A new experimental mouse model of water intoxication with sustained increased intracranial pressure and mild hyponatremia without side effects of antidiuretics

The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 69; no. 1; pp. 92 - 103
Main Authors Bordoni, Luca, Jiménez, Eugenio Gutiérrez, Nielsen, Søren, Østergaard, Leif, Frische, Sebastian
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 01.01.2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg−1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO3, 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication.
AbstractList The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO , 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication.
The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µg·kg−1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO3, 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication.
The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with antidiuretics. This model of water intoxication (WI) results in extreme pathological changes and death within 1 h. To improve preclinical studies of the pathophysiology of elevated ICP, we characterized diuresis, cardiovascular parameters, blood ionogram and effects of antidiuretics in this model. We subsequently developed a new mouse model with mild hyponatremia and sustained increased ICP. To investigate the classical protocol (severe WI), C57BL/6mice were anesthetized and received an intraperitoneal injection of 20% body weight of MilliQ water with or without 0.4 µ g·kg −1 desmopressin acetate (dDAVP). Corresponding Sham groups were also studied. In the new WI protocol (mild WI), 10% body weight of a solution containing 6.5 mM NaHCO 3 , 1.125 mM KCl and 29.75 mM NaCl was intraperitoneally injected. By severe WI, ICP and mean arterial pressure increased until brain stem herniation occurred (23 ± 3 min after injection). The cardiovascular effects were accelerated by dDAVP. Severe WI induced a halt to urine production irrespective of the use of dDAVP. Following the new mild WI protocol, ICP also increased but was sustained at a pathologically high level without inducing herniation. Mean arterial pressure and urine production were not affected during mild WI. In conclusion, the new mild WI protocol is a superior experimental model to study the pathophysiological effects of elevated ICP induced by water intoxication.
Author Bordoni, Luca
Jiménez, Eugenio Gutiérrez
Nielsen, Søren
Østergaard, Leif
Frische, Sebastian
Author_xml – sequence: 1
  fullname: Bordoni, Luca
  organization: Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, 8000, Aarhus, Denmark
– sequence: 2
  fullname: Jiménez, Eugenio Gutiérrez
  organization: Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 99, Aarhus University Hospital, 8200, Aarhus N, Denmark
– sequence: 3
  fullname: Nielsen, Søren
  organization: Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg Ø, Denmark
– sequence: 4
  fullname: Østergaard, Leif
  organization: Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 99, Aarhus University Hospital, 8200, Aarhus N, Denmark
– sequence: 5
  fullname: Frische, Sebastian
  organization: Department of Biomedicine, Wilhelm Meyers Allé 3, Aarhus University, 8000, Aarhus, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31534063$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1v3CAQhlGVqPnqubcKqWcnYGxjLpWiKP2QIvWSnBHGQ5aVDS7gbvJr8leLd7dWe-Fr3nlmmPcCnTjvAKGPlFzTmrU38DIpZ8drKgpCKvIOndO2pQWnZXmSz6yiBWU1P0MXMW4JKTkvxXt0xnJyRRp2jt5usYMdzhwIdgSX1IBHP0fIaw8D9gbvVIKArUv-xWqVrHd4Z9MGxzkmZR30OaYDqLg_paB0yD1lzhQgxjkAVq7Hox16vHmdvFMpwGjVHuLnhKPtAYMxoFNc6imXbG9zXrI6XqFTo4YIH477JXr6ev949714-Pntx93tQ6FrzlLRtYYJyghZrrRiHalFZTgXveB9A4zVLTWMm4pBzXnTdF2VHw0jVKhGUc4u0ZcDd5q7EXoNy0cGOeWhqPAqvbLy_4izG_nsf0ue595SmgGfj4Dgf80Qk9z6ObjcsyxZJVpWtqTKqpuDSgcfYwCzVqBELo7Ko6OSCrk4mjM-_dvYqv9rYRbcHwTbbMczrAIV8vwGWIGNkHS_HMBrXG9UkODYH2onvdM
CitedBy_id crossref_primary_10_1089_neu_2019_6901
crossref_primary_10_1002_glia_24439
crossref_primary_10_1002_glia_24515
Cites_doi 10.1111/eci.13022
10.33549/physiolres.932566
10.1007/s12028-011-9630-8
10.1172/JCI100674
10.1152/ajpregu.00544.2010
10.1371/journal.pone.0050752
10.1152/ajpregu.1983.244.5.R724
10.1016/j.wneu.2017.10.086
10.1073/pnas.192457099
10.1074/jbc.M801425200
10.1152/ajprenal.1985.248.5.F711
10.1016/j.amjmed.2006.05.013
10.1113/EP085751
10.1097/MNH.0000000000000200
10.1152/ajplegacy.1956.185.2.281
10.1016/j.resp.2011.11.015
10.1007/s003950070029
10.1096/fj.03-0869fje
10.1001/archneur.1960.00450050033005
10.1002/glia.20664
10.1016/j.semnephrol.2009.03.004
10.1681/ASN.2014121196
10.1371/journal.pone.0080451
10.1089/neu.2015.3981
10.1111/imj.12623
10.1016/j.neuroscience.2019.01.034
10.1073/pnas.1015217108
10.1146/annurev.me.44.020193.001445
10.1093/ndt/gfi082
10.1016/S0006-2952(97)00070-1
10.1538/expanim.14-0050
10.1016/0306-4522(96)00003-6
10.1038/72256
10.1152/ajpendo.1984.247.4.E540
10.1002/brb3.1005
10.1152/physrev.00035.2011
10.3390/ijms16059949
10.1152/ajpregu.1989.256.4.R880
10.1152/ajplegacy.1937.119.3.557
10.1111/jgs.12468
10.1172/JCI105882
10.1152/ajplegacy.1949.156.2.163
10.1038/jcbfm.2009.175
10.1002/9780470942390.mo100149
10.1152/ajpregu.00139.2010
10.1097/00005792-197603000-00002
ContentType Journal Article
Copyright 2020 Japanese Association for Laboratory Animal Science
Copyright Japan Science and Technology Agency 2020
2020 Japanese Association for Laboratory Animal Science 2020
Copyright_xml – notice: 2020 Japanese Association for Laboratory Animal Science
– notice: Copyright Japan Science and Technology Agency 2020
– notice: 2020 Japanese Association for Laboratory Animal Science 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
5PM
DOI 10.1538/expanim.19-0040
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Genetics Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 103
ExternalDocumentID 10_1538_expanim_19_0040
31534063
article_expanim_69_1_69_19_0040_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
AAUGY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
FRP
GX1
HYE
JSF
JSH
KQ8
M48
M~E
OK1
P2P
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
PGMZT
7QO
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c573t-b8f391300c573143b0594f779d97d6e33581f37f43e57766bb4e33f3019a6a173
IEDL.DBID RPM
ISSN 1341-1357
IngestDate Tue Sep 17 21:22:15 EDT 2024
Thu Oct 10 22:02:59 EDT 2024
Fri Aug 23 03:09:14 EDT 2024
Sat Sep 18 03:08:35 EDT 2021
Thu Aug 17 20:28:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords intracranial pressure
mouse model
water intoxication
hyponatremia
desmopressin
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-b8f391300c573143b0594f779d97d6e33581f37f43e57766bb4e33f3019a6a173
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004811/
PMID 31534063
PQID 2349832804
PQPubID 2048505
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7004811
proquest_journals_2349832804
crossref_primary_10_1538_expanim_19_0040
pubmed_primary_31534063
jstage_primary_article_expanim_69_1_69_19_0040_article_char_en
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2020
Publisher Japanese Association for Laboratory Animal Science
Japan Science and Technology Agency
Publisher_xml – name: Japanese Association for Laboratory Animal Science
– name: Japan Science and Technology Agency
References 53. Verbalis J.G. 1984. An experimental model of syndrome of inappropriate antidiuretic hormone secretion in the rat. Am. J. Physiol. 247: E540–E553.
25. Manley G.T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A.W., Chan P. and Verkman A.S. 2000. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6: 159–163.
43. Sterns R.H. and Silver S.M. 2016. Complications and management of hyponatremia. Curr. Opin. Nephrol. Hypertens. 25: 114–119.
1. Amiry-Moghaddam M., Xue R., Haug F.M., Neely J.D., Bhardwaj A., Agre P., Adams M.E., Froehner S.C., Mori S. and Ottersen O.P. 2004. Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J. 18: 542–544.
20. Iversen N.K., Malte H., Baatrup E. and Wang T. 2012. The normal acid-base status of mice. Respir. Physiol. Neurobiol. 180: 252–257.
41. Ślusarz M.J., Ślusarz R. and Ciarkowski J. 2006. Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: molecular dynamics simulation of the agonist-bound state in the membrane-aqueous system. Biopolymers 81: 321–338.
12. Fraser C.L., Kucharczyk J., Arieff A.I., Rollin C., Sarnacki P. and Norman D. 1989. Sex differences result in increased morbidity from hyponatremia in female rats. Am. J. Physiol. 256: R880–R885.
26. May M. and Jordan J. 2011. The osmopressor response to water drinking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300: R40–R46.
7. Corona G., Giuliani C., Parenti G., Norello D., Verbalis J.G., Forti G., Maggi M. and Peri A. 2013. Moderate hyponatremia is associated with increased risk of mortality: evidence from a meta-analysis. PLoS One 8: e80451.
13. Fujisawa H., Sugimura Y., Takagi H., Mizoguchi H., Takeuchi H., Izumida H., Nakashima K., Ochiai H., Takeuchi S., Kiyota A., Fukumoto K., Iwama S., Takagishi Y., Hayashi Y., Arima H., Komatsu Y., Murata Y. and Oiso Y. 2016. Chronic hyponatremia causes neurologic and psychologic impairments. J. Am. Soc. Nephrol. 27: 766–780.
29. Michinaga S. and Koyama Y. 2015. Pathogenesis of brain edema and investigation into anti-edema drugs. Int. J. Mol. Sci. 16: 9949–9975.
52. Vajda Z., Pedersen M., Füchtbauer E.M., Wertz K., Stødkilde-Jørgensen H., Sulyok E., Dóczi T., Neely J.D., Agre P., Frøkiaer J. and Nielsen S. 2002. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc. Natl. Acad. Sci. USA 99: 13131–13136.
10. Dodge P.R., Crawford J.D. and Probst T.H. 1960. Studies in experimental water intoxication. Arch. Neurol. 3: 513–529.
23. Koshimizu T.A., Nakamura K., Egashira N., Hiroyama M., Nonoguchi H. and Tanoue A. 2012. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev. 92: 1813–1864.
48. Thrane A.S., Rappold P.M., Fujita T., Torres A., Bekar L.K., Takano T., Peng W., Wang F., Rangroo Thrane V., Enger R., Haj-Yasein N.N., Skare Ø., Holen T., Klungland A., Ottersen O.P., Nedergaard M. and Nagelhus E.A. 2011. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc. Natl. Acad. Sci. USA 108: 846–851.
45. Swinyard E.A. 1949. Effect of extracellular electrolyte depletion on brain electrolyte pattern and electroshock seizure threshold. Am. J. Physiol. 156: 163–169.
18. Holliday M.A., Kalayci M.N. and Harrah J. 1968. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia. J. Clin. Invest. 47: 1916–1928.
56. Yang B., Zador Z. and Verkman A.S. 2008. Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J. Biol. Chem. 283: 15280–15286.
27. Melton J.E. and Nattie E.E. 1983. Brain and CSF water and ions during dilutional and isosmotic hyponatremia in the rat. Am. J. Physiol. 244: R724–R732.
15. Gullans S.R. and Verbalis J.G. 1993. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu. Rev. Med. 44: 289–301.
4. Ayus J.C., Krothapalli R.K. and Armstrong D.L. 1985. Rapid correction of severe hyponatremia in the rat: histopathological changes in the brain. Am. J. Physiol. 248: F711–F719.
14. Gargiulo S., Greco A., Gramanzini M., Esposito S., Affuso A., Brunetti A. and Vesce G. 2012. Mice anesthesia, analgesia, and care, Part I: anesthetic considerations in preclinical research. ILAR J. 53: E55–E69.
42. Sorrentino E., Diedler J., Kasprowicz M., Budohoski K.P., Haubrich C., Smielewski P., Outtrim J.G., Manktelow A., Hutchinson P.J., Pickard J.D., Menon D.K. and Czosnyka M. 2012. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit. Care 16: 258–266.
54. Verbalis J.G., Goldsmith S.R., Greenberg A., Korzelius C., Schrier R.W., Sterns R.H. and Thompson C.J. 2013. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am. J. Med. 126:(Suppl 1): S1–S42.
5. Balling L., Gustafsson F., Goetze J.P., Dalsgaard M., Nielsen H., Boesgaard S., Bay M., Kirk V., Nielsen O.W., Køber L. and Iversen K. 2015. Hyponatraemia at hospital admission is a predictor of overall mortality. Intern. Med. J. 45: 195–202.
47. Thompson C., and Hoorn E.J. 2012. Hyponatraemia: an overview of frequency, clinical presentation and complications. Best Pract. Res. Clin. Endocrinol. Metab. 26:(Suppl 1): S1–S6.
28. Meyfroidt G. and Citerio G. 2017. Letter: guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 81: E1.
19. Hoorn E.J., Lindemans J. and Zietse R. 2006. Development of severe hyponatraemia in hospitalized patients: treatment-related risk factors and inadequate management. Nephrol. Dial. Transplant. 21: 70–76.
44. Swingle W.W., Parkins W.M., Taylor A.R. and Hays H.W. 1937. A Study of Water Intoxication in the Intact and Adrenalectomized Dog and the Influence of Adrenal Cortical Hormone Upon Fluid and Electrolyte Distribution. Am. J. Physiol. 119: 557–566.
51. Vajda Z., Pedersen M., Dóczi T., Sulyok
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 35
  doi: 10.1111/eci.13022
– ident: 23
  doi: 10.33549/physiolres.932566
– ident: 40
  doi: 10.1007/s12028-011-9630-8
– ident: 8
  doi: 10.1172/JCI100674
– ident: 25
  doi: 10.1152/ajpregu.00544.2010
– ident: 44
  doi: 10.1371/journal.pone.0050752
– ident: 26
  doi: 10.1152/ajpregu.1983.244.5.R724
– ident: 33
  doi: 10.1016/j.wneu.2017.10.086
– ident: 50
  doi: 10.1073/pnas.192457099
– ident: 54
  doi: 10.1074/jbc.M801425200
– ident: 4
  doi: 10.1152/ajprenal.1985.248.5.F711
– ident: 49
– ident: 45
– ident: 9
  doi: 10.1016/j.amjmed.2006.05.013
– ident: 31
  doi: 10.1113/EP085751
– ident: 41
  doi: 10.1097/MNH.0000000000000200
– ident: 53
  doi: 10.1152/ajplegacy.1956.185.2.281
– ident: 19
  doi: 10.1016/j.resp.2011.11.015
– ident: 39
  doi: 10.1007/s003950070029
– ident: 1
  doi: 10.1096/fj.03-0869fje
– ident: 10
  doi: 10.1001/archneur.1960.00450050033005
– ident: 30
  doi: 10.1002/glia.20664
– ident: 34
– ident: 48
  doi: 10.1016/j.semnephrol.2009.03.004
– ident: 27
– ident: 13
  doi: 10.1681/ASN.2014121196
– ident: 7
  doi: 10.1371/journal.pone.0080451
– ident: 21
  doi: 10.1089/neu.2015.3981
– ident: 37
– ident: 5
  doi: 10.1111/imj.12623
– ident: 11
  doi: 10.1016/j.neuroscience.2019.01.034
– ident: 46
  doi: 10.1073/pnas.1015217108
– ident: 14
– ident: 15
  doi: 10.1146/annurev.me.44.020193.001445
– ident: 18
  doi: 10.1093/ndt/gfi082
– ident: 38
  doi: 10.1016/S0006-2952(97)00070-1
– ident: 47
  doi: 10.1538/expanim.14-0050
– ident: 3
– ident: 29
  doi: 10.1016/0306-4522(96)00003-6
– ident: 24
  doi: 10.1038/72256
– ident: 36
– ident: 51
  doi: 10.1152/ajpendo.1984.247.4.E540
– ident: 20
  doi: 10.1002/brb3.1005
– ident: 22
  doi: 10.1152/physrev.00035.2011
– ident: 28
  doi: 10.3390/ijms16059949
– ident: 52
– ident: 12
  doi: 10.1152/ajpregu.1989.256.4.R880
– ident: 42
  doi: 10.1152/ajplegacy.1937.119.3.557
– ident: 16
  doi: 10.1111/jgs.12468
– ident: 17
  doi: 10.1172/JCI105882
– ident: 43
  doi: 10.1152/ajplegacy.1949.156.2.163
– ident: 55
  doi: 10.1038/jcbfm.2009.175
– ident: 6
– ident: 56
  doi: 10.1002/9780470942390.mo100149
– ident: 32
  doi: 10.1152/ajpregu.00139.2010
– ident: 2
  doi: 10.1097/00005792-197603000-00002
SSID ssj0027729
Score 2.2640102
Snippet The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with...
The most used experimental mouse model of hyponatremia and elevated intracranial pressure (ICP) is intraperitoneal injection of water in combination with...
SourceID pubmedcentral
proquest
crossref
pubmed
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 92
SubjectTerms Acetic acid
Animals
Antidiuretic Agents - administration & dosage
Antidiuretics
Blood pressure
Body weight
Brain stem
Deamino Arginine Vasopressin - administration & dosage
Desmopressin
Disease Models, Animal
Diuresis
Extreme values
Hyponatremia
Hyponatremia - chemically induced
Hyponatremia - physiopathology
Injection
Injections, Intraperitoneal
Intoxication
Intracranial Hypertension - chemically induced
Intracranial Hypertension - physiopathology
Intracranial Pressure
Male
Mice
Mice, Inbred C57BL
mouse model
Original
Potassium chloride
Side effects
Sodium bicarbonate
Sodium chloride
Urine
water intoxication
Water Intoxication - physiopathology
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLKs8GCvKBA5eUJnb8OACqKqoKCU6sVHGJ4sSmQd2kzWbF9tfwV5lxsmkX7Y1LlMSOY2XG9jcTzzcAb01SIrDlZSyFT2OBkCQuhE3itCpMplMnraHY4a_f5OlMfDnLzm7SAY0fcLHVtKN8UrPu4mB1df0JB_yHkL2H6_duhQOnnh9QOA7q5F24lwo002kfn9A31pcKKcuIwCxOeKZGnp8tDWwsUfd_IUr76bYB0H_3Ud5amE524dGIKNnRoAKP4Y5rnsCDH23wlz-FP0cMkTO7zeTPyNx3LCTBYa1nvxFvdqxu-nY1evAYuWfZYgiuchWWEbhchDPsQ4kLHOotC5tol51jRVOxeX1RsfPrS3LHd25eF6GRdtkzygjKxo0j9D4UZl3VyxA_uXgGs5PP349P4zErQ1xmivex1Z4b-glGl4i2LDG-eKVMZVQlHSdCNc-VF9xlSklprcCbHicSU8giUfw57DRt4_aA6fJQ-9SgcS-5sM5bqytufOG8Nmg56QjerQWRXw7kGzkZLSizfJRZnpicZBbBx0FQU8Vx5E0VpcmTcBgemMopug2niAj21wLO11qYp1wYnPL0oYjgxSDrqX2O3UA0xCNQG1owVSDi7s2Spj4PBN4qsPQkL_-3z6_gYUrmf_AI7cNO3y3da8RIvX0TdP8vpDUZBA
  priority: 102
  providerName: Scholars Portal
Title A new experimental mouse model of water intoxication with sustained increased intracranial pressure and mild hyponatremia without side effects of antidiuretics
URI https://www.jstage.jst.go.jp/article/expanim/69/1/69_19-0040/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/31534063
https://www.proquest.com/docview/2349832804
https://pubmed.ncbi.nlm.nih.gov/PMC7004811
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2020, Vol.69(1), pp.92-103
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6yoS25lL7rNg069NCLd2NL1uNSCKEhFDbk0EDoxVi21DjE9rLrpemv6V_tSJZNtvTUi7Cthw0zkr4Zz3wC-KiSEoEtLWPObBozhCRxwXQSp1WhMpkarpXLHV5e8PMr9vU6u96DbMyF8UH7pa7n7V0zb-sbH1u5asrFGCe2uFyeCs9ykixmMEMFHU300coS_mgyR1QWJzQTgc8HJ_bC3OMMq5u5y9tB5T2AJxSf45ZGd3alR7cIzH6Yf2HOv0MnH-xFZ8_gaQCR5GT42OewZ9oX8Ph7513kL-H3CUGwTB6S9xNn4Rviz70hnSU_EWKuSd323X1w2hHnkSWbIZ_KVFjn8OTGX-E3lLinoaoSHze7XRtStBVp6ruK3PxaOQ_82jR14Qfptj1xh4CSECvi3ofyq6t661MmN6_g6uzLt9PzOBzEEJeZoH2spaXK_fdytwiwtCN5sUKoSomKG-o41CwVllGTCcG51gwfWlw7VMGLRNDXsN92rXkLRJbH0qYK7XlOmTZWa1lRZQtjpUJjSUbwaRREvhr4NnJnp6D48iC-PFG5E18EnwdBTQ2DjkwNucoTXwwdpnqX0IarQgSHo4DzMHM3eUqZwlVOHrMI3gyynsYftSUCsaMFUwPH1b1bgyrsObuDyr77757v4SB1pr73_hzCfr_emg-Ih3p9BLMlk1heXC6P_Fz4A1FYEn0
link.rule.ids 230,315,730,783,787,888,2228,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8uoF8SZtAR84cMluEyd2fKlUVa0W6FYcWqniYsWJTYOaZLWbFeXX8FcZO07URZy4RIntOJZmbH8zmfkM8EFEBQJbWoQsMXGYICQJ80RFYVzmIs1izZSwucPzcza7TD5fpVdbkA65MC5ov1DVpLmpJ0117WIrF3UxHeLEpl_nx9yxnETTe3Af5-tBMhjpg53F3eFklqosjGjKPaMPNp3qW5xjVT2xmTuovjvwiGI5bmp0Y1968AOh2Xf9L9T5d_Dknd3o9Ck88TCSHPXDfQZbunkOD7-1zkn-An4fEYTL5C59P7E2vibu5BvSGvITQeaSVE3X3nq3HbE-WbLqM6p0iXUWUa7cHY6hwF0NlZW4yNn1UpO8KUld3ZTk-tfC-uCXuq5y10m77og9BpT4aBH7PZRgVVZrlzS5egmXpycXx7PQH8UQFimnXagyQ4X982UfEWIpS_NiOBel4CXT1LKoGcpNQnXKOWNKJVhocPUQOcsjTl_BdtM2-g2QrDjITCzQomc0UdoolZVUmFybTKC5lAXwcRCEXPSMG9JaKig-6cUnIyGt-AI47AU1NvRaMjZkQkbu0r8w1tuUNlwXAtgfBCz93F3JmCYC1znUqwBe97Ie-x-0JQC-oQVjA8vWvVmDSuxYu73S7v73m-_h8exifibPPp1_2YOd2Br-zhe0D9vdcq3fIjrq1Ds3F_4A8xET7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB61aRvlEvVdmqT1oYdeWBYMNr5UitKu0keiHBop6gVhsBOqAKtdVkl-Tf9qx8ag3SqnXhBgY5BmbH8zzHwD8EGEBQJbWvgs1pEfIyTx81iGflTmIkkjxaQwucMnp-z4PP52kVyslfqyQfuFrCbNdT1pqisbWzmvi2CIEwvOTo64ZTkJg3mpg4fwCOfslA2G-mBrcVugzNCV-SFNuGP1wa6BusV5VtUTk72DKrwD2xTv48ZGN_amx78Rnl2q-5DnvwGUazvS7CnsOihJDvtPfgYPVPMcnvxqraP8Bfw5JAiZyTqFPzF2viK2-g1pNblBoLkgVdO1t851R4xfliz7rCpVYptBlUt7ht9Q4M6GCkts9OxqoUjelKSurktydTc3fviFqqvcDtKuOmJKgRIXMWLeh1KsymplEyeXL-F89uXn0bHvyjH4RcJp58tUU2H-fplLhFnSUL1ozkUpeMkUNUxqmnIdU5VwzpiUMd7UuIKInOUhp69gq2kb9QZIWkxTHQm06hmNpdJSpiUVOlc6FWgypR58HASRzXvWjcxYKyi-zIkvC0VmxOfBp15QY0enKWNHJrLQHvoHxnaT1oZrgwf7g4AzN3-XWURjgWtdOo09eN3Lehx_0BYP-IYWjB0MY_dmCyqyZe52ivv2v598D9tnn2fZj6-n3_dgJzK2v3UH7cNWt1ipAwRInXxnp8JfyE0VAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+experimental+mouse+model+of+water+intoxication+with+sustained+increased+intracranial+pressure+and+mild+hyponatremia+without+side+effects+of+antidiuretics&rft.jtitle=Experimental+Animals&rft.au=Bordoni%2C+Luca&rft.au=Jim%C3%A9nez%2C+Eugenio+Guti%C3%A9rrez&rft.au=Nielsen%2C+S%C3%B8ren&rft.au=%C3%98stergaard%2C+Leif&rft.date=2020-01-01&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=69&rft.issue=1&rft.spage=92&rft.epage=103&rft_id=info:doi/10.1538%2Fexpanim.19-0040&rft.externalDocID=article_expanim_69_1_69_19_0040_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon