Concerted nucleophilic aromatic substitutions

Nucleophilic aromatic substitution (S N Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S N Ar reactions involves a two-step addit...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 10; no. 9; pp. 917 - 923
Main Authors Kwan, Eugene E., Zeng, Yuwen, Besser, Harrison A., Jacobsen, Eric N.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nucleophilic aromatic substitution (S N Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S N Ar reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12 C/ 13 C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S N Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19 F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds. Nucleophilic aromatic substitution reactions have long been thought to occur primarily via stepwise mechanisms. New and sensitive methodology for measuring carbon kinetic isotope effects now shows that most such substitutions actually occur through concerted mechanisms.
AbstractList Nucleophilic aromatic substitution (S N Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S N Ar reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12 C/ 13 C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S N Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19 F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds. Nucleophilic aromatic substitution reactions have long been thought to occur primarily via stepwise mechanisms. New and sensitive methodology for measuring carbon kinetic isotope effects now shows that most such substitutions actually occur through concerted mechanisms.
Nucleophilic aromatic substitution (SNAr) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for SNAr reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12C/13C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical SNAr reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds.Nucleophilic aromatic substitution reactions have long been thought to occur primarily via stepwise mechanisms. New and sensitive methodology for measuring carbon kinetic isotope effects now shows that most such substitutions actually occur through concerted mechanisms.
Nucleophilic aromatic substitution (S N Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S N Ar reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12 C/ 13 C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S N Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19 F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds.
Nucleophilic aromatic substitution (SNAr) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for SNAr reactions involves a two-step addition-elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12C/13C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical SNAr reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C-F bonds.
Nucleophilic aromatic substitution (S Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S Ar reactions involves a two-step addition-elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use C/ C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C-F bonds.
Author Besser, Harrison A.
Kwan, Eugene E.
Jacobsen, Eric N.
Zeng, Yuwen
Author_xml – sequence: 1
  givenname: Eugene E.
  orcidid: 0000-0001-7037-0531
  surname: Kwan
  fullname: Kwan, Eugene E.
  organization: Department of Chemistry & Chemical Biology, Harvard University
– sequence: 2
  givenname: Yuwen
  surname: Zeng
  fullname: Zeng, Yuwen
  organization: Department of Chemistry & Chemical Biology, Harvard University
– sequence: 3
  givenname: Harrison A.
  surname: Besser
  fullname: Besser, Harrison A.
  organization: Department of Chemistry & Chemical Biology, Harvard University
– sequence: 4
  givenname: Eric N.
  orcidid: 0000-0001-7952-3661
  surname: Jacobsen
  fullname: Jacobsen, Eric N.
  email: jacobsen@chemistry.harvard.edu
  organization: Department of Chemistry & Chemical Biology, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30013193$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAUhYOMOA_9AW5kwI2b6s273Qgy-ALBja5Dm6YzHdpkTFrBf2-GjuMDXOXC_e7JufdM0cg6axA6xXCJgaZXgWHOZQI4TQBklsgDNMGS84RRlo32NYUxmoawBhCcYnGExhQAU5zRCUoWzmrjO1POba8b4zaruqn1PPeuzbtYhL4IXd31Xe1sOEaHVd4Ec7J7Z-j17vZl8ZA8Pd8_Lm6eEs0l7ZJci5IybqSuipIRwzJmCpBcSCIh5VimlOESKDOMpIQUoFkBVaajK8JkxugMXQ-6m75oTamN7XzeqI2v29x_KJfX6nfH1iu1dO9KYOCc4ShwsRPw7q03oVNtHbRpmtwa1wdFQGIuqBAkoud_0LXrvY3rRSrDJLoVWaTwQGnvQvCm2pvBoLZhqCEMFcNQ2zCUjDNnP7fYT3xdPwJkAEJs2aXx31__r_oJXDOVWg
CitedBy_id crossref_primary_10_1016_j_molstruc_2022_134311
crossref_primary_10_1021_acs_orglett_1c03317
crossref_primary_10_1021_acscatal_2c02577
crossref_primary_10_1039_D3RA01020A
crossref_primary_10_1016_j_cclet_2019_07_012
crossref_primary_10_1021_jacs_3c07119
crossref_primary_10_1016_j_mcat_2021_111566
crossref_primary_10_1039_C9SC02127B
crossref_primary_10_1021_acs_oprd_0c00222
crossref_primary_10_1021_acs_jmedchem_2c02074
crossref_primary_10_1021_jacsau_3c00813
crossref_primary_10_1002_ange_202102192
crossref_primary_10_1002_ange_202318304
crossref_primary_10_1021_acs_orglett_4c01005
crossref_primary_10_1039_C8CC06833J
crossref_primary_10_1038_s41929_020_0495_0
crossref_primary_10_1021_acs_joc_1c02543
crossref_primary_10_1016_j_pnmrs_2022_01_001
crossref_primary_10_1021_acs_oprd_1c00314
crossref_primary_10_1002_ange_202008557
crossref_primary_10_1002_anie_202003632
crossref_primary_10_1002_anie_201813294
crossref_primary_10_3390_molecules27123681
crossref_primary_10_1021_acs_accounts_2c00184
crossref_primary_10_1039_C9NJ01493D
crossref_primary_10_1002_ange_202306277
crossref_primary_10_1021_acs_jcim_2c01497
crossref_primary_10_1021_jacs_1c00307
crossref_primary_10_1002_ange_202216758
crossref_primary_10_1039_D3GC02516K
crossref_primary_10_1021_acs_orglett_0c01577
crossref_primary_10_1002_ange_202207475
crossref_primary_10_1021_jacs_8b07632
crossref_primary_10_1002_nadc_20194085243
crossref_primary_10_1002_ange_202318417
crossref_primary_10_1021_acs_orglett_2c03133
crossref_primary_10_1002_ange_201909138
crossref_primary_10_1007_s00214_019_2530_2
crossref_primary_10_1002_chem_201900849
crossref_primary_10_1021_acs_joc_1c02670
crossref_primary_10_1246_bcsj_20200210
crossref_primary_10_1021_acs_orglett_8b03730
crossref_primary_10_1002_ange_201902216
crossref_primary_10_1002_anie_202207475
crossref_primary_10_1002_ejoc_202000337
crossref_primary_10_1007_s40828_019_0084_5
crossref_primary_10_1021_acs_jpclett_1c03116
crossref_primary_10_3389_fchem_2021_740161
crossref_primary_10_1002_cjoc_202000253
crossref_primary_10_1039_D2SC04041G
crossref_primary_10_1021_jacs_2c09616
crossref_primary_10_1002_cplu_201900069
crossref_primary_10_1021_jacs_3c03455
crossref_primary_10_3390_molecules27165252
crossref_primary_10_1038_s41467_023_40237_6
crossref_primary_10_1055_a_1822_2832
crossref_primary_10_1016_j_jfluchem_2019_03_009
crossref_primary_10_1002_anie_202013544
crossref_primary_10_1002_ejoc_202101017
crossref_primary_10_1039_D2CC02999E
crossref_primary_10_1021_jacs_9b13684
crossref_primary_10_1002_anie_202318417
crossref_primary_10_1002_tcr_202300072
crossref_primary_10_1039_D1SC00044F
crossref_primary_10_1002_ange_202106440
crossref_primary_10_1016_j_inoche_2021_109135
crossref_primary_10_1021_acs_joc_1c02360
crossref_primary_10_1002_ejic_202100529
crossref_primary_10_1016_j_trechm_2019_01_009
crossref_primary_10_1039_D0OB02413A
crossref_primary_10_1021_acs_joc_9b00997
crossref_primary_10_1002_ange_202013544
crossref_primary_10_1039_D0SC06188C
crossref_primary_10_1021_jacs_3c13908
crossref_primary_10_1021_jacs_0c03926
crossref_primary_10_1038_s41467_020_15599_w
crossref_primary_10_1021_jacs_0c09296
crossref_primary_10_1039_D1OB00816A
crossref_primary_10_1002_anie_202102192
crossref_primary_10_1039_D0SC04896H
crossref_primary_10_1002_pol_20220115
crossref_primary_10_1021_jacs_3c14281
crossref_primary_10_1002_anie_202318304
crossref_primary_10_1055_s_0040_1707106
crossref_primary_10_1021_acs_joc_0c00640
crossref_primary_10_1021_acs_orglett_1c00457
crossref_primary_10_1002_slct_202303212
crossref_primary_10_1002_ejoc_201900530
crossref_primary_10_1021_jacs_3c13872
crossref_primary_10_1002_ange_202003632
crossref_primary_10_1002_adsc_202301148
crossref_primary_10_1002_adsc_202201291
crossref_primary_10_1002_anie_201907837
crossref_primary_10_1002_bio_4055
crossref_primary_10_1021_acs_jpca_9b06413
crossref_primary_10_1021_acs_orglett_9b01711
crossref_primary_10_1126_sciadv_abf0689
crossref_primary_10_1021_acs_jchemed_1c00546
crossref_primary_10_1021_acs_joc_1c00118
crossref_primary_10_1002_slct_202000656
crossref_primary_10_1002_ange_201808646
crossref_primary_10_1039_C8SC05263H
crossref_primary_10_1039_D2OB01641A
crossref_primary_10_1039_D1SC00757B
crossref_primary_10_1039_C8CC09701A
crossref_primary_10_1002_anie_202106440
crossref_primary_10_1021_jacs_3c11016
crossref_primary_10_1021_jacs_4c04496
crossref_primary_10_1038_s41586_018_0553_9
crossref_primary_10_1002_adsc_202100205
crossref_primary_10_1039_D3NJ03495J
crossref_primary_10_1038_s44160_022_00108_2
crossref_primary_10_1039_D0CY00008F
crossref_primary_10_1021_jacs_0c01975
crossref_primary_10_1021_acs_joc_0c01045
crossref_primary_10_1021_acs_joc_2c00771
crossref_primary_10_1002_ange_201907837
crossref_primary_10_3390_molecules26247637
crossref_primary_10_1021_acs_orglett_8b03144
crossref_primary_10_1039_D0OB00600A
crossref_primary_10_1021_acs_joc_3c02002
crossref_primary_10_1021_acs_joc_2c02153
crossref_primary_10_1021_jacs_2c02579
crossref_primary_10_1039_D0SC04244G
crossref_primary_10_1016_j_tet_2021_131931
crossref_primary_10_1039_D3CP03137C
crossref_primary_10_1021_acs_orglett_1c00515
crossref_primary_10_1021_jacs_9b11507
crossref_primary_10_1002_chem_202101735
crossref_primary_10_1039_C8NJ05674A
crossref_primary_10_1039_D3RE00215B
crossref_primary_10_1016_j_ica_2023_121494
crossref_primary_10_1021_acsomega_2c06865
crossref_primary_10_1002_advs_202308513
crossref_primary_10_1021_jacs_0c04674
crossref_primary_10_1002_ange_201813294
crossref_primary_10_1021_acs_jmedchem_8b01153
crossref_primary_10_3390_molecules28104015
crossref_primary_10_1002_adsc_201901302
crossref_primary_10_1021_acscatal_9b05328
crossref_primary_10_1007_s11224_020_01581_1
crossref_primary_10_2174_1570179419666220412084111
crossref_primary_10_1002_anie_202215568
crossref_primary_10_1002_anie_201909138
crossref_primary_10_1002_anie_202306277
crossref_primary_10_1021_jacs_0c08150
crossref_primary_10_1021_acs_joc_4c00186
crossref_primary_10_1021_jacs_0c07580
crossref_primary_10_1002_anie_202008557
crossref_primary_10_1021_acs_orglett_0c01621
crossref_primary_10_1039_C8SC04302G
crossref_primary_10_1021_jacs_2c10296
crossref_primary_10_3389_fchem_2020_00583
crossref_primary_10_1021_jacs_1c07351
crossref_primary_10_1038_s41467_019_10582_6
crossref_primary_10_3389_fchem_2022_854918
crossref_primary_10_1002_anie_201902216
crossref_primary_10_1515_pac_2018_1010
crossref_primary_10_4236_ijoc_2023_133007
crossref_primary_10_1002_ange_202215568
crossref_primary_10_1002_asia_202300122
crossref_primary_10_1016_j_tetlet_2019_06_033
crossref_primary_10_1021_acscombsci_9b00212
crossref_primary_10_1002_anie_201808646
crossref_primary_10_1021_jacs_2c04577
crossref_primary_10_1039_D0CP05567K
crossref_primary_10_1021_jacs_3c10614
crossref_primary_10_1016_j_xcrp_2022_101010
crossref_primary_10_1021_acs_orglett_0c03935
crossref_primary_10_1021_acs_joc_0c01250
crossref_primary_10_3390_catal12020233
crossref_primary_10_1039_D3QO01665J
crossref_primary_10_1002_asia_202101370
crossref_primary_10_1021_acs_orglett_8b03831
crossref_primary_10_1002_anie_202216758
crossref_primary_10_1002_ejoc_202000435
crossref_primary_10_1039_D2OB00236A
crossref_primary_10_3390_molecules24224177
crossref_primary_10_3390_molecules28041695
crossref_primary_10_1021_jacs_1c12490
crossref_primary_10_1038_s41570_023_00548_0
crossref_primary_10_1039_D3GC02066E
crossref_primary_10_1002_anie_201809606
crossref_primary_10_1021_acs_joc_2c00026
Cites_doi 10.1002/jlac.19023230205
10.1002/anie.200504555
10.1021/jo047987y
10.1021/ja00300a042
10.1007/978-3-642-34716-0
10.1002/bkcs.11227
10.1002/anie.200454230
10.1002/jlcr.1434
10.1021/ed1007712
10.1021/ja209339j
10.1039/p29940002383
10.1021/ja00189a045
10.1038/nature17667
10.1002/wcms.81
10.1021/jo100195w
10.1021/ja00542a028
10.1021/ja00064a014
10.1002/9780470192597
10.1021/cr60153a002
10.1021/jo202569n
10.1139/v87-326
10.1021/ja972267c
10.1021/ja00508a002
10.1021/jp074343w
10.1021/ja00010a040
10.1002/chem.201304241
10.3762/bjoc.9.90
10.1021/ja00336a047
10.1021/ja00214a037
10.1002/ejoc.200900880
10.1021/acs.jmedchem.5b01409
10.1002/anie.201611495
10.1021/ja00092a054
10.1021/ja010234y
10.1021/ja00329a047
10.1021/ct200106a
10.1021/ja00104a007
10.1002/anie.201708003
10.1021/acs.accounts.7b00413
10.1021/ar00167a003
10.1016/B978-0-08-099986-9.00002-6
10.1021/ja00125a008
10.1002/9783527656141
10.1021/cr030088+
10.1021/jacs.6b10621
10.1021/ja00476a042
10.1021/ja00141a012
10.1021/ja00398a057
10.1021/ja00329a078
10.1002/chem.200500398
10.1021/ja00247a007
10.1021/jo962096e
10.1063/1.1697301
10.1021/ct049977a
10.1021/ja00113a018
10.1021/ja00833a031
10.1021/ja00244a028
10.1139/V10-047
10.1063/1.4773581
10.1021/ja00141a030
10.1021/ja00255a021
10.1021/ja970114j
10.1021/ct400319w
10.1021/ja00336a046
10.1021/ct100048g
10.1021/ja952003v
10.1021/ct200866d
10.1021/jo049494z
10.1039/p29930001703
10.1021/cr00048a001
10.1016/0304-4173(85)90014-X
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018.
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PQEST
PQQKQ
PQUKI
7X8
5PM
DOI 10.1038/s41557-018-0079-7
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Chemoreception Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 923
ExternalDocumentID 10_1038_s41557_018_0079_7
30013193
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R37 GM043214
– fundername: NIGMS NIH HHS
  grantid: R01 GM043214
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABVXF
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGEZK
AGHTU
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYZH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c573t-ac6d345e7cfbd42e494eb0756727085178341d034e42822b0c4b0f9c001247943
IEDL.DBID BENPR
ISSN 1755-4330
IngestDate Tue Sep 17 21:21:09 EDT 2024
Sat Oct 26 05:03:18 EDT 2024
Thu Oct 10 21:09:06 EDT 2024
Thu Sep 12 19:33:12 EDT 2024
Sat Nov 02 12:16:31 EDT 2024
Fri Oct 11 20:45:19 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-ac6d345e7cfbd42e494eb0756727085178341d034e42822b0c4b0f9c001247943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7037-0531
0000-0001-7952-3661
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6105541
PMID 30013193
PQID 2091217869
PQPubID 536302
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6105541
proquest_miscellaneous_2071563662
proquest_journals_2091217869
crossref_primary_10_1038_s41557_018_0079_7
pubmed_primary_30013193
springer_journals_10_1038_s41557_018_0079_7
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nature Chem
PublicationTitleAlternate Nat Chem
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Williams, A. Concerted Organic and Bio-Organic Mechanisms (CRC, Boca Raton, FL, 1999).
OkayamaTTakinoTSatoKOchiaiMIn-plane vinylic SN2 substitution and intramolecular β-elimination of β-alkylvinyl(chloro)-λ3-iodanesJ. Am. Chem. Soc.199812022752282
Claridge, T. D. High-Resolution NMR Techniques in Organic Chemistry (Elsevier, New York, NY, 2016).
ChanJTangABennettAJA stepwise solvent-promoted SNi reaction of α-d-glucopyranosyl fluoride: mechanistic implications for retaining glycosyltransferasesJ. Am. Chem. Soc.2012134121212201:CAS:528:DC%2BC3MXhsFylur7O22148388
NeumannCNHookerJMRitterTConcerted nucleophilic aromatic substitution with 19F− and 18F−Nature20165343693731:CAS:528:DC%2BC28XotFOkt7c%3D272812214911285
BrownDGBoströmJAnalysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone?J. Med. Chem.201659444344581:CAS:528:DC%2BC2MXhvVeqsrzM26571338
MatssonODybala-DefratykaARostkowskiMPanethPWestawayKCA theoretical investigation of α-carbon kinetic isotope effects and their relationship to the transition-state structure of SN2 reactionsJ. Org. Chem.20051040224027
Helmus, J. J. nmrglue www.nmrglue.com
HanCBraumannJIGas phase nucleophilic displacement reactions of negative ions with carbonyl compoundsJ. Am. Chem. Soc.197910137153724
Frisch, M. J. et al. Gaussian 09 and 16 (Gaussian Inc.).
BourneNChrystiukEDavisAMWilliamsAA single transition state in the reaction of aryl diphenylphosphinate esters with phenolate ions in aqueous solutionJ. Am. Chem. Soc.1988110189018951:CAS:528:DyaL1cXhtlWqt7o%3D
MeisenheimerJUeber reactionen aromatischer nitrokörperJustus Liebigs Ann. Chem.19023232052461:CAS:528:DyaD28XmsVE%3D
D’RozarioPSmythRLWilliamsAEvidence for a single transition state in the intramolecular transfer of a sulfonyl group between oxyanion donor and acceptorsJ. Am. Chem. Soc.198410650275028
PapajakEZhengJXuXLeverentzHRTruhlarDGPerspectives on basis sets beautiful: seasonal plantings of diffuse basis functionsJ. Chem. Theory Comput.20117302730341:CAS:528:DC%2BC3MXhtFSmtLzM26598144
CairnsAGSennHMMurphyMPHartleyRCExpanding the palette of phenanthridinium cationsChem. Eur. J.201420374237511:CAS:528:DC%2BC2cXis1agsb4%3D24677631
RenfrewAHMTaylorJAA single transition state in nucleophilic aromatic substitution: reaction of phenolate ions with 2-(4-nitrophenoxy)-4,6-dimethoxy-1,3,5-triazine in aqueous solutionJ. Chem. Soc. Perkin Trans.1993217031704
KohH-JUmI-HKinetic study on quinuclidinolysis of O-phenyl O-Y-substituted-phenyl thionocarbonates: effects of changing nonleaving group from thionobenzoyl to phenyloxythionocarbonyl on reactivity and transition-state structureBull. Korean Chem. Soc.201738109110961:CAS:528:DC%2BC2sXhtlOrsrjN
FoxJMDmitrenkoOLiaoLBachRDComputational studies of nucleophilic substitution at carbonyl carbon: the SN2 mechanism versus the tetrahedral intermediate in organic synthesisJ. Org. Chem.200469731773281:CAS:528:DC%2BD2cXnslejurg%3D15471486
TerrierFRate and equilibrium studies in Jackson–Meisenheimer complexesChem. Rev.198282771521:CAS:528:DyaL38XitFKrtrY%3D
Terrier, F. Modern Nucleophilic Aromatic Substitution (Wiley-VCH, Weinheim, 2013).
GuthrieJPPikeDCHydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazoles on esters: the question of concerted mechanisms for acyl transferCan. J. Chem.198765195119691:CAS:528:DyaL2sXmtlGktbs%3D
BourneNWilliamsAEvidence for a single transition state in the transfer of the phosphoryl group to nitrogen nucleophiles from pyridino-N-phosphonatesJ. Am. Chem. Soc.1984106759175961:CAS:528:DyaL2cXmtlSltLg%3D
GiroldoTXavierLARiverosJMAn unusually fast nucleophilic aromatic displacement reaction: the gas-phase reaction of fluoride ions with nitrobenzeneAngew. Chem. Int. Ed.200443358835901:CAS:528:DC%2BD2cXlvFKjsLc%3D
KikushimaKGrellierMOhashiMOgoshiSTransition-metal-free hydrodefluorination of polyfluoroarenes by a concerted nucleophilic aromatic substitution with a hydrosilicateAngew. Chem. Int. Ed.20175616191161961:CAS:528:DC%2BC2sXhvVKmu7rE
ZhengY-JBruiceTCOn the dehalogenation mechanism of 4-chlorobenzoyl CoA by4-chlorobenzoyl CoA dehalogenase: insights from study on the nonenzymatic reactionJ. Am. Chem. Soc.1997119386838771:CAS:528:DyaK2sXisVyjtrs%3D
MarenichAVJeromeSVCramerCJTruhlarDGCharge model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phasesJ. Chem. Theory Comput.201285275411:CAS:528:DC%2BC38XlvVWmtA%3D%3D26596602
LucchiniVModenaGPasquatoLAn authentic case of in-plane nucleophilic vinylic substitution: the anionotropic rearrangement of di-tert-butyl thiirenium ions into thietium ionsJ. Am. Chem. Soc.1993115452745311:CAS:528:DyaK3sXksVyrsrY%3D
GuthrieJPConcerted mechanism for alcoholysis of esters: an examination of the requirementsJ. Am. Chem. Soc.1991113394139491:CAS:528:DyaK3MXitVKhtb4%3D
XuSThe DMAP-catalyzed acetylation of alcohols–a mechanistic studyChem. Eur. J.200511475147571:CAS:528:DC%2BD2MXoslGlsLg%3D15924289
Zheng, J. et al. GAUSSRATE 2016 (University of Minnesota).
CappelliCMontiSScalmaniGBaroneVOn the calculation of vibrational frequencies for molecules in solution beyond the harmonic approximationJ. Chem. Theory Comput.20106166016691:CAS:528:DC%2BC3cXktVyhsb8%3D26615698
MarcusRASutinNElectron transfers in chemistry and biologyBiochim. Biophys. Acta19858112653221:CAS:528:DyaL2MXltFygs78%3D
LucchiniVModenaGPasquatoLSN2 and AdN-E mechanisms in bimolecular nucleophilic substitutions at vinyl carbon: the relevance of the LUMO symmetry of the electrophileJ. Am. Chem. Soc.1995117229723001:CAS:528:DyaK2MXjvVShtrg%3D
WestawayKCDetermining transition state structure using kinetic isotope effectsJ. Label. Compd Radiopharm.20075098910051:CAS:528:DC%2BD1cXnsFSmsQ%3D%3D
JacksonCJGazzoloFHAm. Chem. J.1900233761:CAS:528:DyaD28XhtVSju7Y%3D
WilliamsAConcerted mechanisms of acyl group transfer reactions in solutionAcc. Chem. Res.1989223873921:CAS:528:DyaL1MXmtFeqt7c%3D
KarplusMPorterRSharmaRExchange reactions with activation energy. I. Simple barrier potential for (H, H2)J. Chem. Phys.196543325932871:CAS:528:DyaF2MXkvFemsrw%3D
Zheng, J. et al. POLYRATE 2016 (University of Minnesota).
TakanoYHoukKNBenchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic moleculesJ. Chem. Theory Comput.20051707726641117
Melander, L. C. & Saunders, W. H. Reaction Rates of Isotopic Molecules (Wiley, New York, NY, 1980).
SingletonDAThomasAAHigh-precision simultaneous determination of multiple small kinetic isotope effects at natural abundanceJ. Am. Chem. Soc.1995117935793581:CAS:528:DyaK2MXns1Citrs%3D
RenfrewAHMRetturaDTaylorJAWhitmoreJMJWilliamsAStepwise versus concerted mechanisms at trigonal carbon: transfer of the 1,3,5-triazinyl group between aryl oxide ions in aqueous solutionJ. Am. Chem. Soc.199511754845491
BunnettJFZahlerREAromatic nucleophilic substitution reactionsChem. Rev.1951492734121:CAS:528:DyaG38XhtFWruw%3D%3D
BuchwaldSLFriedmanJMKnowlesJRStereochemistry of nucleophilic displacement on two phosphoric monoesters and a phosphoguanidine: the role of metaphosphateJ. Am. Chem. Soc.1984106491149161:CAS:528:DyaL2cXkvFWju7w%3D
NeumannCNRitterTFacile C–F bond formation through a concerted nucleophilic aromatic substitution mediated by the PhenoFluor reagentAcc. Chem. Res.201750282228331:CAS:528:DC%2BC2sXhslOku7zN29120599
RenfrewAHMTaylorJAWhitmoreJMJWilliamsATiming of bonding changes in fundamental reactions in solution: pyridinolysis of a triazinylpyridinium saltJ. Chem. Soc. Perkin Trans. 219940238323841:CAS:528:DyaK2MXis1Cjtbw%3D
PerssonJAxelssonSMatssonOSolvent dependent leaving group fluorine kinetic isotope effect in a nucleophilic aromatic substitution reactionJ. Am. Chem. Soc.199611820231:CAS:528:DyaK2MXhtVSjs7%2FP
SkoogMTJencksWPReactions of pyridines and primary amines with N-phosphorylated pyridinesJ. Am. Chem. Soc.1984106759776061:CAS:528:DyaL2MXms1yg
SilversteinTPMarcus theory: thermodynamics can control the kinetics of electron transfer reactionsJ. Chem. Educ.201289115911671:CAS:528:DC%2BC38XhtVShs7fF
KongstedJMennucciBHow to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation modelsJ. Phys. Chem. A.2007111989099001:CAS:528:DC%2BD2sXhtVWis7fN17845016
KimJKCaserioMCAcyl-transfer reactions in the gas phase: the question of tetrahedral intermediatesJ. Am. Chem. Soc.1981103212421271:CAS:528:DyaL3MXhvFWnur0%3D
FernándezIFrenkingGUggerudERate-determining factors in nucleophilic aromatic substitution reactionsJ. Org. Chem.2010752971298020353177
BakerJMuirMThe Meisenheimer model for predicting the principal site of for nucleophilic substitution in aromatic perfluorocarbons—generalization to include ring-nitrogen atoms and non-fluorine ring substituentsCan. J. Chem.2010885885971:CAS:528:DC%2BC3cXmslWmsLo%3D
GoryunovLDi- and tri-fluorobenzenes in reactions with Me2 EM (E = P, N; M = SiMe3, SnMe3, Li) reagents: evidence for a concerted mechanism of aromatic nucleophilic substitutionEur. J. Org. Chem.2010201011111123
ZimmermanPReliable transition state searches integrated with the growing string methodJ. Chem. Theory Comput.20139304330501:CAS:528:DC%2BC3sXptFeht78%3D26583985
Glendening, E. D. et al. NBO 6.0 (Theoretical Chemistry Institute, 2013); http://nbo6.chem.wisc.edu
CullumNREffective charge on the nucleophile and leaving group during the stepwise transfer of the triazinyl group between pyridines in aqueous solutionJ. Am. Chem. Soc.1995117920092051:CAS:528:DyaK2MXns1Citr8%3D
NeeseFThe ORCA program systemWiley Inter. Rev. Comp. Mol. Sci.2012273781:CAS:528:DC%2BC38XhvFGls7s%3D
BourneNHopkinsAWilliamsASingle transition state for sulfuryl group transfer between pyridine nucleophilesJ. Am. Chem. Soc.1985107432743311:CAS:528:DyaL2MXkt1aisrc%3D
ChrystiukEWilliamsAA single transition state in the transfer of methoxycarbonyl group between isoquinoline and substituted pyridinesJ. Am. Chem.
AV Marenich (79_CR66) 2012; 8
Y-J Zheng (79_CR41) 1997; 119
JF Bunnett (79_CR65) 1951; 49
KC Westaway (79_CR55) 2007; 50
P Zimmerman (79_CR80) 2013; 9
N Bourne (79_CR28) 1984; 106
JP Guthrie (79_CR19) 1991; 113
DA Singleton (79_CR52) 1995; 117
JM Fox (79_CR23) 2004; 69
RD Bach (79_CR11) 2001; 123
79_CR50
DG Brown (79_CR4) 2016; 59
H-J Koh (79_CR34) 2017; 38
Z Chen (79_CR67) 2005; 105
TP Curran (79_CR13) 1980; 102
V Lucchini (79_CR7) 1993; 115
A Williams (79_CR12) 1989; 22
N Bourne (79_CR27) 1988; 110
TP Silverstein (79_CR64) 2012; 89
79_CR53
KK Andersen (79_CR30) 1974; 96
AG Cairns (79_CR44) 2014; 20
M Karplus (79_CR60) 1965; 43
CJ Jackson (79_CR69) 1900; 23
JP Guthrie (79_CR20) 1987; 65
N Bourne (79_CR31) 1985; 107
RA Marcus (79_CR62) 1985; 811
L Goryunov (79_CR43) 2010; 2010
EE Kwan (79_CR57) 2017; 139
JK Kim (79_CR18) 1981; 103
H Sun (79_CR40) 2006; 45
79_CR61
F Neese (79_CR76) 2012; 2
T Giroldo (79_CR46) 2004; 43
SA Ba-Saif (79_CR15) 1987; 109
MN Glukhovtsev (79_CR45) 1997; 62
DY Ong (79_CR39) 2017; 56
AHM Renfrew (79_CR37) 1994; 0
79_CR68
79_CR63
JF Blake (79_CR22) 1987; 109
K Kikushima (79_CR38) 2017; 56
J Persson (79_CR51) 1996; 118
C Han (79_CR17) 1979; 101
MN Glukhovtsev (79_CR8) 1994; 116
V Lucchini (79_CR9) 1995; 117
J Baker (79_CR42) 2010; 88
M Liljenberg (79_CR48) 2012; 77
I Fernández (79_CR47) 2010; 75
79_CR72
79_CR71
S Xu (79_CR25) 2005; 11
F Terrier (79_CR3) 1982; 82
SL Buchwald (79_CR29) 1984; 106
E Papajak (79_CR58) 2011; 7
E Chrystiuk (79_CR14) 1987; 109
79_CR74
J Kongsted (79_CR78) 2007; 111
79_CR73
79_CR75
T Deacon (79_CR33) 1978; 100
AC Hengge (79_CR21) 1994; 116
C Cappelli (79_CR79) 2010; 6
NR Cullum (79_CR36) 1995; 117
J Chan (79_CR54) 2012; 134
T Okayama (79_CR10) 1998; 120
J Meisenheimer (79_CR70) 1902; 323
M Liljenberg (79_CR49) 2013; 9
79_CR1
P D’Rozario (79_CR32) 1984; 106
CN Neumann (79_CR6) 2017; 50
79_CR2
O Matsson (79_CR56) 2005; 10
C Riplinger (79_CR59) 2013; 138
SA Ba-Saif (79_CR16) 1989; 111
AHM Renfrew (79_CR35) 1995; 117
Y Takano (79_CR77) 2005; 1
CN Neumann (79_CR5) 2016; 534
AHM Renfrew (79_CR24) 1993; 2
MT Skoog (79_CR26) 1984; 106
References_xml – volume: 323
  start-page: 205
  year: 1902
  ident: 79_CR70
  publication-title: Justus Liebigs Ann. Chem.
  doi: 10.1002/jlac.19023230205
  contributor:
    fullname: J Meisenheimer
– volume: 45
  start-page: 2720
  year: 2006
  ident: 79_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200504555
  contributor:
    fullname: H Sun
– volume: 10
  start-page: 4022
  year: 2005
  ident: 79_CR56
  publication-title: J. Org. Chem.
  doi: 10.1021/jo047987y
  contributor:
    fullname: O Matsson
– ident: 79_CR72
– volume: 107
  start-page: 4327
  year: 1985
  ident: 79_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00300a042
  contributor:
    fullname: N Bourne
– ident: 79_CR50
  doi: 10.1007/978-3-642-34716-0
– volume: 38
  start-page: 1091
  year: 2017
  ident: 79_CR34
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.1002/bkcs.11227
  contributor:
    fullname: H-J Koh
– volume: 43
  start-page: 3588
  year: 2004
  ident: 79_CR46
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200454230
  contributor:
    fullname: T Giroldo
– volume: 23
  start-page: 376
  year: 1900
  ident: 79_CR69
  publication-title: Am. Chem. J.
  contributor:
    fullname: CJ Jackson
– volume: 50
  start-page: 989
  year: 2007
  ident: 79_CR55
  publication-title: J. Label. Compd Radiopharm.
  doi: 10.1002/jlcr.1434
  contributor:
    fullname: KC Westaway
– volume: 89
  start-page: 1159
  year: 2012
  ident: 79_CR64
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed1007712
  contributor:
    fullname: TP Silverstein
– volume: 134
  start-page: 1212
  year: 2012
  ident: 79_CR54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209339j
  contributor:
    fullname: J Chan
– volume: 0
  start-page: 2383
  year: 1994
  ident: 79_CR37
  publication-title: J. Chem. Soc. Perkin Trans. 2
  doi: 10.1039/p29940002383
  contributor:
    fullname: AHM Renfrew
– volume: 111
  start-page: 2647
  year: 1989
  ident: 79_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00189a045
  contributor:
    fullname: SA Ba-Saif
– volume: 534
  start-page: 369
  year: 2016
  ident: 79_CR5
  publication-title: Nature
  doi: 10.1038/nature17667
  contributor:
    fullname: CN Neumann
– volume: 2
  start-page: 73
  year: 2012
  ident: 79_CR76
  publication-title: Wiley Inter. Rev. Comp. Mol. Sci.
  doi: 10.1002/wcms.81
  contributor:
    fullname: F Neese
– ident: 79_CR1
– volume: 75
  start-page: 2971
  year: 2010
  ident: 79_CR47
  publication-title: J. Org. Chem.
  doi: 10.1021/jo100195w
  contributor:
    fullname: I Fernández
– ident: 79_CR71
– volume: 102
  start-page: 6828
  year: 1980
  ident: 79_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00542a028
  contributor:
    fullname: TP Curran
– ident: 79_CR75
– volume: 115
  start-page: 4527
  year: 1993
  ident: 79_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00064a014
  contributor:
    fullname: V Lucchini
– ident: 79_CR63
  doi: 10.1002/9780470192597
– volume: 49
  start-page: 273
  year: 1951
  ident: 79_CR65
  publication-title: Chem. Rev.
  doi: 10.1021/cr60153a002
  contributor:
    fullname: JF Bunnett
– volume: 77
  start-page: 3262
  year: 2012
  ident: 79_CR48
  publication-title: J. Org. Chem.
  doi: 10.1021/jo202569n
  contributor:
    fullname: M Liljenberg
– volume: 65
  start-page: 1951
  year: 1987
  ident: 79_CR20
  publication-title: Can. J. Chem.
  doi: 10.1139/v87-326
  contributor:
    fullname: JP Guthrie
– volume: 120
  start-page: 2275
  year: 1998
  ident: 79_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja972267c
  contributor:
    fullname: T Okayama
– volume: 101
  start-page: 3715
  year: 1979
  ident: 79_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00508a002
  contributor:
    fullname: C Han
– volume: 111
  start-page: 9890
  year: 2007
  ident: 79_CR78
  publication-title: J. Phys. Chem. A.
  doi: 10.1021/jp074343w
  contributor:
    fullname: J Kongsted
– volume: 113
  start-page: 3941
  year: 1991
  ident: 79_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00010a040
  contributor:
    fullname: JP Guthrie
– volume: 20
  start-page: 3742
  year: 2014
  ident: 79_CR44
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201304241
  contributor:
    fullname: AG Cairns
– volume: 9
  start-page: 791
  year: 2013
  ident: 79_CR49
  publication-title: Beil. J. Org. Chem.
  doi: 10.3762/bjoc.9.90
  contributor:
    fullname: M Liljenberg
– ident: 79_CR68
– volume: 106
  start-page: 7597
  year: 1984
  ident: 79_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00336a047
  contributor:
    fullname: MT Skoog
– volume: 110
  start-page: 1890
  year: 1988
  ident: 79_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00214a037
  contributor:
    fullname: N Bourne
– volume: 2010
  start-page: 1111
  year: 2010
  ident: 79_CR43
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200900880
  contributor:
    fullname: L Goryunov
– volume: 59
  start-page: 4443
  year: 2016
  ident: 79_CR4
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01409
  contributor:
    fullname: DG Brown
– volume: 56
  start-page: 1840
  year: 2017
  ident: 79_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201611495
  contributor:
    fullname: DY Ong
– volume: 116
  start-page: 5961
  year: 1994
  ident: 79_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00092a054
  contributor:
    fullname: MN Glukhovtsev
– volume: 123
  start-page: 5787
  year: 2001
  ident: 79_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010234y
  contributor:
    fullname: RD Bach
– volume: 106
  start-page: 4911
  year: 1984
  ident: 79_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00329a047
  contributor:
    fullname: SL Buchwald
– volume: 7
  start-page: 3027
  year: 2011
  ident: 79_CR58
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200106a
  contributor:
    fullname: E Papajak
– ident: 79_CR74
– volume: 116
  start-page: 11256
  year: 1994
  ident: 79_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00104a007
  contributor:
    fullname: AC Hengge
– volume: 56
  start-page: 16191
  year: 2017
  ident: 79_CR38
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708003
  contributor:
    fullname: K Kikushima
– volume: 50
  start-page: 2822
  year: 2017
  ident: 79_CR6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00413
  contributor:
    fullname: CN Neumann
– volume: 22
  start-page: 387
  year: 1989
  ident: 79_CR12
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00167a003
  contributor:
    fullname: A Williams
– ident: 79_CR53
  doi: 10.1016/B978-0-08-099986-9.00002-6
– volume: 117
  start-page: 5484
  year: 1995
  ident: 79_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00125a008
  contributor:
    fullname: AHM Renfrew
– ident: 79_CR2
  doi: 10.1002/9783527656141
– volume: 105
  start-page: 3842
  year: 2005
  ident: 79_CR67
  publication-title: Chem. Rev.
  doi: 10.1021/cr030088+
  contributor:
    fullname: Z Chen
– volume: 139
  start-page: 43
  year: 2017
  ident: 79_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10621
  contributor:
    fullname: EE Kwan
– volume: 100
  start-page: 2525
  year: 1978
  ident: 79_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00476a042
  contributor:
    fullname: T Deacon
– ident: 79_CR61
– volume: 117
  start-page: 9200
  year: 1995
  ident: 79_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00141a012
  contributor:
    fullname: NR Cullum
– volume: 103
  start-page: 2124
  year: 1981
  ident: 79_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00398a057
  contributor:
    fullname: JK Kim
– volume: 106
  start-page: 5027
  year: 1984
  ident: 79_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00329a078
  contributor:
    fullname: P D’Rozario
– volume: 11
  start-page: 4751
  year: 2005
  ident: 79_CR25
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200500398
  contributor:
    fullname: S Xu
– volume: 109
  start-page: 3856
  year: 1987
  ident: 79_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00247a007
  contributor:
    fullname: JF Blake
– volume: 62
  start-page: 4036
  year: 1997
  ident: 79_CR45
  publication-title: J. Org. Chem.
  doi: 10.1021/jo962096e
  contributor:
    fullname: MN Glukhovtsev
– volume: 43
  start-page: 3259
  year: 1965
  ident: 79_CR60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1697301
  contributor:
    fullname: M Karplus
– volume: 1
  start-page: 70
  year: 2005
  ident: 79_CR77
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct049977a
  contributor:
    fullname: Y Takano
– volume: 117
  start-page: 2297
  year: 1995
  ident: 79_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00113a018
  contributor:
    fullname: V Lucchini
– volume: 96
  start-page: 8026
  year: 1974
  ident: 79_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00833a031
  contributor:
    fullname: KK Andersen
– ident: 79_CR73
– volume: 109
  start-page: 3040
  year: 1987
  ident: 79_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00244a028
  contributor:
    fullname: E Chrystiuk
– volume: 88
  start-page: 588
  year: 2010
  ident: 79_CR42
  publication-title: Can. J. Chem.
  doi: 10.1139/V10-047
  contributor:
    fullname: J Baker
– volume: 138
  start-page: 034106
  year: 2013
  ident: 79_CR59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4773581
  contributor:
    fullname: C Riplinger
– volume: 117
  start-page: 9357
  year: 1995
  ident: 79_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00141a030
  contributor:
    fullname: DA Singleton
– volume: 109
  start-page: 6362
  year: 1987
  ident: 79_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00255a021
  contributor:
    fullname: SA Ba-Saif
– volume: 119
  start-page: 3868
  year: 1997
  ident: 79_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970114j
  contributor:
    fullname: Y-J Zheng
– volume: 9
  start-page: 3043
  year: 2013
  ident: 79_CR80
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400319w
  contributor:
    fullname: P Zimmerman
– volume: 106
  start-page: 7591
  year: 1984
  ident: 79_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00336a046
  contributor:
    fullname: N Bourne
– volume: 6
  start-page: 1660
  year: 2010
  ident: 79_CR79
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100048g
  contributor:
    fullname: C Cappelli
– volume: 118
  start-page: 20
  year: 1996
  ident: 79_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja952003v
  contributor:
    fullname: J Persson
– volume: 8
  start-page: 527
  year: 2012
  ident: 79_CR66
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200866d
  contributor:
    fullname: AV Marenich
– volume: 69
  start-page: 7317
  year: 2004
  ident: 79_CR23
  publication-title: J. Org. Chem.
  doi: 10.1021/jo049494z
  contributor:
    fullname: JM Fox
– volume: 2
  start-page: 1703
  year: 1993
  ident: 79_CR24
  publication-title: J. Chem. Soc. Perkin Trans.
  doi: 10.1039/p29930001703
  contributor:
    fullname: AHM Renfrew
– volume: 82
  start-page: 77
  year: 1982
  ident: 79_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr00048a001
  contributor:
    fullname: F Terrier
– volume: 811
  start-page: 265
  year: 1985
  ident: 79_CR62
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4173(85)90014-X
  contributor:
    fullname: RA Marcus
SSID ssj0065316
Score 2.6537285
Snippet Nucleophilic aromatic substitution (S N Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly...
Nucleophilic aromatic substitution (S Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly...
Nucleophilic aromatic substitution (SNAr) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 917
SubjectTerms 639/638/403/934
639/638/563/606
Analytical Chemistry
Benzene Derivatives - chemistry
Biochemistry
Carbon - chemistry
Carbon Isotopes - chemistry
Chemical research
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Computer applications
Fluorine - chemistry
Fractionation
Inorganic Chemistry
Isotope effect
Isotope fractionation
Isotope Labeling
Isotopes
Kinetics
Magnetic Resonance Spectroscopy
NMR
Nuclear magnetic resonance
Organic Chemistry
Physical Chemistry
Substitution reactions
Title Concerted nucleophilic aromatic substitutions
URI https://link.springer.com/article/10.1038/s41557-018-0079-7
https://www.ncbi.nlm.nih.gov/pubmed/30013193
https://www.proquest.com/docview/2091217869
https://www.proquest.com/docview/2071563662
https://pubmed.ncbi.nlm.nih.gov/PMC6105541
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYdoAL4k15qUicQBFdkybtCcHEmJBACIG0W5WmqeDSjj3-P3bWDo0JLr0kVdvPrvM5dmyAC6k1sngdscLqEB0UZViSFZZlcW4KYZHwumz3p2c5eBePw2hYb7hN6rTKxiY6Q51XhvbI0UlPukifY5ncjL4YdY2i6GrdQqMFnRA9haANnbv755fXxhZL1DB3vkhFEZ0NWsQ1eXw9oaWU0i5jhutkwtTyyrRCN1ezJn-FTt2K1N-CzZpK-rdz2W_Dmi13YL3XdHDbBdajM4lj5JR-SWWLqxHtnhhfjytXqNWfoNVwqQKke3vw3r9_6w1Y3R6BmUjxKdNG5lxEVpkiy0VoRSJshgyAYqtEpKiFRjcPuEM8DLPAiCwoEkMMh-rK831ol1VpD8FHLwl9VaMk3i5yHmcy4EYXkQ6MiYok9uCygSYdzatgpC56zeN0jmOKOKaEY6o8OGnAS-sfYpL-iM-D88Uw4kHxCV3aakZzFHqTXMrQg4M51ouncVcYKOEeqCUpLCZQmezlkfLzw5XLltQDVHQ9uGrk9fNaf37E0f8fcQwbodMcSjY7gfZ0PLOnyE6m2Rm01FDhNe4_nNXq-A0sdeKi
link.rule.ids 230,315,783,787,888,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,74079,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4HOCCeFOeReIEiuiaNGlPCE2g8TyBtFuUpqng0o5t_H_srC0aCM5J1eazG3-OHRvgTBqDLN4krHQmRgdFWZblpWN5WthSOCS8Ptv96VkOXsX9MBk2B26TJq2y3RP9Rl3Uls7I0UnPekifU5ldjT4YdY2i6GrTQmMRlqkOF3UwUMPO4ZKoX_52kUoSuhnURTV5ejkhQ0pJlylDK5kxNW-XfpHN3zmTPwKn3h7drsNaQyTD65nkN2DBVZuw0m_7t20B69ONxDEyyrCiosX1iM5ObGjGtS_TGk5wz_CJAqR52_B6e_PSH7CmOQKzieJTZqwsuEicsmVeiNiJTLgc7T9FVolGUQONXhFxj3cc55EVeVRmlvgNVZXnO7BU1ZXbgxB9JPRUrZL4uCh4msuIW1MmJrI2KbM0gPMWGj2a1cDQPnbNUz3DUSOOmnDUKoDDFjzd_A4T_S28AE67YcSDohOmcvUnzVHoS3Ip4wB2Z1h3b-O-LFDGA1BzUugmUJHs-ZHq_c0Xy5bUAVT0Arho5fX9WX8uYv__RZzAyuDl6VE_3j0_HMBq7LWI0s4OYWk6_nRHyFOm-bFXxi98d-Jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RkAqXCtoCKR9NpZ6orM3Gjp2cEFoItFDUA0h7sxzHEVyS7Wb5_51xkkULomc7SjyezLzxPM8AfJfGIIo3CauciTFAUZZlReVYkZa2Eg4Br2e7_76VV_fi1zSZ9vyntqdVDjbRG-qysXRGjkF6Nkb4nMpsVPW0iD_n-ensL6MOUpRp7dtpvIMN9IqSNDzNLwerLFHX_E0jlSR0S2iZ4eTpqCWnSgTMlKHHzJha9VGvgOdr_uSLJKr3Tfk2fOhBZXjWacEOrLn6I2xOhl5un4BN6HbiHNFlWFMB42ZG5yg2NPPGl2wNW7QfnjRAWvgZ7vOLu8kV6xslMJsovmDGypKLxClbFaWInciEKxALUJaVIBU10xiXEfeyj-MisqKIqswS1qEK83wX1uumdvsQYryEUatVEh8XJU8LGXFrqsRE1iZVlgZwMohGz7p6GNrnsXmqOzlqlKMmOWoVwOEgPN3_Gq1-3sgAvi2HUR6UqTC1a55ojsK4kksZB7DXyXr5Nu5LBGU8ALWyC8sJVDB7daR-fPCFsyV1AxXjAH4M-_X8WW8u4sv_F_EV3qMe6puft9cHsBV7JSIG2iGsL-ZP7gghy6I49rr4D1ct5p4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concerted+nucleophilic+aromatic+substitutions&rft.jtitle=Nature+chemistry&rft.au=Kwan%2C+Eugene+E.&rft.au=Zeng%2C+Yuwen&rft.au=Besser%2C+Harrison+A.&rft.au=Jacobsen%2C+Eric+N.&rft.date=2018-09-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=10&rft.issue=9&rft.spage=917&rft.epage=923&rft_id=info:doi/10.1038%2Fs41557-018-0079-7&rft.externalDocID=10_1038_s41557_018_0079_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon