Temporal dynamics and genetic control of transcription in the human prefrontal cortex

Gene expression in the human brain Gene expression controls and dictates everything from development and plasticity to ongoing neurogenesis in the brain, yet the temporal dynamics of transcription throughout the brain's lifetime have been mostly unknown. Here, two groups present a large gene-ex...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 478; no. 7370; pp. 519 - 523
Main Authors Colantuoni, Carlo, Lipska, Barbara K., Ye, Tianzhang, Hyde, Thomas M., Tao, Ran, Leek, Jeffrey T., Colantuoni, Elizabeth A., Elkahloun, Abdel G., Herman, Mary M., Weinberger, Daniel R., Kleinman, Joel E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.10.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene expression in the human brain Gene expression controls and dictates everything from development and plasticity to ongoing neurogenesis in the brain, yet the temporal dynamics of transcription throughout the brain's lifetime have been mostly unknown. Here, two groups present a large gene-expression database from a variety of human brain samples ranging from before birth to over 80 years in age. Colantuoni et al . focus on the prefrontal cortex. Although they note significant expression pattern dynamics throughout development, they identify a consistent molecular architecture of transcription across subjects from different races despite the large number of genetic polymorphisms among them. Kang et al . produce a more comprehensive time course, exploring expression in 16 different brain areas, determining that the largest spatiotemporal variability occurs before birth, with transcriptomes in brain regions converging as we age. Previous investigations have combined transcriptional and genetic analyses in human cell lines 1 , 2 , 3 , but few have applied these techniques to human neural tissue 4 , 5 , 6 , 7 , 8 . To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application ( http://www.libd.org/braincloud ).
AbstractList Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud).
Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud).Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud).
Gene expression in the human brain Gene expression controls and dictates everything from development and plasticity to ongoing neurogenesis in the brain, yet the temporal dynamics of transcription throughout the brain's lifetime have been mostly unknown. Here, two groups present a large gene-expression database from a variety of human brain samples ranging from before birth to over 80 years in age. Colantuoni et al . focus on the prefrontal cortex. Although they note significant expression pattern dynamics throughout development, they identify a consistent molecular architecture of transcription across subjects from different races despite the large number of genetic polymorphisms among them. Kang et al . produce a more comprehensive time course, exploring expression in 16 different brain areas, determining that the largest spatiotemporal variability occurs before birth, with transcriptomes in brain regions converging as we age. Previous investigations have combined transcriptional and genetic analyses in human cell lines 1 , 2 , 3 , but few have applied these techniques to human neural tissue 4 , 5 , 6 , 7 , 8 . To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application ( http://www.libd.org/braincloud ).
Previous investigations have combined transcriptional and genetic analyses in human cell lines 1 - 3 , but few have applied these techniques to human neural tissue 4 - 8 . To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application ( http://www.libd.org/braincloud ).
Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud). [PUBLICATION ABSTRACT]
Author Colantuoni, Carlo
Ye, Tianzhang
Kleinman, Joel E.
Herman, Mary M.
Hyde, Thomas M.
Tao, Ran
Leek, Jeffrey T.
Colantuoni, Elizabeth A.
Weinberger, Daniel R.
Lipska, Barbara K.
Elkahloun, Abdel G.
AuthorAffiliation 3 Illuminato Biotechnology, Inc., Baltimore, Maryland 21211, USA
1 Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA
4 The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205, USA
5 Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
2 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
AuthorAffiliation_xml – name: 4 The Lieber Institute for Brain Development, Johns Hopkins University Medical Center, Baltimore, Maryland 21205, USA
– name: 3 Illuminato Biotechnology, Inc., Baltimore, Maryland 21211, USA
– name: 2 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
– name: 1 Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA
– name: 5 Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
Author_xml – sequence: 1
  givenname: Carlo
  surname: Colantuoni
  fullname: Colantuoni, Carlo
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Illuminato Biotechnology, Inc., The Lieber Institute for Brain Development, Johns Hopkins University Medical Center
– sequence: 2
  givenname: Barbara K.
  surname: Lipska
  fullname: Lipska, Barbara K.
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA
– sequence: 3
  givenname: Tianzhang
  surname: Ye
  fullname: Ye, Tianzhang
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA
– sequence: 4
  givenname: Thomas M.
  surname: Hyde
  fullname: Hyde, Thomas M.
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA, The Lieber Institute for Brain Development, Johns Hopkins University Medical Center
– sequence: 5
  givenname: Ran
  surname: Tao
  fullname: Tao, Ran
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA
– sequence: 6
  givenname: Jeffrey T.
  surname: Leek
  fullname: Leek, Jeffrey T.
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
– sequence: 7
  givenname: Elizabeth A.
  surname: Colantuoni
  fullname: Colantuoni, Elizabeth A.
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
– sequence: 8
  givenname: Abdel G.
  surname: Elkahloun
  fullname: Elkahloun, Abdel G.
  organization: Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health
– sequence: 9
  givenname: Mary M.
  surname: Herman
  fullname: Herman, Mary M.
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA
– sequence: 10
  givenname: Daniel R.
  surname: Weinberger
  fullname: Weinberger, Daniel R.
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA, The Lieber Institute for Brain Development, Johns Hopkins University Medical Center
– sequence: 11
  givenname: Joel E.
  surname: Kleinman
  fullname: Kleinman, Joel E.
  email: kleinmaj@mail.nih.gov
  organization: Section on Neuropathology, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, Maryland 20892, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24636343$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22031444$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1rFDEUxYO02O3qk-8SBFGoo_maJPsilKJVKPjSPg-ZzJ3dlJlkTDJi__tm2bVfqE95yO-enJxzj9GBDx4QekXJR0q4_uRNniNQUjPxDC2oULISUqsDtCCE6YpoLo_QcUrXhJCaKvEcHTFGOBVCLNDVJYxTiGbA3Y03o7MJG9_hNXjIzmIbfI5hwKHHORqfbHRTdsFj53HeAN7Mo_F4itDHQhYVG2KG3y_QYW-GBC_35xJdff1yefatuvhx_v3s9KKyteK50j1ddQSAqFZquRItdBIMY6BEbY3inIlaW61BUW2VlX1PWC2p6hS0SrfAl-jzTnea2xE6C8WtGZoputHEmyYY1zy-8W7TrMOvhteUSEWKwLu9QAw_Z0i5GV2yMAzGQ5hTsyK0hFgXt0v0_r8kFXzFuNKiLuibJ-h1mKMvQRQ9xQQTfPvy64fW7zz_qaYAb_eASdYMfYnfunTPCcklF7xwJzvOxpBSaeIOoaTZLkjzYEEKTZ_Q1mWzrbTk44Z_zHzYzaSi7NcQ7__zN_wWY5zO6Q
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_pnpbp_2019_109669
crossref_primary_10_1007_s12035_021_02572_x
crossref_primary_10_1007_s40473_014_0007_0
crossref_primary_10_1016_j_celrep_2020_03_053
crossref_primary_10_1371_journal_pone_0100858
crossref_primary_10_1016_j_jpsychires_2013_07_025
crossref_primary_10_1038_s41598_020_60998_0
crossref_primary_10_1186_s12859_015_0808_5
crossref_primary_10_1007_s00401_016_1641_2
crossref_primary_10_1038_nrn_2017_125
crossref_primary_10_1172_JCI69003
crossref_primary_10_1242_dmm_049032
crossref_primary_10_1016_j_neuron_2012_03_002
crossref_primary_10_1016_j_ydbio_2014_09_032
crossref_primary_10_1002_humu_22301
crossref_primary_10_1017_S0954579412000818
crossref_primary_10_1111_bdi_12368
crossref_primary_10_1111_desc_12131
crossref_primary_10_1038_mp_2017_37
crossref_primary_10_1038_tp_2012_39
crossref_primary_10_1016_j_celrep_2019_08_091
crossref_primary_10_1016_j_jpba_2015_03_024
crossref_primary_10_2217_fnl_12_74
crossref_primary_10_1016_j_schres_2012_10_008
crossref_primary_10_1016_j_ajhg_2012_08_031
crossref_primary_10_1371_journal_pone_0056927
crossref_primary_10_3389_fnins_2019_00310
crossref_primary_10_1002_jnr_24616
crossref_primary_10_1002_aur_2240
crossref_primary_10_1016_j_pnpbp_2017_04_019
crossref_primary_10_1007_s12035_018_1103_z
crossref_primary_10_1016_j_psyneuen_2016_04_008
crossref_primary_10_1093_database_baac049
crossref_primary_10_1016_j_bcp_2021_114532
crossref_primary_10_1016_j_jpsychires_2015_03_008
crossref_primary_10_1093_schbul_sby085
crossref_primary_10_1016_j_schres_2020_04_027
crossref_primary_10_1159_000493941
crossref_primary_10_1016_j_tins_2021_11_002
crossref_primary_10_1038_npp_2013_239
crossref_primary_10_3389_fnmol_2024_1361089
crossref_primary_10_3390_genes10030193
crossref_primary_10_1038_s41598_017_06587_0
crossref_primary_10_1016_j_jaac_2012_02_002
crossref_primary_10_15252_msb_20145304
crossref_primary_10_1073_pnas_1311630111
crossref_primary_10_1371_journal_pone_0190110
crossref_primary_10_1371_journal_pcbi_1004559
crossref_primary_10_1016_j_neurobiolaging_2013_05_001
crossref_primary_10_1016_j_jpsychires_2017_06_005
crossref_primary_10_1017_S095457941200082X
crossref_primary_10_1146_annurev_neuro_070815_013858
crossref_primary_10_1016_j_ymeth_2014_12_010
crossref_primary_10_1038_s41398_018_0306_4
crossref_primary_10_1093_bioinformatics_btu375
crossref_primary_10_3389_fgene_2014_00239
crossref_primary_10_1186_s13059_018_1567_1
crossref_primary_10_26508_lsa_201900303
crossref_primary_10_1038_srep19010
crossref_primary_10_1038_nn_3801
crossref_primary_10_1038_s41380_018_0103_8
crossref_primary_10_1002_ajmg_b_32084
crossref_primary_10_1101_gr_265769_120
crossref_primary_10_1186_s13024_023_00650_3
crossref_primary_10_1038_mp_2017_60
crossref_primary_10_1097_WCO_0000000000000952
crossref_primary_10_1093_nar_gkt838
crossref_primary_10_1038_s41398_020_0689_x
crossref_primary_10_1038_mp_2017_89
crossref_primary_10_1007_s12017_012_8198_6
crossref_primary_10_1371_journal_pone_0199073
crossref_primary_10_1111_gbb_12269
crossref_primary_10_1038_srep24799
crossref_primary_10_1016_j_bbapap_2020_140471
crossref_primary_10_1126_science_aan6827
crossref_primary_10_1038_nrneurol_2017_45
crossref_primary_10_1097_HRP_0000000000000048
crossref_primary_10_1097_YPG_0000000000000127
crossref_primary_10_1016_j_cell_2012_11_052
crossref_primary_10_1111_j_1474_9726_2012_00859_x
crossref_primary_10_1016_j_neuroimage_2020_117426
crossref_primary_10_1016_j_ijdevneu_2017_02_003
crossref_primary_10_1038_nrg3934
crossref_primary_10_1038_tp_2013_122
crossref_primary_10_1002_humu_23677
crossref_primary_10_1186_s13059_020_02249_z
crossref_primary_10_1016_j_scib_2022_01_002
crossref_primary_10_3389_fnins_2023_1198041
crossref_primary_10_1038_s41537_017_0032_6
crossref_primary_10_1111_gbb_12141
crossref_primary_10_1038_s41398_019_0538_y
crossref_primary_10_1093_hmg_ddv166
crossref_primary_10_1038_s41598_017_05927_4
crossref_primary_10_1186_s11689_016_9148_7
crossref_primary_10_1093_hmg_ddu195
crossref_primary_10_1038_nature13185
crossref_primary_10_1371_journal_pcbi_1002790
crossref_primary_10_7554_eLife_78847
crossref_primary_10_1038_nature18637
crossref_primary_10_1007_s12035_016_0198_3
crossref_primary_10_1016_j_neuroimage_2024_120893
crossref_primary_10_1016_j_psc_2025_01_002
crossref_primary_10_1186_s12864_017_4409_8
crossref_primary_10_1371_journal_pone_0132675
crossref_primary_10_1111_gbb_12126
crossref_primary_10_1093_cercor_bht354
crossref_primary_10_1523_JNEUROSCI_0786_19_2019
crossref_primary_10_1186_s13073_017_0444_y
crossref_primary_10_3389_fmolb_2020_565530
crossref_primary_10_1242_dev_200353
crossref_primary_10_7554_eLife_68048
crossref_primary_10_1038_s42003_024_07007_6
crossref_primary_10_1007_s12031_023_02148_5
crossref_primary_10_1038_s41598_020_68165_1
crossref_primary_10_4102_satnt_v33i1_396
crossref_primary_10_1016_j_neuroimage_2023_120344
crossref_primary_10_1038_npp_2012_215
crossref_primary_10_1038_npp_2012_214
crossref_primary_10_1093_nsr_nwae213
crossref_primary_10_3389_fnmol_2019_00208
crossref_primary_10_1093_bib_bbab214
crossref_primary_10_1007_s00429_016_1240_y
crossref_primary_10_1007_s12017_019_08535_9
crossref_primary_10_1111_acel_12257
crossref_primary_10_1007_s11682_020_00256_z
crossref_primary_10_1007_s10519_016_9784_4
crossref_primary_10_1016_j_ajhg_2011_12_020
crossref_primary_10_1016_j_neurobiolaging_2017_12_027
crossref_primary_10_1038_tp_2014_68
crossref_primary_10_1093_nar_gkw902
crossref_primary_10_1093_nsr_nww065
crossref_primary_10_1111_joa_13055
crossref_primary_10_1038_s41598_017_05514_7
crossref_primary_10_1093_cercor_bhy022
crossref_primary_10_1080_15592294_2015_1088630
crossref_primary_10_15252_msb_20209596
crossref_primary_10_1016_j_gpb_2019_03_003
crossref_primary_10_1186_1755_8794_7_31
crossref_primary_10_1038_tp_2015_45
crossref_primary_10_3109_15622975_2015_1093658
crossref_primary_10_7554_eLife_17915
crossref_primary_10_1016_j_schres_2014_08_018
crossref_primary_10_1038_tp_2016_10
crossref_primary_10_1007_s00018_016_2304_0
crossref_primary_10_3389_fpsyt_2022_924062
crossref_primary_10_1038_mp_2016_254
crossref_primary_10_1093_cercor_bhac340
crossref_primary_10_1016_j_neuroimage_2018_03_057
crossref_primary_10_3389_fncir_2019_00047
crossref_primary_10_1016_j_biopsych_2012_06_014
crossref_primary_10_1038_tp_2014_59
crossref_primary_10_1016_j_semcdb_2017_08_045
crossref_primary_10_1176_appi_ajp_2014_14030366
crossref_primary_10_1126_science_aat7615
crossref_primary_10_1186_s13073_017_0455_8
crossref_primary_10_1016_j_neuron_2013_11_018
crossref_primary_10_1038_s41588_019_0364_4
crossref_primary_10_18632_aging_203379
crossref_primary_10_1038_mp_2015_226
crossref_primary_10_1038_s41467_021_23694_9
crossref_primary_10_1084_jem_20202446
crossref_primary_10_1038_s41537_017_0027_3
crossref_primary_10_1523_JNEUROSCI_0681_17_2017
crossref_primary_10_1038_s41380_019_0640_9
crossref_primary_10_1016_j_neurobiolaging_2016_02_027
crossref_primary_10_1016_j_schres_2016_04_007
crossref_primary_10_1176_appi_ajp_2021_21030299
crossref_primary_10_1016_j_nepig_2014_10_001
crossref_primary_10_1111_cdev_12014
crossref_primary_10_3389_fpsyg_2023_1212614
crossref_primary_10_1002_hbm_23672
crossref_primary_10_1016_j_celrep_2014_10_015
crossref_primary_10_1371_journal_pone_0213921
crossref_primary_10_1016_j_neuron_2014_05_035
crossref_primary_10_1016_j_jad_2017_02_023
crossref_primary_10_1371_journal_pone_0195771
crossref_primary_10_1038_s41598_019_56494_9
crossref_primary_10_1002_icd_1990
crossref_primary_10_1038_msb_2012_67
crossref_primary_10_2174_1570159X18666191230114339
crossref_primary_10_1038_srep41140
crossref_primary_10_1093_schbul_sbv184
crossref_primary_10_1038_tp_2014_96
crossref_primary_10_1016_j_neubiorev_2017_06_010
crossref_primary_10_1111_cdev_12367
crossref_primary_10_3389_fcell_2022_884748
crossref_primary_10_1038_nn_4181
crossref_primary_10_1016_j_biopsych_2018_11_002
crossref_primary_10_1371_journal_pone_0110972
crossref_primary_10_1093_bioinformatics_bty576
crossref_primary_10_1038_nn_4063
crossref_primary_10_1093_hmg_ddx203
crossref_primary_10_1073_pnas_1717135115
crossref_primary_10_1038_s41398_021_01527_z
crossref_primary_10_1038_s41586_019_1506_7
crossref_primary_10_1016_j_neurobiolaging_2012_10_021
crossref_primary_10_1038_nrg3553
crossref_primary_10_1016_j_schres_2014_01_005
crossref_primary_10_18632_aging_101912
crossref_primary_10_1038_s41398_020_0777_y
crossref_primary_10_1089_ther_2019_0001
crossref_primary_10_1111_ahg_12121
crossref_primary_10_3389_fnins_2018_00742
crossref_primary_10_1016_j_conb_2012_04_004
crossref_primary_10_1002_gepi_22059
crossref_primary_10_1186_s41021_015_0020_x
crossref_primary_10_1007_s12035_018_1036_6
crossref_primary_10_1038_478442a
crossref_primary_10_31887_DCNS_2013_15_1_esibille
crossref_primary_10_1371_journal_pgen_1003433
crossref_primary_10_1093_cercor_bhz271
crossref_primary_10_1038_s41398_018_0236_1
crossref_primary_10_1016_j_semcdb_2017_06_012
crossref_primary_10_1016_j_rpsmen_2012_07_001
crossref_primary_10_1053_j_gastro_2016_04_007
crossref_primary_10_1016_j_jare_2021_09_005
crossref_primary_10_1016_j_schres_2014_09_036
crossref_primary_10_1016_j_neuroimage_2019_01_011
crossref_primary_10_1016_j_neuron_2017_02_014
crossref_primary_10_1016_j_neuron_2018_10_012
crossref_primary_10_1016_j_neuron_2018_10_015
crossref_primary_10_3389_fnins_2021_668293
crossref_primary_10_3389_fnagi_2024_1450337
crossref_primary_10_1126_science_aat6720
crossref_primary_10_1111_acer_12807
crossref_primary_10_3390_genes11050535
crossref_primary_10_1038_nrg3891
crossref_primary_10_1159_000357753
crossref_primary_10_1093_bib_bbx157
crossref_primary_10_16946_kjsr_2013_16_1_5
crossref_primary_10_1016_j_gpb_2019_02_002
crossref_primary_10_1038_nchembio_1436
crossref_primary_10_1093_cercor_bhab213
crossref_primary_10_1016_j_biopsych_2015_01_003
crossref_primary_10_1073_pnas_1506491112
crossref_primary_10_1016_j_jad_2019_08_055
crossref_primary_10_1038_nn_4399
crossref_primary_10_3389_fnins_2018_00825
crossref_primary_10_1007_s12035_014_9011_3
crossref_primary_10_1038_tp_2016_78
crossref_primary_10_1016_j_ejphar_2015_03_021
crossref_primary_10_1371_journal_pone_0222565
crossref_primary_10_1038_mp_2016_231
crossref_primary_10_1080_14737175_2019_1620604
crossref_primary_10_1017_S0954579413000746
crossref_primary_10_1016_j_neurobiolaging_2012_11_024
crossref_primary_10_1002_ajmg_b_32284
crossref_primary_10_1038_mp_2016_241
crossref_primary_10_1016_j_biopsych_2013_07_015
crossref_primary_10_1016_j_cell_2022_09_039
crossref_primary_10_1016_j_ejmg_2019_103737
crossref_primary_10_1093_cercor_bhaa266
crossref_primary_10_1038_npp_2017_241
crossref_primary_10_1038_tp_2016_253
crossref_primary_10_1038_s41398_022_02193_5
crossref_primary_10_1038_mp_2012_34
crossref_primary_10_1038_s41380_019_0583_1
crossref_primary_10_1038_tp_2016_259
crossref_primary_10_3389_fnins_2023_1172779
crossref_primary_10_1371_journal_pgen_1007281
crossref_primary_10_1038_s41588_024_01990_6
crossref_primary_10_1186_1471_2164_14_571
crossref_primary_10_1038_s41421_019_0129_3
crossref_primary_10_1038_mp_2012_37
crossref_primary_10_1093_schbul_sbu156
crossref_primary_10_1176_appi_ajp_2012_12070908
crossref_primary_10_1097_WCO_0000000000000069
crossref_primary_10_1016_j_rpsm_2012_05_002
crossref_primary_10_1038_s41398_018_0200_0
crossref_primary_10_1038_s41398_017_0058_6
crossref_primary_10_1016_j_neuron_2013_09_041
crossref_primary_10_1016_j_brainresbull_2017_07_015
crossref_primary_10_1038_mp_2012_23
crossref_primary_10_31887_DCNS_2017_19_3_wberrettini
crossref_primary_10_1038_mp_2015_186
crossref_primary_10_1016_j_cell_2013_10_031
crossref_primary_10_1186_s12864_018_5301_x
crossref_primary_10_1093_schbul_sbv017
crossref_primary_10_4161_trns_24885
crossref_primary_10_1093_schbul_sbw102
crossref_primary_10_3389_fncel_2015_00088
crossref_primary_10_1038_s41467_020_16022_0
crossref_primary_10_1016_j_neuroscience_2021_07_007
crossref_primary_10_1038_mp_2014_113
crossref_primary_10_1186_1471_2164_13_661
crossref_primary_10_1038_tp_2015_226
crossref_primary_10_1016_j_biopsych_2016_12_013
crossref_primary_10_1038_nature11405
crossref_primary_10_1038_tp_2016_83
crossref_primary_10_1080_00952990_2021_1954189
crossref_primary_10_3390_ijms20123097
crossref_primary_10_1016_j_biopsych_2020_06_005
crossref_primary_10_1038_s41398_018_0211_x
crossref_primary_10_3389_fnagi_2017_00162
crossref_primary_10_1101_gad_351728_124
crossref_primary_10_1093_schbul_sbs198
crossref_primary_10_1038_nrn3145
crossref_primary_10_3389_fpsyt_2023_1156524
crossref_primary_10_1111_nan_12167
crossref_primary_10_7554_eLife_31126
crossref_primary_10_1093_hmg_ddv303
crossref_primary_10_1016_j_euroneuro_2023_05_001
crossref_primary_10_3389_fnins_2016_00016
crossref_primary_10_1016_j_tig_2014_12_004
crossref_primary_10_1038_tp_2016_247
crossref_primary_10_1016_j_cell_2023_07_027
crossref_primary_10_1038_s42003_022_04003_6
crossref_primary_10_3389_fgene_2020_574543
crossref_primary_10_1038_tp_2017_78
crossref_primary_10_1093_schbul_sbt178
crossref_primary_10_1038_s41398_024_03195_1
crossref_primary_10_1038_tp_2017_159
crossref_primary_10_1021_cn500040g
crossref_primary_10_1186_1471_2164_15_118
crossref_primary_10_1176_appi_ajp_2014_13111518
crossref_primary_10_1001_jamapsychiatry_2019_2194
crossref_primary_10_1038_mp_2014_10
crossref_primary_10_1093_cercor_bhz312
crossref_primary_10_1093_cercor_bhac374
crossref_primary_10_1176_appi_ajp_2014_13111452
crossref_primary_10_1038_tp_2016_211
crossref_primary_10_1093_bib_bbw114
crossref_primary_10_1111_ejn_15674
crossref_primary_10_1136_annrheumdis_2015_208441
crossref_primary_10_1186_s13073_015_0258_8
crossref_primary_10_1093_cercor_bhy341
crossref_primary_10_1176_appi_ajp_2012_11121845
crossref_primary_10_1371_journal_pone_0124114
crossref_primary_10_1371_journal_pone_0209405
crossref_primary_10_2147_NDT_S383093
crossref_primary_10_1111_ejn_15791
crossref_primary_10_1126_sciadv_abm6127
crossref_primary_10_1038_nn_4409
crossref_primary_10_1038_s12276_020_00522_6
crossref_primary_10_1038_s41598_022_16442_6
crossref_primary_10_1016_j_neuron_2015_12_008
crossref_primary_10_1214_20_AOS1951
crossref_primary_10_1038_s41598_020_78471_3
crossref_primary_10_1016_j_neurobiolaging_2014_05_018
crossref_primary_10_1038_s41380_019_0570_6
crossref_primary_10_1016_j_gde_2025_102339
crossref_primary_10_1038_mp_2013_37
crossref_primary_10_1016_S1474_4422_13_70202_3
crossref_primary_10_1038_nn_3554
crossref_primary_10_1017_S0033291715002639
crossref_primary_10_1016_j_celrep_2014_09_023
crossref_primary_10_1111_adb_12286
crossref_primary_10_3389_fgene_2022_806685
crossref_primary_10_1093_cercor_bhw181
crossref_primary_10_1093_cercor_bhy005
crossref_primary_10_1038_mp_2013_103
crossref_primary_10_1016_j_cell_2021_10_003
crossref_primary_10_1016_j_stem_2014_05_003
crossref_primary_10_1038_mp_2013_68
crossref_primary_10_1093_schbul_sbaa047
crossref_primary_10_1016_j_cell_2019_06_004
crossref_primary_10_1111_adb_12277
crossref_primary_10_1176_appi_ajp_2021_22010024
crossref_primary_10_1002_ajmg_b_32692
crossref_primary_10_1038_mp_2013_107
crossref_primary_10_1016_j_rmclc_2022_07_001
crossref_primary_10_1038_s41583_018_0028_x
crossref_primary_10_1002_advs_202411041
crossref_primary_10_1016_j_neuroimage_2021_118570
crossref_primary_10_1016_j_schres_2014_03_034
crossref_primary_10_1007_s11682_013_9260_1
crossref_primary_10_3389_fnagi_2022_964429
crossref_primary_10_1016_j_cell_2018_09_010
crossref_primary_10_1111_acel_12819
crossref_primary_10_1016_j_comppsych_2023_152415
crossref_primary_10_1038_s41598_019_48141_0
crossref_primary_10_1002_cpz1_426
crossref_primary_10_1073_pnas_1503252113
crossref_primary_10_1016_j_drugalcdep_2012_07_005
crossref_primary_10_1371_journal_pone_0150624
crossref_primary_10_3233_JAD_161149
crossref_primary_10_1038_nn_3332
crossref_primary_10_1371_journal_pone_0148558
crossref_primary_10_1016_j_biopsych_2016_12_030
crossref_primary_10_1007_s13311_013_0199_0
crossref_primary_10_1093_molbev_msv031
crossref_primary_10_1016_j_preteyeres_2015_01_005
crossref_primary_10_1186_s12864_016_2746_7
crossref_primary_10_1038_mp_2013_165
crossref_primary_10_1007_s00429_016_1338_2
crossref_primary_10_1038_mp_2013_168
crossref_primary_10_1038_npp_2015_232
crossref_primary_10_1016_j_biopsych_2017_08_013
crossref_primary_10_1186_s12864_015_2207_8
crossref_primary_10_1534_genetics_118_301768
crossref_primary_10_18632_aging_101589
crossref_primary_10_1093_nar_gkw587
crossref_primary_10_1097_JBR_0000000000000070
crossref_primary_10_1007_s00213_012_2758_1
crossref_primary_10_1186_s12864_019_6063_9
crossref_primary_10_34133_research_0114
crossref_primary_10_1016_j_cels_2016_01_014
crossref_primary_10_1016_j_schres_2019_02_005
crossref_primary_10_1016_j_celrep_2024_114219
crossref_primary_10_1016_j_neubiorev_2021_09_042
crossref_primary_10_1016_j_psychres_2012_04_030
crossref_primary_10_1038_s41598_017_17322_0
crossref_primary_10_1016_j_jpsychires_2016_07_018
crossref_primary_10_1186_s13024_016_0085_4
crossref_primary_10_1016_j_bcp_2017_05_009
crossref_primary_10_1111_jcpp_12119
crossref_primary_10_3390_ijms21031116
crossref_primary_10_1016_j_ajhg_2013_12_016
crossref_primary_10_1111_1440_1681_12975
crossref_primary_10_1038_npp_2012_78
crossref_primary_10_1038_nature13545
crossref_primary_10_1038_ng_2446
crossref_primary_10_1017_S1355617718000711
crossref_primary_10_1073_pnas_2001788117
crossref_primary_10_1097_MD_0000000000021989
crossref_primary_10_1016_j_neurobiolaging_2015_04_008
crossref_primary_10_1038_mp_2013_142
crossref_primary_10_1007_s12035_019_01815_2
crossref_primary_10_1038_npp_2015_216
crossref_primary_10_1016_j_neurobiolaging_2023_01_013
crossref_primary_10_1038_mp_2013_146
crossref_primary_10_1038_s41386_019_0345_4
crossref_primary_10_1126_sciadv_adn1870
crossref_primary_10_1016_j_bbr_2016_08_054
crossref_primary_10_1093_hmg_ddaa042
crossref_primary_10_1111_brv_12183
crossref_primary_10_1038_s41398_020_00987_z
crossref_primary_10_1007_s00429_019_01843_7
crossref_primary_10_3390_ijms24108904
crossref_primary_10_1523_JNEUROSCI_4626_11_2012
crossref_primary_10_1192_bjp_bp_114_156976
crossref_primary_10_1186_s12859_015_0745_3
crossref_primary_10_1038_tp_2015_153
crossref_primary_10_1016_j_neuroscience_2013_05_042
crossref_primary_10_1016_j_pnpbp_2017_10_004
crossref_primary_10_1016_S0140_6736_12_62129_1
crossref_primary_10_1186_1471_2164_15_1001
crossref_primary_10_1038_s41598_021_99352_3
crossref_primary_10_1038_s42003_021_02238_3
crossref_primary_10_1016_j_neuron_2012_08_005
crossref_primary_10_1016_j_schres_2013_11_021
crossref_primary_10_1001_jamapsychiatry_2020_1495
crossref_primary_10_1287_stsc_2017_0037
crossref_primary_10_1371_journal_pbio_3000976
crossref_primary_10_3389_fphys_2019_00214
crossref_primary_10_1016_j_jalz_2017_08_012
crossref_primary_10_1038_s41398_023_02349_x
crossref_primary_10_1038_ncomms6068
crossref_primary_10_1038_nn_3898
crossref_primary_10_1371_journal_pcbi_1003185
crossref_primary_10_1093_cercor_bhw407
crossref_primary_10_1073_pnas_2206069119
crossref_primary_10_1080_15622975_2020_1821917
crossref_primary_10_1038_tpj_2016_74
crossref_primary_10_1016_j_ebiom_2019_05_006
crossref_primary_10_1016_j_gene_2016_07_058
crossref_primary_10_1016_j_morpho_2016_01_001
crossref_primary_10_1001_jamapsychiatry_2020_2694
crossref_primary_10_1101_gr_250217_119
crossref_primary_10_1016_j_cstres_2024_11_006
crossref_primary_10_1007_s13311_019_00743_2
crossref_primary_10_1038_mp_2012_157
crossref_primary_10_1002_wrna_1762
crossref_primary_10_1002_ajh_23613
crossref_primary_10_1038_mp_2012_158
crossref_primary_10_1038_s41386_018_0144_3
crossref_primary_10_1038_s41467_017_00422_w
crossref_primary_10_3390_cells13161393
crossref_primary_10_31887_DCNS_2018_20_4_dgurwitz
crossref_primary_10_1101_gr_273961_120
crossref_primary_10_1016_j_cels_2017_02_009
crossref_primary_10_1021_acschemneuro_6b00372
crossref_primary_10_1038_mp_2013_197
crossref_primary_10_1016_j_ajhg_2014_06_002
crossref_primary_10_1093_bioinformatics_btaa600
crossref_primary_10_3389_fnins_2023_1211079
crossref_primary_10_1016_j_euroneuro_2020_06_002
crossref_primary_10_1016_j_pnpbp_2025_111315
crossref_primary_10_1038_mp_2013_192
crossref_primary_10_1016_j_cell_2017_06_036
crossref_primary_10_1002_dneu_22660
crossref_primary_10_1523_ENEURO_0255_16_2017
crossref_primary_10_1038_s41467_020_20483_8
crossref_primary_10_1007_s12035_016_0041_x
crossref_primary_10_1007_s11121_017_0785_1
crossref_primary_10_1007_s12264_014_1461_0
crossref_primary_10_1126_science_aat8464
crossref_primary_10_1016_j_neubiorev_2014_12_003
crossref_primary_10_1016_j_brainres_2013_08_005
crossref_primary_10_1186_s13023_019_1260_9
crossref_primary_10_1016_j_biopsych_2016_08_037
crossref_primary_10_1016_j_biopsych_2014_10_008
crossref_primary_10_1523_JNEUROSCI_1930_17_2018
crossref_primary_10_1016_j_cell_2019_09_021
crossref_primary_10_1186_s12859_019_3222_6
crossref_primary_10_1016_j_neures_2019_05_007
crossref_primary_10_1016_j_tics_2018_10_005
crossref_primary_10_1038_s41598_017_07839_9
crossref_primary_10_1126_science_adh0829
crossref_primary_10_1038_nn_3860
crossref_primary_10_3389_fpsyt_2019_00058
crossref_primary_10_1126_scitranslmed_aat6912
crossref_primary_10_1038_mp_2017_13
crossref_primary_10_1038_mp_2016_43
crossref_primary_10_1038_s41583_022_00576_7
crossref_primary_10_1007_s12035_015_9559_6
crossref_primary_10_1016_j_biopsych_2015_06_019
crossref_primary_10_1016_j_neures_2014_06_001
crossref_primary_10_1038_npp_2014_213
crossref_primary_10_1126_sciadv_adj4452
crossref_primary_10_1016_j_ijpsycho_2016_11_007
crossref_primary_10_1126_sciadv_ade2812
crossref_primary_10_1097_YCO_0000000000000238
crossref_primary_10_1101_gr_180273_114
Cites_doi 10.1038/nature01434
10.1073/pnas.0308512100
10.1371/journal.pgen.0030161
10.1016/j.ajhg.2009.03.011
10.1038/ng.2007.16
10.1038/onc.2008.327
10.1038/nature02661
10.1038/nn.2207
10.1371/journal.pone.0003329
10.1002/dvdy.20847
10.1016/j.conb.2009.09.006
10.1101/gr.106849.110
10.1093/bioinformatics/18.11.1540
10.1158/0008-5472.CAN-08-4210
10.1038/mp.2009.128
10.1016/j.neuron.2009.03.027
10.1016/j.stem.2010.02.015
10.1146/annurev.neuro.28.061604.135632
10.1038/nature02797
10.1371/journal.pbio.1000001
10.1101/gr.101956.109
10.1186/1749-8104-5-25
10.1371/journal.pgen.1000952
10.1016/j.biopsych.2006.06.019
10.1186/1755-8794-3-1
10.1152/physiolgenomics.00008.2010
10.1371/journal.pgen.0010078
ContentType Journal Article
Copyright Springer Nature Limited 2011
2015 INIST-CNRS
Copyright Nature Publishing Group Oct 27, 2011
2011 Macmillan Publishers Limited. All rights reserved 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: 2015 INIST-CNRS
– notice: Copyright Nature Publishing Group Oct 27, 2011
– notice: 2011 Macmillan Publishers Limited. All rights reserved 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature10524
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
MEDLINE


Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 523
ExternalDocumentID PMC3510670
2525134391
22031444
24636343
10_1038_nature10524
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIC HG200365
– fundername: National Human Genome Research Institute : NHGRI
  grantid: ZIC HG200365-03 || HG
– fundername: National Human Genome Research Institute : NHGRI
  grantid: ZIC HG200365-02 || HG
– fundername: National Human Genome Research Institute : NHGRI
  grantid: ZIC HG200365-01 || HG
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AEZWR
AFBBN
AFFDN
AFHIU
AFHKK
AHWEU
AIXLP
AJUXI
BES
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c573t-8f19d0ee07b68694bed6ea22e745ca7332458c88e718c7c6ff025617d7eb78be3
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 13:56:56 EDT 2025
Fri Jul 11 17:02:53 EDT 2025
Fri Jul 11 06:14:40 EDT 2025
Sat Aug 23 12:28:14 EDT 2025
Mon Jul 21 06:03:16 EDT 2025
Mon Jul 21 09:10:47 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
Tue Jul 01 02:00:38 EDT 2025
Fri Feb 21 02:37:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7370
Keywords Human
Cerebral cortex
Transcription
Genetic determinism
Central nervous system
Encephalon
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-8f19d0ee07b68694bed6ea22e745ca7332458c88e718c7c6ff025617d7eb78be3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3510670
PMID 22031444
PQID 907242430
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3510670
proquest_miscellaneous_901002557
proquest_miscellaneous_1439237845
proquest_journals_907242430
pubmed_primary_22031444
pascalfrancis_primary_24636343
crossref_primary_10_1038_nature10524
crossref_citationtrail_10_1038_nature10524
springer_journals_10_1038_nature10524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-27
PublicationDateYYYYMMDD 2011-10-27
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Schaeffer (CR27) 2008; 27
De, Zhang, Garner, Wang, Becker (CR25) 2010; 42A
Morley (CR2) 2004; 430
Johnson (CR9) 2009; 62
Zhang (CR24) 2010; 3
Stranger (CR3) 2005; 1
Heinzen (CR5) 2008; 6
Leek, Storey (CR22) 2007; 3
Loerch (CR18) 2008; 3
Delaloy (CR17) 2010; 6
Blalock (CR20) 2004; 101
Lipska (CR23) 2006; 60
Daniel (CR26) 2009; 69
Torkamani, Dean, Schork, Thomas (CR12) 2010; 20
Gao (CR15) 2010; 5
Somel (CR10) 2010; 20
Schadt (CR1) 2003; 422
Colantuoni, Henry, Zeger, Pevsner (CR21) 2002; 18
Myers (CR4) 2007; 39
Liu (CR7) 2010; 15
Coolen, Bally-Cuif (CR16) 2009; 19
Lu (CR19) 2004; 429
Oldham (CR11) 2008; 11
Deo, Yu, Chung, Tippens, Turner (CR14) 2006; 235
Gibbs (CR6) 2010; 6
Webster (CR8) 2009; 84
Luo, O’Leary (CR13) 2005; 28
S De (BFnature10524_CR25) 2010; 42A
EM Schaeffer (BFnature10524_CR27) 2008; 27
AJ Myers (BFnature10524_CR4) 2007; 39
M Somel (BFnature10524_CR10) 2010; 20
EE Schadt (BFnature10524_CR1) 2003; 422
JT Leek (BFnature10524_CR22) 2007; 3
Y Zhang (BFnature10524_CR24) 2010; 3
A Torkamani (BFnature10524_CR12) 2010; 20
C Delaloy (BFnature10524_CR17) 2010; 6
PM Loerch (BFnature10524_CR18) 2008; 3
EM Blalock (BFnature10524_CR20) 2004; 101
L Luo (BFnature10524_CR13) 2005; 28
BK Lipska (BFnature10524_CR23) 2006; 60
C Colantuoni (BFnature10524_CR21) 2002; 18
M Morley (BFnature10524_CR2) 2004; 430
MB Johnson (BFnature10524_CR9) 2009; 62
T Lu (BFnature10524_CR19) 2004; 429
BE Stranger (BFnature10524_CR3) 2005; 1
JA Webster (BFnature10524_CR8) 2009; 84
FB Gao (BFnature10524_CR15) 2010; 5
MC Oldham (BFnature10524_CR11) 2008; 11
C Liu (BFnature10524_CR7) 2010; 15
M Deo (BFnature10524_CR14) 2006; 235
JR Gibbs (BFnature10524_CR6) 2010; 6
M Coolen (BFnature10524_CR16) 2009; 19
VC Daniel (BFnature10524_CR26) 2009; 69
EL Heinzen (BFnature10524_CR5) 2008; 6
References_xml – volume: 422
  start-page: 297
  year: 2003
  end-page: 302
  ident: CR1
  article-title: Genetics of gene expression surveyed in maize, mouse and man
  publication-title: Nature
  doi: 10.1038/nature01434
– volume: 101
  start-page: 2173
  year: 2004
  end-page: 2178
  ident: CR20
  article-title: Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308512100
– volume: 3
  start-page: 1724
  year: 2007
  end-page: 1735
  ident: CR22
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030161
– volume: 84
  start-page: 445
  year: 2009
  end-page: 458
  ident: CR8
  article-title: Genetic control of human brain transcript expression in Alzheimer disease
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.03.011
– volume: 39
  start-page: 1494
  year: 2007
  end-page: 1499
  ident: CR4
  article-title: A survey of genetic human cortical gene expression
  publication-title: Nature Genet.
  doi: 10.1038/ng.2007.16
– volume: 27
  start-page: 7180
  year: 2008
  end-page: 7191
  ident: CR27
  article-title: Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2008.327
– volume: 429
  start-page: 883
  year: 2004
  end-page: 891
  ident: CR19
  article-title: Gene regulation and DNA damage in the ageing human brain
  publication-title: Nature
  doi: 10.1038/nature02661
– volume: 11
  start-page: 1271
  year: 2008
  end-page: 1282
  ident: CR11
  article-title: Functional organization of the transcriptome in human brain
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2207
– volume: 3
  start-page: e3329
  year: 2008
  ident: CR18
  article-title: Evolution of the aging brain transcriptome and synaptic regulation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003329
– volume: 235
  start-page: 2538
  year: 2006
  end-page: 2548
  ident: CR14
  article-title: Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20847
– volume: 19
  start-page: 461
  year: 2009
  end-page: 470
  ident: CR16
  article-title: MicroRNAs in brain development and physiology
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2009.09.006
– volume: 20
  start-page: 1207
  year: 2010
  end-page: 1218
  ident: CR10
  article-title: MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain
  publication-title: Genome Res.
  doi: 10.1101/gr.106849.110
– volume: 18
  start-page: 1540
  year: 2002
  end-page: 1541
  ident: CR21
  article-title: SNOMAD (Standardization and NOrmalization of MicroArray Data): web-accessible gene expression data analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.11.1540
– volume: 69
  start-page: 3364
  year: 2009
  end-page: 3373
  ident: CR26
  article-title: A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4210
– volume: 15
  start-page: 779
  year: 2010
  end-page: 784
  ident: CR7
  article-title: Whole-genome association mapping of gene expression in the human prefrontal cortex
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2009.128
– volume: 62
  start-page: 494
  year: 2009
  end-page: 509
  ident: CR9
  article-title: Functional and evolutionary insights into human brain development through global transcriptome analysis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.027
– volume: 6
  start-page: 323
  year: 2010
  end-page: 335
  ident: CR17
  article-title: MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.02.015
– volume: 28
  start-page: 127
  year: 2005
  end-page: 156
  ident: CR13
  article-title: Axon retraction and degeneration in development and disease
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.28.061604.135632
– volume: 430
  start-page: 743
  year: 2004
  end-page: 747
  ident: CR2
  article-title: Genetic analysis of genome-wide variation in human gene expression
  publication-title: Nature
  doi: 10.1038/nature02797
– volume: 6
  start-page: e1
  year: 2008
  ident: CR5
  article-title: Tissue-specific genetic control of splicing: implications for the study of complex traits
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000001
– volume: 20
  start-page: 403
  year: 2010
  end-page: 412
  ident: CR12
  article-title: Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia
  publication-title: Genome Res.
  doi: 10.1101/gr.101956.109
– volume: 5
  start-page: 25
  year: 2010
  ident: CR15
  article-title: Context-dependent functions of specific microRNAs in neuronal development
  publication-title: Neural Develop.
  doi: 10.1186/1749-8104-5-25
– volume: 6
  start-page: e1000952
  year: 2010
  ident: CR6
  article-title: Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000952
– volume: 60
  start-page: 650
  year: 2006
  end-page: 658
  ident: CR23
  article-title: Critical factors in gene expression in postmortem human brain: Focus on studies in schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2006.06.019
– volume: 3
  start-page: 1
  year: 2010
  ident: CR24
  article-title: Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information
  publication-title: BMC Med. Genomics
  doi: 10.1186/1755-8794-3-1
– volume: 42A
  start-page: 162
  year: 2010
  end-page: 167
  ident: CR25
  article-title: Disease and phenotype gene set analysis of disease based gene expression in mouse and human
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00008.2010
– volume: 1
  start-page: e78
  year: 2005
  ident: CR3
  article-title: Genome-wide associations of gene expression variation in humans
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0010078
– volume: 6
  start-page: e1000952
  year: 2010
  ident: BFnature10524_CR6
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000952
– volume: 84
  start-page: 445
  year: 2009
  ident: BFnature10524_CR8
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.03.011
– volume: 42A
  start-page: 162
  year: 2010
  ident: BFnature10524_CR25
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00008.2010
– volume: 18
  start-page: 1540
  year: 2002
  ident: BFnature10524_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.11.1540
– volume: 15
  start-page: 779
  year: 2010
  ident: BFnature10524_CR7
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2009.128
– volume: 19
  start-page: 461
  year: 2009
  ident: BFnature10524_CR16
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2009.09.006
– volume: 3
  start-page: 1724
  year: 2007
  ident: BFnature10524_CR22
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030161
– volume: 39
  start-page: 1494
  year: 2007
  ident: BFnature10524_CR4
  publication-title: Nature Genet.
  doi: 10.1038/ng.2007.16
– volume: 3
  start-page: 1
  year: 2010
  ident: BFnature10524_CR24
  publication-title: BMC Med. Genomics
  doi: 10.1186/1755-8794-3-1
– volume: 60
  start-page: 650
  year: 2006
  ident: BFnature10524_CR23
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2006.06.019
– volume: 69
  start-page: 3364
  year: 2009
  ident: BFnature10524_CR26
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4210
– volume: 430
  start-page: 743
  year: 2004
  ident: BFnature10524_CR2
  publication-title: Nature
  doi: 10.1038/nature02797
– volume: 6
  start-page: 323
  year: 2010
  ident: BFnature10524_CR17
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.02.015
– volume: 422
  start-page: 297
  year: 2003
  ident: BFnature10524_CR1
  publication-title: Nature
  doi: 10.1038/nature01434
– volume: 429
  start-page: 883
  year: 2004
  ident: BFnature10524_CR19
  publication-title: Nature
  doi: 10.1038/nature02661
– volume: 3
  start-page: e3329
  year: 2008
  ident: BFnature10524_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003329
– volume: 6
  start-page: e1
  year: 2008
  ident: BFnature10524_CR5
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000001
– volume: 28
  start-page: 127
  year: 2005
  ident: BFnature10524_CR13
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.28.061604.135632
– volume: 235
  start-page: 2538
  year: 2006
  ident: BFnature10524_CR14
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20847
– volume: 20
  start-page: 403
  year: 2010
  ident: BFnature10524_CR12
  publication-title: Genome Res.
  doi: 10.1101/gr.101956.109
– volume: 27
  start-page: 7180
  year: 2008
  ident: BFnature10524_CR27
  publication-title: Oncogene
  doi: 10.1038/onc.2008.327
– volume: 1
  start-page: e78
  year: 2005
  ident: BFnature10524_CR3
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0010078
– volume: 62
  start-page: 494
  year: 2009
  ident: BFnature10524_CR9
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.027
– volume: 20
  start-page: 1207
  year: 2010
  ident: BFnature10524_CR10
  publication-title: Genome Res.
  doi: 10.1101/gr.106849.110
– volume: 5
  start-page: 25
  year: 2010
  ident: BFnature10524_CR15
  publication-title: Neural Develop.
  doi: 10.1186/1749-8104-5-25
– volume: 11
  start-page: 1271
  year: 2008
  ident: BFnature10524_CR11
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2207
– volume: 101
  start-page: 2173
  year: 2004
  ident: BFnature10524_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308512100
SSID ssj0005174
Score 2.5660646
Snippet Gene expression in the human brain Gene expression controls and dictates everything from development and plasticity to ongoing neurogenesis in the brain, yet...
Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue....
Previous investigations have combined transcriptional and genetic analyses in human cell lines 1 - 3 , but few have applied these techniques to human neural...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 519
SubjectTerms 631/208/191/2018
631/208/200
631/208/212
631/378/1457/1945
Aging
Aging - genetics
Autopsy
Biological and medical sciences
Fetus - metabolism
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Developmental - genetics
Genome, Human - genetics
Genomes
Humanities and Social Sciences
Humans
letter
Molecular and cellular biology
Molecular genetics
multidisciplinary
Polymorphism, Single Nucleotide - genetics
Prefrontal Cortex - embryology
Prefrontal Cortex - growth & development
Prefrontal Cortex - metabolism
Principal components analysis
Racial Groups - genetics
Science
Science (multidisciplinary)
Time Factors
Transcription. Transcription factor. Splicing. Rna processing
Transcriptome - genetics
Title Temporal dynamics and genetic control of transcription in the human prefrontal cortex
URI https://link.springer.com/article/10.1038/nature10524
https://www.ncbi.nlm.nih.gov/pubmed/22031444
https://www.proquest.com/docview/907242430
https://www.proquest.com/docview/1439237845
https://www.proquest.com/docview/901002557
https://pubmed.ncbi.nlm.nih.gov/PMC3510670
Volume 478
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB60RRBEbP0Vq8cKFVQITfZ3nkRLzyJYRHpwbyG72aWFkjubK_TPdyfZ5Lx6-pKXDMlmd2Z3NvPt9wEcGlUJnfM6RJpjKTeFTI2lMs1lwYXnLuOdesP3M3k649_mYh6xOW2EVQ5zYjdR1wuL_8iPwiYOTzKw7NPyV4qiUVhcjQoa92EXmcsQ0aXmao3wuEPCHI_nZUwf9ayZIbegfGNBerSs2tA3vhe12JZ1_g2evFNB7Ram6RN4HDNK8rl3gT2455p9eNAhO227D3sxelvyPlJMf3gKs_OekeqK1L0ifUuqpibBmfBMI4n4dbLwZIVr2TCzkMuGhISRdMJ-ZBm-BekPwlMsQnZvn8FsenJ-fJpGgYXUCsVWqfZ5UWfOZcpIHQbHuFq6ilKnuLCVYiHZEtpq7cICZpWV3mOGlKtaOaO0cew57DSLxr0EooXhuRfIvkO5tLaoFfdK5lgTplXhE_g49HJpI_s4imBclV0VnOnyjyFJ4HA0XvakG9vNJhvDNdpSZEFjnCVwMIxfGUOzLUdHSuDteDfEFBZKqsYtbtqwHQpZI1OaiwTIP2wQ1oL7MZXAi94h1q-nqAnAQ_vUhquMBkjpvXmnubzoqL2ZQEq_0LR3g1OtG76lB1799wMP4CGNiEWqXsPO6vrGvQkp1MpMukAJV32c43X6dQK7X07Ofvz8DZ1XICw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQSqmi50kIxUitBpaiJj9h5qBACqi09nnalfQuJ44hKJbuQrWh_FP-RmVzLloW3Pnvk2J7D48zMNwA7mU6VCWWOmuaEL7M48jPLIz-MYqkK6QJZd284PYsGI_l5rMYr8KurhaG0ys4m1oY6n1j6R76PjziqZBDBu-l3n5pGUXC166DRSMWxu_6JL7bq4OgjsneX88NPww8Dv20q4Fulxcw3RRjngXOBziKDC8pcHrmUc6elsqkW6GAoY41xaLSttlFRkFcQ6ly7TJvMCZz3DtzFezcghdJjPc8ouQH63JYDBsLsNyid6MtwuXABPpymFfKiaJpoLPNy_07WvBGxrS_Cw0ew1nqw7H0jcuuw4soNuFdnktpqA9Zba1GxNy2k9dvHMBo2CFgXLL8u029IyNIyZyi8VEPJ2nx5NinYjO7OzpKx85Khg8rqRoJsinshuAWcxVKK8NUTGN3K2T-F1XJSuufAjMpkWChC--EysjbOtSx0FFIMmqdx4cFed8qJbdHOqenGRVJH3YVJ_mCJBzs98bQB-VhOtr3Arp6WE-qakMKDrY5_SWsKqqQXXA9e96OowxSYSUs3uazw-YVeqtBGKg_YP2gojYbef9qDZ41AzD_PqQeBxPXpBVHpCQhCfHGkPP9aQ4kLRRCCuLTdTqjmC19yApv_3eAruD8Ynp4kJ0dnx1vwgLfZkly_gNXZj0v3Et23WbZdKw2DL7etpb8BgMxZyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRASQmx8hcEw0iYBUtTGdmLnASHEqDYGEw-r1LcscWwxaaSFdIL9afx33CVOSkfhbc85pY7vw-fe734HsFOoPNaRLNHTrAhlkSZhYXgSRkkqYyftUDbTGz4dJftj-WEST9bgV9cLQ7DKLiY2gbqcGvqPfICXOOpkEMOB86iIz3ujN7NvIQ2QokJrN02jtZBDe_EDb2_164M9VPUu56P3x-_2Qz9gIDSxEvNQuygth9YOVZFoXFxhy8TmnFslY5MrgclGrI3WFgO4USZxjjKESJXKFkoXVuB7r8F1JeKIXExN1AJdcokA2rcGDoUetIydmNdwuXQY3p7lNerFtQM1VmW8fwM3L1Vvm0NxdBfu-GyWvW3NbwPWbLUJNxpUqak3YcNHjpq98PTWL-_B-Lhlwzpj5UWVf0VBllclQ0OmfkrmsfNs6ticztEuqrHTimGyypqhgmyG30LUC_gWQ3Dhn_dhfCV7_wDWq2llHwHTcSEjFxPzD5eJMWmppFNJRPVonqcugFfdLmfGM5_TAI6zrKnAC539oZIAdnrhWUv4sVpse0ldvSwnBjYhRQBbnf4yHxbqrDfiAJ73T9GfqUiTV3Z6XuNVDDNWobSMA2D_kCFIDd0FVQAPW4NY_DyneQQS16eWTKUXIDrx5SfV6ZeGVhytmJq2AtjtjGqx8BU78Pi_H_gMbqJ_Zh8Pjg634Bb3wEmunsD6_Pu5fYqZ3LzYbnyGwclVO-lvef9eAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+dynamics+and+genetic+control+of+transcription+in+the+human+prefrontal+cortex&rft.jtitle=Nature+%28London%29&rft.au=Colantuoni%2C+Carlo&rft.au=Lipska%2C+Barbara+K.&rft.au=Ye%2C+Tianzhang&rft.au=Hyde%2C+Thomas+M.&rft.date=2011-10-27&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=478&rft.issue=7370&rft.spage=519&rft.epage=523&rft_id=info:doi/10.1038%2Fnature10524&rft.externalDocID=10_1038_nature10524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon