The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions

Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 21; no. 1; p. 248
Main Authors Guo, Yan-Yan, Yang, Jia-Xing, Bai, Ming-Zhu, Zhang, Guo-Qiang, Liu, Zhong-Jian
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 31.05.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Keywords: Orchidaceae, Paphiopedilum, Phylogenomics, Plastome, Boundary shift, IR, SSC boundary, Gene loss, Pseudogenization
AbstractList Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 – 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Abstract Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 – 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum.BACKGROUNDPaphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum.Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates.RESULTSHere, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates.We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.CONCLUSIONSWe found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. Results Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. Conclusions We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution. Keywords: Orchidaceae, Paphiopedilum, Phylogenomics, Plastome, Boundary shift, IR, SSC boundary, Gene loss, Pseudogenization
ArticleNumber 248
Audience Academic
Author Liu, Zhong-Jian
Bai, Ming-Zhu
Guo, Yan-Yan
Zhang, Guo-Qiang
Yang, Jia-Xing
Author_xml – sequence: 1
  givenname: Yan-Yan
  surname: Guo
  fullname: Guo, Yan-Yan
– sequence: 2
  givenname: Jia-Xing
  surname: Yang
  fullname: Yang, Jia-Xing
– sequence: 3
  givenname: Ming-Zhu
  surname: Bai
  fullname: Bai, Ming-Zhu
– sequence: 4
  givenname: Guo-Qiang
  surname: Zhang
  fullname: Zhang, Guo-Qiang
– sequence: 5
  givenname: Zhong-Jian
  surname: Liu
  fullname: Liu, Zhong-Jian
BookMark eNqNkl1rFDEUhgep2A_9A14FvKng1HxP4oVQFj8KBcVWb0Nm5sxsltlkmswU99o_bna3qC0ikouEk_d9Qs55j4sDHzwUxXOCzwhR8nUiVFW4xJSUmGHBys2j4ojwipSUUn3wx_mwOE5phTGpFNdPikPGsVBaV0fFj-sloGY5hBjGwaYJ9eDDGhDchmGeXPAodOgb-DmhNLhxhIhOP9tx6cIIrRvm9cs36OILgu-j9SnLX6GrqwVqgp-ibaZdwfoWLV2_HDYogo3R-h7anSxCnxXpafG4s0OCZ3f7SfH1_bvrxcfy8tOHi8X5ZdmIik0lAyIxBVVzrWrbWS2t7XTVaKs5pzVTwtJGaqB1q1uqeV0xKVpLSS7kTmB2UlzsuW2wKzNGt7ZxY4J1ZlcIsTc2Tq4ZwCirM1FkgFC8rYmqwHZcNVgKWuOWZ9bbPWuc6zW0DWw_PNyD3r_xbmn6cGsUkSJPIQNO7wAx3MyQJrN2qYFhsB7CnAwVgmiFFf0fKROKKkZJlr54IF2FOfrc1azijGspmfyt6m3-q_Nd2E5rCzXnUgousWLbZ8_-osqrhbXLE4bO5fo9A90bmhhSitD9agfBZptYs0-syYk1u8SaTTapB6bGTXabnPyaG_5l_Qk_x-_o
CitedBy_id crossref_primary_10_3390_genes14101914
crossref_primary_10_1038_s41598_024_59132_1
crossref_primary_10_1038_s41598_024_63815_0
crossref_primary_10_1111_jse_13065
crossref_primary_10_3389_fpls_2022_910362
crossref_primary_10_3390_ijms232415616
crossref_primary_10_1038_s41598_022_20304_6
crossref_primary_10_3390_ijms241914544
crossref_primary_10_3390_ijms222111393
crossref_primary_10_3390_ijms241411448
crossref_primary_10_3390_genes15070940
crossref_primary_10_3390_horticulturae9030302
crossref_primary_10_1186_s12870_024_06040_1
crossref_primary_10_1016_j_sajb_2023_08_032
crossref_primary_10_1186_s12864_024_10296_0
crossref_primary_10_3390_horticulturae11020144
crossref_primary_10_3390_ijms25042278
crossref_primary_10_1186_s12864_023_09115_9
crossref_primary_10_1007_s00425_025_04611_6
crossref_primary_10_1186_s12870_024_05892_x
crossref_primary_10_3390_plants11243544
crossref_primary_10_1186_s12870_023_04532_0
crossref_primary_10_3390_genes15010020
crossref_primary_10_3390_ijms25010184
crossref_primary_10_3390_ijms26010177
crossref_primary_10_1080_23802359_2022_2070041
crossref_primary_10_3390_horticulturae10060660
crossref_primary_10_1007_s13353_022_00746_4
crossref_primary_10_1186_s12870_023_04665_2
crossref_primary_10_3389_fpls_2023_1111968
crossref_primary_10_1007_s00425_022_03950_y
crossref_primary_10_1186_s12864_023_09838_9
crossref_primary_10_1139_gen_2023_0014
crossref_primary_10_1080_23311932_2025_2477796
crossref_primary_10_1093_hr_uhac220
crossref_primary_10_3390_ijms241512473
crossref_primary_10_1186_s12864_022_08727_x
crossref_primary_10_3389_fpls_2024_1498543
crossref_primary_10_3390_genes15040406
crossref_primary_10_3390_ijms25179538
crossref_primary_10_1016_j_ympev_2024_108138
crossref_primary_10_3389_fgene_2022_1026919
crossref_primary_10_3390_ijms241713620
crossref_primary_10_3390_genes13040560
crossref_primary_10_3390_genes16030239
crossref_primary_10_11110_kjpt_2023_53_1_38
crossref_primary_10_3389_fpls_2022_965335
crossref_primary_10_1186_s12864_025_11354_x
crossref_primary_10_3390_ijms24108943
crossref_primary_10_1186_s12864_023_09847_8
crossref_primary_10_3390_ijms24043976
crossref_primary_10_1016_j_gene_2024_149086
crossref_primary_10_1139_gen_2024_0020
crossref_primary_10_1186_s12870_024_05964_y
crossref_primary_10_3390_horticulturae8050391
crossref_primary_10_53663_turjfas_1611978
crossref_primary_10_1186_s12870_022_03715_5
crossref_primary_10_3389_fpls_2024_1487725
crossref_primary_10_1186_s12864_024_10046_2
crossref_primary_10_3389_fpls_2024_1297499
crossref_primary_10_7717_peerj_15326
crossref_primary_10_3389_fgene_2023_1207306
crossref_primary_10_1038_s41598_024_84540_8
crossref_primary_10_3390_ijms241914735
crossref_primary_10_3389_fgene_2021_772415
crossref_primary_10_1186_s12870_024_05761_7
crossref_primary_10_3389_fpls_2022_1075098
crossref_primary_10_1186_s12870_024_04796_0
crossref_primary_10_1016_j_gene_2024_149116
crossref_primary_10_3390_ijms241210034
Cites_doi 10.1007/978-1-62703-995-6_1
10.1371/journal.pone.0142215
10.1080/23802359.2017.1383201
10.1101/692798:692798
10.1111/nph.14375
10.1186/1471-2105-5-113
10.1073/pnas.84.3.769
10.1093/nar/29.22.4633
10.1093/sysbio/sys029
10.1111/nph.15072
10.1111/j.1095-8339.2012.01293.x
10.5735/085.055.0122
10.1016/0092-8674(82)90170-2
10.1186/s12862-019-1384-5
10.1038/srep46040
10.3390/f11020158
10.1093/aob/mcw065
10.1038/srep24595
10.1093/gbe/evu046
10.1080/23802359.2019.1642168
10.1038/s41598-017-02252-8
10.1111/tpj.13525
10.1101/676304:676304
10.1093/molbev/msz111
10.1371/journal.pone.0034738
10.1093/gbe/evt042
10.1371/journal.pone.0001386
10.1093/nar/gkz238
10.1093/molbev/msj029
10.1007/s12686-017-0907-x
10.3389/fpls.2017.00715
10.1371/journal.pone.0187318
10.1038/srep09040
10.1038/srep16958
10.1016/j.ympev.2019.05.030
10.1111/nph.13743
10.1007/s11103-011-9762-4
10.1016/j.ympev.2013.08.016
10.1371/journal.pone.0067350
10.1371/journal.pone.0011147
10.1186/1471-2148-13-84
10.1111/tpj.13491
10.1038/s42003-019-0531-2
10.1073/pnas.84.24.9054
10.3389/fpls.2020.00126
10.1007/s00239-002-2333-y
10.1093/bioinformatics/btl446
10.1007/s11105-014-0833-y
10.1111/jse.12425
10.1002/ajb2.1001
10.3389/fpls.2017.01713
10.1080/10635150701472164
10.1038/s41598-018-31938-w
10.1093/molbev/msm088
10.1007/978-94-007-2920-9_5
10.1111/mec.13189
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
3V.
7X2
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7N
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12870-021-03053-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database
AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1471-2229
EndPage 248
ExternalDocumentID oai_doaj_org_article_8a92b35365584db187eaf48c0652b0d4
PMC8165784
A665460834
10_1186_s12870_021_03053_y
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X2
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
ATCPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IGH
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M0K
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M7N
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c573t-3e1602e8b498bafa96aaf97c9a9442b385a2c69e2bd9d294b7365da212bd14703
IEDL.DBID M48
ISSN 1471-2229
IngestDate Wed Aug 27 01:30:27 EDT 2025
Thu Aug 21 18:21:31 EDT 2025
Thu Jul 10 19:58:00 EDT 2025
Mon Jul 21 10:07:39 EDT 2025
Fri Jul 25 19:17:53 EDT 2025
Tue Jun 17 21:26:14 EDT 2025
Tue Jun 10 20:16:32 EDT 2025
Thu Apr 24 23:04:40 EDT 2025
Tue Jul 01 03:52:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-3e1602e8b498bafa96aaf97c9a9442b385a2c69e2bd9d294b7365da212bd14703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2543496636?pq-origsite=%requestingapplication%
PMID 34058997
PQID 2543496636
PQPubID 44650
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_8a92b35365584db187eaf48c0652b0d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8165784
proquest_miscellaneous_2551980824
proquest_miscellaneous_2535828321
proquest_journals_2543496636
gale_infotracmisc_A665460834
gale_infotracacademiconefile_A665460834
crossref_primary_10_1186_s12870_021_03053_y
crossref_citationtrail_10_1186_s12870_021_03053_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-31
PublicationDateYYYYMMDD 2021-05-31
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC plant biology
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References DV Dugas (3053_CR26) 2015; 5
C-S Lin (3053_CR46) 2017; 90
C-C Chang (3053_CR41) 2006; 23
N Hou (3053_CR12) 2018; 10
S Wicke (3053_CR35) 2011; 76
HT Kim (3053_CR10) 2015; 10
A Amiryousefi (3053_CR33) 2017; 2
RC Edgar (3053_CR58) 2004; 5
N Dierckxsens (3053_CR54) 2017; 45
Z Yang (3053_CR63) 2007; 24
3053_CR64
B Shrestha (3053_CR29) 2019; 138
ML Weng (3053_CR8) 2017; 214
Z Niu (3053_CR40) 2017; 8
J Shen (3053_CR49) 2020; 11
RK Jansen (3053_CR2) 2012
W-B Cho (3053_CR32) 2018; 55
JS Kim (3053_CR39) 2015; 33
J-B Yang (3053_CR25) 2013; 13
GJ Bream (3053_CR18) 2011; 75
CF Barrett (3053_CR5) 2018; 218
AE Darling (3053_CR57) 2010; 5
Z-H Li (3053_CR24) 2019; 19
LW Cole (3053_CR52) 2018; 35
Z Niu (3053_CR23) 2017; 7
A Stamatakis (3053_CR60) 2006; 22
W Wang (3053_CR22) 2019
JC Blazier (3053_CR36) 2016; 6
X Yi (3053_CR43) 2013; 5
M Górniak (3053_CR19) 2014; 70
Y-Y Guo (3053_CR15) 2015; 24
S Greiner (3053_CR55) 2019; 47
TA Ruhlman (3053_CR6) 2014
G Talavera (3053_CR59) 2007; 56
P Erixon (3053_CR47) 2008; 3
HT Kim (3053_CR44) 2017; 12
F Ronquist (3053_CR61) 2012; 61
A Zhu (3053_CR30) 2016; 209
JC Blazier (3053_CR27) 2016; 117
R Lanfear (3053_CR62) 2017; 34
3053_CR9
Z Niu (3053_CR13) 2017; 8
L-Q Li (3053_CR20) 2019; 4
KH Wolfe (3053_CR50) 1987; 84
AS Perry (3053_CR51) 2002; 55
J Tonti-Filippini (3053_CR3) 2017; 90
L-Z Gao (3053_CR48) 2019; 2
TA Ruhlman (3053_CR7) 2018
C-C Tsai (3053_CR16) 2020; 11
JD Palmer (3053_CR34) 1982; 29
W Guo (3053_CR42) 2014; 6
S Park (3053_CR38) 2018; 8
SO Rabah (3053_CR28) 2019; 57
I-C Pan (3053_CR45) 2012; 7
A Chochai (3053_CR14) 2012; 170
JW Yap (3053_CR17) 2016
S Kurtz (3053_CR56) 2001; 29
G Martin (3053_CR31) 2013; 8
JD Palmer (3053_CR21) 1987; 84
BT Sinn (3053_CR37) 2018; 105
MJ Wilkinson (3053_CR1) 2017; 7
J Doyle (3053_CR53) 1987; 19
C-S Lin (3053_CR11) 2015; 5
CF Barrett (3053_CR4) 2019; 36
References_xml – start-page: 3
  volume-title: Chloroplast Biotechnology: Methods and Protocols
  year: 2014
  ident: 3053_CR6
  doi: 10.1007/978-1-62703-995-6_1
– start-page: 223
  volume-title: Advances in Botanical Research, vol. 85
  year: 2018
  ident: 3053_CR7
– volume: 10
  start-page: e0142215
  issue: 11
  year: 2015
  ident: 3053_CR10
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0142215
– volume: 2
  start-page: 689
  issue: 2
  year: 2017
  ident: 3053_CR33
  publication-title: Mitochondrial DNA B
  doi: 10.1080/23802359.2017.1383201
– year: 2019
  ident: 3053_CR22
  publication-title: BioRxiv
  doi: 10.1101/692798:692798
– volume: 214
  start-page: 842
  issue: 2
  year: 2017
  ident: 3053_CR8
  publication-title: New Phytol
  doi: 10.1111/nph.14375
– volume: 5
  start-page: 113
  issue: 1
  year: 2004
  ident: 3053_CR58
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-5-113
– volume: 84
  start-page: 769
  issue: 3
  year: 1987
  ident: 3053_CR21
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.3.769
– volume-title: Molecular and Genome Evolution in the Malesian Slipper Orchids (Paphiopedilum section Barbata)
  year: 2016
  ident: 3053_CR17
– volume: 29
  start-page: 4633
  issue: 22
  year: 2001
  ident: 3053_CR56
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.22.4633
– volume: 61
  start-page: 539
  issue: 3
  year: 2012
  ident: 3053_CR61
  publication-title: Syst Biol
  doi: 10.1093/sysbio/sys029
– volume: 35
  start-page: 2773
  issue: 11
  year: 2018
  ident: 3053_CR52
  publication-title: Mol Biol Evol
– ident: 3053_CR64
– volume: 218
  start-page: 1192
  issue: 3
  year: 2018
  ident: 3053_CR5
  publication-title: New Phytol
  doi: 10.1111/nph.15072
– volume: 170
  start-page: 176
  issue: 2
  year: 2012
  ident: 3053_CR14
  publication-title: Bot J Linn Soc
  doi: 10.1111/j.1095-8339.2012.01293.x
– volume: 55
  start-page: 171
  issue: 1–3
  year: 2018
  ident: 3053_CR32
  publication-title: Ann Bot Fenn
  doi: 10.5735/085.055.0122
– volume: 29
  start-page: 537
  issue: 2
  year: 1982
  ident: 3053_CR34
  publication-title: Cell
  doi: 10.1016/0092-8674(82)90170-2
– volume: 19
  start-page: 63
  issue: 1
  year: 2019
  ident: 3053_CR24
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-019-1384-5
– volume: 7
  start-page: 46040
  year: 2017
  ident: 3053_CR1
  publication-title: Sci Rep
  doi: 10.1038/srep46040
– volume: 11
  start-page: 158
  issue: 2
  year: 2020
  ident: 3053_CR49
  publication-title: Forests
  doi: 10.3390/f11020158
– volume: 117
  start-page: 1209
  issue: 7
  year: 2016
  ident: 3053_CR27
  publication-title: Ann Bot
  doi: 10.1093/aob/mcw065
– volume: 6
  start-page: 24595
  year: 2016
  ident: 3053_CR36
  publication-title: Sci Rep
  doi: 10.1038/srep24595
– volume: 6
  start-page: 580
  issue: 3
  year: 2014
  ident: 3053_CR42
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evu046
– volume: 4
  start-page: 2617
  issue: 2
  year: 2019
  ident: 3053_CR20
  publication-title: Mitochondrial DNA B
  doi: 10.1080/23802359.2019.1642168
– volume: 7
  start-page: 2073
  year: 2017
  ident: 3053_CR23
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02252-8
– volume: 90
  start-page: 994
  issue: 5
  year: 2017
  ident: 3053_CR46
  publication-title: Plant J
  doi: 10.1111/tpj.13525
– ident: 3053_CR9
  doi: 10.1101/676304:676304
– volume: 36
  start-page: 1884
  issue: 9
  year: 2019
  ident: 3053_CR4
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msz111
– volume: 7
  start-page: e34738
  issue: 4
  year: 2012
  ident: 3053_CR45
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0034738
– volume: 5
  start-page: 688
  issue: 4
  year: 2013
  ident: 3053_CR43
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evt042
– volume: 3
  start-page: e0001386
  issue: 1
  year: 2008
  ident: 3053_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0001386
– volume: 45
  start-page: e18
  issue: 4
  year: 2017
  ident: 3053_CR54
  publication-title: Nucleic Acids Res
– volume: 47
  start-page: W59
  issue: W1
  year: 2019
  ident: 3053_CR55
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz238
– volume: 23
  start-page: 279
  issue: 2
  year: 2006
  ident: 3053_CR41
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msj029
– volume: 75
  start-page: 164
  issue: 3
  year: 2011
  ident: 3053_CR18
  publication-title: Orchid Digest
– volume: 10
  start-page: 709
  issue: 4
  year: 2018
  ident: 3053_CR12
  publication-title: Conserv Genet Resour
  doi: 10.1007/s12686-017-0907-x
– volume: 34
  start-page: 772
  issue: 3
  year: 2017
  ident: 3053_CR62
  publication-title: Mol Biol Evol
– volume: 8
  start-page: 715
  year: 2017
  ident: 3053_CR13
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00715
– volume: 12
  start-page: e0187318
  issue: 11
  year: 2017
  ident: 3053_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0187318
– volume: 5
  start-page: 9040
  year: 2015
  ident: 3053_CR11
  publication-title: Sci Rep
  doi: 10.1038/srep09040
– volume: 5
  start-page: 16958
  year: 2015
  ident: 3053_CR26
  publication-title: Sci Rep
  doi: 10.1038/srep16958
– volume: 19
  start-page: 11
  issue: 1
  year: 1987
  ident: 3053_CR53
  publication-title: Phytochem Bull
– volume: 138
  start-page: 53
  issue: 9
  year: 2019
  ident: 3053_CR29
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2019.05.030
– volume: 209
  start-page: 1747
  issue: 4
  year: 2016
  ident: 3053_CR30
  publication-title: New Phytol
  doi: 10.1111/nph.13743
– volume: 76
  start-page: 273
  issue: 3
  year: 2011
  ident: 3053_CR35
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-011-9762-4
– volume: 70
  start-page: 429
  issue: 1
  year: 2014
  ident: 3053_CR19
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2013.08.016
– volume: 8
  start-page: e67350
  issue: 6
  year: 2013
  ident: 3053_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0067350
– volume: 5
  start-page: e0011147
  issue: 6
  year: 2010
  ident: 3053_CR57
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011147
– volume: 13
  start-page: 84
  issue: 1
  year: 2013
  ident: 3053_CR25
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-13-84
– volume: 90
  start-page: 808
  issue: 4
  year: 2017
  ident: 3053_CR3
  publication-title: Plant J
  doi: 10.1111/tpj.13491
– volume: 2
  start-page: 278
  issue: 1
  year: 2019
  ident: 3053_CR48
  publication-title: Commun Biol
  doi: 10.1038/s42003-019-0531-2
– volume: 84
  start-page: 9054
  issue: 24
  year: 1987
  ident: 3053_CR50
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.24.9054
– volume: 11
  start-page: 126
  year: 2020
  ident: 3053_CR16
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00126
– volume: 55
  start-page: 501
  issue: 5
  year: 2002
  ident: 3053_CR51
  publication-title: J Mol Evol
  doi: 10.1007/s00239-002-2333-y
– volume: 22
  start-page: 2688
  issue: 21
  year: 2006
  ident: 3053_CR60
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl446
– volume: 33
  start-page: 1210
  issue: 5
  year: 2015
  ident: 3053_CR39
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-014-0833-y
– volume: 57
  start-page: 1
  issue: 1
  year: 2019
  ident: 3053_CR28
  publication-title: J Syst Evol
  doi: 10.1111/jse.12425
– volume: 105
  start-page: 71
  issue: 1
  year: 2018
  ident: 3053_CR37
  publication-title: Am J Bot
  doi: 10.1002/ajb2.1001
– volume: 8
  start-page: 1713
  year: 2017
  ident: 3053_CR40
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01713
– volume: 56
  start-page: 564
  issue: 4
  year: 2007
  ident: 3053_CR59
  publication-title: Syst Biol
  doi: 10.1080/10635150701472164
– volume: 8
  start-page: 13568
  issue: 1
  year: 2018
  ident: 3053_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-31938-w
– volume: 24
  start-page: 1586
  issue: 8
  year: 2007
  ident: 3053_CR63
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
– start-page: 103
  volume-title: Genomics of Chloroplasts and Mitochondria
  year: 2012
  ident: 3053_CR2
  doi: 10.1007/978-94-007-2920-9_5
– volume: 24
  start-page: 2838
  issue: 11
  year: 2015
  ident: 3053_CR15
  publication-title: Mol Ecol
  doi: 10.1111/mec.13189
SSID ssj0017849
Score 2.5578787
Snippet Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well...
Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and...
BACKGROUND: Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well...
Abstract Background Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 248
SubjectTerms Botanical research
Boundaries
Boundary shift
chloroplast genome
Chloroplasts
Contraction
Evolution
Evolutionary genetics
Gene order
Genes
Genetic aspects
Genomes
Genomics
genus
Inverted repeat
Natural history
Nucleotide sequence
Orchidaceae
Orchids
Paphiopedilum
Phylogenetics
Phylogenomics
Phylogeny
Plastome
Plastomes
Proteins
Sampling
Species
Structure
Substitutes
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF9K8aEv4iee1rIFQcWGXpLNZrdvbbG0PohYK31bZj_CFdok3Id4z_7jndnkjkahvvQ1O-GS-Z7LzG8Ye4cWo3QFRTK2XiRCQEomJRLvJQDk4GzXIPtVnl6IL5fF5Z1VX9QT1sEDd4zbV6Azmxe5LDBUepuqMkAllMPQmdmxj0igGPNWxVT__aBUQq9GZJTcn6X0PS-hdgRS8DxZDsJQROv_1yf_3Sd5J_CcPGGP-4yRH3ZP-pRthPoZe3TUYFa3fM7-oJy5m2DV3bSYCM85ga7eBB5-9TrFm4r_DPVixjGjbNsw5R--QTu5aloMW-iZPh7ws-88_EavQH-c7fHz82MeG9i7kYc9DrXnhGp8veRT6uylcQQfyWirA2rtC3Zx8vnH8WnSL1ZIXFHm8yQPqRxnQVmhlYUKNMql0qXToIVAbqsCMid1yKzXPtPClsh-DxjlrE8F-oiXbLNu6vCKcUidt85ZB1jaYDSEkFdCoga4TLrKViOWrvhsXI86Tssvrk2sPpQ0nWwMysZE2ZjliH1a39N2mBv3Uh-R-NaUhJcdL6AWmV6LzP-0aMTek_ANWTXxF_rhBHxJwscyh7SkWWK6ipTbA0q0Rjc8XqmP6b3BzBDggMC6Mpcjtrs-pjupw60OzYJoaGaZ9kbdR4P5tsKkDX-mHKjm4O2HJ_XVJKKGq1SidxavH4Jdb9hWFo2Juii22eZ8ughvMTmb251oh7eJIjiT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagcOCCWMXQgoyEBIhGHSeOY3NBbUVVOCBEKZqb5S1MpZKksyDmzB_nPcczEJDmGr8osd_22X4LIc9BY6SqTZmNrecZ54ahSvHMe2GMKYyzfYDsR3F6zj9Mykk6cJunsMq1TYyG2rcOz8gPMGmbAzYvxNvuKsOuUXi7mlpoXCc3sHQZSnU12Wy4WCW5WifKSHEwZ3irl2FQAop5ka0GzijW7P_fMv8bLfmX-zm5Q24n3EgPe0bfJddCc4_cPGoB263uk1_AbeqmsPduO4DDC4qlV78HGn4kyaJtTb-GZjmngCu7Lszoy0-mm160HTgvsE-v3tD3n2n4CbYBj8_26dnZMY1h7H3iwz41jadY2_hyRWcY34tJCT6SYW8HkN0H5Pzk3Zfj0yy1V8hcWRWLrAhMjPMgLVfSmtoo4E6tKqeM4jy3hSxN7oQKufXK54rbqhClN-DrrGccLMVDstO0TXhEqGHOW-esM7DBAZ9oQlFzAXLgcuFqW48IW6-zdqn2OLbAuNRxDyKF7nmjgTc68kavRuT15p2ur7yxlfoI2behxKrZ8UE7-6aTEmppFMyrhGkA7PKWySqYmksHMCy3Y89H5AUyX6Nu4_qalKIAk8QqWfoQWzULAK1AuTegBJ10w-G1-OhkE-b6jwSPyLPNML6JcW5NaJdIg5nL2D1qGw2gbgnQDT5TDURzMPvhSHMxjbXDJRNgo_nj7T-4S27lUU0wSmKP7Cxmy_AEwNfCPo0a9hsZLDDF
  priority: 102
  providerName: ProQuest
Title The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions
URI https://www.proquest.com/docview/2543496636
https://www.proquest.com/docview/2535828321
https://www.proquest.com/docview/2551980824
https://pubmed.ncbi.nlm.nih.gov/PMC8165784
https://doaj.org/article/8a92b35365584db187eaf48c0652b0d4
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB514cAFsYpAiQYJCRA1je3xeIyEUFO1KkhUVUpQxGU0m0mkYIcsqDnzx3lvbAcMVcUlh8xz4nnbfM9-CyHPwGJElqsk6GnLAsZUiCbFAmu5UipWRlcJsmf8dMg-jJLRFmnGHdUMXFwZ2uE8qeF8-vry-_odGPxbb_CCHyxCfFsXYLIBqm8crLfJLpxMKU40-Mh-v1VIhYfDITjkAOdYN0U0V_5G66Dy_fz_9dp_Z1L-cTSd3Ca3akxJDysluEO2XHGX3OiXgPvW98hP0ARqxhCXlzOAykuKbVm_Oep-1FpHy5x-dsVqQQFzzmZuTl-cq9l4AoywE_BdL9_Q9wPqLsFv4KO1fXpxcUR9intVFLFPVWEp9j2erukcc3-xYMF6Mpz7AHp9nwxPjj8dnQb16IXAJGm8DGIX8l7khGaZ0CpXGUguz1KTqYyxSMciUZHhmYu0zWyUMZ3GPLEKzkFtgb29-AHZKcrCPSRUhcZqY7RREPzAealcnDMOOmIibnKdd0jY8Fmaui85jseYSh-fCC4r2UiQjfSykesOebW5ZlZ15biWuo_i21BiR23_RTn_KmsDlUJlsK8EtgGQzOpQpE7lTBiAaJHuWdYhz1H4EjUR-avq8gXYJHbQkoc4xpkDoAXKvRYl2KtpLzfqIxt1l9iSgEHkGfMOebpZxisxB65w5QppsKoZJ0tdRwOIXACsg79JW6rZ2n17pZiMfV9xEXLw3-zRf9zBY3Iz8raCaRR7ZGc5X7kngM6Wuku201HaJbv947PzQdc_4-h6M4TPQf_LL8JTPIE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKQYIXxCkWChgJBIhG3SSOYyMh1BaqLi0Voof2zfgKW6kkYQ9gn_k__EZmciwEpH3r63qSjT3XN8kchDwGjREy00nQN44FjOkQVYoFznGtdaytqRNkD_juMXs3TIYr5FdbC4Npla1NrAy1Kyy-I9_Aom0G2Dzmr8uvAU6Nwq-r7QiNWiz2_Pw7hGyTV4M3wN8nUbTz9mh7N2imCgQ2SeNpEPuQ9yMvDJPC6ExLeKhMplZqyVhkYpHoyHLpI-OkiyQzacwTp8HEGxcyUBC47wVyERxvH4O9dLgI8MJUMNkW5gi-MQnxK2KASRCoVnEw7zi_akbA_57g3-zMv9zdzjVytcGpdLMWrOtkxec3yKWtArDk_Cb5CdJF7Qhi_aIE-D2l2Or1i6f-WyPJtMjoic9nEwo4tiz9mD77oMvRaVGCswR7-PwlHXyk_gfYInxdt04PD7dplTZfF1qsU507ir2Uz-Z0jPnEWAThKjKcJQG6coscn8vB3yareZH7O4Tq0DpjrbEaAirwwdrHGeMgdzbiNjNZj4TtOSvb9DrHkRtnqop5BFc1bxTwRlW8UfMeebG4pqw7fSyl3kL2LSixS3f1QzH-rBqlV0JL2FcC2wCY50woUq8zJizAvsj0HeuRp8h8hbYEz1c3JRGwSezKpTZxNDQHkAyUax1KsAG2u9yKj2ps0ET90ZgeebRYxisxry73xQxpsFIap1UtowGULwAqwt-kHdHs7L67kp-Oql7lIuTgE9jd5Q_4kFzePXq_r_YHB3v3yJWoUhnM0Fgjq9PxzN8H4Dc1Dypto-TTeav3b1y4bXI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+chloroplast+genome+evolution+of+Venus+slipper+%28Paphiopedilum%29%3A+IR+expansion%2C+SSC+contraction%2C+and+highly+rearranged+SSC+regions&rft.jtitle=BMC+plant+biology&rft.au=Guo%2C+Yan-Yan&rft.au=Yang%2C+Jia-Xing&rft.au=Bai%2C+Ming-Zhu&rft.au=Zhang%2C+Guo-Qiang&rft.date=2021-05-31&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=21&rft.issue=1&rft.spage=248&rft_id=info:doi/10.1186%2Fs12870-021-03053-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon