One-Step Electrodeposition of Chiral Plasmonic Gold Nanostructures for Enantioselective Sensing
Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors. However, the latter has been fabricated on the basis of top-down methods, which take time and cost. Here we developed a one-step method for prepa...
Saved in:
Published in | Denki kagaku oyobi kōgyō butsuri kagaku Vol. 90; no. 7; p. 077006 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Electrochemical Society of Japan
09.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors. However, the latter has been fabricated on the basis of top-down methods, which take time and cost. Here we developed a one-step method for preparation of chiral gold nanostructures immobilized on an electrode by a simple electrodeposition in the presence of L- or D-cysteine. Opposite circular dichroism (CD) spectra were obtained by using L- or D-cysteine, while achiral structures were deposited for racemic cysteine or in the absence of cysteine. The chirality was attributed to geometries of the nanostructures. Chiral gold nanostructures electrodeposited in the presence of L-cysteine gave higher CD signals to (S)-enantiomer than those to (R)-enantiomer of 1,2-propanediol, and vice versa. TiO2-coated electrodes were also used as a substrate for the electrodeposition of chiral nanostructures, so that the chiral plasmonic electrodes would be employed for optoelectronic and photoelectrochemical applications. |
---|---|
AbstractList | Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors. However, the latter has been fabricated on the basis of top-down methods, which take time and cost. Here we developed a one-step method for preparation of chiral gold nanostructures immobilized on an electrode by a simple electrodeposition in the presence of L- or D-cysteine. Opposite circular dichroism (CD) spectra were obtained by using L- or D-cysteine, while achiral structures were deposited for racemic cysteine or in the absence of cysteine. The chirality was attributed to geometries of the nanostructures. Chiral gold nanostructures electrodeposited in the presence of L-cysteine gave higher CD signals to (S)-enantiomer than those to (R)-enantiomer of 1,2-propanediol, and vice versa. TiO2-coated electrodes were also used as a substrate for the electrodeposition of chiral nanostructures, so that the chiral plasmonic electrodes would be employed for optoelectronic and photoelectrochemical applications. |
ArticleNumber | 22-00046 |
Author | GU, Igseon TATSUMA, Tetsu ISHIDA, Takuya |
Author_xml | – sequence: 1 orcidid: 0000-0001-8738-9837 fullname: GU, Igseon organization: Institute of Industrial Science, The University of Tokyo – sequence: 2 orcidid: 0000-0001-8738-9837 fullname: ISHIDA, Takuya organization: Institute of Industrial Science, The University of Tokyo – sequence: 3 orcidid: 0000-0001-8738-9837 fullname: TATSUMA, Tetsu organization: Institute of Industrial Science, The University of Tokyo |
BookMark | eNplkN1qGzEQRkVJoW6ad1AeYFP97kqXwbhpIMSFtNdiVpq1ZdaSkTaFvH03duKL9GYGhjlnhu8ruUg5ISHXnN3ozrbfcUQ_ley3uI91Ki83QjSMMdV-IgvBTdsIpfkFWXCpVCO1El_IVa27eYUz21phF8StEzZPEx7o6iQLeMg1TjEnmge63MYCI_01Qt3nFD29y2Ogj5DyfO_ZT88FKx1yoasEaYbq8aX4F-kTphrT5hv5PMBY8eqtX5I_P1a_lz-bh_Xd_fL2ofG6k1PTS6MwIGda9sFAJwcTQFhhmAXfIxopFbbCGA2CI9NG9MJq4KaXiJ0d5CW5P3lDhp07lLiH8uIyRHcc5LJxUKboR3TWyqB0KxC0VdJaMLITgXmUgSP33eyyJ5cvudaCw9nHmXsN3n0M3gnhjsHP7PrE7uoEGzyT78f_Iy1z3Wt5N5w3_RaKwyT_AVzYnNs |
CitedBy_id | crossref_primary_10_1063_5_0155834 crossref_primary_10_1063_5_0192366 |
Cites_doi | 10.1021/ac049893u 10.1016/0022-0728(91)85271-P 10.1021/acsnano.9b10216 10.1038/nature10889 10.1038/s41586-018-0034-1 10.1039/c3dt51495a 10.1016/j.cub.2015.10.047 10.1038/nnano.2010.209 10.1016/0925-4005(95)85024-4 10.1038/ncomms12140 10.1038/ncomms3948 10.1149/1.1906023 10.1002/adma.201205214 10.1103/PhysRevLett.95.227401 10.1021/ja042192u 10.1016/S0956-5663(00)00061-0 10.1149/1.2041948 10.1103/PhysRevB.79.035407 10.1021/acs.jpcc.6b09202 10.1021/acs.nanolett.8b00929 10.1021/jacs.5b04806 10.1021/ja209861x 10.1016/j.electacta.2015.02.139 10.1038/ncomms9102 10.1039/b418884e 10.1021/nl400538y 10.1038/nphoton.2013.238 10.1039/C7SC00031F 10.1038/ncomms14180 10.1016/j.jelechem.2008.12.008 10.1038/s41570-017-0045 10.1021/nl100010v 10.1021/ja3066336 10.1038/nmat4031 10.1021/jacs.8b06526 10.1364/PRJ.7.001051 10.1039/C9NH00649D |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by ECSJ. |
Copyright_xml | – notice: The Author(s) 2022. Published by ECSJ. |
DBID | AAYXX CITATION DOA |
DOI | 10.5796/electrochemistry.22-00046 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2186-2451 |
EndPage | 077006 |
ExternalDocumentID | oai_doaj_org_article_993d4562ea594399a8372d0ce3d1e1c7 10_5796_electrochemistry_22_00046 article_electrochemistry_90_7_90_22_00046_article_char_en |
GroupedDBID | 5GY ACIWK ACPRK AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ JSF JSH OK1 RJT RZJ AAFWJ AAYXX AFPKN CITATION |
ID | FETCH-LOGICAL-c573t-b384ede1053bd8a73f8da292809acbee8334e62885a21e0582b295a18b3ee79f3 |
IEDL.DBID | DOA |
ISSN | 1344-3542 |
IngestDate | Tue Oct 22 15:10:43 EDT 2024 Fri Aug 23 01:02:57 EDT 2024 Wed Apr 05 05:23:35 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-b384ede1053bd8a73f8da292809acbee8334e62885a21e0582b295a18b3ee79f3 |
ORCID | 0000-0001-8738-9837 |
OpenAccessLink | https://doaj.org/article/993d4562ea594399a8372d0ce3d1e1c7 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_993d4562ea594399a8372d0ce3d1e1c7 crossref_primary_10_5796_electrochemistry_22_00046 jstage_primary_article_electrochemistry_90_7_90_22_00046_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2022/07/09 |
PublicationDateYYYYMMDD | 2022-07-09 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022/07/09 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Denki kagaku oyobi kōgyō butsuri kagaku |
PublicationTitleAlternate | Electrochemistry |
PublicationYear | 2022 |
Publisher | The Electrochemical Society of Japan |
Publisher_xml | – name: The Electrochemical Society of Japan |
References | 33) S. Simon, T. I. Olumorin, B. Guo, and I. J. Burgess, J. Phys. Chem. C, 120, 26150 (2016). 32) V.-Q. Nguyen, D. Schaming, P. Martin, and J.-C. Lacroix, Electrochim. Acta, 179, 282 (2015). 18) C. Zhou, X. Duan, and N. A. Liu, Nat. Commun., 6, 8102 (2015). 35) C. A. Widrig, C. Chung, and M. D. Porter, J. Electroanal. Chem., 310, 335 (1991). 10) E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B, 79, 035407 (2009). 11) M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett., 95, 227401 (2005). 39) T. Tatsuma and H. Nishi, Nanoscale Horiz., 5, 597 (2020). 22) K. Saito and T. Tatsuma, Nano Lett., 18, 3209 (2018). 13) W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang, and N. A. Kotov, J. Am. Chem. Soc., 134, 15114 (2012). 2) Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, Curr. Biol., 25, 3074 (2015). 28) F. Gao, M. S. El-Deab, T. Okajima, and T. Ohsaka, J. Electrochem. Soc., 152, A1226 (2005). 5) J. Bai, C. Wang, X. Chen, A. Basiri, C. Wang, and Y. Yao, Photon. Res., 7, 1051 (2019). 1) J. T. Yang, Circular Dichroism and the Conformational Analysis of Biomolecules (Ed. G. D. Fasman), Springer, Berlin, Germany, p. 1 (1996). 27) H. Notsu, W. Kubo, I. Shitanda, and T. Tatsuma, J. Mater. Chem., 15, 1523 (2005). 8) R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, J. Am. Chem. Soc., 137, 8380 (2015). 37) C. Clavero, Nat. Photonics, 8, 95 (2014). 20) H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, Nature, 556, 360 (2018). 36) Y. Tian and T. Tatsuma, J. Am. Chem. Soc., 127, 7632 (2005). 12) X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, J. Am. Chem. Soc., 134, 146 (2012). 16) R. Schreiber, N. Luong, Z. Fan, A. Kuzyk, P. C. Nickels, T. Zhang, D. M. Smith, B. Yurke, W. Kuang, A. O. Govorov, and T. Liedl, Nat. Commun., 4, 2948 (2013). 25) D. van Noort and C.-F. Mandenius, Biosens. Bioelectron., 15, 203 (2000). 21) H.-E. Lee, R. M. Kim, H.-Y. Ahn, Y. Y. Lee, G. H. Byun, S. W. Im, J. Mun, J. Rho, and K. T. Nam, Nat. Commun., 11, 263 (2020). 14) A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, Nature, 483, 311 (2012). 38) T. Tatsuma, H. Nishi, and T. Ishida, Chem. Sci., 8, 3325 (2017). 9) Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, Nat. Commun., 8, 14180 (2017). 3) I. M. Daly, M. J. How, J. C. Partridge, S. E. Temple, N. J. Marshall, T. W. Cronin, and N. W. Roberts, Nat. Commun., 7, 12140 (2016). 15) X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, and B. Ding, Nano Lett., 13, 2128 (2013). 26) K. Bonroy, J.-M. Friedt, F. Frederix, W. Laureyn, S. Langerock, A. Campitelli, M. Sára, G. Borghs, B. Goddeeris, and P. Declerck, Anal. Chem., 76, 4299 (2004). 7) E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, Nat. Nanotechnol., 5, 783 (2010). 24) M. Imamura, T. Haruyama, E. Kobatake, Y. Ikariyama, and M. Aizawa, Sens. Actuators, B, 24, 113 (1995). 17) A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, Nat. Mater., 13, 862 (2014). 6) W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, Nat. Commun., 6, 8379 (2015). 29) M. S. El-Deab, T. Sotomura, and T. Ohsaka, J. Electrochem. Soc., 152, C730 (2005). 30) N. Sakai, Y. Fujiwara, M. Arai, K. Yu, and T. Tatsuma, J. Electroanal. Chem., 628, 7 (2009). 19) X. Lan, T. Liu, Z. Wang, A. O. Govorov, H. Yan, and Y. Liu, J. Am. Chem. Soc., 140, 11763 (2018). 4) J. R. Brandt, F. Salerno, and M. J. Fuchter, Nat. Rev. Chem., 1, 0045 (2017). 40) Y. Konishi, I. Tanabe, and T. Tatsuma, Dalton Trans., 42, 15937 (2013). 34) A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, Nano Lett., 10, 1374 (2010). 23) K. Morisawa, T. Ishida, and T. Tatsuma, ACS Nano, 14, 3603 (2020). 31) A. Tsuboi, K. Nakamura, and N. Kobayashi, Adv. Mater., 25, 3197 (2013). 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 20 21 |
References_xml | – ident: 26 doi: 10.1021/ac049893u – ident: 35 doi: 10.1016/0022-0728(91)85271-P – ident: 23 doi: 10.1021/acsnano.9b10216 – ident: 14 doi: 10.1038/nature10889 – ident: 20 doi: 10.1038/s41586-018-0034-1 – ident: 40 doi: 10.1039/c3dt51495a – ident: 2 doi: 10.1016/j.cub.2015.10.047 – ident: 7 doi: 10.1038/nnano.2010.209 – ident: 24 doi: 10.1016/0925-4005(95)85024-4 – ident: 3 doi: 10.1038/ncomms12140 – ident: 16 doi: 10.1038/ncomms3948 – ident: 28 doi: 10.1149/1.1906023 – ident: 31 doi: 10.1002/adma.201205214 – ident: 11 doi: 10.1103/PhysRevLett.95.227401 – ident: 36 doi: 10.1021/ja042192u – ident: 25 doi: 10.1016/S0956-5663(00)00061-0 – ident: 29 doi: 10.1149/1.2041948 – ident: 10 doi: 10.1103/PhysRevB.79.035407 – ident: 33 doi: 10.1021/acs.jpcc.6b09202 – ident: 22 doi: 10.1021/acs.nanolett.8b00929 – ident: 1 – ident: 8 doi: 10.1021/jacs.5b04806 – ident: 12 doi: 10.1021/ja209861x – ident: 32 doi: 10.1016/j.electacta.2015.02.139 – ident: 18 doi: 10.1038/ncomms9102 – ident: 27 doi: 10.1039/b418884e – ident: 15 doi: 10.1021/nl400538y – ident: 37 doi: 10.1038/nphoton.2013.238 – ident: 38 doi: 10.1039/C7SC00031F – ident: 9 doi: 10.1038/ncomms14180 – ident: 30 doi: 10.1016/j.jelechem.2008.12.008 – ident: 4 doi: 10.1038/s41570-017-0045 – ident: 6 – ident: 34 doi: 10.1021/nl100010v – ident: 21 – ident: 13 doi: 10.1021/ja3066336 – ident: 17 doi: 10.1038/nmat4031 – ident: 19 doi: 10.1021/jacs.8b06526 – ident: 5 doi: 10.1364/PRJ.7.001051 – ident: 39 doi: 10.1039/C9NH00649D |
SSID | ssj0001096929 |
Score | 2.3282654 |
Snippet | Chiral plasmonic nanostructures attract much attention because of their potential applications to advanced optical materials and enantioselective sensors.... |
SourceID | doaj crossref jstage |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 077006 |
SubjectTerms | Chiral Plasmonic Nanostructure Circular Dichroism Electrodeposition Enantioselective Sensor |
Title | One-Step Electrodeposition of Chiral Plasmonic Gold Nanostructures for Enantioselective Sensing |
URI | https://www.jstage.jst.go.jp/article/electrochemistry/90/7/90_22-00046/_article/-char/en https://doaj.org/article/993d4562ea594399a8372d0ce3d1e1c7 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Electrochemistry, 2022/07/09, Vol.90(7), pp.077006-077006 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIouL6IoLXaps0NjnqsroIPkAFb6FJJj7QVnz8f2ea7eLj4MVLD6XThJl25psw8w1ju6AK8M4Rx76ADL2kzrTMIQPwuvAqauWpOfns_GB8U57eqtsvo76oJizRAyfF7WP8DITSoVaGsHONGZUIuQcZCih86iPPTUqm5tgOegFqr9yfTJHx_di0PUy6ulbJbwGo4-nH4POIUKwv4-oiy_EiW5hAQn6YtrLEZqBZZvaigYxKsPgoLRGgr6_ibeTD-4dXlLlE7PtM5Lb8pH0KHF1lmwhhPzCL5ohH-YgKXR7at26j6Nn4FVWsN3cr7OZ4dD0cZ5NhCJlXlXzPnNQlBEA4JF3QdSWjDrUwQuem9g5AS1kCzQ5WtSggV1o4YVRdaCcBKhPlKptt2gbWGCeO-eiJ683EUknhQixiXsYKpHdG5gMmeg3Zl8R5YTFXILXan2q1QthOrQN2RLqcChBtdXcDjWknxrR_GXPAxskS09f0kr_WNbmt6NKvP32SutXwl1__j_1ssHlB7Q50nGs22SxaELYQhLy77e57-wSQ5-Ha |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Step+Electrodeposition+of+Chiral+Plasmonic+Gold+Nanostructures+for+Enantioselective+Sensing&rft.jtitle=Electrochemistry&rft.au=GU%2C+Igseon&rft.au=ISHIDA%2C+Takuya&rft.au=TATSUMA%2C+Tetsu&rft.date=2022-07-09&rft.pub=The+Electrochemical+Society+of+Japan&rft.issn=1344-3542&rft.eissn=2186-2451&rft.volume=90&rft.issue=7&rft.spage=077006&rft.epage=077006&rft_id=info:doi/10.5796%2Felectrochemistry.22-00046&rft.externalDocID=article_electrochemistry_90_7_90_22_00046_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1344-3542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1344-3542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1344-3542&client=summon |