-z4PP52kVyslfqyQfuFrCbNdT1pqisbWzmvi2CIEwvOTo64ZTkJg3mpg4fwCOfslA2G-mBrcVugzNCV-SFNuGP1wa6BusV5VtUTk72DKrwD2xTv48ZGN_amx78Rnl2q-5DnvwGUazvS7CnsOihJDvtPfgYPVPMcnvxqraP8Bfw5JAiZyTqFPzF2viK2-g1pNblBoLkgVdO1t851R4xfliz7rCpVYptBlUt7ht9Q4M6GCkts9OxqoUjelKSurktydTc3fviFqqvcDtKuOmJKgRIXMWLeh1KsymplEyeXL-F89uXn0bHvyjH4RcJp58tUU2H-fplLhFnSUL1ozkUpeMkUNUxqmnIdU5VwzpiUMd7UuIKInOUhp69gq2kb9QZIWkxTHQm06hmNpdJSpiUVOlc6FWgypR58HASRzXvWjcxYKyi-zIkvC0VmxOfBp15QY0enKWNHJrLQHvoHxnaT1oZrgwf7g4AzN3-XWURjgWtdOo09eN3Lehx_0BYP-IYWjB0MY_dmCyqyZe52ivv2v598D9tnn2fZj6-n3_dgJzK2v3UH7cNWt1ipAwRInXxnp8JfyE0VAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+experimental+mouse+model+of+water+intoxication+with+sustained+increased+intracranial+pressure+and+mild+hyponatremia+without+side+effects+of+antidiuretics&rft.jtitle=Experimental+Animals&rft.au=Bordoni%2C+Luca&rft.au=Jim%C3%A9nez%2C+Eugenio+Guti%C3%A9rrez&rft.au=Nielsen%2C+S%C3%B8ren&rft.au=%C3%98stergaard%2C+Leif&rft.date=2020-01-01&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=69&rft.issue=1&rft.spage=92&rft.epage=103&rft_id=info:doi/10.1538%2Fexpanim.19-0040&rft.externalDocID=article_expanim_69_1_69_19_0040_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon |