Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming

The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 128; pp. 125 - 136
Main Authors Sun, Qiaohong, Miao, Chiyuan, Hanel, Martin, Borthwick, Alistair G.L., Duan, Qingyun, Ji, Duoying, Li, Hu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.07.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change. •We assessed the influences of 1.5 °C and 2.0 °C warmings on the multiple sectors.•0.5 °C less warming would help avoid ~38% of the health-related heat exposure.•0.5 °C less warming would help avoid ~50% of the exposure to wildfire.•0.5 °C less warming would help avoid ~48% of the maize-related heat exposure.•Developing countries are likely to experience greater exposure to heat extremes.
AbstractList The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change.
The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change. •We assessed the influences of 1.5 °C and 2.0 °C warmings on the multiple sectors.•0.5 °C less warming would help avoid ~38% of the health-related heat exposure.•0.5 °C less warming would help avoid ~50% of the exposure to wildfire.•0.5 °C less warming would help avoid ~48% of the maize-related heat exposure.•Developing countries are likely to experience greater exposure to heat extremes.
The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change. Keywords: Global warming, Exposure, Heat-related extremes, 1.5 °C warming target
The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change.The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change.
Author Borthwick, Alistair G.L.
Li, Hu
Ji, Duoying
Miao, Chiyuan
Sun, Qiaohong
Hanel, Martin
Duan, Qingyun
Author_xml – sequence: 1
  givenname: Qiaohong
  surname: Sun
  fullname: Sun, Qiaohong
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 2
  givenname: Chiyuan
  surname: Miao
  fullname: Miao, Chiyuan
  email: miaocy@vip.sina.com
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 3
  givenname: Martin
  orcidid: 0000-0001-8317-6711
  surname: Hanel
  fullname: Hanel, Martin
  organization: Faculty of Environmental Sciences, Czech University of Life Sciences, Prague 16900, Czech Republic
– sequence: 4
  givenname: Alistair G.L.
  surname: Borthwick
  fullname: Borthwick, Alistair G.L.
  organization: School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK
– sequence: 5
  givenname: Qingyun
  surname: Duan
  fullname: Duan, Qingyun
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
– sequence: 6
  givenname: Duoying
  surname: Ji
  fullname: Ji, Duoying
  organization: College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
– sequence: 7
  givenname: Hu
  surname: Li
  fullname: Li, Hu
  organization: Key Laboratory of Agricultural Non-point Source Pollution Control, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31048130$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEURi1URNPCGyDkJYsm-HfGwwKpqqCtVIkNrC2PfZ06cjzB9qTi7XFI6aILurJ8db5PV_ecoZM0JUDoPSUrSmj3abOCtA-prhihw4qIFWHyFVpQ1fNl10tyghYNI0tBGTlFZ6VsCCFMKPkGnXJKhKKcLFC4jtNoIr4HU3GpGUrBUzp8Y72_wA8hOh_a9AKb5LBZ52DnWOfcIjZPu4Ln5CBjF7yHDKniCHuIrcNjG8PWVMAPJm9DWr9Fr72JBd49vufo57evP65ulnffr2-vLu-WVva8LruO9rLrB9MpRyQXEkZnpWA9MZzZoSPKSyOJcLT3o1eEwcA7PlDK-Uh7pvg5uj32usls9C63JfJvPZmg_w6mvNYm12AjaOZGNY6K-IEKYahQnHkjuO04UzAY17o-Hrt2efo1Q6l6G4qFGE2CaS6aMcmZYKwt-jLKBtZciKGhHx7RedyCe9rxn5UGiCPQTlxKBv-EUKIP8vVGH-Xrg3xNhG7yW-zzs5gN1dQwpZpNiC-FvxzDzR7sA2RdbIBkwTX9trbjhf8X_AE8Bsst
CitedBy_id crossref_primary_10_3389_fpls_2022_1036254
crossref_primary_10_3389_fpls_2021_750728
crossref_primary_10_1007_s11356_021_15325_z
crossref_primary_10_1021_acs_est_1c07356
crossref_primary_10_3389_fpls_2024_1376370
crossref_primary_10_3992_jgb_17_4_179
crossref_primary_10_5363_tits_26_7_60
crossref_primary_10_3389_fpls_2023_1314021
crossref_primary_10_1002_joc_6798
crossref_primary_10_1016_j_uclim_2023_101674
crossref_primary_10_1016_j_plantsci_2023_111958
crossref_primary_10_1007_s11869_020_00883_x
crossref_primary_10_3390_atmos14010178
crossref_primary_10_3390_plants13233405
crossref_primary_10_1007_s00704_023_04574_2
crossref_primary_10_7717_peerj_7424
crossref_primary_10_1016_j_catena_2021_105753
crossref_primary_10_1016_j_scitotenv_2020_138506
crossref_primary_10_1016_j_sciaf_2025_e02559
crossref_primary_10_1093_wbro_lkae001
crossref_primary_10_3389_fpls_2021_655103
crossref_primary_10_1029_2022GL099396
crossref_primary_10_1007_s12298_021_01098_9
crossref_primary_10_1029_2020WR028830
crossref_primary_10_3390_atmos13091504
crossref_primary_10_1029_2023JD040271
crossref_primary_10_3390_rs15143627
crossref_primary_10_1016_j_envsci_2021_10_018
crossref_primary_10_1016_j_wace_2022_100448
crossref_primary_10_3389_fpls_2022_944358
crossref_primary_10_3390_toxics12080548
crossref_primary_10_1007_s40710_021_00503_5
crossref_primary_10_3390_su17052223
crossref_primary_10_1016_j_scitotenv_2020_138732
crossref_primary_10_1016_j_jhydrol_2020_125820
crossref_primary_10_1088_2752_5295_ad1f41
crossref_primary_10_1016_j_jclepro_2022_131054
crossref_primary_10_1029_2019EF001398
crossref_primary_10_1039_D1GC03262C
crossref_primary_10_1016_j_ecolind_2021_107480
crossref_primary_10_1056_NEJMsr2028985
crossref_primary_10_3390_f15050736
crossref_primary_10_5194_acp_23_6011_2023
crossref_primary_10_1016_j_rser_2024_114580
crossref_primary_10_1016_j_jhydrol_2022_128543
crossref_primary_10_1177_23814683241260423
crossref_primary_10_1016_S2542_5196_22_00067_5
crossref_primary_10_1002_ajp_23605
crossref_primary_10_3390_su162411235
crossref_primary_10_1038_s41467_024_54095_3
crossref_primary_10_2166_aqua_2023_168
crossref_primary_10_3390_agronomy14092167
crossref_primary_10_13080_z_a_2021_108_047
crossref_primary_10_1016_j_wace_2024_100698
crossref_primary_10_1016_j_compag_2024_109034
crossref_primary_10_1098_rsbl_2023_0457
crossref_primary_10_1007_s11356_021_15357_5
crossref_primary_10_1029_2021GH000438
crossref_primary_10_5194_essd_15_359_2023
crossref_primary_10_1016_j_jhydrol_2021_126078
crossref_primary_10_1016_S2542_5196_21_00153_4
crossref_primary_10_59552_nppr_v3i1_57
crossref_primary_10_1016_j_agrformet_2022_109104
crossref_primary_10_1029_2020JD034483
crossref_primary_10_3389_fpls_2023_1287950
crossref_primary_10_1016_j_scs_2023_105099
crossref_primary_10_1016_j_agsy_2021_103344
crossref_primary_10_1016_j_gecco_2021_e01496
crossref_primary_10_5194_nhess_23_65_2023
crossref_primary_10_2139_ssrn_4568803
crossref_primary_10_1007_s11356_022_23590_9
crossref_primary_10_16993_tellusa_3235
crossref_primary_10_1029_2023EF003976
crossref_primary_10_1007_s00484_022_02295_1
crossref_primary_10_3390_f14061082
crossref_primary_10_1002_joc_7168
crossref_primary_10_1111_nyas_14887
crossref_primary_10_1007_s12011_022_03103_y
crossref_primary_10_1007_s10661_023_11663_2
crossref_primary_10_3390_genes13020296
crossref_primary_10_1016_j_jhazmat_2024_136486
crossref_primary_10_1007_s10668_021_01582_y
crossref_primary_10_1016_j_gloplacha_2022_103773
crossref_primary_10_1016_j_landurbplan_2023_104842
crossref_primary_10_1021_acs_energyfuels_0c01407
crossref_primary_10_1088_1748_9326_ac2347
crossref_primary_10_1007_s10725_022_00906_w
crossref_primary_10_1029_2020GH000274
crossref_primary_10_1016_j_envexpbot_2023_105366
crossref_primary_10_1007_s10862_023_10057_5
crossref_primary_10_3390_w16091285
crossref_primary_10_1007_s41748_024_00450_9
crossref_primary_10_7717_peerj_13881
crossref_primary_10_1016_j_buildenv_2024_111256
crossref_primary_10_1016_j_wace_2024_100643
crossref_primary_10_1051_e3sconf_202127302017
crossref_primary_10_1029_2021EF002027
crossref_primary_10_1007_s11869_020_00843_5
crossref_primary_10_3390_world5040054
crossref_primary_10_1016_j_jdeveco_2025_103472
crossref_primary_10_3390_photochem2040053
crossref_primary_10_1007_s10584_019_02640_1
crossref_primary_10_1139_cjps_2022_0156
crossref_primary_10_3390_atmos16020133
crossref_primary_10_1007_s10640_025_00955_5
crossref_primary_10_1016_j_gecco_2020_e01261
crossref_primary_10_3390_plants13162266
crossref_primary_10_1038_s41467_024_53470_4
crossref_primary_10_1038_s41612_022_00272_4
crossref_primary_10_30897_ijegeo_1383311
crossref_primary_10_1002_ppp_2247
crossref_primary_10_1016_j_genrep_2022_101552
crossref_primary_10_1126_sciadv_abi8789
crossref_primary_10_3390_atmos13081186
crossref_primary_10_3390_cli9120176
crossref_primary_10_1016_j_wace_2021_100328
crossref_primary_10_1080_24749508_2020_1752021
crossref_primary_10_1038_s43247_023_01112_w
crossref_primary_10_1016_j_earscirev_2020_103497
crossref_primary_10_1016_j_envint_2023_107906
crossref_primary_10_5194_nhess_24_4385_2024
crossref_primary_10_1002_adts_202301035
crossref_primary_10_56093_ijas_v92i11_123850
crossref_primary_10_3389_fphys_2022_809648
crossref_primary_10_1002_joc_8453
crossref_primary_10_7868_S25000640210410
crossref_primary_10_1016_j_crm_2021_100378
crossref_primary_10_1016_j_techfore_2020_120313
crossref_primary_10_1029_2024EF004646
crossref_primary_10_3389_fenvs_2022_825233
crossref_primary_10_1080_17517575_2021_1883123
crossref_primary_10_1016_j_rineng_2024_103683
crossref_primary_10_3390_fire8030113
crossref_primary_10_3390_atmos14061000
crossref_primary_10_3390_geosciences11050224
crossref_primary_10_1016_j_ecolmodel_2023_110445
crossref_primary_10_3390_agronomy12081907
crossref_primary_10_1016_j_indic_2022_100209
crossref_primary_10_1016_j_envexpbot_2021_104454
crossref_primary_10_1155_2020_7804692
crossref_primary_10_1016_j_enconman_2024_118786
crossref_primary_10_1038_s41586_023_06398_6
crossref_primary_10_1186_s42408_024_00268_w
crossref_primary_10_3390_plants10010074
crossref_primary_10_1016_j_iswcr_2021_04_009
crossref_primary_10_1016_j_uclim_2023_101606
crossref_primary_10_1016_j_gloenvcha_2022_102514
crossref_primary_10_3389_fpls_2023_1297569
crossref_primary_10_2139_ssrn_3888112
crossref_primary_10_3390_s22186749
crossref_primary_10_1016_j_pbi_2021_102122
crossref_primary_10_1016_j_scs_2023_104833
crossref_primary_10_3390_agronomy14112456
crossref_primary_10_1093_ije_dyab206
crossref_primary_10_1002_joc_8595
crossref_primary_10_1080_26892618_2020_1833397
crossref_primary_10_1007_s00382_020_05404_1
crossref_primary_10_1016_j_gecco_2020_e01343
crossref_primary_10_1088_2752_5295_ad8300
crossref_primary_10_1016_j_atmosres_2024_107896
crossref_primary_10_3389_fsufs_2021_691191
crossref_primary_10_1002_ece3_70047
crossref_primary_10_1016_j_scitotenv_2023_166879
crossref_primary_10_1108_JES_07_2024_0466
crossref_primary_10_1029_2021GH000390
crossref_primary_10_3390_su15065524
crossref_primary_10_1021_acs_jafc_1c03361
crossref_primary_10_1002_est2_135
crossref_primary_10_1016_j_eehl_2024_01_004
crossref_primary_10_1175_JAMC_D_21_0049_1
crossref_primary_10_1016_j_catena_2022_106702
crossref_primary_10_1002_joc_7152
crossref_primary_10_1186_s12989_020_00375_x
crossref_primary_10_3390_plants12040815
crossref_primary_10_1007_s11069_024_06872_y
crossref_primary_10_1016_j_scitotenv_2024_171037
crossref_primary_10_1093_plcell_koab113
crossref_primary_10_3390_plants10050871
crossref_primary_10_1002_agj2_20820
crossref_primary_10_1016_j_jhydrol_2024_131884
crossref_primary_10_1111_tpj_16913
crossref_primary_10_3390_w16182655
crossref_primary_10_1007_s42994_021_00067_w
crossref_primary_10_1007_s12517_024_12147_4
crossref_primary_10_3390_agronomy12050984
crossref_primary_10_1007_s10668_021_01428_7
crossref_primary_10_1088_2752_5295_ad3fdb
crossref_primary_10_1088_1755_1315_1372_1_012069
crossref_primary_10_1007_s11356_022_24601_5
crossref_primary_10_3390_fire6020044
crossref_primary_10_1016_j_scitotenv_2019_135894
crossref_primary_10_1061_JIDEDH_IRENG_10242
crossref_primary_10_1111_ajgw_12543
crossref_primary_10_1038_s41598_024_76386_x
crossref_primary_10_3390_atmos12101236
crossref_primary_10_3390_ijms21144858
crossref_primary_10_3390_fire5040088
crossref_primary_10_1016_j_gecco_2021_e01603
crossref_primary_10_1016_j_scitotenv_2021_150810
crossref_primary_10_3389_feart_2022_786829
crossref_primary_10_3389_fphy_2021_702064
crossref_primary_10_1016_j_earlhumdev_2020_105222
crossref_primary_10_1016_j_envc_2024_100860
crossref_primary_10_1186_s12870_023_04321_9
crossref_primary_10_1007_s00253_020_10882_8
crossref_primary_10_3390_fire4030057
crossref_primary_10_1093_jamia_ocac162
crossref_primary_10_1360_TB_2025_0015
crossref_primary_10_3390_atmos14030483
crossref_primary_10_1016_j_wace_2022_100482
crossref_primary_10_3389_fbuil_2021_622382
crossref_primary_10_3390_life13051102
crossref_primary_10_1016_j_jhydrol_2021_126414
crossref_primary_10_1016_j_enbuild_2024_115187
crossref_primary_10_1088_1748_9326_abe675
crossref_primary_10_36740_WLek202309104
crossref_primary_10_1016_j_ecz_2024_100004
crossref_primary_10_1016_j_joclim_2024_100367
crossref_primary_10_3390_rs12203277
crossref_primary_10_3390_molecules25184270
crossref_primary_10_1007_s00468_024_02555_0
crossref_primary_10_3390_agronomy13020610
crossref_primary_10_1016_j_envres_2025_121221
crossref_primary_10_1021_acs_est_3c03231
crossref_primary_10_1016_j_ultsonch_2024_106793
crossref_primary_10_1016_j_rser_2020_110293
crossref_primary_10_3390_molecules28041686
crossref_primary_10_3390_app14188348
crossref_primary_10_1007_s11356_021_17474_7
crossref_primary_10_3390_atmos12060790
crossref_primary_10_3390_plants13081071
crossref_primary_10_1016_S0140_6736_24_02251_7
crossref_primary_10_1088_1748_9326_ac66f4
crossref_primary_10_3390_ijerph17217795
crossref_primary_10_1080_07388551_2022_2042481
crossref_primary_10_1089_derm_2024_0301
Cites_doi 10.1126/sciadv.1603322
10.1073/pnas.1701354114
10.1038/nclimate3296
10.1038/nclimate1674
10.1073/pnas.0706680105
10.1002/2014GL062308
10.1016/j.jhydrol.2017.08.047
10.1029/2007GB002947
10.1002/jgrd.50188
10.1016/j.envint.2018.05.014
10.1029/2018JD028835
10.1016/j.accre.2017.05.004
10.1016/j.gloenvcha.2012.11.009
10.1111/j.1442-9993.1980.tb01243.x
10.1038/nclimate2470
10.1038/nclimate3275
10.1038/ngeo866
10.1073/pnas.1617526114
10.1080/16742834.2018.1440134
10.1016/j.agrformet.2014.04.010
10.5194/esd-4-219-2013
10.1073/pnas.1222463110
10.1088/1748-9326/aa8e2c
10.1016/j.jclepro.2018.10.137
10.1002/2018EF000813
10.1016/j.jhydrol.2017.10.017
10.1038/s41467-018-08070-4
10.1002/2017RG000574
10.1002/2017GL073531
10.1016/j.gloenvcha.2016.06.004
10.1016/j.agrformet.2011.09.002
10.1038/nclimate2153
10.1088/1748-9326/9/3/034011
10.1038/524409a
10.1038/nclimate1693
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.5194/esd-7-327-2016
10.1038/ncomms8537
10.1016/j.scib.2018.03.018
10.1890/ES11-00345.1
10.1038/nclimate2208
10.1038/s41558-018-0145-6
10.1029/2018GL078430
10.1002/2017GL074117
10.1038/s41467-018-03789-6
10.2136/sssaj2018.11.0438
10.1038/s41558-018-0190-1
10.1002/2017GL076753
10.1038/nclimate2617
10.1038/ncomms13931
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.envint.2019.04.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
EndPage 136
ExternalDocumentID oai_doaj_org_article_2db8bb80f9144a14832fa43c6328e9ad
31048130
10_1016_j_envint_2019_04_025
S0160412018328654
Genre Journal Article
GeographicLocations Canada
United States
China
Brazil
Australia
India
Russia
GeographicLocations_xml – name: Canada
– name: Australia
– name: India
– name: China
– name: Russia
– name: United States
– name: Brazil
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c573t-66175679a68d05345ebdc54270a32c9608f5a504d17fbf802e936391133b17283
IEDL.DBID .~1
ISSN 0160-4120
1873-6750
IngestDate Wed Aug 27 01:30:52 EDT 2025
Fri Jul 11 00:38:37 EDT 2025
Fri Jul 11 16:05:44 EDT 2025
Thu Apr 03 07:01:01 EDT 2025
Tue Jul 01 02:37:56 EDT 2025
Thu Apr 24 23:05:57 EDT 2025
Fri Feb 23 02:49:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Global warming
Exposure
Heat-related extremes
1.5 °C warming target
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-66175679a68d05345ebdc54270a32c9608f5a504d17fbf802e936391133b17283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8317-6711
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0160412018328654
PMID 31048130
PQID 2229241249
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2db8bb80f9144a14832fa43c6328e9ad
proquest_miscellaneous_2253242205
proquest_miscellaneous_2229241249
pubmed_primary_31048130
crossref_primary_10_1016_j_envint_2019_04_025
crossref_citationtrail_10_1016_j_envint_2019_04_025
elsevier_sciencedirect_doi_10_1016_j_envint_2019_04_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environment international
PublicationTitleAlternate Environ Int
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Fischer, Schar (bb0065) 2010; 3
Gao, Zhu, Yu, He, Wang, Tian (bb0075) 2014; 195-196
Rothfusz (bb0225) 1990
Im, Pal, Eltahir (bb0100) 2017; 3
Li, Zhou, Zou, Zhang, Zhang (bb0150) 2018; 45
Noble, Bary, Gill (bb0205) 1980; 5
Asseng (bb0025) 2015; 5
Zhou (bb0295) 2018; 11
Xu (bb0275) 2017; 8
Williams (bb0270) 2013; 3
Teixeira, Fischer, van Velthuizen, Walter, Ewert (bb0260) 2013; 170
Wang, Lin, Zhang, Zhang, Liu, Xu (bb0265) 2017; 7
King, Karoly, Henley (bb0140) 2017; 7
Li, Zou, Zhou (bb0155) 2018; 123
Matthews, Wilby, Murphy (bb0170) 2017; 114
Romero-Lankao, P. et al., 2014: North America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J.
Ahmadalipour, Moradkhani (bb0015) 2018; 117
Hempel, Frieler, Warszawski, Schewe, Piontek (bb0085) 2013; 4
Rosenzweig (bb0220) 2014; 111
Schleussner (bb0235) 2016; 7
King, Harrington (bb0130) 2018; 45
Huang, Yu, Dai, Wei, Kang (bb0095) 2017; 7
Monfreda, Ramankutty, Foley (bb0180) 2008; 22
Lung, Lavalle, Hiederer, Dosio, Bouwer (bb0160) 2013; 23
AghaKouchak, Feldman, Hoerling, Huxman, Lund (bb0010) 2015; 524
Sun, Miao, AghaKouchak, Duan (bb0250) 2017; 44
Ahmadalipour Moradkhani, Demirel (bb0020) 2017; 553
Nangombe, Zhou, Zhang, Wu, Hu, Zou, Li (bb0195) 2018; 8
Lehner, Coats, Stocker, Pendergrass, Sanderson, Raible, Smerdon (bb0145) 2017; 44
AghaKouchak, Cheng, Mazdiyasni, Farahmand (bb0005) 2014; 41
Keetch, Byram (bb0115) 1968; vol. 38
Challinor, Watson, Lobell, Howden, Smith, Chhetri (bb0045) 2014; 4
Murakami, Yamagata (bb0190) 2016
Russo, Sillmann, Sippel, Barcikowska, Ghisetti, Smid, O'Neill (bb0230) 2019; 10
Baker, Millar, Karoly, Beyerle, Guillod, Mitchell, Shiogama, Sparrow, Woollings, Allen (bb0030) 2018; 8
NOAA (bb0200) 1985
Deryng, Conway, Ramankutty, Price, Warren (bb0050) 2014; 9
Kharin, Flato, Zhang, Gillett, Zwiers, Anderson (bb0120) 2018; 6
Jia, Gao (bb0105) 2017; 555
Cai, Wang, Gan, Wu, Santoso, Lin (bb0035) 2018; 9
King, Karoly (bb0135) 2017; 12
Fischer, Knutti (bb0060) 2015; 5
Schauberger (bb9000) 2017; 8
Singh, Tsiang, Rajaratnam, Diffenbaugh (bb0245) 2014; 4
Yang, Jia, Wendroth, Liu, Shi, Huang, Bai (bb0280) 2019
Diffenbaugh, Giorgi, Raymond, Bi (bb0055) 2007; 104
Gao, Jia, Yu, He, Zhang, Zhu, Wang (bb0080) 2019; 208
Zhang, Zhou, Zou, Zhang, Chen (bb0285) 2018; 9
Hoegh-Guldberg, O., et al., 2018: Impacts of 1.5°C global warming on natural and human systems. In: Global Warming of 1.5 °C. an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M.Tignor, and T. Waterfeld (eds.)]. (In Press).
Frieler, Meinshausen, Golly, Mengel, Lebek, Donner, Hoegh-Guldberg (bb0070) 2013; 3
Carleton (bb0040) 2017; 114
Sun, Miao, Duan, Ashouri, Sorooshian, Hsu (bb0255) 2018; 56
Sillmann, Kharin, Zwiers, Zhang, Bronaugh (bb0240) 2013; 118
Fricko (bb9005) 2017; 42
Jolly, Cochrane, Freeborn, Holden, Brown, Williamson, Bowman (bb0110) 2015; 6
Zhou, Ren, Liu, Lu (bb0290) 2018; 63
Moritz, Parisien, Batllori, Krawchuk, Van Dorn, Ganz, Hayhoe (bb0185) 2012; 3
Olson (bb0210) 2001; 51
Zhou (10.1016/j.envint.2019.04.025_bb0290) 2018; 63
10.1016/j.envint.2019.04.025_bb0090
Baker (10.1016/j.envint.2019.04.025_bb0030) 2018; 8
Yang (10.1016/j.envint.2019.04.025_bb0280) 2019
AghaKouchak (10.1016/j.envint.2019.04.025_bb0010) 2015; 524
Lehner (10.1016/j.envint.2019.04.025_bb0145) 2017; 44
Russo (10.1016/j.envint.2019.04.025_bb0230) 2019; 10
Teixeira (10.1016/j.envint.2019.04.025_bb0260) 2013; 170
Carleton (10.1016/j.envint.2019.04.025_bb0040) 2017; 114
Fricko (10.1016/j.envint.2019.04.025_bb9005) 2017; 42
Schleussner (10.1016/j.envint.2019.04.025_bb0235) 2016; 7
Zhang (10.1016/j.envint.2019.04.025_bb0285) 2018; 9
Gao (10.1016/j.envint.2019.04.025_bb0080) 2019; 208
Frieler (10.1016/j.envint.2019.04.025_bb0070) 2013; 3
Keetch (10.1016/j.envint.2019.04.025_bb0115) 1968; vol. 38
Williams (10.1016/j.envint.2019.04.025_bb0270) 2013; 3
Schauberger (10.1016/j.envint.2019.04.025_bb9000) 2017; 8
Jia (10.1016/j.envint.2019.04.025_bb0105) 2017; 555
Monfreda (10.1016/j.envint.2019.04.025_bb0180) 2008; 22
Sun (10.1016/j.envint.2019.04.025_bb0255) 2018; 56
Huang (10.1016/j.envint.2019.04.025_bb0095) 2017; 7
Kharin (10.1016/j.envint.2019.04.025_bb0120) 2018; 6
Xu (10.1016/j.envint.2019.04.025_bb0275) 2017; 8
Li (10.1016/j.envint.2019.04.025_bb0150) 2018; 45
King (10.1016/j.envint.2019.04.025_bb0130) 2018; 45
Sun (10.1016/j.envint.2019.04.025_bb0250) 2017; 44
Fischer (10.1016/j.envint.2019.04.025_bb0060) 2015; 5
Rosenzweig (10.1016/j.envint.2019.04.025_bb0220) 2014; 111
AghaKouchak (10.1016/j.envint.2019.04.025_bb0005) 2014; 41
Sillmann (10.1016/j.envint.2019.04.025_bb0240) 2013; 118
Im (10.1016/j.envint.2019.04.025_bb0100) 2017; 3
Li (10.1016/j.envint.2019.04.025_bb0155) 2018; 123
Rothfusz (10.1016/j.envint.2019.04.025_bb0225) 1990
Wang (10.1016/j.envint.2019.04.025_bb0265) 2017; 7
Ahmadalipour (10.1016/j.envint.2019.04.025_bb0015) 2018; 117
Nangombe (10.1016/j.envint.2019.04.025_bb0195) 2018; 8
Cai (10.1016/j.envint.2019.04.025_bb0035) 2018; 9
Lung (10.1016/j.envint.2019.04.025_bb0160) 2013; 23
Deryng (10.1016/j.envint.2019.04.025_bb0050) 2014; 9
Gao (10.1016/j.envint.2019.04.025_bb0075) 2014; 195-196
King (10.1016/j.envint.2019.04.025_bb0140) 2017; 7
Singh (10.1016/j.envint.2019.04.025_bb0245) 2014; 4
Jolly (10.1016/j.envint.2019.04.025_bb0110) 2015; 6
Challinor (10.1016/j.envint.2019.04.025_bb0045) 2014; 4
Fischer (10.1016/j.envint.2019.04.025_bb0065) 2010; 3
King (10.1016/j.envint.2019.04.025_bb0135) 2017; 12
Noble (10.1016/j.envint.2019.04.025_bb0205) 1980; 5
Diffenbaugh (10.1016/j.envint.2019.04.025_bb0055) 2007; 104
NOAA (10.1016/j.envint.2019.04.025_bb0200) 1985
Asseng (10.1016/j.envint.2019.04.025_bb0025) 2015; 5
Murakami (10.1016/j.envint.2019.04.025_bb0190)
Zhou (10.1016/j.envint.2019.04.025_bb0295) 2018; 11
10.1016/j.envint.2019.04.025_bb0215
Hempel (10.1016/j.envint.2019.04.025_bb0085) 2013; 4
Moritz (10.1016/j.envint.2019.04.025_bb0185) 2012; 3
Ahmadalipour Moradkhani (10.1016/j.envint.2019.04.025_bb0020) 2017; 553
Olson (10.1016/j.envint.2019.04.025_bb0210) 2001; 51
Matthews (10.1016/j.envint.2019.04.025_bb0170) 2017; 114
References_xml – volume: 6
  start-page: 1
  year: 2015
  end-page: 11
  ident: bb0110
  article-title: Climate-induced variations in global wildfire danger from 1979 to 2013
  publication-title: Nat. Commun.
– year: 2016
  ident: bb0190
  article-title: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling
– volume: 104
  start-page: 20195
  year: 2007
  end-page: 20198
  ident: bb0055
  article-title: Indicators of 21st century socioclimatic exposure
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 398
  year: 2010
  end-page: 403
  ident: bb0065
  article-title: Consistent geographical patterns of changes in high-impact European heatwaves
  publication-title: Nat. Geosci.
– volume: 4
  start-page: 219
  year: 2013
  end-page: 236
  ident: bb0085
  article-title: A trend-preserving bias correction - the ISI-MIP approach
  publication-title: Earth Syst. Dynam.
– volume: 5
  start-page: 201
  year: 1980
  end-page: 203
  ident: bb0205
  article-title: Mcarthur fire-danger meters expressed as equations
  publication-title: Aust. J. Ecol.
– volume: 44
  start-page: 7419
  year: 2017
  end-page: 7428
  ident: bb0145
  article-title: Projected drought risk in 1.5 °C and 2 °C warmer climates
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 375
  year: 2018
  end-page: +
  ident: bb0195
  article-title: Record-breaking climate extremes in Africa under stabilized 1.5 degrees C and 2 degrees C global warming scenarios
  publication-title: Nat. Clim. Change
– volume: 114
  start-page: 8746
  year: 2017
  end-page: 8751
  ident: bb0040
  article-title: Crop-damaging temperatures increase suicide rates in India
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 604
  year: 2018
  end-page: 608
  ident: bb0030
  article-title: Higher CO
  publication-title: Nat. Clim. Change
– volume: 12
  start-page: 114031
  year: 2017
  ident: bb0135
  article-title: Climate extremes in Europe at 1.5 and 2 °C of global warming
  publication-title: Environ. Res. Lett.
– volume: 51
  start-page: 933
  year: 2001
  end-page: 938
  ident: bb0210
  article-title: Terrestrial ecoregions of the world: a new map of life on Earth
  publication-title: Bioscience
– volume: 118
  start-page: 2473
  year: 2013
  end-page: 2493
  ident: bb0240
  article-title: Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections
  publication-title: J. Geophys. Res. - Atmos.
– volume: 63
  start-page: 700
  year: 2018
  end-page: 707
  ident: bb0290
  article-title: Impact of 1.5 °C and 2.0 °C global warming on aircraft takeoff performance in China
  publication-title: Sci. Bull.
– reference: Romero-Lankao, P. et al., 2014: North America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J.
– year: 1985
  ident: bb0200
  article-title: Heat Wave: A Major Summer Killer
– volume: 524
  start-page: 409
  year: 2015
  end-page: 4011
  ident: bb0010
  article-title: Recognize anthropogenic drought
  publication-title: Nature
– volume: 56
  start-page: 79
  year: 2018
  end-page: 107
  ident: bb0255
  article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons
  publication-title: Rev. Geophys.
– year: 1990
  ident: bb0225
  article-title: The heat index equation
  publication-title: National Weather Service Technical Attachment (SR 90–23)
– volume: 114
  start-page: 3861
  year: 2017
  end-page: 3866
  ident: bb0170
  article-title: Communicating the deadly consequences of global warming for human heat stress
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 117
  start-page: 215
  year: 2018
  end-page: 225
  ident: bb0015
  article-title: Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA)
  publication-title: Environ. Int.
– volume: 123
  start-page: 10196
  year: 2018
  end-page: 10211
  ident: bb0155
  article-title: Extreme climate event changes in China in the 1.5 and 2 degrees C warmer climates: results from statistical and dynamical downscaling
  publication-title: J. Geophys. Res.-Atmos.
– volume: 195-196
  start-page: 32
  year: 2014
  end-page: 37
  ident: bb0075
  article-title: Water use efficiency threshold for terrestrial ecosystem carbon sequestration under afforestation in China
  publication-title: Agric. For. Meteorol.
– volume: 3
  year: 2017
  ident: bb0100
  article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia
  publication-title: Sci. Adv.
– volume: 111
  start-page: 268
  year: 2014
  end-page: 3273
  ident: bb0220
  article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 99
  year: 2017
  end-page: 107
  ident: bb0275
  article-title: Asian climate change under 1.5–4 °C warming targets
  publication-title: Adv. Clim. Change Res.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  ident: bb0035
  article-title: Stabilised frequency of extreme positive Indian Ocean dipole under 1.5 °C warming target
  publication-title: Nat. Commun.
– volume: 7
  start-page: 327
  year: 2016
  end-page: 351
  ident: bb0235
  article-title: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C
  publication-title: Earth Syst. Dynam
– volume: vol. 38
  year: 1968
  ident: bb0115
  article-title: A Drought Index for Forest Fire Control. Res. Pap. SE-38
– volume: 3
  start-page: 292
  year: 2013
  end-page: 297
  ident: bb0270
  article-title: Temperature as a potent driver of regional forest drought stress and tree mortality
  publication-title: Nat. Clim. Chang.
– volume: 22
  year: 2008
  ident: bb0180
  article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
  publication-title: Glob. Biogeochem. Cycles
– volume: 11
  start-page: 180
  year: 2018
  end-page: 188
  ident: bb0295
  article-title: When and how will the millennium silk road witness 1.5 °C and 2 °C warmer worlds?
  publication-title: Atmos. Oceanic Sci. Lett.
– volume: 3
  start-page: 165
  year: 2013
  end-page: 170
  ident: bb0070
  article-title: Limiting global warming to 2 degrees C is unlikely to save most coral reefs
  publication-title: Nat. Clim. Change
– volume: 23
  start-page: 522
  year: 2013
  end-page: 536
  ident: bb0160
  article-title: A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change
  publication-title: Glob. Environ. Chang.
– volume: 6
  start-page: 704
  year: 2018
  end-page: 715
  ident: bb0120
  article-title: Risks from climate extremes change differently from 1.5 °C to 2.0 °C depending on rarity
  publication-title: Earth’s Future
– volume: 7
  start-page: 412
  year: 2017
  end-page: 416
  ident: bb0140
  article-title: Australian climate extremes at 1.5 °C and 2 °C of global warming
  publication-title: Nat. Clim. Change
– volume: 170
  start-page: 206
  year: 2013
  end-page: 215
  ident: bb0260
  article-title: Global hot-spots of heat stress on agricultural crops due to climate change
  publication-title: Agric. For. Meteorol.
– volume: 10
  year: 2019
  ident: bb0230
  article-title: Half a degree and rapid socioeconomic development matter for heatwave risk
  publication-title: Nat. Commun.
– reference: Hoegh-Guldberg, O., et al., 2018: Impacts of 1.5°C global warming on natural and human systems. In: Global Warming of 1.5 °C. an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M.Tignor, and T. Waterfeld (eds.)]. (In Press).
– volume: 3
  start-page: 1
  year: 2012
  end-page: 22
  ident: bb0185
  article-title: Climate change and disruptions to global fire activity
  publication-title: Ecosphere
– volume: 4
  start-page: 287
  year: 2014
  end-page: 291
  ident: bb0045
  article-title: A meta-analysis of crop yield under climate change and adaptation
  publication-title: Nat. Clim. Change
– volume: 5
  start-page: 143
  year: 2015
  end-page: 147
  ident: bb0025
  article-title: Rising temperatures reduce global wheat production
  publication-title: Nat. Clim. Change
– volume: 9
  year: 2018
  ident: bb0285
  article-title: Reduced exposure to extreme precipitation from 0.5 degrees C less warming in global land monsoon regions
  publication-title: Nat. Commun.
– volume: 208
  start-page: 530
  year: 2019
  end-page: 540
  ident: bb0080
  article-title: Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China
  publication-title: J. Clean. Prod.
– volume: 7
  start-page: 417
  year: 2017
  end-page: 422
  ident: bb0095
  article-title: Drylands face potential threat under 2 degrees C global warming target
  publication-title: Nat. Clim. Change
– volume: 5
  start-page: 560
  year: 2015
  end-page: 564
  ident: bb0060
  article-title: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes
  publication-title: Nat. Clim. Change
– volume: 7
  year: 2017
  ident: bb0265
  article-title: Scenario dependence of future changes in climate extremes under 1.5 degrees C and 2 degrees C global warming
  publication-title: Sci. Rep.
– volume: 8
  year: 2017
  ident: bb9000
  article-title: Consistent negative response of US crops to high temperatures in observations and crop models
  publication-title: Nat. Commun.
– volume: 45
  start-page: 5030
  year: 2018
  end-page: 5033
  ident: bb0130
  article-title: The inequality of climate change from 1.5 to 2 °C of global warming
  publication-title: Geophys. Res. Lett.
– volume: 553
  start-page: 785
  year: 2017
  end-page: 797
  ident: bb0020
  article-title: A comparative assessment of projected meteorological and hydrological droughts: elucidating the role of temperature
  publication-title: J. Hydrol.
– volume: 41
  start-page: 8847
  year: 2014
  end-page: 8852
  ident: bb0005
  article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought
  publication-title: Geophys. Res. Lett.
– volume: 42
  start-page: 251
  year: 2017
  end-page: 267
  ident: bb9005
  article-title: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century
  publication-title: Glob. Environ. Chang.
– volume: 45
  start-page: 1541
  year: 2018
  end-page: 1550
  ident: bb0150
  article-title: Extreme high-temperature events over East Asia in 1.5 degrees C and 2 degrees C warmer futures: analysis of NCAR CESM low-warming experiments
  publication-title: Geophys. Res. Lett.
– volume: 9
  year: 2014
  ident: bb0050
  article-title: Global crop yield response to extreme heat stress under multiple climate change futures
  publication-title: Environ. Res. Lett.
– volume: 44
  start-page: 5078
  year: 2017
  end-page: 5085
  ident: bb0250
  article-title: Unraveling anthropogenic influence on the changing risk of heat waves in China
  publication-title: Geophys. Res. Lett.
– year: 2019
  ident: bb0280
  article-title: Noise-assisted multivariate empirical mode decomposition of saturated hydraulic conductivity along a south-north transect across the Loess Plateau of China
  publication-title: Soil Sci. Soc. Am. J.
– volume: 555
  start-page: 155
  year: 2017
  end-page: 168
  ident: bb0105
  article-title: Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China
  publication-title: J. Hydrol.
– volume: 4
  start-page: 456
  year: 2014
  end-page: 461
  ident: bb0245
  article-title: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season
  publication-title: Nat. Clim. Change
– volume: 3
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0100
  article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603322
– volume: 114
  start-page: 8746
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0040
  article-title: Crop-damaging temperatures increase suicide rates in India
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1701354114
– volume: 7
  start-page: 412
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0140
  article-title: Australian climate extremes at 1.5 °C and 2 °C of global warming
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3296
– ident: 10.1016/j.envint.2019.04.025_bb0190
– volume: 3
  start-page: 165
  year: 2013
  ident: 10.1016/j.envint.2019.04.025_bb0070
  article-title: Limiting global warming to 2 degrees C is unlikely to save most coral reefs
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1674
– volume: 104
  start-page: 20195
  year: 2007
  ident: 10.1016/j.envint.2019.04.025_bb0055
  article-title: Indicators of 21st century socioclimatic exposure
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0706680105
– volume: 41
  start-page: 8847
  year: 2014
  ident: 10.1016/j.envint.2019.04.025_bb0005
  article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL062308
– volume: 553
  start-page: 785
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0020
  article-title: A comparative assessment of projected meteorological and hydrological droughts: elucidating the role of temperature
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.08.047
– ident: 10.1016/j.envint.2019.04.025_bb0090
– volume: 22
  year: 2008
  ident: 10.1016/j.envint.2019.04.025_bb0180
  article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2007GB002947
– volume: 118
  start-page: 2473
  year: 2013
  ident: 10.1016/j.envint.2019.04.025_bb0240
  article-title: Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections
  publication-title: J. Geophys. Res. - Atmos.
  doi: 10.1002/jgrd.50188
– volume: vol. 38
  year: 1968
  ident: 10.1016/j.envint.2019.04.025_bb0115
– volume: 117
  start-page: 215
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0015
  article-title: Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA)
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.05.014
– volume: 123
  start-page: 10196
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0155
  article-title: Extreme climate event changes in China in the 1.5 and 2 degrees C warmer climates: results from statistical and dynamical downscaling
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2018JD028835
– volume: 8
  start-page: 99
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0275
  article-title: Asian climate change under 1.5–4 °C warming targets
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2017.05.004
– volume: 23
  start-page: 522
  year: 2013
  ident: 10.1016/j.envint.2019.04.025_bb0160
  article-title: A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2012.11.009
– ident: 10.1016/j.envint.2019.04.025_bb0215
– volume: 5
  start-page: 201
  year: 1980
  ident: 10.1016/j.envint.2019.04.025_bb0205
  article-title: Mcarthur fire-danger meters expressed as equations
  publication-title: Aust. J. Ecol.
  doi: 10.1111/j.1442-9993.1980.tb01243.x
– volume: 7
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0265
  article-title: Scenario dependence of future changes in climate extremes under 1.5 degrees C and 2 degrees C global warming
  publication-title: Sci. Rep.
– volume: 5
  start-page: 143
  year: 2015
  ident: 10.1016/j.envint.2019.04.025_bb0025
  article-title: Rising temperatures reduce global wheat production
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2470
– volume: 7
  start-page: 417
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0095
  article-title: Drylands face potential threat under 2 degrees C global warming target
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3275
– volume: 3
  start-page: 398
  year: 2010
  ident: 10.1016/j.envint.2019.04.025_bb0065
  article-title: Consistent geographical patterns of changes in high-impact European heatwaves
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo866
– volume: 114
  start-page: 3861
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0170
  article-title: Communicating the deadly consequences of global warming for human heat stress
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1617526114
– volume: 9
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0285
  article-title: Reduced exposure to extreme precipitation from 0.5 degrees C less warming in global land monsoon regions
  publication-title: Nat. Commun.
– volume: 11
  start-page: 180
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0295
  article-title: When and how will the millennium silk road witness 1.5 °C and 2 °C warmer worlds?
  publication-title: Atmos. Oceanic Sci. Lett.
  doi: 10.1080/16742834.2018.1440134
– volume: 195-196
  start-page: 32
  year: 2014
  ident: 10.1016/j.envint.2019.04.025_bb0075
  article-title: Water use efficiency threshold for terrestrial ecosystem carbon sequestration under afforestation in China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.04.010
– volume: 4
  start-page: 219
  year: 2013
  ident: 10.1016/j.envint.2019.04.025_bb0085
  article-title: A trend-preserving bias correction - the ISI-MIP approach
  publication-title: Earth Syst. Dynam.
  doi: 10.5194/esd-4-219-2013
– volume: 111
  start-page: 268
  year: 2014
  ident: 10.1016/j.envint.2019.04.025_bb0220
  article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1222463110
– volume: 12
  start-page: 114031
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0135
  article-title: Climate extremes in Europe at 1.5 and 2 °C of global warming
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa8e2c
– volume: 208
  start-page: 530
  year: 2019
  ident: 10.1016/j.envint.2019.04.025_bb0080
  article-title: Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.137
– volume: 6
  start-page: 704
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0120
  article-title: Risks from climate extremes change differently from 1.5 °C to 2.0 °C depending on rarity
  publication-title: Earth’s Future
  doi: 10.1002/2018EF000813
– volume: 555
  start-page: 155
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0105
  article-title: Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.10.017
– volume: 10
  year: 2019
  ident: 10.1016/j.envint.2019.04.025_bb0230
  article-title: Half a degree and rapid socioeconomic development matter for heatwave risk
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08070-4
– volume: 56
  start-page: 79
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0255
  article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons
  publication-title: Rev. Geophys.
  doi: 10.1002/2017RG000574
– volume: 44
  start-page: 5078
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0250
  article-title: Unraveling anthropogenic influence on the changing risk of heat waves in China
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073531
– volume: 42
  start-page: 251
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb9005
  article-title: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2016.06.004
– volume: 170
  start-page: 206
  year: 2013
  ident: 10.1016/j.envint.2019.04.025_bb0260
  article-title: Global hot-spots of heat stress on agricultural crops due to climate change
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.09.002
– volume: 4
  start-page: 287
  year: 2014
  ident: 10.1016/j.envint.2019.04.025_bb0045
  article-title: A meta-analysis of crop yield under climate change and adaptation
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2153
– volume: 9
  year: 2014
  ident: 10.1016/j.envint.2019.04.025_bb0050
  article-title: Global crop yield response to extreme heat stress under multiple climate change futures
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/3/034011
– year: 1985
  ident: 10.1016/j.envint.2019.04.025_bb0200
– volume: 524
  start-page: 409
  year: 2015
  ident: 10.1016/j.envint.2019.04.025_bb0010
  article-title: Recognize anthropogenic drought
  publication-title: Nature
  doi: 10.1038/524409a
– volume: 3
  start-page: 292
  year: 2013
  ident: 10.1016/j.envint.2019.04.025_bb0270
  article-title: Temperature as a potent driver of regional forest drought stress and tree mortality
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1693
– volume: 51
  start-page: 933
  year: 2001
  ident: 10.1016/j.envint.2019.04.025_bb0210
  article-title: Terrestrial ecoregions of the world: a new map of life on Earth
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 7
  start-page: 327
  year: 2016
  ident: 10.1016/j.envint.2019.04.025_bb0235
  article-title: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C
  publication-title: Earth Syst. Dynam
  doi: 10.5194/esd-7-327-2016
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.envint.2019.04.025_bb0110
  article-title: Climate-induced variations in global wildfire danger from 1979 to 2013
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8537
– volume: 63
  start-page: 700
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0290
  article-title: Impact of 1.5 °C and 2.0 °C global warming on aircraft takeoff performance in China
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.03.018
– volume: 3
  start-page: 1
  year: 2012
  ident: 10.1016/j.envint.2019.04.025_bb0185
  article-title: Climate change and disruptions to global fire activity
  publication-title: Ecosphere
  doi: 10.1890/ES11-00345.1
– volume: 4
  start-page: 456
  year: 2014
  ident: 10.1016/j.envint.2019.04.025_bb0245
  article-title: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2208
– volume: 8
  start-page: 375
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0195
  article-title: Record-breaking climate extremes in Africa under stabilized 1.5 degrees C and 2 degrees C global warming scenarios
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0145-6
– year: 1990
  ident: 10.1016/j.envint.2019.04.025_bb0225
  article-title: The heat index equation
– volume: 45
  start-page: 5030
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0130
  article-title: The inequality of climate change from 1.5 to 2 °C of global warming
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL078430
– volume: 44
  start-page: 7419
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb0145
  article-title: Projected drought risk in 1.5 °C and 2 °C warmer climates
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074117
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0035
  article-title: Stabilised frequency of extreme positive Indian Ocean dipole under 1.5 °C warming target
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03789-6
– year: 2019
  ident: 10.1016/j.envint.2019.04.025_bb0280
  article-title: Noise-assisted multivariate empirical mode decomposition of saturated hydraulic conductivity along a south-north transect across the Loess Plateau of China
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2018.11.0438
– volume: 8
  start-page: 604
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0030
  article-title: Higher CO2 concentrations increase extreme event risk in a 1.5 °C world
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0190-1
– volume: 45
  start-page: 1541
  year: 2018
  ident: 10.1016/j.envint.2019.04.025_bb0150
  article-title: Extreme high-temperature events over East Asia in 1.5 degrees C and 2 degrees C warmer futures: analysis of NCAR CESM low-warming experiments
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL076753
– volume: 5
  start-page: 560
  year: 2015
  ident: 10.1016/j.envint.2019.04.025_bb0060
  article-title: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2617
– volume: 8
  year: 2017
  ident: 10.1016/j.envint.2019.04.025_bb9000
  article-title: Consistent negative response of US crops to high temperatures in observations and crop models
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13931
SSID ssj0002485
Score 2.6596558
Snippet The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms 1.5 °C warming target
Australia
Brazil
Canada
China
corn
crops
developing countries
emissions
environmental policy
Exposure
fire hazard
fire season
Global warming
heat
heat stress
Heat-related extremes
human health
India
population density
Russia
soybeans
tropics
United States
wheat
wildfires
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTq0Qgm2BLbRypR6JiO04sY9QgVAlOBWJm-UnWrTKon2Iv9-ZONkuB9hLr5Hj-DH2fHZmvo-Qn077htdBFq52ZVGFaAuVbFUEbsGcmbTC4YX-7V19c1_9fpAPG1JfGBOW6YHzwJ3z4JRzqkwaoL8F8C441CV8LbiK2gbcfcHnDYepfg9Goq7M6g0NYLwckua6yC5MIWsxjpLpjuYUZbI3nFLH3f_KN72FPTsfdL1P9nrwSC9yow_Ih9iOyKcNSsERObz6l7kGRfuluxiR3XxBR3Pe0WcyyWz_FDdjmjNG6KylOS_yjAKEDgm2w8UZtW2g9nG-JumgqPq1oJh9NqeDwMqSTjH8COpI1E8ngIMjfbEYaPP4hdxfX_35dVP0uguFl41YFuCyG1k32tYqwBqtZHTBy4o3pRXcw5FHJWllWQXWJJdUyaMWAHQYHHcdyl2JQ7LTztp4TKhkIvAYfBIMmdCE8tw1TCdltWdRhzERw8Ab35OSozbG1AzRZ08mT5fB6TJlZWC6xqRYv_WcSTm2lL_EOV2XRUrt7gEYmukNzWwztDFpBoswPTrJqAOqmmz5_I_BgAwsXvwjY9s4Wy0MiqnzTv_7vTISQS8voZ6jbH3rjgA2rxSgkK__o4Mn5CM2Oscin5Kd5XwVvwHiWrrv3eL6C2e-Jtw
  priority: 102
  providerName: Directory of Open Access Journals
Title Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming
URI https://dx.doi.org/10.1016/j.envint.2019.04.025
https://www.ncbi.nlm.nih.gov/pubmed/31048130
https://www.proquest.com/docview/2229241249
https://www.proquest.com/docview/2253242205
https://doaj.org/article/2db8bb80f9144a14832fa43c6328e9ad
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgEhBAuF8lgZiWPDJn4kzrFUrRYQvUCl3iw_V0GrbLW7FTd-OzN2sm0PUIljookzsT97xs7MN4R8sK1rWO1lYWtbFsIHU6hoROGZAThX0nCLB_rfzuv5hfhyKS_3yMmYC4NhlcPan9f0tFoPd2ZDb86uum72HbnRRAUGDECpaomcoEI0iPKPv2_CPJCyK_N7gyogPabPpRgvTCbrMaKyahPhKRbMvmWeEov_HSv1Ny80WaOzp-TJ4EbS46zpM7IX-gl5dItccEIOTm9y2EB0mMSbCXmcj-pozkB6TrrM-09xWaY5d4SuepozJI8oONM-QidtjqjpPTWL9Y6ug2L9rw3FPLQ1HUutbOkSA5GgjUjdsgOPONBfBkNuFi_Ixdnpj5N5MVRgKJxs-LYA493IumlNrTzMViGD9U4K1pSGMwebHxWlkaXwVRNtVCULLQeXp4KNr8XCV_yA7PerPrwiVFbcs-Bd5BVyonHlmG2qNirTuiq0_pDwseO1G-jJsUrGUo9xaD91Hi6Nw6VLoWG4Dkmxe-oq03PcI_8Jx3Qni-Ta6cZqvdADujTzVlmrytiCqgb2i5wBfLmrAWehNaBqMyJC38EqNNXd8_r3I4A0TGP8N2P6sLreaCyrzlIl8H_JSHR_WQntvMzo230IeOlCgT_y-r91e0Me4lUORX5L9rfr6_AOHK6tnaYZNSUPjj9_nZ9P07HFHwmaKpQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgrVLXb0kJfrtQj0SZ-JM4REGgpsJeCxM3yK6tUqyzaXdS_35k4CXBokXpNHGdif54ZOzPfEPLdlq5guZeJzW2aCB9MoiojEs8MwDmThls80L-c5dNr8eNG3myR4z4XBsMqO90fdXqrrbsrk240J7d1PfmJ3GgiAwMGoFS5FM_INrJTyRHZPjw7n84GhYysXZHiG6SBB_oMujbMC_PJGgyqzMqW8xRrZj-wUC2R_yND9TdHtDVIp6_Jq86TpIdR2DdkKzRj8vIBv-CY7J7cp7FB024dr8dkJ57W0ZiE9JbUkfqfomamMX2ELhsakyQPKPjTvoJxWh9Q03hq5quBsYNiCbA1xVS0Fe2rrWzoAmORoI-KukUNTnGgvw1G3czfkevTk6vjadIVYUicLPgmAftdyLwoTa48LFghg_VOClakhjMH-x9VSSNT4bOispVKWSg5eD0Z7H0t1r7iu2TULJvwgVCZcc-CdxXPkBaNK8dskZWVMqXLQun3CO8HXruOoRwLZSx0H4r2S8fp0jhdOhUapmuPJMNTt5Gh44n2RzinQ1vk124vLFdz3QFMM2-VtSqtShDVwJaRM0AwdzlALZQGRC16ROhHcIWu6ide_60HkIaVjL9nTBOWd2uNldVZWwz8X20kesAshX7eR_QNHwKOulDgkuz_t2xfyfPp1eWFvjibnX8kL_BOjEz-REab1V34DP7Xxn7p1tcfKjQsUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+heat+stress+on+health%2C+wildfires%2C+and+agricultural+crops+under+different+levels+of+climate+warming&rft.jtitle=Environment+international&rft.au=Sun%2C+Qiaohong&rft.au=Miao%2C+Chiyuan&rft.au=Hanel%2C+Martin&rft.au=Borthwick%2C+Alistair+G+L&rft.date=2019-07-01&rft.eissn=1873-6750&rft.volume=128&rft.spage=125&rft_id=info:doi/10.1016%2Fj.envint.2019.04.025&rft_id=info%3Apmid%2F31048130&rft.externalDocID=31048130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon