Concerted nucleophilic aromatic substitutions
Nucleophilic aromatic substitution (S N Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S N Ar reactions involves a two-step addit...
Saved in:
Published in | Nature chemistry Vol. 10; no. 9; pp. 917 - 923 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nucleophilic aromatic substitution (S
N
Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S
N
Ar reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use
12
C/
13
C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S
N
Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of
19
F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds.
Nucleophilic aromatic substitution reactions have long been thought to occur primarily via stepwise mechanisms. New and sensitive methodology for measuring carbon kinetic isotope effects now shows that most such substitutions actually occur through concerted mechanisms. |
---|---|
AbstractList | Nucleophilic aromatic substitution (S
N
Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S
N
Ar reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use
12
C/
13
C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S
N
Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of
19
F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds.
Nucleophilic aromatic substitution reactions have long been thought to occur primarily via stepwise mechanisms. New and sensitive methodology for measuring carbon kinetic isotope effects now shows that most such substitutions actually occur through concerted mechanisms. Nucleophilic aromatic substitution (SNAr) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for SNAr reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12C/13C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical SNAr reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds.Nucleophilic aromatic substitution reactions have long been thought to occur primarily via stepwise mechanisms. New and sensitive methodology for measuring carbon kinetic isotope effects now shows that most such substitutions actually occur through concerted mechanisms. Nucleophilic aromatic substitution (S N Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S N Ar reactions involves a two-step addition–elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12 C/ 13 C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S N Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19 F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C–F bonds. Nucleophilic aromatic substitution (SNAr) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for SNAr reactions involves a two-step addition-elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use 12C/13C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical SNAr reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of 19F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C-F bonds. Nucleophilic aromatic substitution (S Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly useful platform for the modification of aromatic ring scaffolds. The generally accepted mechanism for S Ar reactions involves a two-step addition-elimination sequence via a discrete, non-aromatic Meisenheimer complex. Here we use C/ C kinetic isotope effect (KIE) studies and computational analyses to provide evidence that prototypical S Ar reactions in fact proceed through concerted mechanisms. The KIE measurements were made possible by a new technique that leverages the high sensitivity of F as an NMR nucleus to quantitate the degree of isotopic fractionation. This sensitive technique permits the measurement of KIEs on 10 mg of natural abundance material in one overnight acquisition. As a result, it provides a practical tool for performing detailed mechanistic analyses of reactions that form or break C-F bonds. |
Author | Besser, Harrison A. Kwan, Eugene E. Jacobsen, Eric N. Zeng, Yuwen |
Author_xml | – sequence: 1 givenname: Eugene E. orcidid: 0000-0001-7037-0531 surname: Kwan fullname: Kwan, Eugene E. organization: Department of Chemistry & Chemical Biology, Harvard University – sequence: 2 givenname: Yuwen surname: Zeng fullname: Zeng, Yuwen organization: Department of Chemistry & Chemical Biology, Harvard University – sequence: 3 givenname: Harrison A. surname: Besser fullname: Besser, Harrison A. organization: Department of Chemistry & Chemical Biology, Harvard University – sequence: 4 givenname: Eric N. orcidid: 0000-0001-7952-3661 surname: Jacobsen fullname: Jacobsen, Eric N. email: jacobsen@chemistry.harvard.edu organization: Department of Chemistry & Chemical Biology, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30013193$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLxDAUhYOMOA_9AW5kwI2b6s273Qgy-ALBja5Dm6YzHdpkTFrBf2-GjuMDXOXC_e7JufdM0cg6axA6xXCJgaZXgWHOZQI4TQBklsgDNMGS84RRlo32NYUxmoawBhCcYnGExhQAU5zRCUoWzmrjO1POba8b4zaruqn1PPeuzbtYhL4IXd31Xe1sOEaHVd4Ec7J7Z-j17vZl8ZA8Pd8_Lm6eEs0l7ZJci5IybqSuipIRwzJmCpBcSCIh5VimlOESKDOMpIQUoFkBVaajK8JkxugMXQ-6m75oTamN7XzeqI2v29x_KJfX6nfH1iu1dO9KYOCc4ShwsRPw7q03oVNtHbRpmtwa1wdFQGIuqBAkoud_0LXrvY3rRSrDJLoVWaTwQGnvQvCm2pvBoLZhqCEMFcNQ2zCUjDNnP7fYT3xdPwJkAEJs2aXx31__r_oJXDOVWg |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2022_134311 crossref_primary_10_1021_acs_orglett_1c03317 crossref_primary_10_1021_acscatal_2c02577 crossref_primary_10_1039_D3RA01020A crossref_primary_10_1016_j_cclet_2019_07_012 crossref_primary_10_1021_jacs_3c07119 crossref_primary_10_1016_j_mcat_2021_111566 crossref_primary_10_1039_C9SC02127B crossref_primary_10_1021_acs_oprd_0c00222 crossref_primary_10_1021_acs_jmedchem_2c02074 crossref_primary_10_1021_jacsau_3c00813 crossref_primary_10_1002_ange_202102192 crossref_primary_10_1002_ange_202318304 crossref_primary_10_1021_acs_orglett_4c01005 crossref_primary_10_1039_C8CC06833J crossref_primary_10_1038_s41929_020_0495_0 crossref_primary_10_1021_acs_joc_1c02543 crossref_primary_10_1016_j_pnmrs_2022_01_001 crossref_primary_10_1021_acs_oprd_1c00314 crossref_primary_10_1002_ange_202008557 crossref_primary_10_1002_anie_202003632 crossref_primary_10_1002_anie_201813294 crossref_primary_10_3390_molecules27123681 crossref_primary_10_1021_acs_accounts_2c00184 crossref_primary_10_1039_C9NJ01493D crossref_primary_10_1002_ange_202306277 crossref_primary_10_1021_acs_jcim_2c01497 crossref_primary_10_1021_jacs_1c00307 crossref_primary_10_1002_ange_202216758 crossref_primary_10_1039_D3GC02516K crossref_primary_10_1021_acs_orglett_0c01577 crossref_primary_10_1002_ange_202207475 crossref_primary_10_1021_jacs_8b07632 crossref_primary_10_1002_nadc_20194085243 crossref_primary_10_1002_ange_202318417 crossref_primary_10_1021_acs_orglett_2c03133 crossref_primary_10_1002_ange_201909138 crossref_primary_10_1007_s00214_019_2530_2 crossref_primary_10_1002_chem_201900849 crossref_primary_10_1021_acs_joc_1c02670 crossref_primary_10_1246_bcsj_20200210 crossref_primary_10_1021_acs_orglett_8b03730 crossref_primary_10_1002_ange_201902216 crossref_primary_10_1002_anie_202207475 crossref_primary_10_1002_ejoc_202000337 crossref_primary_10_1007_s40828_019_0084_5 crossref_primary_10_1021_acs_jpclett_1c03116 crossref_primary_10_3389_fchem_2021_740161 crossref_primary_10_1002_cjoc_202000253 crossref_primary_10_1039_D2SC04041G crossref_primary_10_1021_jacs_2c09616 crossref_primary_10_1002_cplu_201900069 crossref_primary_10_1021_jacs_3c03455 crossref_primary_10_3390_molecules27165252 crossref_primary_10_1038_s41467_023_40237_6 crossref_primary_10_1055_a_1822_2832 crossref_primary_10_1016_j_jfluchem_2019_03_009 crossref_primary_10_1002_anie_202013544 crossref_primary_10_1002_ejoc_202101017 crossref_primary_10_1039_D2CC02999E crossref_primary_10_1021_jacs_9b13684 crossref_primary_10_1002_anie_202318417 crossref_primary_10_1002_tcr_202300072 crossref_primary_10_1039_D1SC00044F crossref_primary_10_1002_ange_202106440 crossref_primary_10_1016_j_inoche_2021_109135 crossref_primary_10_1021_acs_joc_1c02360 crossref_primary_10_1002_ejic_202100529 crossref_primary_10_1016_j_trechm_2019_01_009 crossref_primary_10_1039_D0OB02413A crossref_primary_10_1021_acs_joc_9b00997 crossref_primary_10_1002_ange_202013544 crossref_primary_10_1039_D0SC06188C crossref_primary_10_1021_jacs_3c13908 crossref_primary_10_1021_jacs_0c03926 crossref_primary_10_1038_s41467_020_15599_w crossref_primary_10_1021_jacs_0c09296 crossref_primary_10_1039_D1OB00816A crossref_primary_10_1002_anie_202102192 crossref_primary_10_1039_D0SC04896H crossref_primary_10_1002_pol_20220115 crossref_primary_10_1021_jacs_3c14281 crossref_primary_10_1002_anie_202318304 crossref_primary_10_1055_s_0040_1707106 crossref_primary_10_1021_acs_joc_0c00640 crossref_primary_10_1021_acs_orglett_1c00457 crossref_primary_10_1002_slct_202303212 crossref_primary_10_1002_ejoc_201900530 crossref_primary_10_1021_jacs_3c13872 crossref_primary_10_1002_ange_202003632 crossref_primary_10_1002_adsc_202301148 crossref_primary_10_1002_adsc_202201291 crossref_primary_10_1002_anie_201907837 crossref_primary_10_1002_bio_4055 crossref_primary_10_1021_acs_jpca_9b06413 crossref_primary_10_1021_acs_orglett_9b01711 crossref_primary_10_1126_sciadv_abf0689 crossref_primary_10_1021_acs_jchemed_1c00546 crossref_primary_10_1021_acs_joc_1c00118 crossref_primary_10_1002_slct_202000656 crossref_primary_10_1002_ange_201808646 crossref_primary_10_1039_C8SC05263H crossref_primary_10_1039_D2OB01641A crossref_primary_10_1039_D1SC00757B crossref_primary_10_1039_C8CC09701A crossref_primary_10_1002_anie_202106440 crossref_primary_10_1021_jacs_3c11016 crossref_primary_10_1021_jacs_4c04496 crossref_primary_10_1038_s41586_018_0553_9 crossref_primary_10_1002_adsc_202100205 crossref_primary_10_1039_D3NJ03495J crossref_primary_10_1038_s44160_022_00108_2 crossref_primary_10_1039_D0CY00008F crossref_primary_10_1021_jacs_0c01975 crossref_primary_10_1021_acs_joc_0c01045 crossref_primary_10_1021_acs_joc_2c00771 crossref_primary_10_1002_ange_201907837 crossref_primary_10_3390_molecules26247637 crossref_primary_10_1021_acs_orglett_8b03144 crossref_primary_10_1039_D0OB00600A crossref_primary_10_1021_acs_joc_3c02002 crossref_primary_10_1021_acs_joc_2c02153 crossref_primary_10_1021_jacs_2c02579 crossref_primary_10_1039_D0SC04244G crossref_primary_10_1016_j_tet_2021_131931 crossref_primary_10_1039_D3CP03137C crossref_primary_10_1021_acs_orglett_1c00515 crossref_primary_10_1021_jacs_9b11507 crossref_primary_10_1002_chem_202101735 crossref_primary_10_1039_C8NJ05674A crossref_primary_10_1039_D3RE00215B crossref_primary_10_1016_j_ica_2023_121494 crossref_primary_10_1021_acsomega_2c06865 crossref_primary_10_1002_advs_202308513 crossref_primary_10_1021_jacs_0c04674 crossref_primary_10_1002_ange_201813294 crossref_primary_10_1021_acs_jmedchem_8b01153 crossref_primary_10_3390_molecules28104015 crossref_primary_10_1002_adsc_201901302 crossref_primary_10_1021_acscatal_9b05328 crossref_primary_10_1007_s11224_020_01581_1 crossref_primary_10_2174_1570179419666220412084111 crossref_primary_10_1002_anie_202215568 crossref_primary_10_1002_anie_201909138 crossref_primary_10_1002_anie_202306277 crossref_primary_10_1021_jacs_0c08150 crossref_primary_10_1021_acs_joc_4c00186 crossref_primary_10_1021_jacs_0c07580 crossref_primary_10_1002_anie_202008557 crossref_primary_10_1021_acs_orglett_0c01621 crossref_primary_10_1039_C8SC04302G crossref_primary_10_1021_jacs_2c10296 crossref_primary_10_3389_fchem_2020_00583 crossref_primary_10_1021_jacs_1c07351 crossref_primary_10_1038_s41467_019_10582_6 crossref_primary_10_3389_fchem_2022_854918 crossref_primary_10_1002_anie_201902216 crossref_primary_10_1515_pac_2018_1010 crossref_primary_10_4236_ijoc_2023_133007 crossref_primary_10_1002_ange_202215568 crossref_primary_10_1002_asia_202300122 crossref_primary_10_1016_j_tetlet_2019_06_033 crossref_primary_10_1021_acscombsci_9b00212 crossref_primary_10_1002_anie_201808646 crossref_primary_10_1021_jacs_2c04577 crossref_primary_10_1039_D0CP05567K crossref_primary_10_1021_jacs_3c10614 crossref_primary_10_1016_j_xcrp_2022_101010 crossref_primary_10_1021_acs_orglett_0c03935 crossref_primary_10_1021_acs_joc_0c01250 crossref_primary_10_3390_catal12020233 crossref_primary_10_1039_D3QO01665J crossref_primary_10_1002_asia_202101370 crossref_primary_10_1021_acs_orglett_8b03831 crossref_primary_10_1002_anie_202216758 crossref_primary_10_1002_ejoc_202000435 crossref_primary_10_1039_D2OB00236A crossref_primary_10_3390_molecules24224177 crossref_primary_10_3390_molecules28041695 crossref_primary_10_1021_jacs_1c12490 crossref_primary_10_1038_s41570_023_00548_0 crossref_primary_10_1039_D3GC02066E crossref_primary_10_1002_anie_201809606 crossref_primary_10_1021_acs_joc_2c00026 |
Cites_doi | 10.1002/jlac.19023230205 10.1002/anie.200504555 10.1021/jo047987y 10.1021/ja00300a042 10.1007/978-3-642-34716-0 10.1002/bkcs.11227 10.1002/anie.200454230 10.1002/jlcr.1434 10.1021/ed1007712 10.1021/ja209339j 10.1039/p29940002383 10.1021/ja00189a045 10.1038/nature17667 10.1002/wcms.81 10.1021/jo100195w 10.1021/ja00542a028 10.1021/ja00064a014 10.1002/9780470192597 10.1021/cr60153a002 10.1021/jo202569n 10.1139/v87-326 10.1021/ja972267c 10.1021/ja00508a002 10.1021/jp074343w 10.1021/ja00010a040 10.1002/chem.201304241 10.3762/bjoc.9.90 10.1021/ja00336a047 10.1021/ja00214a037 10.1002/ejoc.200900880 10.1021/acs.jmedchem.5b01409 10.1002/anie.201611495 10.1021/ja00092a054 10.1021/ja010234y 10.1021/ja00329a047 10.1021/ct200106a 10.1021/ja00104a007 10.1002/anie.201708003 10.1021/acs.accounts.7b00413 10.1021/ar00167a003 10.1016/B978-0-08-099986-9.00002-6 10.1021/ja00125a008 10.1002/9783527656141 10.1021/cr030088+ 10.1021/jacs.6b10621 10.1021/ja00476a042 10.1021/ja00141a012 10.1021/ja00398a057 10.1021/ja00329a078 10.1002/chem.200500398 10.1021/ja00247a007 10.1021/jo962096e 10.1063/1.1697301 10.1021/ct049977a 10.1021/ja00113a018 10.1021/ja00833a031 10.1021/ja00244a028 10.1139/V10-047 10.1063/1.4773581 10.1021/ja00141a030 10.1021/ja00255a021 10.1021/ja970114j 10.1021/ct400319w 10.1021/ja00336a046 10.1021/ct100048g 10.1021/ja952003v 10.1021/ct200866d 10.1021/jo049494z 10.1039/p29930001703 10.1021/cr00048a001 10.1016/0304-4173(85)90014-X |
ContentType | Journal Article |
Copyright | The Author(s) 2018 The Author(s) 2018. |
Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PQEST PQQKQ PQUKI 7X8 5PM |
DOI | 10.1038/s41557-018-0079-7 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Chemoreception Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 923 |
ExternalDocumentID | 10_1038_s41557_018_0079_7 30013193 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R37 GM043214 – fundername: NIGMS NIH HHS grantid: R01 GM043214 |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABVXF ACGFS ACIWK ACPRK ADBBV AENEX AFBBN AFKRA AFSHS AFWHJ AGAYW AGEZK AGHTU AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYZH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c573t-ac6d345e7cfbd42e494eb0756727085178341d034e42822b0c4b0f9c001247943 |
IEDL.DBID | BENPR |
ISSN | 1755-4330 |
IngestDate | Tue Sep 17 21:21:09 EDT 2024 Sat Oct 26 05:03:18 EDT 2024 Thu Oct 10 21:09:06 EDT 2024 Thu Sep 12 19:33:12 EDT 2024 Sat Nov 02 12:16:31 EDT 2024 Fri Oct 11 20:45:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-ac6d345e7cfbd42e494eb0756727085178341d034e42822b0c4b0f9c001247943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7037-0531 0000-0001-7952-3661 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6105541 |
PMID | 30013193 |
PQID | 2091217869 |
PQPubID | 536302 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6105541 proquest_miscellaneous_2071563662 proquest_journals_2091217869 crossref_primary_10_1038_s41557_018_0079_7 pubmed_primary_30013193 springer_journals_10_1038_s41557_018_0079_7 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nature Chem |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Williams, A. Concerted Organic and Bio-Organic Mechanisms (CRC, Boca Raton, FL, 1999). OkayamaTTakinoTSatoKOchiaiMIn-plane vinylic SN2 substitution and intramolecular β-elimination of β-alkylvinyl(chloro)-λ3-iodanesJ. Am. Chem. Soc.199812022752282 Claridge, T. D. High-Resolution NMR Techniques in Organic Chemistry (Elsevier, New York, NY, 2016). ChanJTangABennettAJA stepwise solvent-promoted SNi reaction of α-d-glucopyranosyl fluoride: mechanistic implications for retaining glycosyltransferasesJ. Am. Chem. Soc.2012134121212201:CAS:528:DC%2BC3MXhsFylur7O22148388 NeumannCNHookerJMRitterTConcerted nucleophilic aromatic substitution with 19F− and 18F−Nature20165343693731:CAS:528:DC%2BC28XotFOkt7c%3D272812214911285 BrownDGBoströmJAnalysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone?J. Med. Chem.201659444344581:CAS:528:DC%2BC2MXhvVeqsrzM26571338 MatssonODybala-DefratykaARostkowskiMPanethPWestawayKCA theoretical investigation of α-carbon kinetic isotope effects and their relationship to the transition-state structure of SN2 reactionsJ. Org. Chem.20051040224027 Helmus, J. J. nmrglue www.nmrglue.com HanCBraumannJIGas phase nucleophilic displacement reactions of negative ions with carbonyl compoundsJ. Am. Chem. Soc.197910137153724 Frisch, M. J. et al. Gaussian 09 and 16 (Gaussian Inc.). BourneNChrystiukEDavisAMWilliamsAA single transition state in the reaction of aryl diphenylphosphinate esters with phenolate ions in aqueous solutionJ. Am. Chem. Soc.1988110189018951:CAS:528:DyaL1cXhtlWqt7o%3D MeisenheimerJUeber reactionen aromatischer nitrokörperJustus Liebigs Ann. Chem.19023232052461:CAS:528:DyaD28XmsVE%3D D’RozarioPSmythRLWilliamsAEvidence for a single transition state in the intramolecular transfer of a sulfonyl group between oxyanion donor and acceptorsJ. Am. Chem. Soc.198410650275028 PapajakEZhengJXuXLeverentzHRTruhlarDGPerspectives on basis sets beautiful: seasonal plantings of diffuse basis functionsJ. Chem. Theory Comput.20117302730341:CAS:528:DC%2BC3MXhtFSmtLzM26598144 CairnsAGSennHMMurphyMPHartleyRCExpanding the palette of phenanthridinium cationsChem. Eur. J.201420374237511:CAS:528:DC%2BC2cXis1agsb4%3D24677631 RenfrewAHMTaylorJAA single transition state in nucleophilic aromatic substitution: reaction of phenolate ions with 2-(4-nitrophenoxy)-4,6-dimethoxy-1,3,5-triazine in aqueous solutionJ. Chem. Soc. Perkin Trans.1993217031704 KohH-JUmI-HKinetic study on quinuclidinolysis of O-phenyl O-Y-substituted-phenyl thionocarbonates: effects of changing nonleaving group from thionobenzoyl to phenyloxythionocarbonyl on reactivity and transition-state structureBull. Korean Chem. Soc.201738109110961:CAS:528:DC%2BC2sXhtlOrsrjN FoxJMDmitrenkoOLiaoLBachRDComputational studies of nucleophilic substitution at carbonyl carbon: the SN2 mechanism versus the tetrahedral intermediate in organic synthesisJ. Org. Chem.200469731773281:CAS:528:DC%2BD2cXnslejurg%3D15471486 TerrierFRate and equilibrium studies in Jackson–Meisenheimer complexesChem. Rev.198282771521:CAS:528:DyaL38XitFKrtrY%3D Terrier, F. Modern Nucleophilic Aromatic Substitution (Wiley-VCH, Weinheim, 2013). GuthrieJPPikeDCHydration of acylimidazoles: tetrahedral intermediates in acylimidazole hydrolysis and nucleophilic attack by imidazoles on esters: the question of concerted mechanisms for acyl transferCan. J. Chem.198765195119691:CAS:528:DyaL2sXmtlGktbs%3D BourneNWilliamsAEvidence for a single transition state in the transfer of the phosphoryl group to nitrogen nucleophiles from pyridino-N-phosphonatesJ. Am. Chem. Soc.1984106759175961:CAS:528:DyaL2cXmtlSltLg%3D GiroldoTXavierLARiverosJMAn unusually fast nucleophilic aromatic displacement reaction: the gas-phase reaction of fluoride ions with nitrobenzeneAngew. Chem. Int. Ed.200443358835901:CAS:528:DC%2BD2cXlvFKjsLc%3D KikushimaKGrellierMOhashiMOgoshiSTransition-metal-free hydrodefluorination of polyfluoroarenes by a concerted nucleophilic aromatic substitution with a hydrosilicateAngew. Chem. Int. Ed.20175616191161961:CAS:528:DC%2BC2sXhvVKmu7rE ZhengY-JBruiceTCOn the dehalogenation mechanism of 4-chlorobenzoyl CoA by4-chlorobenzoyl CoA dehalogenase: insights from study on the nonenzymatic reactionJ. Am. Chem. Soc.1997119386838771:CAS:528:DyaK2sXisVyjtrs%3D MarenichAVJeromeSVCramerCJTruhlarDGCharge model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phasesJ. Chem. Theory Comput.201285275411:CAS:528:DC%2BC38XlvVWmtA%3D%3D26596602 LucchiniVModenaGPasquatoLAn authentic case of in-plane nucleophilic vinylic substitution: the anionotropic rearrangement of di-tert-butyl thiirenium ions into thietium ionsJ. Am. Chem. Soc.1993115452745311:CAS:528:DyaK3sXksVyrsrY%3D GuthrieJPConcerted mechanism for alcoholysis of esters: an examination of the requirementsJ. Am. Chem. Soc.1991113394139491:CAS:528:DyaK3MXitVKhtb4%3D XuSThe DMAP-catalyzed acetylation of alcohols–a mechanistic studyChem. Eur. J.200511475147571:CAS:528:DC%2BD2MXoslGlsLg%3D15924289 Zheng, J. et al. GAUSSRATE 2016 (University of Minnesota). CappelliCMontiSScalmaniGBaroneVOn the calculation of vibrational frequencies for molecules in solution beyond the harmonic approximationJ. Chem. Theory Comput.20106166016691:CAS:528:DC%2BC3cXktVyhsb8%3D26615698 MarcusRASutinNElectron transfers in chemistry and biologyBiochim. Biophys. Acta19858112653221:CAS:528:DyaL2MXltFygs78%3D LucchiniVModenaGPasquatoLSN2 and AdN-E mechanisms in bimolecular nucleophilic substitutions at vinyl carbon: the relevance of the LUMO symmetry of the electrophileJ. Am. Chem. Soc.1995117229723001:CAS:528:DyaK2MXjvVShtrg%3D WestawayKCDetermining transition state structure using kinetic isotope effectsJ. Label. Compd Radiopharm.20075098910051:CAS:528:DC%2BD1cXnsFSmsQ%3D%3D JacksonCJGazzoloFHAm. Chem. J.1900233761:CAS:528:DyaD28XhtVSju7Y%3D WilliamsAConcerted mechanisms of acyl group transfer reactions in solutionAcc. Chem. Res.1989223873921:CAS:528:DyaL1MXmtFeqt7c%3D KarplusMPorterRSharmaRExchange reactions with activation energy. I. Simple barrier potential for (H, H2)J. Chem. Phys.196543325932871:CAS:528:DyaF2MXkvFemsrw%3D Zheng, J. et al. POLYRATE 2016 (University of Minnesota). TakanoYHoukKNBenchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic moleculesJ. Chem. Theory Comput.20051707726641117 Melander, L. C. & Saunders, W. H. Reaction Rates of Isotopic Molecules (Wiley, New York, NY, 1980). SingletonDAThomasAAHigh-precision simultaneous determination of multiple small kinetic isotope effects at natural abundanceJ. Am. Chem. Soc.1995117935793581:CAS:528:DyaK2MXns1Citrs%3D RenfrewAHMRetturaDTaylorJAWhitmoreJMJWilliamsAStepwise versus concerted mechanisms at trigonal carbon: transfer of the 1,3,5-triazinyl group between aryl oxide ions in aqueous solutionJ. Am. Chem. Soc.199511754845491 BunnettJFZahlerREAromatic nucleophilic substitution reactionsChem. Rev.1951492734121:CAS:528:DyaG38XhtFWruw%3D%3D BuchwaldSLFriedmanJMKnowlesJRStereochemistry of nucleophilic displacement on two phosphoric monoesters and a phosphoguanidine: the role of metaphosphateJ. Am. Chem. Soc.1984106491149161:CAS:528:DyaL2cXkvFWju7w%3D NeumannCNRitterTFacile C–F bond formation through a concerted nucleophilic aromatic substitution mediated by the PhenoFluor reagentAcc. Chem. Res.201750282228331:CAS:528:DC%2BC2sXhslOku7zN29120599 RenfrewAHMTaylorJAWhitmoreJMJWilliamsATiming of bonding changes in fundamental reactions in solution: pyridinolysis of a triazinylpyridinium saltJ. Chem. Soc. Perkin Trans. 219940238323841:CAS:528:DyaK2MXis1Cjtbw%3D PerssonJAxelssonSMatssonOSolvent dependent leaving group fluorine kinetic isotope effect in a nucleophilic aromatic substitution reactionJ. Am. Chem. Soc.199611820231:CAS:528:DyaK2MXhtVSjs7%2FP SkoogMTJencksWPReactions of pyridines and primary amines with N-phosphorylated pyridinesJ. Am. Chem. Soc.1984106759776061:CAS:528:DyaL2MXms1yg SilversteinTPMarcus theory: thermodynamics can control the kinetics of electron transfer reactionsJ. Chem. Educ.201289115911671:CAS:528:DC%2BC38XhtVShs7fF KongstedJMennucciBHow to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation modelsJ. Phys. Chem. A.2007111989099001:CAS:528:DC%2BD2sXhtVWis7fN17845016 KimJKCaserioMCAcyl-transfer reactions in the gas phase: the question of tetrahedral intermediatesJ. Am. Chem. Soc.1981103212421271:CAS:528:DyaL3MXhvFWnur0%3D FernándezIFrenkingGUggerudERate-determining factors in nucleophilic aromatic substitution reactionsJ. Org. Chem.2010752971298020353177 BakerJMuirMThe Meisenheimer model for predicting the principal site of for nucleophilic substitution in aromatic perfluorocarbons—generalization to include ring-nitrogen atoms and non-fluorine ring substituentsCan. J. Chem.2010885885971:CAS:528:DC%2BC3cXmslWmsLo%3D GoryunovLDi- and tri-fluorobenzenes in reactions with Me2 EM (E = P, N; M = SiMe3, SnMe3, Li) reagents: evidence for a concerted mechanism of aromatic nucleophilic substitutionEur. J. Org. Chem.2010201011111123 ZimmermanPReliable transition state searches integrated with the growing string methodJ. Chem. Theory Comput.20139304330501:CAS:528:DC%2BC3sXptFeht78%3D26583985 Glendening, E. D. et al. NBO 6.0 (Theoretical Chemistry Institute, 2013); http://nbo6.chem.wisc.edu CullumNREffective charge on the nucleophile and leaving group during the stepwise transfer of the triazinyl group between pyridines in aqueous solutionJ. Am. Chem. Soc.1995117920092051:CAS:528:DyaK2MXns1Citr8%3D NeeseFThe ORCA program systemWiley Inter. Rev. Comp. Mol. Sci.2012273781:CAS:528:DC%2BC38XhvFGls7s%3D BourneNHopkinsAWilliamsASingle transition state for sulfuryl group transfer between pyridine nucleophilesJ. Am. Chem. Soc.1985107432743311:CAS:528:DyaL2MXkt1aisrc%3D ChrystiukEWilliamsAA single transition state in the transfer of methoxycarbonyl group between isoquinoline and substituted pyridinesJ. Am. Chem. AV Marenich (79_CR66) 2012; 8 Y-J Zheng (79_CR41) 1997; 119 JF Bunnett (79_CR65) 1951; 49 KC Westaway (79_CR55) 2007; 50 P Zimmerman (79_CR80) 2013; 9 N Bourne (79_CR28) 1984; 106 JP Guthrie (79_CR19) 1991; 113 DA Singleton (79_CR52) 1995; 117 JM Fox (79_CR23) 2004; 69 RD Bach (79_CR11) 2001; 123 79_CR50 DG Brown (79_CR4) 2016; 59 H-J Koh (79_CR34) 2017; 38 Z Chen (79_CR67) 2005; 105 TP Curran (79_CR13) 1980; 102 V Lucchini (79_CR7) 1993; 115 A Williams (79_CR12) 1989; 22 N Bourne (79_CR27) 1988; 110 TP Silverstein (79_CR64) 2012; 89 79_CR53 KK Andersen (79_CR30) 1974; 96 AG Cairns (79_CR44) 2014; 20 M Karplus (79_CR60) 1965; 43 CJ Jackson (79_CR69) 1900; 23 JP Guthrie (79_CR20) 1987; 65 N Bourne (79_CR31) 1985; 107 RA Marcus (79_CR62) 1985; 811 L Goryunov (79_CR43) 2010; 2010 EE Kwan (79_CR57) 2017; 139 JK Kim (79_CR18) 1981; 103 H Sun (79_CR40) 2006; 45 79_CR61 F Neese (79_CR76) 2012; 2 T Giroldo (79_CR46) 2004; 43 SA Ba-Saif (79_CR15) 1987; 109 MN Glukhovtsev (79_CR45) 1997; 62 DY Ong (79_CR39) 2017; 56 AHM Renfrew (79_CR37) 1994; 0 79_CR68 79_CR63 JF Blake (79_CR22) 1987; 109 K Kikushima (79_CR38) 2017; 56 J Persson (79_CR51) 1996; 118 C Han (79_CR17) 1979; 101 MN Glukhovtsev (79_CR8) 1994; 116 V Lucchini (79_CR9) 1995; 117 J Baker (79_CR42) 2010; 88 M Liljenberg (79_CR48) 2012; 77 I Fernández (79_CR47) 2010; 75 79_CR72 79_CR71 S Xu (79_CR25) 2005; 11 F Terrier (79_CR3) 1982; 82 SL Buchwald (79_CR29) 1984; 106 E Papajak (79_CR58) 2011; 7 E Chrystiuk (79_CR14) 1987; 109 79_CR74 J Kongsted (79_CR78) 2007; 111 79_CR73 79_CR75 T Deacon (79_CR33) 1978; 100 AC Hengge (79_CR21) 1994; 116 C Cappelli (79_CR79) 2010; 6 NR Cullum (79_CR36) 1995; 117 J Chan (79_CR54) 2012; 134 T Okayama (79_CR10) 1998; 120 J Meisenheimer (79_CR70) 1902; 323 M Liljenberg (79_CR49) 2013; 9 79_CR1 P D’Rozario (79_CR32) 1984; 106 CN Neumann (79_CR6) 2017; 50 79_CR2 O Matsson (79_CR56) 2005; 10 C Riplinger (79_CR59) 2013; 138 SA Ba-Saif (79_CR16) 1989; 111 AHM Renfrew (79_CR35) 1995; 117 Y Takano (79_CR77) 2005; 1 CN Neumann (79_CR5) 2016; 534 AHM Renfrew (79_CR24) 1993; 2 MT Skoog (79_CR26) 1984; 106 |
References_xml | – volume: 323 start-page: 205 year: 1902 ident: 79_CR70 publication-title: Justus Liebigs Ann. Chem. doi: 10.1002/jlac.19023230205 contributor: fullname: J Meisenheimer – volume: 45 start-page: 2720 year: 2006 ident: 79_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200504555 contributor: fullname: H Sun – volume: 10 start-page: 4022 year: 2005 ident: 79_CR56 publication-title: J. Org. Chem. doi: 10.1021/jo047987y contributor: fullname: O Matsson – ident: 79_CR72 – volume: 107 start-page: 4327 year: 1985 ident: 79_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00300a042 contributor: fullname: N Bourne – ident: 79_CR50 doi: 10.1007/978-3-642-34716-0 – volume: 38 start-page: 1091 year: 2017 ident: 79_CR34 publication-title: Bull. Korean Chem. Soc. doi: 10.1002/bkcs.11227 contributor: fullname: H-J Koh – volume: 43 start-page: 3588 year: 2004 ident: 79_CR46 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200454230 contributor: fullname: T Giroldo – volume: 23 start-page: 376 year: 1900 ident: 79_CR69 publication-title: Am. Chem. J. contributor: fullname: CJ Jackson – volume: 50 start-page: 989 year: 2007 ident: 79_CR55 publication-title: J. Label. Compd Radiopharm. doi: 10.1002/jlcr.1434 contributor: fullname: KC Westaway – volume: 89 start-page: 1159 year: 2012 ident: 79_CR64 publication-title: J. Chem. Educ. doi: 10.1021/ed1007712 contributor: fullname: TP Silverstein – volume: 134 start-page: 1212 year: 2012 ident: 79_CR54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209339j contributor: fullname: J Chan – volume: 0 start-page: 2383 year: 1994 ident: 79_CR37 publication-title: J. Chem. Soc. Perkin Trans. 2 doi: 10.1039/p29940002383 contributor: fullname: AHM Renfrew – volume: 111 start-page: 2647 year: 1989 ident: 79_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00189a045 contributor: fullname: SA Ba-Saif – volume: 534 start-page: 369 year: 2016 ident: 79_CR5 publication-title: Nature doi: 10.1038/nature17667 contributor: fullname: CN Neumann – volume: 2 start-page: 73 year: 2012 ident: 79_CR76 publication-title: Wiley Inter. Rev. Comp. Mol. Sci. doi: 10.1002/wcms.81 contributor: fullname: F Neese – ident: 79_CR1 – volume: 75 start-page: 2971 year: 2010 ident: 79_CR47 publication-title: J. Org. Chem. doi: 10.1021/jo100195w contributor: fullname: I Fernández – ident: 79_CR71 – volume: 102 start-page: 6828 year: 1980 ident: 79_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00542a028 contributor: fullname: TP Curran – ident: 79_CR75 – volume: 115 start-page: 4527 year: 1993 ident: 79_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00064a014 contributor: fullname: V Lucchini – ident: 79_CR63 doi: 10.1002/9780470192597 – volume: 49 start-page: 273 year: 1951 ident: 79_CR65 publication-title: Chem. Rev. doi: 10.1021/cr60153a002 contributor: fullname: JF Bunnett – volume: 77 start-page: 3262 year: 2012 ident: 79_CR48 publication-title: J. Org. Chem. doi: 10.1021/jo202569n contributor: fullname: M Liljenberg – volume: 65 start-page: 1951 year: 1987 ident: 79_CR20 publication-title: Can. J. Chem. doi: 10.1139/v87-326 contributor: fullname: JP Guthrie – volume: 120 start-page: 2275 year: 1998 ident: 79_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja972267c contributor: fullname: T Okayama – volume: 101 start-page: 3715 year: 1979 ident: 79_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00508a002 contributor: fullname: C Han – volume: 111 start-page: 9890 year: 2007 ident: 79_CR78 publication-title: J. Phys. Chem. A. doi: 10.1021/jp074343w contributor: fullname: J Kongsted – volume: 113 start-page: 3941 year: 1991 ident: 79_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00010a040 contributor: fullname: JP Guthrie – volume: 20 start-page: 3742 year: 2014 ident: 79_CR44 publication-title: Chem. Eur. J. doi: 10.1002/chem.201304241 contributor: fullname: AG Cairns – volume: 9 start-page: 791 year: 2013 ident: 79_CR49 publication-title: Beil. J. Org. Chem. doi: 10.3762/bjoc.9.90 contributor: fullname: M Liljenberg – ident: 79_CR68 – volume: 106 start-page: 7597 year: 1984 ident: 79_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00336a047 contributor: fullname: MT Skoog – volume: 110 start-page: 1890 year: 1988 ident: 79_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00214a037 contributor: fullname: N Bourne – volume: 2010 start-page: 1111 year: 2010 ident: 79_CR43 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.200900880 contributor: fullname: L Goryunov – volume: 59 start-page: 4443 year: 2016 ident: 79_CR4 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01409 contributor: fullname: DG Brown – volume: 56 start-page: 1840 year: 2017 ident: 79_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201611495 contributor: fullname: DY Ong – volume: 116 start-page: 5961 year: 1994 ident: 79_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00092a054 contributor: fullname: MN Glukhovtsev – volume: 123 start-page: 5787 year: 2001 ident: 79_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010234y contributor: fullname: RD Bach – volume: 106 start-page: 4911 year: 1984 ident: 79_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00329a047 contributor: fullname: SL Buchwald – volume: 7 start-page: 3027 year: 2011 ident: 79_CR58 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200106a contributor: fullname: E Papajak – ident: 79_CR74 – volume: 116 start-page: 11256 year: 1994 ident: 79_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00104a007 contributor: fullname: AC Hengge – volume: 56 start-page: 16191 year: 2017 ident: 79_CR38 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708003 contributor: fullname: K Kikushima – volume: 50 start-page: 2822 year: 2017 ident: 79_CR6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00413 contributor: fullname: CN Neumann – volume: 22 start-page: 387 year: 1989 ident: 79_CR12 publication-title: Acc. Chem. Res. doi: 10.1021/ar00167a003 contributor: fullname: A Williams – ident: 79_CR53 doi: 10.1016/B978-0-08-099986-9.00002-6 – volume: 117 start-page: 5484 year: 1995 ident: 79_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00125a008 contributor: fullname: AHM Renfrew – ident: 79_CR2 doi: 10.1002/9783527656141 – volume: 105 start-page: 3842 year: 2005 ident: 79_CR67 publication-title: Chem. Rev. doi: 10.1021/cr030088+ contributor: fullname: Z Chen – volume: 139 start-page: 43 year: 2017 ident: 79_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10621 contributor: fullname: EE Kwan – volume: 100 start-page: 2525 year: 1978 ident: 79_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00476a042 contributor: fullname: T Deacon – ident: 79_CR61 – volume: 117 start-page: 9200 year: 1995 ident: 79_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00141a012 contributor: fullname: NR Cullum – volume: 103 start-page: 2124 year: 1981 ident: 79_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00398a057 contributor: fullname: JK Kim – volume: 106 start-page: 5027 year: 1984 ident: 79_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00329a078 contributor: fullname: P D’Rozario – volume: 11 start-page: 4751 year: 2005 ident: 79_CR25 publication-title: Chem. Eur. J. doi: 10.1002/chem.200500398 contributor: fullname: S Xu – volume: 109 start-page: 3856 year: 1987 ident: 79_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00247a007 contributor: fullname: JF Blake – volume: 62 start-page: 4036 year: 1997 ident: 79_CR45 publication-title: J. Org. Chem. doi: 10.1021/jo962096e contributor: fullname: MN Glukhovtsev – volume: 43 start-page: 3259 year: 1965 ident: 79_CR60 publication-title: J. Chem. Phys. doi: 10.1063/1.1697301 contributor: fullname: M Karplus – volume: 1 start-page: 70 year: 2005 ident: 79_CR77 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct049977a contributor: fullname: Y Takano – volume: 117 start-page: 2297 year: 1995 ident: 79_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00113a018 contributor: fullname: V Lucchini – volume: 96 start-page: 8026 year: 1974 ident: 79_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00833a031 contributor: fullname: KK Andersen – ident: 79_CR73 – volume: 109 start-page: 3040 year: 1987 ident: 79_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00244a028 contributor: fullname: E Chrystiuk – volume: 88 start-page: 588 year: 2010 ident: 79_CR42 publication-title: Can. J. Chem. doi: 10.1139/V10-047 contributor: fullname: J Baker – volume: 138 start-page: 034106 year: 2013 ident: 79_CR59 publication-title: J. Chem. Phys. doi: 10.1063/1.4773581 contributor: fullname: C Riplinger – volume: 117 start-page: 9357 year: 1995 ident: 79_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00141a030 contributor: fullname: DA Singleton – volume: 109 start-page: 6362 year: 1987 ident: 79_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00255a021 contributor: fullname: SA Ba-Saif – volume: 119 start-page: 3868 year: 1997 ident: 79_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970114j contributor: fullname: Y-J Zheng – volume: 9 start-page: 3043 year: 2013 ident: 79_CR80 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400319w contributor: fullname: P Zimmerman – volume: 106 start-page: 7591 year: 1984 ident: 79_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00336a046 contributor: fullname: N Bourne – volume: 6 start-page: 1660 year: 2010 ident: 79_CR79 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100048g contributor: fullname: C Cappelli – volume: 118 start-page: 20 year: 1996 ident: 79_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja952003v contributor: fullname: J Persson – volume: 8 start-page: 527 year: 2012 ident: 79_CR66 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200866d contributor: fullname: AV Marenich – volume: 69 start-page: 7317 year: 2004 ident: 79_CR23 publication-title: J. Org. Chem. doi: 10.1021/jo049494z contributor: fullname: JM Fox – volume: 2 start-page: 1703 year: 1993 ident: 79_CR24 publication-title: J. Chem. Soc. Perkin Trans. doi: 10.1039/p29930001703 contributor: fullname: AHM Renfrew – volume: 82 start-page: 77 year: 1982 ident: 79_CR3 publication-title: Chem. Rev. doi: 10.1021/cr00048a001 contributor: fullname: F Terrier – volume: 811 start-page: 265 year: 1985 ident: 79_CR62 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4173(85)90014-X contributor: fullname: RA Marcus |
SSID | ssj0065316 |
Score | 2.6537285 |
Snippet | Nucleophilic aromatic substitution (S
N
Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly... Nucleophilic aromatic substitution (S Ar) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly... Nucleophilic aromatic substitution (SNAr) is one of the most widely applied reaction classes in pharmaceutical and chemical research, providing a broadly... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 917 |
SubjectTerms | 639/638/403/934 639/638/563/606 Analytical Chemistry Benzene Derivatives - chemistry Biochemistry Carbon - chemistry Carbon Isotopes - chemistry Chemical research Chemistry Chemistry and Materials Science Chemistry/Food Science Computer applications Fluorine - chemistry Fractionation Inorganic Chemistry Isotope effect Isotope fractionation Isotope Labeling Isotopes Kinetics Magnetic Resonance Spectroscopy NMR Nuclear magnetic resonance Organic Chemistry Physical Chemistry Substitution reactions |
Title | Concerted nucleophilic aromatic substitutions |
URI | https://link.springer.com/article/10.1038/s41557-018-0079-7 https://www.ncbi.nlm.nih.gov/pubmed/30013193 https://www.proquest.com/docview/2091217869 https://www.proquest.com/docview/2071563662 https://pubmed.ncbi.nlm.nih.gov/PMC6105541 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYdoAL4k15qUicQBFdkybtCcHEmJBACIG0W5WmqeDSjj3-P3bWDo0JLr0kVdvPrvM5dmyAC6k1sngdscLqEB0UZViSFZZlcW4KYZHwumz3p2c5eBePw2hYb7hN6rTKxiY6Q51XhvbI0UlPukifY5ncjL4YdY2i6GrdQqMFnRA9haANnbv755fXxhZL1DB3vkhFEZ0NWsQ1eXw9oaWU0i5jhutkwtTyyrRCN1ezJn-FTt2K1N-CzZpK-rdz2W_Dmi13YL3XdHDbBdajM4lj5JR-SWWLqxHtnhhfjytXqNWfoNVwqQKke3vw3r9_6w1Y3R6BmUjxKdNG5lxEVpkiy0VoRSJshgyAYqtEpKiFRjcPuEM8DLPAiCwoEkMMh-rK831ol1VpD8FHLwl9VaMk3i5yHmcy4EYXkQ6MiYok9uCygSYdzatgpC56zeN0jmOKOKaEY6o8OGnAS-sfYpL-iM-D88Uw4kHxCV3aakZzFHqTXMrQg4M51ouncVcYKOEeqCUpLCZQmezlkfLzw5XLltQDVHQ9uGrk9fNaf37E0f8fcQwbodMcSjY7gfZ0PLOnyE6m2Rm01FDhNe4_nNXq-A0sdeKi |
link.rule.ids | 230,315,783,787,888,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,74079,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4HOCCeFOeReIEiuiaNGlPCE2g8TyBtFuUpqng0o5t_H_srC0aCM5J1eazG3-OHRvgTBqDLN4krHQmRgdFWZblpWN5WthSOCS8Ptv96VkOXsX9MBk2B26TJq2y3RP9Rl3Uls7I0UnPekifU5ldjT4YdY2i6GrTQmMRlqkOF3UwUMPO4ZKoX_52kUoSuhnURTV5ejkhQ0pJlylDK5kxNW-XfpHN3zmTPwKn3h7drsNaQyTD65nkN2DBVZuw0m_7t20B69ONxDEyyrCiosX1iM5ObGjGtS_TGk5wz_CJAqR52_B6e_PSH7CmOQKzieJTZqwsuEicsmVeiNiJTLgc7T9FVolGUQONXhFxj3cc55EVeVRmlvgNVZXnO7BU1ZXbgxB9JPRUrZL4uCh4msuIW1MmJrI2KbM0gPMWGj2a1cDQPnbNUz3DUSOOmnDUKoDDFjzd_A4T_S28AE67YcSDohOmcvUnzVHoS3Ip4wB2Z1h3b-O-LFDGA1BzUugmUJHs-ZHq_c0Xy5bUAVT0Arho5fX9WX8uYv__RZzAyuDl6VE_3j0_HMBq7LWI0s4OYWk6_nRHyFOm-bFXxi98d-Jg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RkAqXCtoCKR9NpZ6orM3Gjp2cEFoItFDUA0h7sxzHEVyS7Wb5_51xkkULomc7SjyezLzxPM8AfJfGIIo3CauciTFAUZZlReVYkZa2Eg4Br2e7_76VV_fi1zSZ9vyntqdVDjbRG-qysXRGjkF6Nkb4nMpsVPW0iD_n-ensL6MOUpRp7dtpvIMN9IqSNDzNLwerLFHX_E0jlSR0S2iZ4eTpqCWnSgTMlKHHzJha9VGvgOdr_uSLJKr3Tfk2fOhBZXjWacEOrLn6I2xOhl5un4BN6HbiHNFlWFMB42ZG5yg2NPPGl2wNW7QfnjRAWvgZ7vOLu8kV6xslMJsovmDGypKLxClbFaWInciEKxALUJaVIBU10xiXEfeyj-MisqKIqswS1qEK83wX1uumdvsQYryEUatVEh8XJU8LGXFrqsRE1iZVlgZwMohGz7p6GNrnsXmqOzlqlKMmOWoVwOEgPN3_Gq1-3sgAvi2HUR6UqTC1a55ojsK4kksZB7DXyXr5Nu5LBGU8ALWyC8sJVDB7daR-fPCFsyV1AxXjAH4M-_X8WW8u4sv_F_EV3qMe6puft9cHsBV7JSIG2iGsL-ZP7gghy6I49rr4D1ct5p4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concerted+nucleophilic+aromatic+substitutions&rft.jtitle=Nature+chemistry&rft.au=Kwan%2C+Eugene+E.&rft.au=Zeng%2C+Yuwen&rft.au=Besser%2C+Harrison+A.&rft.au=Jacobsen%2C+Eric+N.&rft.date=2018-09-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=10&rft.issue=9&rft.spage=917&rft.epage=923&rft_id=info:doi/10.1038%2Fs41557-018-0079-7&rft.externalDocID=10_1038_s41557_018_0079_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |