Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9

X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of po...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 69; no. 2; pp. 189 - 198
Main Authors Byambaa, Suvd, Uosaki, Hideki, Hara, Hiromasa, Nagao, Yasumitsu, Abe, Tomoyuki, Shibata, Hiroaki, Nureki, Osamu, Ohmori, Tsukasa, Hanazono, Yutaka
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 01.01.2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of point mutations. In this study, we generated novel X-SCID mouse strains with small insertion and deletion (InDel) mutations in Il2rg by using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected Streptococcus pyogenes Cas9 (SpCas9) mRNA and single guide RNA targeting the exon 2, 3 or 4 of Il2rg into mouse zygotes. In the F0 generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3 and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data indicated that CRISPR/Cas9 targeting Il2rg causes InDel mutations effectively and generates genetically X-SCID mice. Genetic mutations, however, did not necessarily grant phenotypical alteration, which requires an intensive analysis after establishing a strain to confirm their phenotypes.
AbstractList X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain ( IL2RG ) gene. In contrast, Il2rg -knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of point mutations. In this study, we generated novel X-SCID mouse strains with small insertion and deletion (InDel) mutations in Il2rg by using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected Streptococcus pyogenes Cas9 (SpCas9) mRNA and single guide RNA targeting the exon 2, 3 or 4 of Il2rg into mouse zygotes. In the F0 generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3 and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data indicated that CRISPR/Cas9 targeting Il2rg causes InDel mutations effectively and generates genetically X-SCID mice. Genetic mutations, however, did not necessarily grant phenotypical alteration, which requires an intensive analysis after establishing a strain to confirm their phenotypes.
X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of point mutations. In this study, we generated novel X-SCID mouse strains with small insertion and deletion (InDel) mutations in Il2rg by using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected Streptococcus pyogenes Cas9 (SpCas9) mRNA and single guide RNA targeting the exon 2, 3 or 4 of Il2rg into mouse zygotes. In the F0 generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3 and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data indicated that CRISPR/Cas9 targeting Il2rg causes InDel mutations effectively and generates genetically X-SCID mice. Genetic mutations, however, did not necessarily grant phenotypical alteration, which requires an intensive analysis after establishing a strain to confirm their phenotypes.
Author Uosaki, Hideki
Nagao, Yasumitsu
Abe, Tomoyuki
Nureki, Osamu
Hara, Hiromasa
Shibata, Hiroaki
Byambaa, Suvd
Ohmori, Tsukasa
Hanazono, Yutaka
Author_xml – sequence: 1
  fullname: Byambaa, Suvd
  organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
– sequence: 2
  fullname: Uosaki, Hideki
  organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
– sequence: 3
  fullname: Hara, Hiromasa
  organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
– sequence: 4
  fullname: Nagao, Yasumitsu
  organization: Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
– sequence: 5
  fullname: Abe, Tomoyuki
  organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
– sequence: 6
  fullname: Shibata, Hiroaki
  organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
– sequence: 7
  fullname: Nureki, Osamu
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
– sequence: 8
  fullname: Ohmori, Tsukasa
  organization: Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
– sequence: 9
  fullname: Hanazono, Yutaka
  organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31801915$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vEzEQxS1URNvAmRuyxAUO2_ojXu9ekFBUSqRKoAJny_HOJk4de7G9pf3vcUhYAQcky7bG7_dm5HeOTnzwgNBLSi6o4M0lPAza290FbStCGXmCzmjT0EpSxk7Knc9pRbmQp-g8pS0hTErWPkOnnDaEtlScoYdr8BB1tsHj0GMf7sHhpWNxXd35YO7CmPHOGsA_bN5g48aUIUKHI6xHp6N7xNaXShq0KdW0CTHjQTvruxgKV3QD6Jzwm8Xt8svn27dY-w4vdGqfo6e9dgleHM8Z-vbh6uviY3Xz6Xq5eH9TGSF5rrghol51ctWyOdO11n1LWW8MXTWMiIYaUQvBqGAdGK0F0A6As6aHupmDqOd8ht4dfIdxtYPOgM9ROzVEu9PxUQVt1d8v3m7UOtwryRiRRBSD10eDGL6PkLLahjH6MrNivJVsLnlZM_TqzzaT_--fLoLLg8DEkFKEfpJQovZZqmOWirZqn2UhxD-EsflXUmVO6_7DXR24bcp6DVMfHbM1DiZ93Sq2347c9G42Oirw_Cfr4cC3
CitedBy_id crossref_primary_10_1016_j_omtm_2021_01_001
crossref_primary_10_18632_aging_104199
crossref_primary_10_3390_biom12101521
crossref_primary_10_1016_j_jcyt_2024_06_002
crossref_primary_10_3390_ijms25052977
Cites_doi 10.1182/blood-2001-12-0207
10.1038/s41592-019-0614-5
10.1093/bioinformatics/btu743
10.1038/ncomms6560
10.1016/j.celrep.2015.12.052
10.1016/j.celrep.2015.08.013
10.1038/srep12658
10.1073/pnas.92.19.8724
10.1038/nbt.2647
10.1016/j.celrep.2018.10.043
10.1093/bioinformatics/bti774
10.1182/blood.V87.3.956.bloodjournal873956
10.1093/bioinformatics/btt764
10.1038/ncomms10431
10.1155/2017/9096829
10.1126/science.1088547
10.1016/j.cell.2013.08.022
10.1093/bioinformatics/btu048
10.1016/j.jneumeth.2019.01.010
10.3389/fnmol.2017.00453
10.1056/NEJMoa1000164
10.1016/j.celrep.2019.05.103
10.1101/gr.244293.118
10.1126/science.288.5466.669
10.1016/j.ydbio.2016.07.017
10.1007/s00335-017-9703-x
10.1073/pnas.92.2.377
10.1016/1074-7613(95)90047-0
10.1074/jbc.M116.733154
10.1371/journal.pone.0129457
10.1186/s13059-017-1240-0
10.1038/srep05396
10.1016/j.stem.2015.02.005
ContentType Journal Article
Copyright 2020 Japanese Association for Laboratory Animal Science
Copyright Japan Science and Technology Agency 2020
2020 Japanese Association for Laboratory Animal Science 2020
Copyright_xml – notice: 2020 Japanese Association for Laboratory Animal Science
– notice: Copyright Japan Science and Technology Agency 2020
– notice: 2020 Japanese Association for Laboratory Animal Science 2020
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
RC3
5PM
DOI 10.1538/expanim.19-0120
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 198
ExternalDocumentID PMC7220705
31801915
10_1538_expanim_19_0120
article_expanim_69_2_69_19_0120_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
FRP
GX1
HYE
JSF
JSH
KQ8
M48
M~E
OK1
P2P
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
OVT
PGMZT
NPM
7QO
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c573t-3c056bd7b9242a6aaf912fcc1b820581c56552152decaa5e1dee328fe684e5643
IEDL.DBID M48
ISSN 1341-1357
IngestDate Thu Aug 21 14:10:49 EDT 2025
Mon Jun 30 16:51:44 EDT 2025
Thu Jan 02 22:58:41 EST 2025
Thu Apr 24 22:55:09 EDT 2025
Tue Jul 01 01:21:02 EDT 2025
Sun Jul 28 05:52:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords X-linked severe combined immunodeficiency (X-SCID)
clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9
II2rg
animal model
genome-editing
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-3c056bd7b9242a6aaf912fcc1b820581c56552152decaa5e1dee328fe684e5643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.19-0120
PMID 31801915
PQID 2397247347
PQPubID 2048505
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7220705
proquest_journals_2397247347
pubmed_primary_31801915
crossref_primary_10_1538_expanim_19_0120
crossref_citationtrail_10_1538_expanim_19_0120
jstage_primary_article_expanim_69_2_69_19_0120_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2020
Publisher Japanese Association for Laboratory Animal Science
Japan Science and Technology Agency
Publisher_xml – name: Japanese Association for Laboratory Animal Science
– name: Japan Science and Technology Agency
References 20. Kawahara A., Minami Y., Miyazaki T., Ihle J.N. and Taniguchi T. 1995. Critical role of the interleukin 2 (IL-2) receptor gamma-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Proc. Natl. Acad. Sci. USA 92: 8724–8728.
27. Ohbo K., Suda T., Hashiyama M., Mantani A., Ikebe M., Miyakawa K., Moriyama M., Nakamura M., Katsuki M., Takahashi K., Yamamura K. and Sugamura K. 1996. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87: 956–967.
34. Xiao A., Cheng Z., Kong L., Zhu Z., Lin S., Gao G. and Zhang B. 2014. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30: 1180–1182.
21. Kovanen P.E., and Leonard W.J. 2004. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202: 67–83.
23. Menon T., Firth A.L., Scripture-Adams D.D., Galic Z., Qualls S.J., Gilmore W.B., Ke E., Singer O., Anderson L.S., Bornzin A.R., Alexander I.E., Zack J.A. and Verma I.M. 2015. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 16: 367–372.
4. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., Gross F., Yvon E., Nusbaum P., Selz F., Hue C., Certain S., Casanova J.L., Bousso P., Deist F.L. and Fischer A. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669–672.
26. Nakade S., Tsubota T., Sakane Y., Kume S., Sakamoto N., Obara M., Daimon T., Sezutsu H., Yamamoto T., Sakuma T. and Suzuki K.T. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5: 5560.
10. Darwish M., Nishizono H., Uosaki H., Sawada H., Sadahiro T., Ieda M. and Takao K. 2019. Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. J. Neurosci. Methods 317: 149–156.
12. Goh T.S., Jo Y., Lee B., Kim G., Hwang H., Ko E., Kang S.W., Oh S.O., Baek S.Y., Yoon S., Lee J.S. and Hong C. 2017. IL-7 induces an epitope masking of gammac protein in IL-7 receptor signaling complex. Mediators Inflamm. 2017: 9096829.
33. Sunagawa G.A., Sumiyama K., Ukai-Tadenuma M., Perrin D., Fujishima H., Ukai H., Nishimura O., Shi S., Ohno R.I., Narumi R., Shimizu Y., Tone D., Ode K.L., Kuraku S. and Ueda H.R. 2016. Mammalian reverse genetics without crossing reveals Nr3a as a short-sleeper gene. Cell Rep. 14: 662–677.
14. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., McCormack M.P., Wulffraat N., Leboulch P., Lim A., Osborne C.S., Pawliuk R., Morillon E., Sorensen R., Forster A., Fraser P., Cohen J.I., de Saint Basile G., Alexander I., Wintergerst U., Frebourg T., Aurias A., Stoppa-Lyonnet D., Romana S., Radford-Weiss I., Gross F., Valensi F., Delabesse E., Macintyre E., Sigaux F., Soulier J., Leiva L.E., Wissler M., Prinz C., Rabbitts T.H., Le Deist F., Fischer A. and Cavazzana-Calvo M. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419.
15. Hashimoto M., and Takemoto T. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 5: 11315.
7. Chen S., Lee B., Lee A.Y., Modzelewski A.J. and He L. 2016. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291: 14457–14467.
16. Hashimoto M., Yamashita Y. and Takemoto T. 2016. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. 418: 1–9.
28. Oliver D., Yuan S., McSwiggin H. and Yan W. 2015. Pervasive genotypic mosaicism in founder mice derived from genome editing through pronuclear injection. PLoS One 10: e0129457.
29. Puck J.M., Pepper A.E., Henthorn P.S., Candotti F., Isakov J., Whitwam T., Conley M.E., Fischer R.E., Rosenblatt H.M., Small T.N. and Buckley R.H. 1997. Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 89: 1968–1977.
2. Birling M.C., Herault Y. and Pavlovic G. 2017. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm. Genome 28: 291–301.
25. Naito Y., Hino K., Bono H. and Ui-Tei K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31: 1120–1123.
11. DiSanto J.P., Müller W., Guy-Grand D., Fischer A. and Rajewsky K. 1995. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA 92: 377–381.
18. Inui M., Miyado M., Igarashi M., Tamano M., Kubo A., Yamashita S., Asahara H., Fukami M. and Takada S. 2014. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4: 5396.
17. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G. and Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31: 827–832.
5. Chang C.W., Lai Y.S., Westin E., Khodadadi-Jamayran A., Pawlik K.M., Lamb L.S. Jr., Goldman F.D. and Townes T.M. 2015. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12: 1668–1677.
19. Ito M., Hiramatsu H., Kobayashi K., Suzue K., Kawahata M., Hioki K., Ueyama Y., Koyanagi Y., Sugamura K., Tsuji K., Heike T. and Nakahata T. 2002. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175–3182.
31. Smits A.H., Ziebell F., Joberty G., Zinn N., Mueller W.F., Clauder-Münster S., Eberhard D., Fälth Savitski
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 26. Nakade S., Tsubota T., Sakane Y., Kume S., Sakamoto N., Obara M., Daimon T., Sezutsu H., Yamamoto T., Sakuma T. and Suzuki K.T. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5: 5560.
– reference: 35. Yang H., Wang H., Shivalila C.S., Cheng A.W., Shi L. and Jaenisch R. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154: 1370–1379.
– reference: 5. Chang C.W., Lai Y.S., Westin E., Khodadadi-Jamayran A., Pawlik K.M., Lamb L.S. Jr., Goldman F.D. and Townes T.M. 2015. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12: 1668–1677.
– reference: 29. Puck J.M., Pepper A.E., Henthorn P.S., Candotti F., Isakov J., Whitwam T., Conley M.E., Fischer R.E., Rosenblatt H.M., Small T.N. and Buckley R.H. 1997. Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 89: 1968–1977.
– reference: 19. Ito M., Hiramatsu H., Kobayashi K., Suzue K., Kawahata M., Hioki K., Ueyama Y., Koyanagi Y., Sugamura K., Tsuji K., Heike T. and Nakahata T. 2002. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175–3182.
– reference: 27. Ohbo K., Suda T., Hashiyama M., Mantani A., Ikebe M., Miyakawa K., Moriyama M., Nakamura M., Katsuki M., Takahashi K., Yamamura K. and Sugamura K. 1996. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87: 956–967.
– reference: 32. Stemmer M., Thumberger T., Del Sol Keyer M., Wittbrodt J. and Mateo J.L. 2015. CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10: e0124633.
– reference: 33. Sunagawa G.A., Sumiyama K., Ukai-Tadenuma M., Perrin D., Fujishima H., Ukai H., Nishimura O., Shi S., Ohno R.I., Narumi R., Shimizu Y., Tone D., Ode K.L., Kuraku S. and Ueda H.R. 2016. Mammalian reverse genetics without crossing reveals Nr3a as a short-sleeper gene. Cell Rep. 14: 662–677.
– reference: 4. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., Gross F., Yvon E., Nusbaum P., Selz F., Hue C., Certain S., Casanova J.L., Bousso P., Deist F.L. and Fischer A. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669–672.
– reference: 20. Kawahara A., Minami Y., Miyazaki T., Ihle J.N. and Taniguchi T. 1995. Critical role of the interleukin 2 (IL-2) receptor gamma-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Proc. Natl. Acad. Sci. USA 92: 8724–8728.
– reference: 24. Morgulis A., Gertz E.M., Schäffer A.A. and Agarwala R. 2006. WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22: 134–141.
– reference: 28. Oliver D., Yuan S., McSwiggin H. and Yan W. 2015. Pervasive genotypic mosaicism in founder mice derived from genome editing through pronuclear injection. PLoS One 10: e0129457.
– reference: 10. Darwish M., Nishizono H., Uosaki H., Sawada H., Sadahiro T., Ieda M. and Takao K. 2019. Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. J. Neurosci. Methods 317: 149–156.
– reference: 13. Hacein-Bey-Abina S., Hauer J., Lim A., Picard C., Wang G.P., Berry C.C., Martinache C., Rieux-Laucat F., Latour S., Belohradsky B.H., Leiva L., Sorensen R., Debré M., Casanova J.L., Blanche S., Durandy A., Bushman F.D., Fischer A. and Cavazzana-Calvo M. 2010. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 363: 355–364.
– reference: 8. Chen S., Sun S., Moonen D., Lee C., Lee A.Y., Schaffer D.V. and He L. 2019. CRISPR-READI: Efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep. 27: 3780–3789.e4.
– reference: 15. Hashimoto M., and Takemoto T. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 5: 11315.
– reference: 22. Labun K., Guo X., Chavez A., Church G., Gagnon J.A. and Valen E. 2019. Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Res. 29: 843–847.
– reference: 31. Smits A.H., Ziebell F., Joberty G., Zinn N., Mueller W.F., Clauder-Münster S., Eberhard D., Fälth Savitski M., Grandi P., Jakob P., Michon A.M., Sun H., Tessmer K., Bürckstümmer T., Bantscheff M., Steinmetz L.M., Drewes G. and Huber W. 2019. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16: 1087–1093.
– reference: 3. Cao X., Shores E.W., Hu-Li J., Anver M.R., Kelsall B.L., Russell S.M., Drago J., Noguchi M., Grinberg A., Bloom E.T., Pau L.W.E., Katz S.I., Love P.E. and Leonard W.J. 1995. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2: 223–238.
– reference: 30. Sharpe J.J., and Cooper T.A. 2017. Unexpected consequences: exon skipping caused by CRISPR-generated mutations. Genome Biol. 18: 109.
– reference: 36. Yoshimi K., Kunihiro Y., Kaneko T., Nagahora H., Voigt B. and Mashimo T. 2016. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat. Commun. 7: 10431.
– reference: 9. Cheng C., Deng P. Y., Ikeuchi Y., Yuede C., Li D., Rensing N., Huang J., Baldridge D., Maloney S. E., Dougherty J. D., Constantino J., Jahani-Asl A., Wong M., Wozniak D. F., Wang T., Klyachko V. A. and Bonni A. 2018. Characterization of a mouse model of Borjeson-Forssman-Lehmann syndrome. Cell Rep 25: 1404–1414 e1406.
– reference: 7. Chen S., Lee B., Lee A.Y., Modzelewski A.J. and He L. 2016. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291: 14457–14467.
– reference: 17. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G. and Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31: 827–832.
– reference: 6. Chen D., Xu T., Tu M., Xu J., Zhou C., Cheng L., Yang R., Yang T., Zheng W., He X., Deng R., Ge X., Li J., Song Z., Zhao J. and Gu F. 2018. Recapitulating X-Linked juvenile retinoschisis in mouse model by knock-in patient-specific novel mutation. Front. Mol. Neurosci. 10: 453.
– reference: 14. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., McCormack M.P., Wulffraat N., Leboulch P., Lim A., Osborne C.S., Pawliuk R., Morillon E., Sorensen R., Forster A., Fraser P., Cohen J.I., de Saint Basile G., Alexander I., Wintergerst U., Frebourg T., Aurias A., Stoppa-Lyonnet D., Romana S., Radford-Weiss I., Gross F., Valensi F., Delabesse E., Macintyre E., Sigaux F., Soulier J., Leiva L.E., Wissler M., Prinz C., Rabbitts T.H., Le Deist F., Fischer A. and Cavazzana-Calvo M. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419.
– reference: 25. Naito Y., Hino K., Bono H. and Ui-Tei K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31: 1120–1123.
– reference: 21. Kovanen P.E., and Leonard W.J. 2004. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202: 67–83.
– reference: 2. Birling M.C., Herault Y. and Pavlovic G. 2017. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm. Genome 28: 291–301.
– reference: 11. DiSanto J.P., Müller W., Guy-Grand D., Fischer A. and Rajewsky K. 1995. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA 92: 377–381.
– reference: 18. Inui M., Miyado M., Igarashi M., Tamano M., Kubo A., Yamashita S., Asahara H., Fukami M. and Takada S. 2014. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4: 5396.
– reference: 23. Menon T., Firth A.L., Scripture-Adams D.D., Galic Z., Qualls S.J., Gilmore W.B., Ke E., Singer O., Anderson L.S., Bornzin A.R., Alexander I.E., Zack J.A. and Verma I.M. 2015. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 16: 367–372.
– reference: 1. Bae S., Park J. and Kim J.S. 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30: 1473–1475.
– reference: 12. Goh T.S., Jo Y., Lee B., Kim G., Hwang H., Ko E., Kang S.W., Oh S.O., Baek S.Y., Yoon S., Lee J.S. and Hong C. 2017. IL-7 induces an epitope masking of gammac protein in IL-7 receptor signaling complex. Mediators Inflamm. 2017: 9096829.
– reference: 16. Hashimoto M., Yamashita Y. and Takemoto T. 2016. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. 418: 1–9.
– reference: 34. Xiao A., Cheng Z., Kong L., Zhu Z., Lin S., Gao G. and Zhang B. 2014. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30: 1180–1182.
– ident: 19
  doi: 10.1182/blood-2001-12-0207
– ident: 31
  doi: 10.1038/s41592-019-0614-5
– ident: 25
  doi: 10.1093/bioinformatics/btu743
– ident: 26
  doi: 10.1038/ncomms6560
– ident: 33
  doi: 10.1016/j.celrep.2015.12.052
– ident: 5
  doi: 10.1016/j.celrep.2015.08.013
– ident: 15
  doi: 10.1038/srep12658
– ident: 20
  doi: 10.1073/pnas.92.19.8724
– ident: 17
  doi: 10.1038/nbt.2647
– ident: 9
  doi: 10.1016/j.celrep.2018.10.043
– ident: 24
  doi: 10.1093/bioinformatics/bti774
– ident: 27
  doi: 10.1182/blood.V87.3.956.bloodjournal873956
– ident: 34
  doi: 10.1093/bioinformatics/btt764
– ident: 36
  doi: 10.1038/ncomms10431
– ident: 12
  doi: 10.1155/2017/9096829
– ident: 14
  doi: 10.1126/science.1088547
– ident: 35
  doi: 10.1016/j.cell.2013.08.022
– ident: 1
  doi: 10.1093/bioinformatics/btu048
– ident: 10
  doi: 10.1016/j.jneumeth.2019.01.010
– ident: 6
  doi: 10.3389/fnmol.2017.00453
– ident: 13
  doi: 10.1056/NEJMoa1000164
– ident: 8
  doi: 10.1016/j.celrep.2019.05.103
– ident: 22
  doi: 10.1101/gr.244293.118
– ident: 4
  doi: 10.1126/science.288.5466.669
– ident: 16
  doi: 10.1016/j.ydbio.2016.07.017
– ident: 32
– ident: 29
– ident: 2
  doi: 10.1007/s00335-017-9703-x
– ident: 11
  doi: 10.1073/pnas.92.2.377
– ident: 3
  doi: 10.1016/1074-7613(95)90047-0
– ident: 7
  doi: 10.1074/jbc.M116.733154
– ident: 28
  doi: 10.1371/journal.pone.0129457
– ident: 30
  doi: 10.1186/s13059-017-1240-0
– ident: 21
– ident: 18
  doi: 10.1038/srep05396
– ident: 23
  doi: 10.1016/j.stem.2015.02.005
SSID ssj0027729
Score 2.2190602
Snippet X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2...
X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 189
SubjectTerms animal model
clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9
CRISPR
Exons
Gene deletion
Genetic disorders
genome-editing
II2rg
Insertion
Interleukin 2
Interleukins
Lymphocytes
Lymphocytes B
Lymphocytes T
mRNA
Mutants
Mutation
Nucleotides
Original
Peripheral blood
Phenotypes
Proteins
Rodents
Severe combined immunodeficiency
X-linked severe combined immunodeficiency (X-SCID)
Zygotes
Title Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9
URI https://www.jstage.jst.go.jp/article/expanim/69/2/69_19-0120/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/31801915
https://www.proquest.com/docview/2397247347
https://pubmed.ncbi.nlm.nih.gov/PMC7220705
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2020, Vol.69(2), pp.189-198
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWggMQF8VkCpfKBQzlkke04Tg6A0IrSIm1VFVZacYkcZ9IupMk2u4u2_56ZJJuyaDlxySGeWNGMPX4zSt5j7LXJwlTrNPY1uMDHesP6sdGBDyEIp4zK8oz6kKOT8GgcfJnoyY0cUOfA-dbSjvSkxnUxWF1df8AN_65R71HRW1jhxpleDuh3HCGxfr-Dx5IhOYNREN1UX6aRLCMCM18obTqeny0TbBxRd38gSjuHbQD07-8o_ziYDh-yBx2i5B_bJfCI3YLyMbv3vWr65U_YqiWWJv_zKudl9QsKflzI-tz_WWIyrJYLTpL0nDqy3BVLYk6AjNeNSH1dXHNilEAXWYd35xfoKT5D8N4QHUwd2s0wnc_5wfDs-Ovp2Rtuy4wP7Tx-ysaHn74Nj_xObsF32qiFrxyCoTQzKZZk0obW5rGQuXMiRZSgI-EQ-2mSwc3AWatBZABKRjmEUQAakc0ztlNWJTxnPDKAQEECxCQnYyASAFFohQEVYUGqPDZYezhxHRc5SWIUCdUkGJKkC0ki4oRC4rGD_oFZS8Pxb9P3bch6w24P9oZhnEi6dA_04_SfGyYLj-2tQ52s12MiEbfJwKjAeGy3jXo_P6ZFBMpCe8xsrIfegCi8N0fK6UVD5W2kxJyrX_zvO79k9yU1Apre0B7bWdRLeIVoaZHus9ufJ2K_2Qt4PTkd_QbH4BuI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+novel+Il2rg-knockout+mice+with+clustered+regularly+interspaced+short+palindromic+repeats+%28CRISPR%29+and+Cas9&rft.jtitle=Experimental+Animals&rft.au=Byambaa%2C+Suvd&rft.au=Uosaki%2C+Hideki&rft.au=Hara%2C+Hiromasa&rft.au=Nagao%2C+Yasumitsu&rft.date=2020-01-01&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=69&rft.issue=2&rft.spage=189&rft.epage=198&rft_id=info:doi/10.1538%2Fexpanim.19-0120&rft.externalDocID=article_expanim_69_2_69_19_0120_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon