Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming
The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of...
Saved in:
Published in | Environment international Vol. 128; pp. 125 - 136 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.07.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change.
•We assessed the influences of 1.5 °C and 2.0 °C warmings on the multiple sectors.•0.5 °C less warming would help avoid ~38% of the health-related heat exposure.•0.5 °C less warming would help avoid ~50% of the exposure to wildfire.•0.5 °C less warming would help avoid ~48% of the maize-related heat exposure.•Developing countries are likely to experience greater exposure to heat extremes. |
---|---|
AbstractList | The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change. The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change. •We assessed the influences of 1.5 °C and 2.0 °C warmings on the multiple sectors.•0.5 °C less warming would help avoid ~38% of the health-related heat exposure.•0.5 °C less warming would help avoid ~50% of the exposure to wildfire.•0.5 °C less warming would help avoid ~48% of the maize-related heat exposure.•Developing countries are likely to experience greater exposure to heat extremes. The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change. Keywords: Global warming, Exposure, Heat-related extremes, 1.5 °C warming target The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change.The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change. |
Author | Borthwick, Alistair G.L. Li, Hu Ji, Duoying Miao, Chiyuan Sun, Qiaohong Hanel, Martin Duan, Qingyun |
Author_xml | – sequence: 1 givenname: Qiaohong surname: Sun fullname: Sun, Qiaohong organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 2 givenname: Chiyuan surname: Miao fullname: Miao, Chiyuan email: miaocy@vip.sina.com organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 3 givenname: Martin orcidid: 0000-0001-8317-6711 surname: Hanel fullname: Hanel, Martin organization: Faculty of Environmental Sciences, Czech University of Life Sciences, Prague 16900, Czech Republic – sequence: 4 givenname: Alistair G.L. surname: Borthwick fullname: Borthwick, Alistair G.L. organization: School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK – sequence: 5 givenname: Qingyun surname: Duan fullname: Duan, Qingyun organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China – sequence: 6 givenname: Duoying surname: Ji fullname: Ji, Duoying organization: College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China – sequence: 7 givenname: Hu surname: Li fullname: Li, Hu organization: Key Laboratory of Agricultural Non-point Source Pollution Control, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31048130$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEURi1URNPCGyDkJYsm-HfGwwKpqqCtVIkNrC2PfZ06cjzB9qTi7XFI6aILurJ8db5PV_ecoZM0JUDoPSUrSmj3abOCtA-prhihw4qIFWHyFVpQ1fNl10tyghYNI0tBGTlFZ6VsCCFMKPkGnXJKhKKcLFC4jtNoIr4HU3GpGUrBUzp8Y72_wA8hOh_a9AKb5LBZ52DnWOfcIjZPu4Ln5CBjF7yHDKniCHuIrcNjG8PWVMAPJm9DWr9Fr72JBd49vufo57evP65ulnffr2-vLu-WVva8LruO9rLrB9MpRyQXEkZnpWA9MZzZoSPKSyOJcLT3o1eEwcA7PlDK-Uh7pvg5uj32usls9C63JfJvPZmg_w6mvNYm12AjaOZGNY6K-IEKYahQnHkjuO04UzAY17o-Hrt2efo1Q6l6G4qFGE2CaS6aMcmZYKwt-jLKBtZciKGhHx7RedyCe9rxn5UGiCPQTlxKBv-EUKIP8vVGH-Xrg3xNhG7yW-zzs5gN1dQwpZpNiC-FvxzDzR7sA2RdbIBkwTX9trbjhf8X_AE8Bsst |
CitedBy_id | crossref_primary_10_3389_fpls_2022_1036254 crossref_primary_10_3389_fpls_2021_750728 crossref_primary_10_1007_s11356_021_15325_z crossref_primary_10_1021_acs_est_1c07356 crossref_primary_10_3389_fpls_2024_1376370 crossref_primary_10_3992_jgb_17_4_179 crossref_primary_10_5363_tits_26_7_60 crossref_primary_10_3389_fpls_2023_1314021 crossref_primary_10_1002_joc_6798 crossref_primary_10_1016_j_uclim_2023_101674 crossref_primary_10_1016_j_plantsci_2023_111958 crossref_primary_10_1007_s11869_020_00883_x crossref_primary_10_3390_atmos14010178 crossref_primary_10_3390_plants13233405 crossref_primary_10_1007_s00704_023_04574_2 crossref_primary_10_7717_peerj_7424 crossref_primary_10_1016_j_catena_2021_105753 crossref_primary_10_1016_j_scitotenv_2020_138506 crossref_primary_10_1016_j_sciaf_2025_e02559 crossref_primary_10_1093_wbro_lkae001 crossref_primary_10_3389_fpls_2021_655103 crossref_primary_10_1029_2022GL099396 crossref_primary_10_1007_s12298_021_01098_9 crossref_primary_10_1029_2020WR028830 crossref_primary_10_3390_atmos13091504 crossref_primary_10_1029_2023JD040271 crossref_primary_10_3390_rs15143627 crossref_primary_10_1016_j_envsci_2021_10_018 crossref_primary_10_1016_j_wace_2022_100448 crossref_primary_10_3389_fpls_2022_944358 crossref_primary_10_3390_toxics12080548 crossref_primary_10_1007_s40710_021_00503_5 crossref_primary_10_3390_su17052223 crossref_primary_10_1016_j_scitotenv_2020_138732 crossref_primary_10_1016_j_jhydrol_2020_125820 crossref_primary_10_1088_2752_5295_ad1f41 crossref_primary_10_1016_j_jclepro_2022_131054 crossref_primary_10_1029_2019EF001398 crossref_primary_10_1039_D1GC03262C crossref_primary_10_1016_j_ecolind_2021_107480 crossref_primary_10_1056_NEJMsr2028985 crossref_primary_10_3390_f15050736 crossref_primary_10_5194_acp_23_6011_2023 crossref_primary_10_1016_j_rser_2024_114580 crossref_primary_10_1016_j_jhydrol_2022_128543 crossref_primary_10_1177_23814683241260423 crossref_primary_10_1016_S2542_5196_22_00067_5 crossref_primary_10_1002_ajp_23605 crossref_primary_10_3390_su162411235 crossref_primary_10_1038_s41467_024_54095_3 crossref_primary_10_2166_aqua_2023_168 crossref_primary_10_3390_agronomy14092167 crossref_primary_10_13080_z_a_2021_108_047 crossref_primary_10_1016_j_wace_2024_100698 crossref_primary_10_1016_j_compag_2024_109034 crossref_primary_10_1098_rsbl_2023_0457 crossref_primary_10_1007_s11356_021_15357_5 crossref_primary_10_1029_2021GH000438 crossref_primary_10_5194_essd_15_359_2023 crossref_primary_10_1016_j_jhydrol_2021_126078 crossref_primary_10_1016_S2542_5196_21_00153_4 crossref_primary_10_59552_nppr_v3i1_57 crossref_primary_10_1016_j_agrformet_2022_109104 crossref_primary_10_1029_2020JD034483 crossref_primary_10_3389_fpls_2023_1287950 crossref_primary_10_1016_j_scs_2023_105099 crossref_primary_10_1016_j_agsy_2021_103344 crossref_primary_10_1016_j_gecco_2021_e01496 crossref_primary_10_5194_nhess_23_65_2023 crossref_primary_10_2139_ssrn_4568803 crossref_primary_10_1007_s11356_022_23590_9 crossref_primary_10_16993_tellusa_3235 crossref_primary_10_1029_2023EF003976 crossref_primary_10_1007_s00484_022_02295_1 crossref_primary_10_3390_f14061082 crossref_primary_10_1002_joc_7168 crossref_primary_10_1111_nyas_14887 crossref_primary_10_1007_s12011_022_03103_y crossref_primary_10_1007_s10661_023_11663_2 crossref_primary_10_3390_genes13020296 crossref_primary_10_1016_j_jhazmat_2024_136486 crossref_primary_10_1007_s10668_021_01582_y crossref_primary_10_1016_j_gloplacha_2022_103773 crossref_primary_10_1016_j_landurbplan_2023_104842 crossref_primary_10_1021_acs_energyfuels_0c01407 crossref_primary_10_1088_1748_9326_ac2347 crossref_primary_10_1007_s10725_022_00906_w crossref_primary_10_1029_2020GH000274 crossref_primary_10_1016_j_envexpbot_2023_105366 crossref_primary_10_1007_s10862_023_10057_5 crossref_primary_10_3390_w16091285 crossref_primary_10_1007_s41748_024_00450_9 crossref_primary_10_7717_peerj_13881 crossref_primary_10_1016_j_buildenv_2024_111256 crossref_primary_10_1016_j_wace_2024_100643 crossref_primary_10_1051_e3sconf_202127302017 crossref_primary_10_1029_2021EF002027 crossref_primary_10_1007_s11869_020_00843_5 crossref_primary_10_3390_world5040054 crossref_primary_10_1016_j_jdeveco_2025_103472 crossref_primary_10_3390_photochem2040053 crossref_primary_10_1007_s10584_019_02640_1 crossref_primary_10_1139_cjps_2022_0156 crossref_primary_10_3390_atmos16020133 crossref_primary_10_1007_s10640_025_00955_5 crossref_primary_10_1016_j_gecco_2020_e01261 crossref_primary_10_3390_plants13162266 crossref_primary_10_1038_s41467_024_53470_4 crossref_primary_10_1038_s41612_022_00272_4 crossref_primary_10_30897_ijegeo_1383311 crossref_primary_10_1002_ppp_2247 crossref_primary_10_1016_j_genrep_2022_101552 crossref_primary_10_1126_sciadv_abi8789 crossref_primary_10_3390_atmos13081186 crossref_primary_10_3390_cli9120176 crossref_primary_10_1016_j_wace_2021_100328 crossref_primary_10_1080_24749508_2020_1752021 crossref_primary_10_1038_s43247_023_01112_w crossref_primary_10_1016_j_earscirev_2020_103497 crossref_primary_10_1016_j_envint_2023_107906 crossref_primary_10_5194_nhess_24_4385_2024 crossref_primary_10_1002_adts_202301035 crossref_primary_10_56093_ijas_v92i11_123850 crossref_primary_10_3389_fphys_2022_809648 crossref_primary_10_1002_joc_8453 crossref_primary_10_7868_S25000640210410 crossref_primary_10_1016_j_crm_2021_100378 crossref_primary_10_1016_j_techfore_2020_120313 crossref_primary_10_1029_2024EF004646 crossref_primary_10_3389_fenvs_2022_825233 crossref_primary_10_1080_17517575_2021_1883123 crossref_primary_10_1016_j_rineng_2024_103683 crossref_primary_10_3390_fire8030113 crossref_primary_10_3390_atmos14061000 crossref_primary_10_3390_geosciences11050224 crossref_primary_10_1016_j_ecolmodel_2023_110445 crossref_primary_10_3390_agronomy12081907 crossref_primary_10_1016_j_indic_2022_100209 crossref_primary_10_1016_j_envexpbot_2021_104454 crossref_primary_10_1155_2020_7804692 crossref_primary_10_1016_j_enconman_2024_118786 crossref_primary_10_1038_s41586_023_06398_6 crossref_primary_10_1186_s42408_024_00268_w crossref_primary_10_3390_plants10010074 crossref_primary_10_1016_j_iswcr_2021_04_009 crossref_primary_10_1016_j_uclim_2023_101606 crossref_primary_10_1016_j_gloenvcha_2022_102514 crossref_primary_10_3389_fpls_2023_1297569 crossref_primary_10_2139_ssrn_3888112 crossref_primary_10_3390_s22186749 crossref_primary_10_1016_j_pbi_2021_102122 crossref_primary_10_1016_j_scs_2023_104833 crossref_primary_10_3390_agronomy14112456 crossref_primary_10_1093_ije_dyab206 crossref_primary_10_1002_joc_8595 crossref_primary_10_1080_26892618_2020_1833397 crossref_primary_10_1007_s00382_020_05404_1 crossref_primary_10_1016_j_gecco_2020_e01343 crossref_primary_10_1088_2752_5295_ad8300 crossref_primary_10_1016_j_atmosres_2024_107896 crossref_primary_10_3389_fsufs_2021_691191 crossref_primary_10_1002_ece3_70047 crossref_primary_10_1016_j_scitotenv_2023_166879 crossref_primary_10_1108_JES_07_2024_0466 crossref_primary_10_1029_2021GH000390 crossref_primary_10_3390_su15065524 crossref_primary_10_1021_acs_jafc_1c03361 crossref_primary_10_1002_est2_135 crossref_primary_10_1016_j_eehl_2024_01_004 crossref_primary_10_1175_JAMC_D_21_0049_1 crossref_primary_10_1016_j_catena_2022_106702 crossref_primary_10_1002_joc_7152 crossref_primary_10_1186_s12989_020_00375_x crossref_primary_10_3390_plants12040815 crossref_primary_10_1007_s11069_024_06872_y crossref_primary_10_1016_j_scitotenv_2024_171037 crossref_primary_10_1093_plcell_koab113 crossref_primary_10_3390_plants10050871 crossref_primary_10_1002_agj2_20820 crossref_primary_10_1016_j_jhydrol_2024_131884 crossref_primary_10_1111_tpj_16913 crossref_primary_10_3390_w16182655 crossref_primary_10_1007_s42994_021_00067_w crossref_primary_10_1007_s12517_024_12147_4 crossref_primary_10_3390_agronomy12050984 crossref_primary_10_1007_s10668_021_01428_7 crossref_primary_10_1088_2752_5295_ad3fdb crossref_primary_10_1088_1755_1315_1372_1_012069 crossref_primary_10_1007_s11356_022_24601_5 crossref_primary_10_3390_fire6020044 crossref_primary_10_1016_j_scitotenv_2019_135894 crossref_primary_10_1061_JIDEDH_IRENG_10242 crossref_primary_10_1111_ajgw_12543 crossref_primary_10_1038_s41598_024_76386_x crossref_primary_10_3390_atmos12101236 crossref_primary_10_3390_ijms21144858 crossref_primary_10_3390_fire5040088 crossref_primary_10_1016_j_gecco_2021_e01603 crossref_primary_10_1016_j_scitotenv_2021_150810 crossref_primary_10_3389_feart_2022_786829 crossref_primary_10_3389_fphy_2021_702064 crossref_primary_10_1016_j_earlhumdev_2020_105222 crossref_primary_10_1016_j_envc_2024_100860 crossref_primary_10_1186_s12870_023_04321_9 crossref_primary_10_1007_s00253_020_10882_8 crossref_primary_10_3390_fire4030057 crossref_primary_10_1093_jamia_ocac162 crossref_primary_10_1360_TB_2025_0015 crossref_primary_10_3390_atmos14030483 crossref_primary_10_1016_j_wace_2022_100482 crossref_primary_10_3389_fbuil_2021_622382 crossref_primary_10_3390_life13051102 crossref_primary_10_1016_j_jhydrol_2021_126414 crossref_primary_10_1016_j_enbuild_2024_115187 crossref_primary_10_1088_1748_9326_abe675 crossref_primary_10_36740_WLek202309104 crossref_primary_10_1016_j_ecz_2024_100004 crossref_primary_10_1016_j_joclim_2024_100367 crossref_primary_10_3390_rs12203277 crossref_primary_10_3390_molecules25184270 crossref_primary_10_1007_s00468_024_02555_0 crossref_primary_10_3390_agronomy13020610 crossref_primary_10_1016_j_envres_2025_121221 crossref_primary_10_1021_acs_est_3c03231 crossref_primary_10_1016_j_ultsonch_2024_106793 crossref_primary_10_1016_j_rser_2020_110293 crossref_primary_10_3390_molecules28041686 crossref_primary_10_3390_app14188348 crossref_primary_10_1007_s11356_021_17474_7 crossref_primary_10_3390_atmos12060790 crossref_primary_10_3390_plants13081071 crossref_primary_10_1016_S0140_6736_24_02251_7 crossref_primary_10_1088_1748_9326_ac66f4 crossref_primary_10_3390_ijerph17217795 crossref_primary_10_1080_07388551_2022_2042481 crossref_primary_10_1089_derm_2024_0301 |
Cites_doi | 10.1126/sciadv.1603322 10.1073/pnas.1701354114 10.1038/nclimate3296 10.1038/nclimate1674 10.1073/pnas.0706680105 10.1002/2014GL062308 10.1016/j.jhydrol.2017.08.047 10.1029/2007GB002947 10.1002/jgrd.50188 10.1016/j.envint.2018.05.014 10.1029/2018JD028835 10.1016/j.accre.2017.05.004 10.1016/j.gloenvcha.2012.11.009 10.1111/j.1442-9993.1980.tb01243.x 10.1038/nclimate2470 10.1038/nclimate3275 10.1038/ngeo866 10.1073/pnas.1617526114 10.1080/16742834.2018.1440134 10.1016/j.agrformet.2014.04.010 10.5194/esd-4-219-2013 10.1073/pnas.1222463110 10.1088/1748-9326/aa8e2c 10.1016/j.jclepro.2018.10.137 10.1002/2018EF000813 10.1016/j.jhydrol.2017.10.017 10.1038/s41467-018-08070-4 10.1002/2017RG000574 10.1002/2017GL073531 10.1016/j.gloenvcha.2016.06.004 10.1016/j.agrformet.2011.09.002 10.1038/nclimate2153 10.1088/1748-9326/9/3/034011 10.1038/524409a 10.1038/nclimate1693 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.5194/esd-7-327-2016 10.1038/ncomms8537 10.1016/j.scib.2018.03.018 10.1890/ES11-00345.1 10.1038/nclimate2208 10.1038/s41558-018-0145-6 10.1029/2018GL078430 10.1002/2017GL074117 10.1038/s41467-018-03789-6 10.2136/sssaj2018.11.0438 10.1038/s41558-018-0190-1 10.1002/2017GL076753 10.1038/nclimate2617 10.1038/ncomms13931 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.envint.2019.04.025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
EndPage | 136 |
ExternalDocumentID | oai_doaj_org_article_2db8bb80f9144a14832fa43c6328e9ad 31048130 10_1016_j_envint_2019_04_025 S0160412018328654 |
Genre | Journal Article |
GeographicLocations | Canada United States China Brazil Australia India Russia |
GeographicLocations_xml | – name: Canada – name: Australia – name: India – name: China – name: Russia – name: United States – name: Brazil |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c573t-66175679a68d05345ebdc54270a32c9608f5a504d17fbf802e936391133b17283 |
IEDL.DBID | .~1 |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Fri Jul 11 00:38:37 EDT 2025 Fri Jul 11 16:05:44 EDT 2025 Thu Apr 03 07:01:01 EDT 2025 Tue Jul 01 02:37:56 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Fri Feb 23 02:49:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Global warming Exposure Heat-related extremes 1.5 °C warming target |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-66175679a68d05345ebdc54270a32c9608f5a504d17fbf802e936391133b17283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8317-6711 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0160412018328654 |
PMID | 31048130 |
PQID | 2229241249 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2db8bb80f9144a14832fa43c6328e9ad proquest_miscellaneous_2253242205 proquest_miscellaneous_2229241249 pubmed_primary_31048130 crossref_primary_10_1016_j_envint_2019_04_025 crossref_citationtrail_10_1016_j_envint_2019_04_025 elsevier_sciencedirect_doi_10_1016_j_envint_2019_04_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment international |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Fischer, Schar (bb0065) 2010; 3 Gao, Zhu, Yu, He, Wang, Tian (bb0075) 2014; 195-196 Rothfusz (bb0225) 1990 Im, Pal, Eltahir (bb0100) 2017; 3 Li, Zhou, Zou, Zhang, Zhang (bb0150) 2018; 45 Noble, Bary, Gill (bb0205) 1980; 5 Asseng (bb0025) 2015; 5 Zhou (bb0295) 2018; 11 Xu (bb0275) 2017; 8 Williams (bb0270) 2013; 3 Teixeira, Fischer, van Velthuizen, Walter, Ewert (bb0260) 2013; 170 Wang, Lin, Zhang, Zhang, Liu, Xu (bb0265) 2017; 7 King, Karoly, Henley (bb0140) 2017; 7 Li, Zou, Zhou (bb0155) 2018; 123 Matthews, Wilby, Murphy (bb0170) 2017; 114 Romero-Lankao, P. et al., 2014: North America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Ahmadalipour, Moradkhani (bb0015) 2018; 117 Hempel, Frieler, Warszawski, Schewe, Piontek (bb0085) 2013; 4 Rosenzweig (bb0220) 2014; 111 Schleussner (bb0235) 2016; 7 King, Harrington (bb0130) 2018; 45 Huang, Yu, Dai, Wei, Kang (bb0095) 2017; 7 Monfreda, Ramankutty, Foley (bb0180) 2008; 22 Lung, Lavalle, Hiederer, Dosio, Bouwer (bb0160) 2013; 23 AghaKouchak, Feldman, Hoerling, Huxman, Lund (bb0010) 2015; 524 Sun, Miao, AghaKouchak, Duan (bb0250) 2017; 44 Ahmadalipour Moradkhani, Demirel (bb0020) 2017; 553 Nangombe, Zhou, Zhang, Wu, Hu, Zou, Li (bb0195) 2018; 8 Lehner, Coats, Stocker, Pendergrass, Sanderson, Raible, Smerdon (bb0145) 2017; 44 AghaKouchak, Cheng, Mazdiyasni, Farahmand (bb0005) 2014; 41 Keetch, Byram (bb0115) 1968; vol. 38 Challinor, Watson, Lobell, Howden, Smith, Chhetri (bb0045) 2014; 4 Murakami, Yamagata (bb0190) 2016 Russo, Sillmann, Sippel, Barcikowska, Ghisetti, Smid, O'Neill (bb0230) 2019; 10 Baker, Millar, Karoly, Beyerle, Guillod, Mitchell, Shiogama, Sparrow, Woollings, Allen (bb0030) 2018; 8 NOAA (bb0200) 1985 Deryng, Conway, Ramankutty, Price, Warren (bb0050) 2014; 9 Kharin, Flato, Zhang, Gillett, Zwiers, Anderson (bb0120) 2018; 6 Jia, Gao (bb0105) 2017; 555 Cai, Wang, Gan, Wu, Santoso, Lin (bb0035) 2018; 9 King, Karoly (bb0135) 2017; 12 Fischer, Knutti (bb0060) 2015; 5 Schauberger (bb9000) 2017; 8 Singh, Tsiang, Rajaratnam, Diffenbaugh (bb0245) 2014; 4 Yang, Jia, Wendroth, Liu, Shi, Huang, Bai (bb0280) 2019 Diffenbaugh, Giorgi, Raymond, Bi (bb0055) 2007; 104 Gao, Jia, Yu, He, Zhang, Zhu, Wang (bb0080) 2019; 208 Zhang, Zhou, Zou, Zhang, Chen (bb0285) 2018; 9 Hoegh-Guldberg, O., et al., 2018: Impacts of 1.5°C global warming on natural and human systems. In: Global Warming of 1.5 °C. an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M.Tignor, and T. Waterfeld (eds.)]. (In Press). Frieler, Meinshausen, Golly, Mengel, Lebek, Donner, Hoegh-Guldberg (bb0070) 2013; 3 Carleton (bb0040) 2017; 114 Sun, Miao, Duan, Ashouri, Sorooshian, Hsu (bb0255) 2018; 56 Sillmann, Kharin, Zwiers, Zhang, Bronaugh (bb0240) 2013; 118 Fricko (bb9005) 2017; 42 Jolly, Cochrane, Freeborn, Holden, Brown, Williamson, Bowman (bb0110) 2015; 6 Zhou, Ren, Liu, Lu (bb0290) 2018; 63 Moritz, Parisien, Batllori, Krawchuk, Van Dorn, Ganz, Hayhoe (bb0185) 2012; 3 Olson (bb0210) 2001; 51 Zhou (10.1016/j.envint.2019.04.025_bb0290) 2018; 63 10.1016/j.envint.2019.04.025_bb0090 Baker (10.1016/j.envint.2019.04.025_bb0030) 2018; 8 Yang (10.1016/j.envint.2019.04.025_bb0280) 2019 AghaKouchak (10.1016/j.envint.2019.04.025_bb0010) 2015; 524 Lehner (10.1016/j.envint.2019.04.025_bb0145) 2017; 44 Russo (10.1016/j.envint.2019.04.025_bb0230) 2019; 10 Teixeira (10.1016/j.envint.2019.04.025_bb0260) 2013; 170 Carleton (10.1016/j.envint.2019.04.025_bb0040) 2017; 114 Fricko (10.1016/j.envint.2019.04.025_bb9005) 2017; 42 Schleussner (10.1016/j.envint.2019.04.025_bb0235) 2016; 7 Zhang (10.1016/j.envint.2019.04.025_bb0285) 2018; 9 Gao (10.1016/j.envint.2019.04.025_bb0080) 2019; 208 Frieler (10.1016/j.envint.2019.04.025_bb0070) 2013; 3 Keetch (10.1016/j.envint.2019.04.025_bb0115) 1968; vol. 38 Williams (10.1016/j.envint.2019.04.025_bb0270) 2013; 3 Schauberger (10.1016/j.envint.2019.04.025_bb9000) 2017; 8 Jia (10.1016/j.envint.2019.04.025_bb0105) 2017; 555 Monfreda (10.1016/j.envint.2019.04.025_bb0180) 2008; 22 Sun (10.1016/j.envint.2019.04.025_bb0255) 2018; 56 Huang (10.1016/j.envint.2019.04.025_bb0095) 2017; 7 Kharin (10.1016/j.envint.2019.04.025_bb0120) 2018; 6 Xu (10.1016/j.envint.2019.04.025_bb0275) 2017; 8 Li (10.1016/j.envint.2019.04.025_bb0150) 2018; 45 King (10.1016/j.envint.2019.04.025_bb0130) 2018; 45 Sun (10.1016/j.envint.2019.04.025_bb0250) 2017; 44 Fischer (10.1016/j.envint.2019.04.025_bb0060) 2015; 5 Rosenzweig (10.1016/j.envint.2019.04.025_bb0220) 2014; 111 AghaKouchak (10.1016/j.envint.2019.04.025_bb0005) 2014; 41 Sillmann (10.1016/j.envint.2019.04.025_bb0240) 2013; 118 Im (10.1016/j.envint.2019.04.025_bb0100) 2017; 3 Li (10.1016/j.envint.2019.04.025_bb0155) 2018; 123 Rothfusz (10.1016/j.envint.2019.04.025_bb0225) 1990 Wang (10.1016/j.envint.2019.04.025_bb0265) 2017; 7 Ahmadalipour (10.1016/j.envint.2019.04.025_bb0015) 2018; 117 Nangombe (10.1016/j.envint.2019.04.025_bb0195) 2018; 8 Cai (10.1016/j.envint.2019.04.025_bb0035) 2018; 9 Lung (10.1016/j.envint.2019.04.025_bb0160) 2013; 23 Deryng (10.1016/j.envint.2019.04.025_bb0050) 2014; 9 Gao (10.1016/j.envint.2019.04.025_bb0075) 2014; 195-196 King (10.1016/j.envint.2019.04.025_bb0140) 2017; 7 Singh (10.1016/j.envint.2019.04.025_bb0245) 2014; 4 Jolly (10.1016/j.envint.2019.04.025_bb0110) 2015; 6 Challinor (10.1016/j.envint.2019.04.025_bb0045) 2014; 4 Fischer (10.1016/j.envint.2019.04.025_bb0065) 2010; 3 King (10.1016/j.envint.2019.04.025_bb0135) 2017; 12 Noble (10.1016/j.envint.2019.04.025_bb0205) 1980; 5 Diffenbaugh (10.1016/j.envint.2019.04.025_bb0055) 2007; 104 NOAA (10.1016/j.envint.2019.04.025_bb0200) 1985 Asseng (10.1016/j.envint.2019.04.025_bb0025) 2015; 5 Murakami (10.1016/j.envint.2019.04.025_bb0190) Zhou (10.1016/j.envint.2019.04.025_bb0295) 2018; 11 10.1016/j.envint.2019.04.025_bb0215 Hempel (10.1016/j.envint.2019.04.025_bb0085) 2013; 4 Moritz (10.1016/j.envint.2019.04.025_bb0185) 2012; 3 Ahmadalipour Moradkhani (10.1016/j.envint.2019.04.025_bb0020) 2017; 553 Olson (10.1016/j.envint.2019.04.025_bb0210) 2001; 51 Matthews (10.1016/j.envint.2019.04.025_bb0170) 2017; 114 |
References_xml | – volume: 6 start-page: 1 year: 2015 end-page: 11 ident: bb0110 article-title: Climate-induced variations in global wildfire danger from 1979 to 2013 publication-title: Nat. Commun. – year: 2016 ident: bb0190 article-title: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling – volume: 104 start-page: 20195 year: 2007 end-page: 20198 ident: bb0055 article-title: Indicators of 21st century socioclimatic exposure publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 398 year: 2010 end-page: 403 ident: bb0065 article-title: Consistent geographical patterns of changes in high-impact European heatwaves publication-title: Nat. Geosci. – volume: 4 start-page: 219 year: 2013 end-page: 236 ident: bb0085 article-title: A trend-preserving bias correction - the ISI-MIP approach publication-title: Earth Syst. Dynam. – volume: 5 start-page: 201 year: 1980 end-page: 203 ident: bb0205 article-title: Mcarthur fire-danger meters expressed as equations publication-title: Aust. J. Ecol. – volume: 44 start-page: 7419 year: 2017 end-page: 7428 ident: bb0145 article-title: Projected drought risk in 1.5 °C and 2 °C warmer climates publication-title: Geophys. Res. Lett. – volume: 8 start-page: 375 year: 2018 end-page: + ident: bb0195 article-title: Record-breaking climate extremes in Africa under stabilized 1.5 degrees C and 2 degrees C global warming scenarios publication-title: Nat. Clim. Change – volume: 114 start-page: 8746 year: 2017 end-page: 8751 ident: bb0040 article-title: Crop-damaging temperatures increase suicide rates in India publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 604 year: 2018 end-page: 608 ident: bb0030 article-title: Higher CO publication-title: Nat. Clim. Change – volume: 12 start-page: 114031 year: 2017 ident: bb0135 article-title: Climate extremes in Europe at 1.5 and 2 °C of global warming publication-title: Environ. Res. Lett. – volume: 51 start-page: 933 year: 2001 end-page: 938 ident: bb0210 article-title: Terrestrial ecoregions of the world: a new map of life on Earth publication-title: Bioscience – volume: 118 start-page: 2473 year: 2013 end-page: 2493 ident: bb0240 article-title: Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections publication-title: J. Geophys. Res. - Atmos. – volume: 63 start-page: 700 year: 2018 end-page: 707 ident: bb0290 article-title: Impact of 1.5 °C and 2.0 °C global warming on aircraft takeoff performance in China publication-title: Sci. Bull. – reference: Romero-Lankao, P. et al., 2014: North America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. – year: 1985 ident: bb0200 article-title: Heat Wave: A Major Summer Killer – volume: 524 start-page: 409 year: 2015 end-page: 4011 ident: bb0010 article-title: Recognize anthropogenic drought publication-title: Nature – volume: 56 start-page: 79 year: 2018 end-page: 107 ident: bb0255 article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons publication-title: Rev. Geophys. – year: 1990 ident: bb0225 article-title: The heat index equation publication-title: National Weather Service Technical Attachment (SR 90–23) – volume: 114 start-page: 3861 year: 2017 end-page: 3866 ident: bb0170 article-title: Communicating the deadly consequences of global warming for human heat stress publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 117 start-page: 215 year: 2018 end-page: 225 ident: bb0015 article-title: Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA) publication-title: Environ. Int. – volume: 123 start-page: 10196 year: 2018 end-page: 10211 ident: bb0155 article-title: Extreme climate event changes in China in the 1.5 and 2 degrees C warmer climates: results from statistical and dynamical downscaling publication-title: J. Geophys. Res.-Atmos. – volume: 195-196 start-page: 32 year: 2014 end-page: 37 ident: bb0075 article-title: Water use efficiency threshold for terrestrial ecosystem carbon sequestration under afforestation in China publication-title: Agric. For. Meteorol. – volume: 3 year: 2017 ident: bb0100 article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia publication-title: Sci. Adv. – volume: 111 start-page: 268 year: 2014 end-page: 3273 ident: bb0220 article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 99 year: 2017 end-page: 107 ident: bb0275 article-title: Asian climate change under 1.5–4 °C warming targets publication-title: Adv. Clim. Change Res. – volume: 9 start-page: 1 year: 2018 end-page: 8 ident: bb0035 article-title: Stabilised frequency of extreme positive Indian Ocean dipole under 1.5 °C warming target publication-title: Nat. Commun. – volume: 7 start-page: 327 year: 2016 end-page: 351 ident: bb0235 article-title: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C publication-title: Earth Syst. Dynam – volume: vol. 38 year: 1968 ident: bb0115 article-title: A Drought Index for Forest Fire Control. Res. Pap. SE-38 – volume: 3 start-page: 292 year: 2013 end-page: 297 ident: bb0270 article-title: Temperature as a potent driver of regional forest drought stress and tree mortality publication-title: Nat. Clim. Chang. – volume: 22 year: 2008 ident: bb0180 article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 publication-title: Glob. Biogeochem. Cycles – volume: 11 start-page: 180 year: 2018 end-page: 188 ident: bb0295 article-title: When and how will the millennium silk road witness 1.5 °C and 2 °C warmer worlds? publication-title: Atmos. Oceanic Sci. Lett. – volume: 3 start-page: 165 year: 2013 end-page: 170 ident: bb0070 article-title: Limiting global warming to 2 degrees C is unlikely to save most coral reefs publication-title: Nat. Clim. Change – volume: 23 start-page: 522 year: 2013 end-page: 536 ident: bb0160 article-title: A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change publication-title: Glob. Environ. Chang. – volume: 6 start-page: 704 year: 2018 end-page: 715 ident: bb0120 article-title: Risks from climate extremes change differently from 1.5 °C to 2.0 °C depending on rarity publication-title: Earth’s Future – volume: 7 start-page: 412 year: 2017 end-page: 416 ident: bb0140 article-title: Australian climate extremes at 1.5 °C and 2 °C of global warming publication-title: Nat. Clim. Change – volume: 170 start-page: 206 year: 2013 end-page: 215 ident: bb0260 article-title: Global hot-spots of heat stress on agricultural crops due to climate change publication-title: Agric. For. Meteorol. – volume: 10 year: 2019 ident: bb0230 article-title: Half a degree and rapid socioeconomic development matter for heatwave risk publication-title: Nat. Commun. – reference: Hoegh-Guldberg, O., et al., 2018: Impacts of 1.5°C global warming on natural and human systems. In: Global Warming of 1.5 °C. an IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M.Tignor, and T. Waterfeld (eds.)]. (In Press). – volume: 3 start-page: 1 year: 2012 end-page: 22 ident: bb0185 article-title: Climate change and disruptions to global fire activity publication-title: Ecosphere – volume: 4 start-page: 287 year: 2014 end-page: 291 ident: bb0045 article-title: A meta-analysis of crop yield under climate change and adaptation publication-title: Nat. Clim. Change – volume: 5 start-page: 143 year: 2015 end-page: 147 ident: bb0025 article-title: Rising temperatures reduce global wheat production publication-title: Nat. Clim. Change – volume: 9 year: 2018 ident: bb0285 article-title: Reduced exposure to extreme precipitation from 0.5 degrees C less warming in global land monsoon regions publication-title: Nat. Commun. – volume: 208 start-page: 530 year: 2019 end-page: 540 ident: bb0080 article-title: Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China publication-title: J. Clean. Prod. – volume: 7 start-page: 417 year: 2017 end-page: 422 ident: bb0095 article-title: Drylands face potential threat under 2 degrees C global warming target publication-title: Nat. Clim. Change – volume: 5 start-page: 560 year: 2015 end-page: 564 ident: bb0060 article-title: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes publication-title: Nat. Clim. Change – volume: 7 year: 2017 ident: bb0265 article-title: Scenario dependence of future changes in climate extremes under 1.5 degrees C and 2 degrees C global warming publication-title: Sci. Rep. – volume: 8 year: 2017 ident: bb9000 article-title: Consistent negative response of US crops to high temperatures in observations and crop models publication-title: Nat. Commun. – volume: 45 start-page: 5030 year: 2018 end-page: 5033 ident: bb0130 article-title: The inequality of climate change from 1.5 to 2 °C of global warming publication-title: Geophys. Res. Lett. – volume: 553 start-page: 785 year: 2017 end-page: 797 ident: bb0020 article-title: A comparative assessment of projected meteorological and hydrological droughts: elucidating the role of temperature publication-title: J. Hydrol. – volume: 41 start-page: 8847 year: 2014 end-page: 8852 ident: bb0005 article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought publication-title: Geophys. Res. Lett. – volume: 42 start-page: 251 year: 2017 end-page: 267 ident: bb9005 article-title: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century publication-title: Glob. Environ. Chang. – volume: 45 start-page: 1541 year: 2018 end-page: 1550 ident: bb0150 article-title: Extreme high-temperature events over East Asia in 1.5 degrees C and 2 degrees C warmer futures: analysis of NCAR CESM low-warming experiments publication-title: Geophys. Res. Lett. – volume: 9 year: 2014 ident: bb0050 article-title: Global crop yield response to extreme heat stress under multiple climate change futures publication-title: Environ. Res. Lett. – volume: 44 start-page: 5078 year: 2017 end-page: 5085 ident: bb0250 article-title: Unraveling anthropogenic influence on the changing risk of heat waves in China publication-title: Geophys. Res. Lett. – year: 2019 ident: bb0280 article-title: Noise-assisted multivariate empirical mode decomposition of saturated hydraulic conductivity along a south-north transect across the Loess Plateau of China publication-title: Soil Sci. Soc. Am. J. – volume: 555 start-page: 155 year: 2017 end-page: 168 ident: bb0105 article-title: Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China publication-title: J. Hydrol. – volume: 4 start-page: 456 year: 2014 end-page: 461 ident: bb0245 article-title: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season publication-title: Nat. Clim. Change – volume: 3 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0100 article-title: Deadly heat waves projected in the densely populated agricultural regions of South Asia publication-title: Sci. Adv. doi: 10.1126/sciadv.1603322 – volume: 114 start-page: 8746 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0040 article-title: Crop-damaging temperatures increase suicide rates in India publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1701354114 – volume: 7 start-page: 412 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0140 article-title: Australian climate extremes at 1.5 °C and 2 °C of global warming publication-title: Nat. Clim. Change doi: 10.1038/nclimate3296 – ident: 10.1016/j.envint.2019.04.025_bb0190 – volume: 3 start-page: 165 year: 2013 ident: 10.1016/j.envint.2019.04.025_bb0070 article-title: Limiting global warming to 2 degrees C is unlikely to save most coral reefs publication-title: Nat. Clim. Change doi: 10.1038/nclimate1674 – volume: 104 start-page: 20195 year: 2007 ident: 10.1016/j.envint.2019.04.025_bb0055 article-title: Indicators of 21st century socioclimatic exposure publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0706680105 – volume: 41 start-page: 8847 year: 2014 ident: 10.1016/j.envint.2019.04.025_bb0005 article-title: Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL062308 – volume: 553 start-page: 785 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0020 article-title: A comparative assessment of projected meteorological and hydrological droughts: elucidating the role of temperature publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.08.047 – ident: 10.1016/j.envint.2019.04.025_bb0090 – volume: 22 year: 2008 ident: 10.1016/j.envint.2019.04.025_bb0180 article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2007GB002947 – volume: 118 start-page: 2473 year: 2013 ident: 10.1016/j.envint.2019.04.025_bb0240 article-title: Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections publication-title: J. Geophys. Res. - Atmos. doi: 10.1002/jgrd.50188 – volume: vol. 38 year: 1968 ident: 10.1016/j.envint.2019.04.025_bb0115 – volume: 117 start-page: 215 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0015 article-title: Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA) publication-title: Environ. Int. doi: 10.1016/j.envint.2018.05.014 – volume: 123 start-page: 10196 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0155 article-title: Extreme climate event changes in China in the 1.5 and 2 degrees C warmer climates: results from statistical and dynamical downscaling publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2018JD028835 – volume: 8 start-page: 99 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0275 article-title: Asian climate change under 1.5–4 °C warming targets publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2017.05.004 – volume: 23 start-page: 522 year: 2013 ident: 10.1016/j.envint.2019.04.025_bb0160 article-title: A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2012.11.009 – ident: 10.1016/j.envint.2019.04.025_bb0215 – volume: 5 start-page: 201 year: 1980 ident: 10.1016/j.envint.2019.04.025_bb0205 article-title: Mcarthur fire-danger meters expressed as equations publication-title: Aust. J. Ecol. doi: 10.1111/j.1442-9993.1980.tb01243.x – volume: 7 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0265 article-title: Scenario dependence of future changes in climate extremes under 1.5 degrees C and 2 degrees C global warming publication-title: Sci. Rep. – volume: 5 start-page: 143 year: 2015 ident: 10.1016/j.envint.2019.04.025_bb0025 article-title: Rising temperatures reduce global wheat production publication-title: Nat. Clim. Change doi: 10.1038/nclimate2470 – volume: 7 start-page: 417 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0095 article-title: Drylands face potential threat under 2 degrees C global warming target publication-title: Nat. Clim. Change doi: 10.1038/nclimate3275 – volume: 3 start-page: 398 year: 2010 ident: 10.1016/j.envint.2019.04.025_bb0065 article-title: Consistent geographical patterns of changes in high-impact European heatwaves publication-title: Nat. Geosci. doi: 10.1038/ngeo866 – volume: 114 start-page: 3861 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0170 article-title: Communicating the deadly consequences of global warming for human heat stress publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1617526114 – volume: 9 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0285 article-title: Reduced exposure to extreme precipitation from 0.5 degrees C less warming in global land monsoon regions publication-title: Nat. Commun. – volume: 11 start-page: 180 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0295 article-title: When and how will the millennium silk road witness 1.5 °C and 2 °C warmer worlds? publication-title: Atmos. Oceanic Sci. Lett. doi: 10.1080/16742834.2018.1440134 – volume: 195-196 start-page: 32 year: 2014 ident: 10.1016/j.envint.2019.04.025_bb0075 article-title: Water use efficiency threshold for terrestrial ecosystem carbon sequestration under afforestation in China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.04.010 – volume: 4 start-page: 219 year: 2013 ident: 10.1016/j.envint.2019.04.025_bb0085 article-title: A trend-preserving bias correction - the ISI-MIP approach publication-title: Earth Syst. Dynam. doi: 10.5194/esd-4-219-2013 – volume: 111 start-page: 268 year: 2014 ident: 10.1016/j.envint.2019.04.025_bb0220 article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1222463110 – volume: 12 start-page: 114031 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0135 article-title: Climate extremes in Europe at 1.5 and 2 °C of global warming publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa8e2c – volume: 208 start-page: 530 year: 2019 ident: 10.1016/j.envint.2019.04.025_bb0080 article-title: Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.137 – volume: 6 start-page: 704 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0120 article-title: Risks from climate extremes change differently from 1.5 °C to 2.0 °C depending on rarity publication-title: Earth’s Future doi: 10.1002/2018EF000813 – volume: 555 start-page: 155 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0105 article-title: Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.10.017 – volume: 10 year: 2019 ident: 10.1016/j.envint.2019.04.025_bb0230 article-title: Half a degree and rapid socioeconomic development matter for heatwave risk publication-title: Nat. Commun. doi: 10.1038/s41467-018-08070-4 – volume: 56 start-page: 79 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0255 article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons publication-title: Rev. Geophys. doi: 10.1002/2017RG000574 – volume: 44 start-page: 5078 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0250 article-title: Unraveling anthropogenic influence on the changing risk of heat waves in China publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073531 – volume: 42 start-page: 251 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb9005 article-title: The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2016.06.004 – volume: 170 start-page: 206 year: 2013 ident: 10.1016/j.envint.2019.04.025_bb0260 article-title: Global hot-spots of heat stress on agricultural crops due to climate change publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.09.002 – volume: 4 start-page: 287 year: 2014 ident: 10.1016/j.envint.2019.04.025_bb0045 article-title: A meta-analysis of crop yield under climate change and adaptation publication-title: Nat. Clim. Change doi: 10.1038/nclimate2153 – volume: 9 year: 2014 ident: 10.1016/j.envint.2019.04.025_bb0050 article-title: Global crop yield response to extreme heat stress under multiple climate change futures publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/3/034011 – year: 1985 ident: 10.1016/j.envint.2019.04.025_bb0200 – volume: 524 start-page: 409 year: 2015 ident: 10.1016/j.envint.2019.04.025_bb0010 article-title: Recognize anthropogenic drought publication-title: Nature doi: 10.1038/524409a – volume: 3 start-page: 292 year: 2013 ident: 10.1016/j.envint.2019.04.025_bb0270 article-title: Temperature as a potent driver of regional forest drought stress and tree mortality publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1693 – volume: 51 start-page: 933 year: 2001 ident: 10.1016/j.envint.2019.04.025_bb0210 article-title: Terrestrial ecoregions of the world: a new map of life on Earth publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – volume: 7 start-page: 327 year: 2016 ident: 10.1016/j.envint.2019.04.025_bb0235 article-title: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C publication-title: Earth Syst. Dynam doi: 10.5194/esd-7-327-2016 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.envint.2019.04.025_bb0110 article-title: Climate-induced variations in global wildfire danger from 1979 to 2013 publication-title: Nat. Commun. doi: 10.1038/ncomms8537 – volume: 63 start-page: 700 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0290 article-title: Impact of 1.5 °C and 2.0 °C global warming on aircraft takeoff performance in China publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.03.018 – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.envint.2019.04.025_bb0185 article-title: Climate change and disruptions to global fire activity publication-title: Ecosphere doi: 10.1890/ES11-00345.1 – volume: 4 start-page: 456 year: 2014 ident: 10.1016/j.envint.2019.04.025_bb0245 article-title: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season publication-title: Nat. Clim. Change doi: 10.1038/nclimate2208 – volume: 8 start-page: 375 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0195 article-title: Record-breaking climate extremes in Africa under stabilized 1.5 degrees C and 2 degrees C global warming scenarios publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0145-6 – year: 1990 ident: 10.1016/j.envint.2019.04.025_bb0225 article-title: The heat index equation – volume: 45 start-page: 5030 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0130 article-title: The inequality of climate change from 1.5 to 2 °C of global warming publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL078430 – volume: 44 start-page: 7419 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb0145 article-title: Projected drought risk in 1.5 °C and 2 °C warmer climates publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074117 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0035 article-title: Stabilised frequency of extreme positive Indian Ocean dipole under 1.5 °C warming target publication-title: Nat. Commun. doi: 10.1038/s41467-018-03789-6 – year: 2019 ident: 10.1016/j.envint.2019.04.025_bb0280 article-title: Noise-assisted multivariate empirical mode decomposition of saturated hydraulic conductivity along a south-north transect across the Loess Plateau of China publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.11.0438 – volume: 8 start-page: 604 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0030 article-title: Higher CO2 concentrations increase extreme event risk in a 1.5 °C world publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0190-1 – volume: 45 start-page: 1541 year: 2018 ident: 10.1016/j.envint.2019.04.025_bb0150 article-title: Extreme high-temperature events over East Asia in 1.5 degrees C and 2 degrees C warmer futures: analysis of NCAR CESM low-warming experiments publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL076753 – volume: 5 start-page: 560 year: 2015 ident: 10.1016/j.envint.2019.04.025_bb0060 article-title: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes publication-title: Nat. Clim. Change doi: 10.1038/nclimate2617 – volume: 8 year: 2017 ident: 10.1016/j.envint.2019.04.025_bb9000 article-title: Consistent negative response of US crops to high temperatures in observations and crop models publication-title: Nat. Commun. doi: 10.1038/ncomms13931 |
SSID | ssj0002485 |
Score | 2.6596558 |
Snippet | The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | 1.5 °C warming target Australia Brazil Canada China corn crops developing countries emissions environmental policy Exposure fire hazard fire season Global warming heat heat stress Heat-related extremes human health India population density Russia soybeans tropics United States wheat wildfires |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTq0Qgm2BLbRypR6JiO04sY9QgVAlOBWJm-UnWrTKon2Iv9-ZONkuB9hLr5Hj-DH2fHZmvo-Qn077htdBFq52ZVGFaAuVbFUEbsGcmbTC4YX-7V19c1_9fpAPG1JfGBOW6YHzwJ3z4JRzqkwaoL8F8C441CV8LbiK2gbcfcHnDYepfg9Goq7M6g0NYLwckua6yC5MIWsxjpLpjuYUZbI3nFLH3f_KN72FPTsfdL1P9nrwSC9yow_Ih9iOyKcNSsERObz6l7kGRfuluxiR3XxBR3Pe0WcyyWz_FDdjmjNG6KylOS_yjAKEDgm2w8UZtW2g9nG-JumgqPq1oJh9NqeDwMqSTjH8COpI1E8ngIMjfbEYaPP4hdxfX_35dVP0uguFl41YFuCyG1k32tYqwBqtZHTBy4o3pRXcw5FHJWllWQXWJJdUyaMWAHQYHHcdyl2JQ7LTztp4TKhkIvAYfBIMmdCE8tw1TCdltWdRhzERw8Ab35OSozbG1AzRZ08mT5fB6TJlZWC6xqRYv_WcSTm2lL_EOV2XRUrt7gEYmukNzWwztDFpBoswPTrJqAOqmmz5_I_BgAwsXvwjY9s4Wy0MiqnzTv_7vTISQS8voZ6jbH3rjgA2rxSgkK__o4Mn5CM2Oscin5Kd5XwVvwHiWrrv3eL6C2e-Jtw priority: 102 providerName: Directory of Open Access Journals |
Title | Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming |
URI | https://dx.doi.org/10.1016/j.envint.2019.04.025 https://www.ncbi.nlm.nih.gov/pubmed/31048130 https://www.proquest.com/docview/2229241249 https://www.proquest.com/docview/2253242205 https://doaj.org/article/2db8bb80f9144a14832fa43c6328e9ad |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgEhBAuF8lgZiWPDJn4kzrFUrRYQvUCl3iw_V0GrbLW7FTd-OzN2sm0PUIljookzsT97xs7MN4R8sK1rWO1lYWtbFsIHU6hoROGZAThX0nCLB_rfzuv5hfhyKS_3yMmYC4NhlcPan9f0tFoPd2ZDb86uum72HbnRRAUGDECpaomcoEI0iPKPv2_CPJCyK_N7gyogPabPpRgvTCbrMaKyahPhKRbMvmWeEov_HSv1Ny80WaOzp-TJ4EbS46zpM7IX-gl5dItccEIOTm9y2EB0mMSbCXmcj-pozkB6TrrM-09xWaY5d4SuepozJI8oONM-QidtjqjpPTWL9Y6ug2L9rw3FPLQ1HUutbOkSA5GgjUjdsgOPONBfBkNuFi_Ixdnpj5N5MVRgKJxs-LYA493IumlNrTzMViGD9U4K1pSGMwebHxWlkaXwVRNtVCULLQeXp4KNr8XCV_yA7PerPrwiVFbcs-Bd5BVyonHlmG2qNirTuiq0_pDwseO1G-jJsUrGUo9xaD91Hi6Nw6VLoWG4Dkmxe-oq03PcI_8Jx3Qni-Ta6cZqvdADujTzVlmrytiCqgb2i5wBfLmrAWehNaBqMyJC38EqNNXd8_r3I4A0TGP8N2P6sLreaCyrzlIl8H_JSHR_WQntvMzo230IeOlCgT_y-r91e0Me4lUORX5L9rfr6_AOHK6tnaYZNSUPjj9_nZ9P07HFHwmaKpQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgrVLXb0kJfrtQj0SZ-JM4REGgpsJeCxM3yK6tUqyzaXdS_35k4CXBokXpNHGdif54ZOzPfEPLdlq5guZeJzW2aCB9MoiojEs8MwDmThls80L-c5dNr8eNG3myR4z4XBsMqO90fdXqrrbsrk240J7d1PfmJ3GgiAwMGoFS5FM_INrJTyRHZPjw7n84GhYysXZHiG6SBB_oMujbMC_PJGgyqzMqW8xRrZj-wUC2R_yND9TdHtDVIp6_Jq86TpIdR2DdkKzRj8vIBv-CY7J7cp7FB024dr8dkJ57W0ZiE9JbUkfqfomamMX2ELhsakyQPKPjTvoJxWh9Q03hq5quBsYNiCbA1xVS0Fe2rrWzoAmORoI-KukUNTnGgvw1G3czfkevTk6vjadIVYUicLPgmAftdyLwoTa48LFghg_VOClakhjMH-x9VSSNT4bOispVKWSg5eD0Z7H0t1r7iu2TULJvwgVCZcc-CdxXPkBaNK8dskZWVMqXLQun3CO8HXruOoRwLZSx0H4r2S8fp0jhdOhUapmuPJMNTt5Gh44n2RzinQ1vk124vLFdz3QFMM2-VtSqtShDVwJaRM0AwdzlALZQGRC16ROhHcIWu6ide_60HkIaVjL9nTBOWd2uNldVZWwz8X20kesAshX7eR_QNHwKOulDgkuz_t2xfyfPp1eWFvjibnX8kL_BOjEz-REab1V34DP7Xxn7p1tcfKjQsUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+heat+stress+on+health%2C+wildfires%2C+and+agricultural+crops+under+different+levels+of+climate+warming&rft.jtitle=Environment+international&rft.au=Sun%2C+Qiaohong&rft.au=Miao%2C+Chiyuan&rft.au=Hanel%2C+Martin&rft.au=Borthwick%2C+Alistair+G+L&rft.date=2019-07-01&rft.eissn=1873-6750&rft.volume=128&rft.spage=125&rft_id=info:doi/10.1016%2Fj.envint.2019.04.025&rft_id=info%3Apmid%2F31048130&rft.externalDocID=31048130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |