The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions
Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of...
Saved in:
Published in | BMC plant biology Vol. 21; no. 1; p. 248 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
31.05.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Keywords: Orchidaceae, Paphiopedilum, Phylogenomics, Plastome, Boundary shift, IR, SSC boundary, Gene loss, Pseudogenization |
---|---|
AbstractList | Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 – 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Abstract Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 – 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum.BACKGROUNDPaphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum.Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates.RESULTSHere, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates.We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.CONCLUSIONSWe found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Keywords: Orchidaceae, Paphiopedilum, Phylogenomics, Plastome, Boundary shift, IR, SSC boundary, Gene loss, Pseudogenization |
ArticleNumber | 248 |
Audience | Academic |
Author | Liu, Zhong-Jian Bai, Ming-Zhu Guo, Yan-Yan Zhang, Guo-Qiang Yang, Jia-Xing |
Author_xml | – sequence: 1 givenname: Yan-Yan surname: Guo fullname: Guo, Yan-Yan – sequence: 2 givenname: Jia-Xing surname: Yang fullname: Yang, Jia-Xing – sequence: 3 givenname: Ming-Zhu surname: Bai fullname: Bai, Ming-Zhu – sequence: 4 givenname: Guo-Qiang surname: Zhang fullname: Zhang, Guo-Qiang – sequence: 5 givenname: Zhong-Jian surname: Liu fullname: Liu, Zhong-Jian |
BookMark | eNqNkl1rFDEUhgep2A_9A14FvKng1HxP4oVQFj8KBcVWb0Nm5sxsltlkmswU99o_bna3qC0ikouEk_d9Qs55j4sDHzwUxXOCzwhR8nUiVFW4xJSUmGHBys2j4ojwipSUUn3wx_mwOE5phTGpFNdPikPGsVBaV0fFj-sloGY5hBjGwaYJ9eDDGhDchmGeXPAodOgb-DmhNLhxhIhOP9tx6cIIrRvm9cs36OILgu-j9SnLX6GrqwVqgp-ibaZdwfoWLV2_HDYogo3R-h7anSxCnxXpafG4s0OCZ3f7SfH1_bvrxcfy8tOHi8X5ZdmIik0lAyIxBVVzrWrbWS2t7XTVaKs5pzVTwtJGaqB1q1uqeV0xKVpLSS7kTmB2UlzsuW2wKzNGt7ZxY4J1ZlcIsTc2Tq4ZwCirM1FkgFC8rYmqwHZcNVgKWuOWZ9bbPWuc6zW0DWw_PNyD3r_xbmn6cGsUkSJPIQNO7wAx3MyQJrN2qYFhsB7CnAwVgmiFFf0fKROKKkZJlr54IF2FOfrc1azijGspmfyt6m3-q_Nd2E5rCzXnUgousWLbZ8_-osqrhbXLE4bO5fo9A90bmhhSitD9agfBZptYs0-syYk1u8SaTTapB6bGTXabnPyaG_5l_Qk_x-_o |
CitedBy_id | crossref_primary_10_3390_genes14101914 crossref_primary_10_1038_s41598_024_59132_1 crossref_primary_10_1038_s41598_024_63815_0 crossref_primary_10_1111_jse_13065 crossref_primary_10_3389_fpls_2022_910362 crossref_primary_10_3390_ijms232415616 crossref_primary_10_1038_s41598_022_20304_6 crossref_primary_10_3390_ijms241914544 crossref_primary_10_3390_ijms222111393 crossref_primary_10_3390_ijms241411448 crossref_primary_10_3390_genes15070940 crossref_primary_10_3390_horticulturae9030302 crossref_primary_10_1186_s12870_024_06040_1 crossref_primary_10_1016_j_sajb_2023_08_032 crossref_primary_10_1186_s12864_024_10296_0 crossref_primary_10_3390_horticulturae11020144 crossref_primary_10_3390_ijms25042278 crossref_primary_10_1186_s12864_023_09115_9 crossref_primary_10_1007_s00425_025_04611_6 crossref_primary_10_1186_s12870_024_05892_x crossref_primary_10_3390_plants11243544 crossref_primary_10_1186_s12870_023_04532_0 crossref_primary_10_3390_genes15010020 crossref_primary_10_3390_ijms25010184 crossref_primary_10_3390_ijms26010177 crossref_primary_10_1080_23802359_2022_2070041 crossref_primary_10_3390_horticulturae10060660 crossref_primary_10_1007_s13353_022_00746_4 crossref_primary_10_1186_s12870_023_04665_2 crossref_primary_10_3389_fpls_2023_1111968 crossref_primary_10_1007_s00425_022_03950_y crossref_primary_10_1186_s12864_023_09838_9 crossref_primary_10_1139_gen_2023_0014 crossref_primary_10_1080_23311932_2025_2477796 crossref_primary_10_1093_hr_uhac220 crossref_primary_10_3390_ijms241512473 crossref_primary_10_1186_s12864_022_08727_x crossref_primary_10_3389_fpls_2024_1498543 crossref_primary_10_3390_genes15040406 crossref_primary_10_3390_ijms25179538 crossref_primary_10_1016_j_ympev_2024_108138 crossref_primary_10_3389_fgene_2022_1026919 crossref_primary_10_3390_ijms241713620 crossref_primary_10_3390_genes13040560 crossref_primary_10_3390_genes16030239 crossref_primary_10_11110_kjpt_2023_53_1_38 crossref_primary_10_3389_fpls_2022_965335 crossref_primary_10_1186_s12864_025_11354_x crossref_primary_10_3390_ijms24108943 crossref_primary_10_1186_s12864_023_09847_8 crossref_primary_10_3390_ijms24043976 crossref_primary_10_1016_j_gene_2024_149086 crossref_primary_10_1139_gen_2024_0020 crossref_primary_10_1186_s12870_024_05964_y crossref_primary_10_3390_horticulturae8050391 crossref_primary_10_53663_turjfas_1611978 crossref_primary_10_1186_s12870_022_03715_5 crossref_primary_10_3389_fpls_2024_1487725 crossref_primary_10_1186_s12864_024_10046_2 crossref_primary_10_3389_fpls_2024_1297499 crossref_primary_10_7717_peerj_15326 crossref_primary_10_3389_fgene_2023_1207306 crossref_primary_10_1038_s41598_024_84540_8 crossref_primary_10_3390_ijms241914735 crossref_primary_10_3389_fgene_2021_772415 crossref_primary_10_1186_s12870_024_05761_7 crossref_primary_10_3389_fpls_2022_1075098 crossref_primary_10_1186_s12870_024_04796_0 crossref_primary_10_1016_j_gene_2024_149116 crossref_primary_10_3390_ijms241210034 |
Cites_doi | 10.1007/978-1-62703-995-6_1 10.1371/journal.pone.0142215 10.1080/23802359.2017.1383201 10.1101/692798:692798 10.1111/nph.14375 10.1186/1471-2105-5-113 10.1073/pnas.84.3.769 10.1093/nar/29.22.4633 10.1093/sysbio/sys029 10.1111/nph.15072 10.1111/j.1095-8339.2012.01293.x 10.5735/085.055.0122 10.1016/0092-8674(82)90170-2 10.1186/s12862-019-1384-5 10.1038/srep46040 10.3390/f11020158 10.1093/aob/mcw065 10.1038/srep24595 10.1093/gbe/evu046 10.1080/23802359.2019.1642168 10.1038/s41598-017-02252-8 10.1111/tpj.13525 10.1101/676304:676304 10.1093/molbev/msz111 10.1371/journal.pone.0034738 10.1093/gbe/evt042 10.1371/journal.pone.0001386 10.1093/nar/gkz238 10.1093/molbev/msj029 10.1007/s12686-017-0907-x 10.3389/fpls.2017.00715 10.1371/journal.pone.0187318 10.1038/srep09040 10.1038/srep16958 10.1016/j.ympev.2019.05.030 10.1111/nph.13743 10.1007/s11103-011-9762-4 10.1016/j.ympev.2013.08.016 10.1371/journal.pone.0067350 10.1371/journal.pone.0011147 10.1186/1471-2148-13-84 10.1111/tpj.13491 10.1038/s42003-019-0531-2 10.1073/pnas.84.24.9054 10.3389/fpls.2020.00126 10.1007/s00239-002-2333-y 10.1093/bioinformatics/btl446 10.1007/s11105-014-0833-y 10.1111/jse.12425 10.1002/ajb2.1001 10.3389/fpls.2017.01713 10.1080/10635150701472164 10.1038/s41598-018-31938-w 10.1093/molbev/msm088 10.1007/978-94-007-2920-9_5 10.1111/mec.13189 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION 3V. 7X2 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7N M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s12870-021-03053-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1471-2229 |
EndPage | 248 |
ExternalDocumentID | oai_doaj_org_article_8a92b35365584db187eaf48c0652b0d4 PMC8165784 A665460834 10_1186_s12870_021_03053_y |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5GY 5VS 6J9 7X2 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS APEBS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IGH IGS IHR INH INR ISR ITC KQ8 LK8 M0K M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. M7N PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c573t-3e1602e8b498bafa96aaf97c9a9442b385a2c69e2bd9d294b7365da212bd14703 |
IEDL.DBID | M48 |
ISSN | 1471-2229 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Thu Aug 21 18:21:31 EDT 2025 Thu Jul 10 19:58:00 EDT 2025 Mon Jul 21 10:07:39 EDT 2025 Fri Jul 25 19:17:53 EDT 2025 Tue Jun 17 21:26:14 EDT 2025 Tue Jun 10 20:16:32 EDT 2025 Thu Apr 24 23:04:40 EDT 2025 Tue Jul 01 03:52:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-3e1602e8b498bafa96aaf97c9a9442b385a2c69e2bd9d294b7365da212bd14703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2543496636?pq-origsite=%requestingapplication% |
PMID | 34058997 |
PQID | 2543496636 |
PQPubID | 44650 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a92b35365584db187eaf48c0652b0d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8165784 proquest_miscellaneous_2551980824 proquest_miscellaneous_2535828321 proquest_journals_2543496636 gale_infotracmisc_A665460834 gale_infotracacademiconefile_A665460834 crossref_primary_10_1186_s12870_021_03053_y crossref_citationtrail_10_1186_s12870_021_03053_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-31 |
PublicationDateYYYYMMDD | 2021-05-31 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | BMC plant biology |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | DV Dugas (3053_CR26) 2015; 5 C-S Lin (3053_CR46) 2017; 90 C-C Chang (3053_CR41) 2006; 23 N Hou (3053_CR12) 2018; 10 S Wicke (3053_CR35) 2011; 76 HT Kim (3053_CR10) 2015; 10 A Amiryousefi (3053_CR33) 2017; 2 RC Edgar (3053_CR58) 2004; 5 N Dierckxsens (3053_CR54) 2017; 45 Z Yang (3053_CR63) 2007; 24 3053_CR64 B Shrestha (3053_CR29) 2019; 138 ML Weng (3053_CR8) 2017; 214 Z Niu (3053_CR40) 2017; 8 J Shen (3053_CR49) 2020; 11 RK Jansen (3053_CR2) 2012 W-B Cho (3053_CR32) 2018; 55 JS Kim (3053_CR39) 2015; 33 J-B Yang (3053_CR25) 2013; 13 GJ Bream (3053_CR18) 2011; 75 CF Barrett (3053_CR5) 2018; 218 AE Darling (3053_CR57) 2010; 5 Z-H Li (3053_CR24) 2019; 19 LW Cole (3053_CR52) 2018; 35 Z Niu (3053_CR23) 2017; 7 A Stamatakis (3053_CR60) 2006; 22 W Wang (3053_CR22) 2019 JC Blazier (3053_CR36) 2016; 6 X Yi (3053_CR43) 2013; 5 M Górniak (3053_CR19) 2014; 70 Y-Y Guo (3053_CR15) 2015; 24 S Greiner (3053_CR55) 2019; 47 TA Ruhlman (3053_CR6) 2014 G Talavera (3053_CR59) 2007; 56 P Erixon (3053_CR47) 2008; 3 HT Kim (3053_CR44) 2017; 12 F Ronquist (3053_CR61) 2012; 61 A Zhu (3053_CR30) 2016; 209 JC Blazier (3053_CR27) 2016; 117 R Lanfear (3053_CR62) 2017; 34 3053_CR9 Z Niu (3053_CR13) 2017; 8 L-Q Li (3053_CR20) 2019; 4 KH Wolfe (3053_CR50) 1987; 84 AS Perry (3053_CR51) 2002; 55 J Tonti-Filippini (3053_CR3) 2017; 90 L-Z Gao (3053_CR48) 2019; 2 TA Ruhlman (3053_CR7) 2018 C-C Tsai (3053_CR16) 2020; 11 JD Palmer (3053_CR34) 1982; 29 W Guo (3053_CR42) 2014; 6 S Park (3053_CR38) 2018; 8 SO Rabah (3053_CR28) 2019; 57 I-C Pan (3053_CR45) 2012; 7 A Chochai (3053_CR14) 2012; 170 JW Yap (3053_CR17) 2016 S Kurtz (3053_CR56) 2001; 29 G Martin (3053_CR31) 2013; 8 JD Palmer (3053_CR21) 1987; 84 BT Sinn (3053_CR37) 2018; 105 MJ Wilkinson (3053_CR1) 2017; 7 J Doyle (3053_CR53) 1987; 19 C-S Lin (3053_CR11) 2015; 5 CF Barrett (3053_CR4) 2019; 36 |
References_xml | – start-page: 3 volume-title: Chloroplast Biotechnology: Methods and Protocols year: 2014 ident: 3053_CR6 doi: 10.1007/978-1-62703-995-6_1 – start-page: 223 volume-title: Advances in Botanical Research, vol. 85 year: 2018 ident: 3053_CR7 – volume: 10 start-page: e0142215 issue: 11 year: 2015 ident: 3053_CR10 publication-title: PLoS ONE doi: 10.1371/journal.pone.0142215 – volume: 2 start-page: 689 issue: 2 year: 2017 ident: 3053_CR33 publication-title: Mitochondrial DNA B doi: 10.1080/23802359.2017.1383201 – year: 2019 ident: 3053_CR22 publication-title: BioRxiv doi: 10.1101/692798:692798 – volume: 214 start-page: 842 issue: 2 year: 2017 ident: 3053_CR8 publication-title: New Phytol doi: 10.1111/nph.14375 – volume: 5 start-page: 113 issue: 1 year: 2004 ident: 3053_CR58 publication-title: BMC Bioinform doi: 10.1186/1471-2105-5-113 – volume: 84 start-page: 769 issue: 3 year: 1987 ident: 3053_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.3.769 – volume-title: Molecular and Genome Evolution in the Malesian Slipper Orchids (Paphiopedilum section Barbata) year: 2016 ident: 3053_CR17 – volume: 29 start-page: 4633 issue: 22 year: 2001 ident: 3053_CR56 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.22.4633 – volume: 61 start-page: 539 issue: 3 year: 2012 ident: 3053_CR61 publication-title: Syst Biol doi: 10.1093/sysbio/sys029 – volume: 35 start-page: 2773 issue: 11 year: 2018 ident: 3053_CR52 publication-title: Mol Biol Evol – ident: 3053_CR64 – volume: 218 start-page: 1192 issue: 3 year: 2018 ident: 3053_CR5 publication-title: New Phytol doi: 10.1111/nph.15072 – volume: 170 start-page: 176 issue: 2 year: 2012 ident: 3053_CR14 publication-title: Bot J Linn Soc doi: 10.1111/j.1095-8339.2012.01293.x – volume: 55 start-page: 171 issue: 1–3 year: 2018 ident: 3053_CR32 publication-title: Ann Bot Fenn doi: 10.5735/085.055.0122 – volume: 29 start-page: 537 issue: 2 year: 1982 ident: 3053_CR34 publication-title: Cell doi: 10.1016/0092-8674(82)90170-2 – volume: 19 start-page: 63 issue: 1 year: 2019 ident: 3053_CR24 publication-title: BMC Evol Biol doi: 10.1186/s12862-019-1384-5 – volume: 7 start-page: 46040 year: 2017 ident: 3053_CR1 publication-title: Sci Rep doi: 10.1038/srep46040 – volume: 11 start-page: 158 issue: 2 year: 2020 ident: 3053_CR49 publication-title: Forests doi: 10.3390/f11020158 – volume: 117 start-page: 1209 issue: 7 year: 2016 ident: 3053_CR27 publication-title: Ann Bot doi: 10.1093/aob/mcw065 – volume: 6 start-page: 24595 year: 2016 ident: 3053_CR36 publication-title: Sci Rep doi: 10.1038/srep24595 – volume: 6 start-page: 580 issue: 3 year: 2014 ident: 3053_CR42 publication-title: Genome Biol Evol doi: 10.1093/gbe/evu046 – volume: 4 start-page: 2617 issue: 2 year: 2019 ident: 3053_CR20 publication-title: Mitochondrial DNA B doi: 10.1080/23802359.2019.1642168 – volume: 7 start-page: 2073 year: 2017 ident: 3053_CR23 publication-title: Sci Rep doi: 10.1038/s41598-017-02252-8 – volume: 90 start-page: 994 issue: 5 year: 2017 ident: 3053_CR46 publication-title: Plant J doi: 10.1111/tpj.13525 – ident: 3053_CR9 doi: 10.1101/676304:676304 – volume: 36 start-page: 1884 issue: 9 year: 2019 ident: 3053_CR4 publication-title: Mol Biol Evol doi: 10.1093/molbev/msz111 – volume: 7 start-page: e34738 issue: 4 year: 2012 ident: 3053_CR45 publication-title: PLoS ONE doi: 10.1371/journal.pone.0034738 – volume: 5 start-page: 688 issue: 4 year: 2013 ident: 3053_CR43 publication-title: Genome Biol Evol doi: 10.1093/gbe/evt042 – volume: 3 start-page: e0001386 issue: 1 year: 2008 ident: 3053_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0001386 – volume: 45 start-page: e18 issue: 4 year: 2017 ident: 3053_CR54 publication-title: Nucleic Acids Res – volume: 47 start-page: W59 issue: W1 year: 2019 ident: 3053_CR55 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz238 – volume: 23 start-page: 279 issue: 2 year: 2006 ident: 3053_CR41 publication-title: Mol Biol Evol doi: 10.1093/molbev/msj029 – volume: 75 start-page: 164 issue: 3 year: 2011 ident: 3053_CR18 publication-title: Orchid Digest – volume: 10 start-page: 709 issue: 4 year: 2018 ident: 3053_CR12 publication-title: Conserv Genet Resour doi: 10.1007/s12686-017-0907-x – volume: 34 start-page: 772 issue: 3 year: 2017 ident: 3053_CR62 publication-title: Mol Biol Evol – volume: 8 start-page: 715 year: 2017 ident: 3053_CR13 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00715 – volume: 12 start-page: e0187318 issue: 11 year: 2017 ident: 3053_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0187318 – volume: 5 start-page: 9040 year: 2015 ident: 3053_CR11 publication-title: Sci Rep doi: 10.1038/srep09040 – volume: 5 start-page: 16958 year: 2015 ident: 3053_CR26 publication-title: Sci Rep doi: 10.1038/srep16958 – volume: 19 start-page: 11 issue: 1 year: 1987 ident: 3053_CR53 publication-title: Phytochem Bull – volume: 138 start-page: 53 issue: 9 year: 2019 ident: 3053_CR29 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2019.05.030 – volume: 209 start-page: 1747 issue: 4 year: 2016 ident: 3053_CR30 publication-title: New Phytol doi: 10.1111/nph.13743 – volume: 76 start-page: 273 issue: 3 year: 2011 ident: 3053_CR35 publication-title: Plant Mol Biol doi: 10.1007/s11103-011-9762-4 – volume: 70 start-page: 429 issue: 1 year: 2014 ident: 3053_CR19 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2013.08.016 – volume: 8 start-page: e67350 issue: 6 year: 2013 ident: 3053_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0067350 – volume: 5 start-page: e0011147 issue: 6 year: 2010 ident: 3053_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0011147 – volume: 13 start-page: 84 issue: 1 year: 2013 ident: 3053_CR25 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-13-84 – volume: 90 start-page: 808 issue: 4 year: 2017 ident: 3053_CR3 publication-title: Plant J doi: 10.1111/tpj.13491 – volume: 2 start-page: 278 issue: 1 year: 2019 ident: 3053_CR48 publication-title: Commun Biol doi: 10.1038/s42003-019-0531-2 – volume: 84 start-page: 9054 issue: 24 year: 1987 ident: 3053_CR50 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.24.9054 – volume: 11 start-page: 126 year: 2020 ident: 3053_CR16 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.00126 – volume: 55 start-page: 501 issue: 5 year: 2002 ident: 3053_CR51 publication-title: J Mol Evol doi: 10.1007/s00239-002-2333-y – volume: 22 start-page: 2688 issue: 21 year: 2006 ident: 3053_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 – volume: 33 start-page: 1210 issue: 5 year: 2015 ident: 3053_CR39 publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-014-0833-y – volume: 57 start-page: 1 issue: 1 year: 2019 ident: 3053_CR28 publication-title: J Syst Evol doi: 10.1111/jse.12425 – volume: 105 start-page: 71 issue: 1 year: 2018 ident: 3053_CR37 publication-title: Am J Bot doi: 10.1002/ajb2.1001 – volume: 8 start-page: 1713 year: 2017 ident: 3053_CR40 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01713 – volume: 56 start-page: 564 issue: 4 year: 2007 ident: 3053_CR59 publication-title: Syst Biol doi: 10.1080/10635150701472164 – volume: 8 start-page: 13568 issue: 1 year: 2018 ident: 3053_CR38 publication-title: Sci Rep doi: 10.1038/s41598-018-31938-w – volume: 24 start-page: 1586 issue: 8 year: 2007 ident: 3053_CR63 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm088 – start-page: 103 volume-title: Genomics of Chloroplasts and Mitochondria year: 2012 ident: 3053_CR2 doi: 10.1007/978-94-007-2920-9_5 – volume: 24 start-page: 2838 issue: 11 year: 2015 ident: 3053_CR15 publication-title: Mol Ecol doi: 10.1111/mec.13189 |
SSID | ssj0017849 |
Score | 2.5578787 |
Snippet | Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well... Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and... BACKGROUND: Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well... Abstract Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 248 |
SubjectTerms | Botanical research Boundaries Boundary shift chloroplast genome Chloroplasts Contraction Evolution Evolutionary genetics Gene order Genes Genetic aspects Genomes Genomics genus Inverted repeat Natural history Nucleotide sequence Orchidaceae Orchids Paphiopedilum Phylogenetics Phylogenomics Phylogeny Plastome Plastomes Proteins Sampling Species Structure Substitutes |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF9K8aEv4iee1rIFQcWGXpLNZrdvbbG0PohYK31bZj_CFdok3Id4z_7jndnkjkahvvQ1O-GS-Z7LzG8Ye4cWo3QFRTK2XiRCQEomJRLvJQDk4GzXIPtVnl6IL5fF5Z1VX9QT1sEDd4zbV6Azmxe5LDBUepuqMkAllMPQmdmxj0igGPNWxVT__aBUQq9GZJTcn6X0PS-hdgRS8DxZDsJQROv_1yf_3Sd5J_CcPGGP-4yRH3ZP-pRthPoZe3TUYFa3fM7-oJy5m2DV3bSYCM85ga7eBB5-9TrFm4r_DPVixjGjbNsw5R--QTu5aloMW-iZPh7ws-88_EavQH-c7fHz82MeG9i7kYc9DrXnhGp8veRT6uylcQQfyWirA2rtC3Zx8vnH8WnSL1ZIXFHm8yQPqRxnQVmhlYUKNMql0qXToIVAbqsCMid1yKzXPtPClsh-DxjlrE8F-oiXbLNu6vCKcUidt85ZB1jaYDSEkFdCoga4TLrKViOWrvhsXI86Tssvrk2sPpQ0nWwMysZE2ZjliH1a39N2mBv3Uh-R-NaUhJcdL6AWmV6LzP-0aMTek_ANWTXxF_rhBHxJwscyh7SkWWK6ipTbA0q0Rjc8XqmP6b3BzBDggMC6Mpcjtrs-pjupw60OzYJoaGaZ9kbdR4P5tsKkDX-mHKjm4O2HJ_XVJKKGq1SidxavH4Jdb9hWFo2Juii22eZ8ughvMTmb251oh7eJIjiT priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagcOCCWMXQgoyEBIhGHSeOY3NBbUVVOCBEKZqb5S1MpZKksyDmzB_nPcczEJDmGr8osd_22X4LIc9BY6SqTZmNrecZ54ahSvHMe2GMKYyzfYDsR3F6zj9Mykk6cJunsMq1TYyG2rcOz8gPMGmbAzYvxNvuKsOuUXi7mlpoXCc3sHQZSnU12Wy4WCW5WifKSHEwZ3irl2FQAop5ka0GzijW7P_fMv8bLfmX-zm5Q24n3EgPe0bfJddCc4_cPGoB263uk1_AbeqmsPduO4DDC4qlV78HGn4kyaJtTb-GZjmngCu7Lszoy0-mm160HTgvsE-v3tD3n2n4CbYBj8_26dnZMY1h7H3iwz41jadY2_hyRWcY34tJCT6SYW8HkN0H5Pzk3Zfj0yy1V8hcWRWLrAhMjPMgLVfSmtoo4E6tKqeM4jy3hSxN7oQKufXK54rbqhClN-DrrGccLMVDstO0TXhEqGHOW-esM7DBAZ9oQlFzAXLgcuFqW48IW6-zdqn2OLbAuNRxDyKF7nmjgTc68kavRuT15p2ur7yxlfoI2behxKrZ8UE7-6aTEmppFMyrhGkA7PKWySqYmksHMCy3Y89H5AUyX6Nu4_qalKIAk8QqWfoQWzULAK1AuTegBJ10w-G1-OhkE-b6jwSPyLPNML6JcW5NaJdIg5nL2D1qGw2gbgnQDT5TDURzMPvhSHMxjbXDJRNgo_nj7T-4S27lUU0wSmKP7Cxmy_AEwNfCPo0a9hsZLDDF priority: 102 providerName: ProQuest |
Title | The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions |
URI | https://www.proquest.com/docview/2543496636 https://www.proquest.com/docview/2535828321 https://www.proquest.com/docview/2551980824 https://pubmed.ncbi.nlm.nih.gov/PMC8165784 https://doaj.org/article/8a92b35365584db187eaf48c0652b0d4 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB514cAFsYpAiQYJCRA1je3xeIyEUFO1KkhUVUpQxGU0m0mkYIcsqDnzx3lvbAcMVcUlh8xz4nnbfM9-CyHPwGJElqsk6GnLAsZUiCbFAmu5UipWRlcJsmf8dMg-jJLRFmnGHdUMXFwZ2uE8qeF8-vry-_odGPxbb_CCHyxCfFsXYLIBqm8crLfJLpxMKU40-Mh-v1VIhYfDITjkAOdYN0U0V_5G66Dy_fz_9dp_Z1L-cTSd3Ca3akxJDysluEO2XHGX3OiXgPvW98hP0ARqxhCXlzOAykuKbVm_Oep-1FpHy5x-dsVqQQFzzmZuTl-cq9l4AoywE_BdL9_Q9wPqLsFv4KO1fXpxcUR9intVFLFPVWEp9j2erukcc3-xYMF6Mpz7AHp9nwxPjj8dnQb16IXAJGm8DGIX8l7khGaZ0CpXGUguz1KTqYyxSMciUZHhmYu0zWyUMZ3GPLEKzkFtgb29-AHZKcrCPSRUhcZqY7RREPzAealcnDMOOmIibnKdd0jY8Fmaui85jseYSh-fCC4r2UiQjfSykesOebW5ZlZ15biWuo_i21BiR23_RTn_KmsDlUJlsK8EtgGQzOpQpE7lTBiAaJHuWdYhz1H4EjUR-avq8gXYJHbQkoc4xpkDoAXKvRYl2KtpLzfqIxt1l9iSgEHkGfMOebpZxisxB65w5QppsKoZJ0tdRwOIXACsg79JW6rZ2n17pZiMfV9xEXLw3-zRf9zBY3Iz8raCaRR7ZGc5X7kngM6Wuku201HaJbv947PzQdc_4-h6M4TPQf_LL8JTPIE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKQYIXxCkWChgJBIhG3SSOYyMh1BaqLi0Voof2zfgKW6kkYQ9gn_k__EZmciwEpH3r63qSjT3XN8kchDwGjREy00nQN44FjOkQVYoFznGtdaytqRNkD_juMXs3TIYr5FdbC4Npla1NrAy1Kyy-I9_Aom0G2Dzmr8uvAU6Nwq-r7QiNWiz2_Pw7hGyTV4M3wN8nUbTz9mh7N2imCgQ2SeNpEPuQ9yMvDJPC6ExLeKhMplZqyVhkYpHoyHLpI-OkiyQzacwTp8HEGxcyUBC47wVyERxvH4O9dLgI8MJUMNkW5gi-MQnxK2KASRCoVnEw7zi_akbA_57g3-zMv9zdzjVytcGpdLMWrOtkxec3yKWtArDk_Cb5CdJF7Qhi_aIE-D2l2Or1i6f-WyPJtMjoic9nEwo4tiz9mD77oMvRaVGCswR7-PwlHXyk_gfYInxdt04PD7dplTZfF1qsU507ir2Uz-Z0jPnEWAThKjKcJQG6coscn8vB3yareZH7O4Tq0DpjrbEaAirwwdrHGeMgdzbiNjNZj4TtOSvb9DrHkRtnqop5BFc1bxTwRlW8UfMeebG4pqw7fSyl3kL2LSixS3f1QzH-rBqlV0JL2FcC2wCY50woUq8zJizAvsj0HeuRp8h8hbYEz1c3JRGwSezKpTZxNDQHkAyUax1KsAG2u9yKj2ps0ET90ZgeebRYxisxry73xQxpsFIap1UtowGULwAqwt-kHdHs7L67kp-Oql7lIuTgE9jd5Q_4kFzePXq_r_YHB3v3yJWoUhnM0Fgjq9PxzN8H4Dc1Dypto-TTeav3b1y4bXI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+chloroplast+genome+evolution+of+Venus+slipper+%28Paphiopedilum%29%3A+IR+expansion%2C+SSC+contraction%2C+and+highly+rearranged+SSC+regions&rft.jtitle=BMC+plant+biology&rft.au=Guo%2C+Yan-Yan&rft.au=Yang%2C+Jia-Xing&rft.au=Bai%2C+Ming-Zhu&rft.au=Zhang%2C+Guo-Qiang&rft.date=2021-05-31&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=21&rft.issue=1&rft.spage=248&rft_id=info:doi/10.1186%2Fs12870-021-03053-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon |