One-Step Electrodeposition of Chiral Plasmonic Gold Nanostructures for Enantioselective Sensing

Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors. However, the latter has been fabricated on the basis of top-down methods, which take time and cost. Here we developed a one-step method for prepa...

Full description

Saved in:
Bibliographic Details
Published inDenki kagaku oyobi kōgyō butsuri kagaku Vol. 90; no. 7; p. 077006
Main Authors GU, Igseon, ISHIDA, Takuya, TATSUMA, Tetsu
Format Journal Article
LanguageEnglish
Published The Electrochemical Society of Japan 09.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors. However, the latter has been fabricated on the basis of top-down methods, which take time and cost. Here we developed a one-step method for preparation of chiral gold nanostructures immobilized on an electrode by a simple electrodeposition in the presence of L- or D-cysteine. Opposite circular dichroism (CD) spectra were obtained by using L- or D-cysteine, while achiral structures were deposited for racemic cysteine or in the absence of cysteine. The chirality was attributed to geometries of the nanostructures. Chiral gold nanostructures electrodeposited in the presence of L-cysteine gave higher CD signals to (S)-enantiomer than those to (R)-enantiomer of 1,2-propanediol, and vice versa. TiO2-coated electrodes were also used as a substrate for the electrodeposition of chiral nanostructures, so that the chiral plasmonic electrodes would be employed for optoelectronic and photoelectrochemical applications.
AbstractList Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors. However, the latter has been fabricated on the basis of top-down methods, which take time and cost. Here we developed a one-step method for preparation of chiral gold nanostructures immobilized on an electrode by a simple electrodeposition in the presence of L- or D-cysteine. Opposite circular dichroism (CD) spectra were obtained by using L- or D-cysteine, while achiral structures were deposited for racemic cysteine or in the absence of cysteine. The chirality was attributed to geometries of the nanostructures. Chiral gold nanostructures electrodeposited in the presence of L-cysteine gave higher CD signals to (S)-enantiomer than those to (R)-enantiomer of 1,2-propanediol, and vice versa. TiO2-coated electrodes were also used as a substrate for the electrodeposition of chiral nanostructures, so that the chiral plasmonic electrodes would be employed for optoelectronic and photoelectrochemical applications.
ArticleNumber 22-00046
Author GU, Igseon
TATSUMA, Tetsu
ISHIDA, Takuya
Author_xml – sequence: 1
  orcidid: 0000-0001-8738-9837
  fullname: GU, Igseon
  organization: Institute of Industrial Science, The University of Tokyo
– sequence: 2
  orcidid: 0000-0001-8738-9837
  fullname: ISHIDA, Takuya
  organization: Institute of Industrial Science, The University of Tokyo
– sequence: 3
  orcidid: 0000-0001-8738-9837
  fullname: TATSUMA, Tetsu
  organization: Institute of Industrial Science, The University of Tokyo
BookMark eNplkN1qGzEQRkVJoW6ad1AeYFP97kqXwbhpIMSFtNdiVpq1ZdaSkTaFvH03duKL9GYGhjlnhu8ruUg5ISHXnN3ozrbfcUQ_ley3uI91Ki83QjSMMdV-IgvBTdsIpfkFWXCpVCO1El_IVa27eYUz21phF8StEzZPEx7o6iQLeMg1TjEnmge63MYCI_01Qt3nFD29y2Ogj5DyfO_ZT88FKx1yoasEaYbq8aX4F-kTphrT5hv5PMBY8eqtX5I_P1a_lz-bh_Xd_fL2ofG6k1PTS6MwIGda9sFAJwcTQFhhmAXfIxopFbbCGA2CI9NG9MJq4KaXiJ0d5CW5P3lDhp07lLiH8uIyRHcc5LJxUKboR3TWyqB0KxC0VdJaMLITgXmUgSP33eyyJ5cvudaCw9nHmXsN3n0M3gnhjsHP7PrE7uoEGzyT78f_Iy1z3Wt5N5w3_RaKwyT_AVzYnNs
CitedBy_id crossref_primary_10_1063_5_0155834
crossref_primary_10_1063_5_0192366
Cites_doi 10.1021/ac049893u
10.1016/0022-0728(91)85271-P
10.1021/acsnano.9b10216
10.1038/nature10889
10.1038/s41586-018-0034-1
10.1039/c3dt51495a
10.1016/j.cub.2015.10.047
10.1038/nnano.2010.209
10.1016/0925-4005(95)85024-4
10.1038/ncomms12140
10.1038/ncomms3948
10.1149/1.1906023
10.1002/adma.201205214
10.1103/PhysRevLett.95.227401
10.1021/ja042192u
10.1016/S0956-5663(00)00061-0
10.1149/1.2041948
10.1103/PhysRevB.79.035407
10.1021/acs.jpcc.6b09202
10.1021/acs.nanolett.8b00929
10.1021/jacs.5b04806
10.1021/ja209861x
10.1016/j.electacta.2015.02.139
10.1038/ncomms9102
10.1039/b418884e
10.1021/nl400538y
10.1038/nphoton.2013.238
10.1039/C7SC00031F
10.1038/ncomms14180
10.1016/j.jelechem.2008.12.008
10.1038/s41570-017-0045
10.1021/nl100010v
10.1021/ja3066336
10.1038/nmat4031
10.1021/jacs.8b06526
10.1364/PRJ.7.001051
10.1039/C9NH00649D
ContentType Journal Article
Copyright The Author(s) 2022. Published by ECSJ.
Copyright_xml – notice: The Author(s) 2022. Published by ECSJ.
DBID AAYXX
CITATION
DOA
DOI 10.5796/electrochemistry.22-00046
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2186-2451
EndPage 077006
ExternalDocumentID oai_doaj_org_article_993d4562ea594399a8372d0ce3d1e1c7
10_5796_electrochemistry_22_00046
article_electrochemistry_90_7_90_22_00046_article_char_en
GroupedDBID 5GY
ACIWK
ACPRK
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JSF
JSH
OK1
RJT
RZJ
AAFWJ
AAYXX
AFPKN
CITATION
ID FETCH-LOGICAL-c573t-b384ede1053bd8a73f8da292809acbee8334e62885a21e0582b295a18b3ee79f3
IEDL.DBID DOA
ISSN 1344-3542
IngestDate Tue Oct 22 15:10:43 EDT 2024
Fri Aug 23 01:02:57 EDT 2024
Wed Apr 05 05:23:35 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-b384ede1053bd8a73f8da292809acbee8334e62885a21e0582b295a18b3ee79f3
ORCID 0000-0001-8738-9837
OpenAccessLink https://doaj.org/article/993d4562ea594399a8372d0ce3d1e1c7
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_993d4562ea594399a8372d0ce3d1e1c7
crossref_primary_10_5796_electrochemistry_22_00046
jstage_primary_article_electrochemistry_90_7_90_22_00046_article_char_en
PublicationCentury 2000
PublicationDate 2022/07/09
PublicationDateYYYYMMDD 2022-07-09
PublicationDate_xml – month: 07
  year: 2022
  text: 2022/07/09
  day: 09
PublicationDecade 2020
PublicationTitle Denki kagaku oyobi kōgyō butsuri kagaku
PublicationTitleAlternate Electrochemistry
PublicationYear 2022
Publisher The Electrochemical Society of Japan
Publisher_xml – name: The Electrochemical Society of Japan
References 33) S. Simon, T. I. Olumorin, B. Guo, and I. J. Burgess, J. Phys. Chem. C, 120, 26150 (2016).
32) V.-Q. Nguyen, D. Schaming, P. Martin, and J.-C. Lacroix, Electrochim. Acta, 179, 282 (2015).
18) C. Zhou, X. Duan, and N. A. Liu, Nat. Commun., 6, 8102 (2015).
35) C. A. Widrig, C. Chung, and M. D. Porter, J. Electroanal. Chem., 310, 335 (1991).
10) E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B, 79, 035407 (2009).
11) M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett., 95, 227401 (2005).
39) T. Tatsuma and H. Nishi, Nanoscale Horiz., 5, 597 (2020).
22) K. Saito and T. Tatsuma, Nano Lett., 18, 3209 (2018).
13) W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, and N. A. Kotov, J. Am. Chem. Soc., 134, 15114 (2012).
2) Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, Curr. Biol., 25, 3074 (2015).
28) F. Gao, M. S. El-Deab, T. Okajima, and T. Ohsaka, J. Electrochem. Soc., 152, A1226 (2005).
5) J. Bai, C. Wang, X. Chen, A. Basiri, C. Wang, and Y. Yao, Photon. Res., 7, 1051 (2019).
1) J. T. Yang, Circular Dichroism and the Conformational Analysis of Biomolecules (Ed. G. D. Fasman), Springer, Berlin, Germany, p. 1 (1996).
27) H. Notsu, W. Kubo, I. Shitanda, and T. Tatsuma, J. Mater. Chem., 15, 1523 (2005).
8) R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, J. Am. Chem. Soc., 137, 8380 (2015).
37) C. Clavero, Nat. Photonics, 8, 95 (2014).
20) H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, Nature, 556, 360 (2018).
36) Y. Tian and T. Tatsuma, J. Am. Chem. Soc., 127, 7632 (2005).
12) X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, J. Am. Chem. Soc., 134, 146 (2012).
16) R. Schreiber, N. Luong, Z. Fan, A. Kuzyk, P. C. Nickels, T. Zhang, D. M. Smith, B. Yurke, W. Kuang, A. O. Govorov, and T. Liedl, Nat. Commun., 4, 2948 (2013).
25) D. van Noort and C.-F. Mandenius, Biosens. Bioelectron., 15, 203 (2000).
21) H.-E. Lee, R. M. Kim, H.-Y. Ahn, Y. Y. Lee, G. H. Byun, S. W. Im, J. Mun, J. Rho, and K. T. Nam, Nat. Commun., 11, 263 (2020).
14) A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, Nature, 483, 311 (2012).
38) T. Tatsuma, H. Nishi, and T. Ishida, Chem. Sci., 8, 3325 (2017).
9) Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, Nat. Commun., 8, 14180 (2017).
3) I. M. Daly, M. J. How, J. C. Partridge, S. E. Temple, N. J. Marshall, T. W. Cronin, and N. W. Roberts, Nat. Commun., 7, 12140 (2016).
15) X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, and B. Ding, Nano Lett., 13, 2128 (2013).
26) K. Bonroy, J.-M. Friedt, F. Frederix, W. Laureyn, S. Langerock, A. Campitelli, M. Sára, G. Borghs, B. Goddeeris, and P. Declerck, Anal. Chem., 76, 4299 (2004).
7) E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, Nat. Nanotechnol., 5, 783 (2010).
24) M. Imamura, T. Haruyama, E. Kobatake, Y. Ikariyama, and M. Aizawa, Sens. Actuators, B, 24, 113 (1995).
17) A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, Nat. Mater., 13, 862 (2014).
6) W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, Nat. Commun., 6, 8379 (2015).
29) M. S. El-Deab, T. Sotomura, and T. Ohsaka, J. Electrochem. Soc., 152, C730 (2005).
30) N. Sakai, Y. Fujiwara, M. Arai, K. Yu, and T. Tatsuma, J. Electroanal. Chem., 628, 7 (2009).
19) X. Lan, T. Liu, Z. Wang, A. O. Govorov, H. Yan, and Y. Liu, J. Am. Chem. Soc., 140, 11763 (2018).
4) J. R. Brandt, F. Salerno, and M. J. Fuchter, Nat. Rev. Chem., 1, 0045 (2017).
40) Y. Konishi, I. Tanabe, and T. Tatsuma, Dalton Trans., 42, 15937 (2013).
34) A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, Nano Lett., 10, 1374 (2010).
23) K. Morisawa, T. Ishida, and T. Tatsuma, ACS Nano, 14, 3603 (2020).
31) A. Tsuboi, K. Nakamura, and N. Kobayashi, Adv. Mater., 25, 3197 (2013).
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
20
21
References_xml – ident: 26
  doi: 10.1021/ac049893u
– ident: 35
  doi: 10.1016/0022-0728(91)85271-P
– ident: 23
  doi: 10.1021/acsnano.9b10216
– ident: 14
  doi: 10.1038/nature10889
– ident: 20
  doi: 10.1038/s41586-018-0034-1
– ident: 40
  doi: 10.1039/c3dt51495a
– ident: 2
  doi: 10.1016/j.cub.2015.10.047
– ident: 7
  doi: 10.1038/nnano.2010.209
– ident: 24
  doi: 10.1016/0925-4005(95)85024-4
– ident: 3
  doi: 10.1038/ncomms12140
– ident: 16
  doi: 10.1038/ncomms3948
– ident: 28
  doi: 10.1149/1.1906023
– ident: 31
  doi: 10.1002/adma.201205214
– ident: 11
  doi: 10.1103/PhysRevLett.95.227401
– ident: 36
  doi: 10.1021/ja042192u
– ident: 25
  doi: 10.1016/S0956-5663(00)00061-0
– ident: 29
  doi: 10.1149/1.2041948
– ident: 10
  doi: 10.1103/PhysRevB.79.035407
– ident: 33
  doi: 10.1021/acs.jpcc.6b09202
– ident: 22
  doi: 10.1021/acs.nanolett.8b00929
– ident: 1
– ident: 8
  doi: 10.1021/jacs.5b04806
– ident: 12
  doi: 10.1021/ja209861x
– ident: 32
  doi: 10.1016/j.electacta.2015.02.139
– ident: 18
  doi: 10.1038/ncomms9102
– ident: 27
  doi: 10.1039/b418884e
– ident: 15
  doi: 10.1021/nl400538y
– ident: 37
  doi: 10.1038/nphoton.2013.238
– ident: 38
  doi: 10.1039/C7SC00031F
– ident: 9
  doi: 10.1038/ncomms14180
– ident: 30
  doi: 10.1016/j.jelechem.2008.12.008
– ident: 4
  doi: 10.1038/s41570-017-0045
– ident: 6
– ident: 34
  doi: 10.1021/nl100010v
– ident: 21
– ident: 13
  doi: 10.1021/ja3066336
– ident: 17
  doi: 10.1038/nmat4031
– ident: 19
  doi: 10.1021/jacs.8b06526
– ident: 5
  doi: 10.1364/PRJ.7.001051
– ident: 39
  doi: 10.1039/C9NH00649D
SSID ssj0001096929
Score 2.3282654
Snippet Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors....
SourceID doaj
crossref
jstage
SourceType Open Website
Aggregation Database
Publisher
StartPage 077006
SubjectTerms Chiral Plasmonic Nanostructure
Circular Dichroism
Electrodeposition
Enantioselective Sensor
Title One-Step Electrodeposition of Chiral Plasmonic Gold Nanostructures for Enantioselective Sensing
URI https://www.jstage.jst.go.jp/article/electrochemistry/90/7/90_22-00046/_article/-char/en
https://doaj.org/article/993d4562ea594399a8372d0ce3d1e1c7
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Electrochemistry, 2022/07/09, Vol.90(7), pp.077006-077006
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIouL6IoLXaps0NjnqsroIPkAFb6FJJj7QVnz8f2ea7eLj4MVLD6XThJl25psw8w1ju6AK8M4Rx76ADL2kzrTMIQPwuvAqauWpOfns_GB8U57eqtsvo76oJizRAyfF7WP8DITSoVaGsHONGZUIuQcZCih86iPPTUqm5tgOegFqr9yfTJHx_di0PUy6ulbJbwGo4-nH4POIUKwv4-oiy_EiW5hAQn6YtrLEZqBZZvaigYxKsPgoLRGgr6_ibeTD-4dXlLlE7PtM5Lb8pH0KHF1lmwhhPzCL5ohH-YgKXR7at26j6Nn4FVWsN3cr7OZ4dD0cZ5NhCJlXlXzPnNQlBEA4JF3QdSWjDrUwQuem9g5AS1kCzQ5WtSggV1o4YVRdaCcBKhPlKptt2gbWGCeO-eiJ683EUknhQixiXsYKpHdG5gMmeg3Zl8R5YTFXILXan2q1QthOrQN2RLqcChBtdXcDjWknxrR_GXPAxskS09f0kr_WNbmt6NKvP32SutXwl1__j_1ssHlB7Q50nGs22SxaELYQhLy77e57-wSQ5-Ha
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Step+Electrodeposition+of+Chiral+Plasmonic+Gold+Nanostructures+for+Enantioselective+Sensing&rft.jtitle=Electrochemistry&rft.au=GU%2C+Igseon&rft.au=ISHIDA%2C+Takuya&rft.au=TATSUMA%2C+Tetsu&rft.date=2022-07-09&rft.pub=The+Electrochemical+Society+of+Japan&rft.issn=1344-3542&rft.eissn=2186-2451&rft.volume=90&rft.issue=7&rft.spage=077006&rft.epage=077006&rft_id=info:doi/10.5796%2Felectrochemistry.22-00046&rft.externalDocID=article_electrochemistry_90_7_90_22_00046_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-3542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-3542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-3542&client=summon