Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9
X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of po...
Saved in:
Published in | Experimental Animals Vol. 69; no. 2; pp. 189 - 198 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Association for Laboratory Animal Science
01.01.2020
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of point mutations. In this study, we generated novel X-SCID mouse strains with small insertion and deletion (InDel) mutations in Il2rg by using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected Streptococcus pyogenes Cas9 (SpCas9) mRNA and single guide RNA targeting the exon 2, 3 or 4 of Il2rg into mouse zygotes. In the F0 generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3 and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data indicated that CRISPR/Cas9 targeting Il2rg causes InDel mutations effectively and generates genetically X-SCID mice. Genetic mutations, however, did not necessarily grant phenotypical alteration, which requires an intensive analysis after establishing a strain to confirm their phenotypes. |
---|---|
AbstractList | X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A
majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma
chain (
IL2RG
) gene. In contrast,
Il2rg
-knockout mice
recapitulating X-SCID phenotype lack a large part of
Il2rg
instead of
point mutations. In this study, we generated novel X-SCID mouse strains with small
insertion and deletion (InDel) mutations in
Il2rg
by using clustered
regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected
Streptococcus pyogenes
Cas9 (SpCas9) mRNA and single guide RNA
targeting the exon 2, 3 or 4 of
Il2rg
into mouse zygotes. In the F0
generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and
most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral
blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic
mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established
new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the
exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3
and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data
indicated that CRISPR/Cas9 targeting
Il2rg
causes InDel mutations
effectively and generates genetically X-SCID mice. Genetic mutations, however, did not
necessarily grant phenotypical alteration, which requires an intensive analysis after
establishing a strain to confirm their phenotypes. X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2 receptor gamma chain (IL2RG) gene. In contrast, Il2rg-knockout mice recapitulating X-SCID phenotype lack a large part of Il2rg instead of point mutations. In this study, we generated novel X-SCID mouse strains with small insertion and deletion (InDel) mutations in Il2rg by using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. To this end, we injected Streptococcus pyogenes Cas9 (SpCas9) mRNA and single guide RNA targeting the exon 2, 3 or 4 of Il2rg into mouse zygotes. In the F0 generation, we obtained 35 pups and 25 out of them were positive for Surveyor assay, and most of mutants displayed dramatic reductions of T and B lymphocytes in the peripheral blood. By amplicon sequencing, 15 out of 31 founder mice were determined as monoallelic mutants with possible minor mosaicisms while 10 mice were mosaic. Finally, we established new strains with 7-nucleotide deletion and 1-nucleotide insertions in the exon 2 and the exons 3 and 4, respectively. Although no IL2RG protein was detected on T cells of exons 3 and 4 mutants, IL2RG protein was unexpectedly detected in the exon 2 mutants. These data indicated that CRISPR/Cas9 targeting Il2rg causes InDel mutations effectively and generates genetically X-SCID mice. Genetic mutations, however, did not necessarily grant phenotypical alteration, which requires an intensive analysis after establishing a strain to confirm their phenotypes. |
Author | Uosaki, Hideki Nagao, Yasumitsu Abe, Tomoyuki Nureki, Osamu Hara, Hiromasa Shibata, Hiroaki Byambaa, Suvd Ohmori, Tsukasa Hanazono, Yutaka |
Author_xml | – sequence: 1 fullname: Byambaa, Suvd organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan – sequence: 2 fullname: Uosaki, Hideki organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan – sequence: 3 fullname: Hara, Hiromasa organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan – sequence: 4 fullname: Nagao, Yasumitsu organization: Center for Development of Advanced Medical Technology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan – sequence: 5 fullname: Abe, Tomoyuki organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan – sequence: 6 fullname: Shibata, Hiroaki organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan – sequence: 7 fullname: Nureki, Osamu organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan – sequence: 8 fullname: Ohmori, Tsukasa organization: Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan – sequence: 9 fullname: Hanazono, Yutaka organization: Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31801915$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1vEzEQxS1URNvAmRuyxAUO2_ojXu9ekFBUSqRKoAJny_HOJk4de7G9pf3vcUhYAQcky7bG7_dm5HeOTnzwgNBLSi6o4M0lPAza290FbStCGXmCzmjT0EpSxk7Knc9pRbmQp-g8pS0hTErWPkOnnDaEtlScoYdr8BB1tsHj0GMf7sHhpWNxXd35YO7CmPHOGsA_bN5g48aUIUKHI6xHp6N7xNaXShq0KdW0CTHjQTvruxgKV3QD6Jzwm8Xt8svn27dY-w4vdGqfo6e9dgleHM8Z-vbh6uviY3Xz6Xq5eH9TGSF5rrghol51ctWyOdO11n1LWW8MXTWMiIYaUQvBqGAdGK0F0A6As6aHupmDqOd8ht4dfIdxtYPOgM9ROzVEu9PxUQVt1d8v3m7UOtwryRiRRBSD10eDGL6PkLLahjH6MrNivJVsLnlZM_TqzzaT_--fLoLLg8DEkFKEfpJQovZZqmOWirZqn2UhxD-EsflXUmVO6_7DXR24bcp6DVMfHbM1DiZ93Sq2347c9G42Oirw_Cfr4cC3 |
CitedBy_id | crossref_primary_10_1016_j_omtm_2021_01_001 crossref_primary_10_18632_aging_104199 crossref_primary_10_3390_biom12101521 crossref_primary_10_1016_j_jcyt_2024_06_002 crossref_primary_10_3390_ijms25052977 |
Cites_doi | 10.1182/blood-2001-12-0207 10.1038/s41592-019-0614-5 10.1093/bioinformatics/btu743 10.1038/ncomms6560 10.1016/j.celrep.2015.12.052 10.1016/j.celrep.2015.08.013 10.1038/srep12658 10.1073/pnas.92.19.8724 10.1038/nbt.2647 10.1016/j.celrep.2018.10.043 10.1093/bioinformatics/bti774 10.1182/blood.V87.3.956.bloodjournal873956 10.1093/bioinformatics/btt764 10.1038/ncomms10431 10.1155/2017/9096829 10.1126/science.1088547 10.1016/j.cell.2013.08.022 10.1093/bioinformatics/btu048 10.1016/j.jneumeth.2019.01.010 10.3389/fnmol.2017.00453 10.1056/NEJMoa1000164 10.1016/j.celrep.2019.05.103 10.1101/gr.244293.118 10.1126/science.288.5466.669 10.1016/j.ydbio.2016.07.017 10.1007/s00335-017-9703-x 10.1073/pnas.92.2.377 10.1016/1074-7613(95)90047-0 10.1074/jbc.M116.733154 10.1371/journal.pone.0129457 10.1186/s13059-017-1240-0 10.1038/srep05396 10.1016/j.stem.2015.02.005 |
ContentType | Journal Article |
Copyright | 2020 Japanese Association for Laboratory Animal Science Copyright Japan Science and Technology Agency 2020 2020 Japanese Association for Laboratory Animal Science 2020 |
Copyright_xml | – notice: 2020 Japanese Association for Laboratory Animal Science – notice: Copyright Japan Science and Technology Agency 2020 – notice: 2020 Japanese Association for Laboratory Animal Science 2020 |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 RC3 5PM |
DOI | 10.1538/expanim.19-0120 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1881-7122 |
EndPage | 198 |
ExternalDocumentID | PMC7220705 31801915 10_1538_expanim_19_0120 article_expanim_69_2_69_19_0120_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29G 2WC 3O- 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EMOBN FRP GX1 HYE JSF JSH KQ8 M48 M~E OK1 P2P RJT RNS RPM RZJ TKC TR2 X7M XSB AAYXX CITATION OVT PGMZT NPM 7QO 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c573t-3c056bd7b9242a6aaf912fcc1b820581c56552152decaa5e1dee328fe684e5643 |
IEDL.DBID | M48 |
ISSN | 1341-1357 |
IngestDate | Thu Aug 21 14:10:49 EDT 2025 Mon Jun 30 16:51:44 EDT 2025 Thu Jan 02 22:58:41 EST 2025 Thu Apr 24 22:55:09 EDT 2025 Tue Jul 01 01:21:02 EDT 2025 Sun Jul 28 05:52:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | X-linked severe combined immunodeficiency (X-SCID) clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 II2rg animal model genome-editing |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-3c056bd7b9242a6aaf912fcc1b820581c56552152decaa5e1dee328fe684e5643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.19-0120 |
PMID | 31801915 |
PQID | 2397247347 |
PQPubID | 2048505 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7220705 proquest_journals_2397247347 pubmed_primary_31801915 crossref_primary_10_1538_expanim_19_0120 crossref_citationtrail_10_1538_expanim_19_0120 jstage_primary_article_expanim_69_2_69_19_0120_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Experimental Animals |
PublicationTitleAlternate | Exp Anim |
PublicationYear | 2020 |
Publisher | Japanese Association for Laboratory Animal Science Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Association for Laboratory Animal Science – name: Japan Science and Technology Agency |
References | 20. Kawahara A., Minami Y., Miyazaki T., Ihle J.N. and Taniguchi T. 1995. Critical role of the interleukin 2 (IL-2) receptor gamma-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Proc. Natl. Acad. Sci. USA 92: 8724–8728. 27. Ohbo K., Suda T., Hashiyama M., Mantani A., Ikebe M., Miyakawa K., Moriyama M., Nakamura M., Katsuki M., Takahashi K., Yamamura K. and Sugamura K. 1996. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87: 956–967. 34. Xiao A., Cheng Z., Kong L., Zhu Z., Lin S., Gao G. and Zhang B. 2014. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30: 1180–1182. 21. Kovanen P.E., and Leonard W.J. 2004. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202: 67–83. 23. Menon T., Firth A.L., Scripture-Adams D.D., Galic Z., Qualls S.J., Gilmore W.B., Ke E., Singer O., Anderson L.S., Bornzin A.R., Alexander I.E., Zack J.A. and Verma I.M. 2015. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 16: 367–372. 4. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., Gross F., Yvon E., Nusbaum P., Selz F., Hue C., Certain S., Casanova J.L., Bousso P., Deist F.L. and Fischer A. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669–672. 26. Nakade S., Tsubota T., Sakane Y., Kume S., Sakamoto N., Obara M., Daimon T., Sezutsu H., Yamamoto T., Sakuma T. and Suzuki K.T. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5: 5560. 10. Darwish M., Nishizono H., Uosaki H., Sawada H., Sadahiro T., Ieda M. and Takao K. 2019. Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. J. Neurosci. Methods 317: 149–156. 12. Goh T.S., Jo Y., Lee B., Kim G., Hwang H., Ko E., Kang S.W., Oh S.O., Baek S.Y., Yoon S., Lee J.S. and Hong C. 2017. IL-7 induces an epitope masking of gammac protein in IL-7 receptor signaling complex. Mediators Inflamm. 2017: 9096829. 33. Sunagawa G.A., Sumiyama K., Ukai-Tadenuma M., Perrin D., Fujishima H., Ukai H., Nishimura O., Shi S., Ohno R.I., Narumi R., Shimizu Y., Tone D., Ode K.L., Kuraku S. and Ueda H.R. 2016. Mammalian reverse genetics without crossing reveals Nr3a as a short-sleeper gene. Cell Rep. 14: 662–677. 14. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., McCormack M.P., Wulffraat N., Leboulch P., Lim A., Osborne C.S., Pawliuk R., Morillon E., Sorensen R., Forster A., Fraser P., Cohen J.I., de Saint Basile G., Alexander I., Wintergerst U., Frebourg T., Aurias A., Stoppa-Lyonnet D., Romana S., Radford-Weiss I., Gross F., Valensi F., Delabesse E., Macintyre E., Sigaux F., Soulier J., Leiva L.E., Wissler M., Prinz C., Rabbitts T.H., Le Deist F., Fischer A. and Cavazzana-Calvo M. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419. 15. Hashimoto M., and Takemoto T. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 5: 11315. 7. Chen S., Lee B., Lee A.Y., Modzelewski A.J. and He L. 2016. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291: 14457–14467. 16. Hashimoto M., Yamashita Y. and Takemoto T. 2016. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. 418: 1–9. 28. Oliver D., Yuan S., McSwiggin H. and Yan W. 2015. Pervasive genotypic mosaicism in founder mice derived from genome editing through pronuclear injection. PLoS One 10: e0129457. 29. Puck J.M., Pepper A.E., Henthorn P.S., Candotti F., Isakov J., Whitwam T., Conley M.E., Fischer R.E., Rosenblatt H.M., Small T.N. and Buckley R.H. 1997. Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 89: 1968–1977. 2. Birling M.C., Herault Y. and Pavlovic G. 2017. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm. Genome 28: 291–301. 25. Naito Y., Hino K., Bono H. and Ui-Tei K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31: 1120–1123. 11. DiSanto J.P., Müller W., Guy-Grand D., Fischer A. and Rajewsky K. 1995. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA 92: 377–381. 18. Inui M., Miyado M., Igarashi M., Tamano M., Kubo A., Yamashita S., Asahara H., Fukami M. and Takada S. 2014. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4: 5396. 17. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G. and Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31: 827–832. 5. Chang C.W., Lai Y.S., Westin E., Khodadadi-Jamayran A., Pawlik K.M., Lamb L.S. Jr., Goldman F.D. and Townes T.M. 2015. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12: 1668–1677. 19. Ito M., Hiramatsu H., Kobayashi K., Suzue K., Kawahata M., Hioki K., Ueyama Y., Koyanagi Y., Sugamura K., Tsuji K., Heike T. and Nakahata T. 2002. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175–3182. 31. Smits A.H., Ziebell F., Joberty G., Zinn N., Mueller W.F., Clauder-Münster S., Eberhard D., Fälth Savitski 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 26. Nakade S., Tsubota T., Sakane Y., Kume S., Sakamoto N., Obara M., Daimon T., Sezutsu H., Yamamoto T., Sakuma T. and Suzuki K.T. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5: 5560. – reference: 35. Yang H., Wang H., Shivalila C.S., Cheng A.W., Shi L. and Jaenisch R. 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154: 1370–1379. – reference: 5. Chang C.W., Lai Y.S., Westin E., Khodadadi-Jamayran A., Pawlik K.M., Lamb L.S. Jr., Goldman F.D. and Townes T.M. 2015. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 12: 1668–1677. – reference: 29. Puck J.M., Pepper A.E., Henthorn P.S., Candotti F., Isakov J., Whitwam T., Conley M.E., Fischer R.E., Rosenblatt H.M., Small T.N. and Buckley R.H. 1997. Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 89: 1968–1977. – reference: 19. Ito M., Hiramatsu H., Kobayashi K., Suzue K., Kawahata M., Hioki K., Ueyama Y., Koyanagi Y., Sugamura K., Tsuji K., Heike T. and Nakahata T. 2002. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175–3182. – reference: 27. Ohbo K., Suda T., Hashiyama M., Mantani A., Ikebe M., Miyakawa K., Moriyama M., Nakamura M., Katsuki M., Takahashi K., Yamamura K. and Sugamura K. 1996. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87: 956–967. – reference: 32. Stemmer M., Thumberger T., Del Sol Keyer M., Wittbrodt J. and Mateo J.L. 2015. CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10: e0124633. – reference: 33. Sunagawa G.A., Sumiyama K., Ukai-Tadenuma M., Perrin D., Fujishima H., Ukai H., Nishimura O., Shi S., Ohno R.I., Narumi R., Shimizu Y., Tone D., Ode K.L., Kuraku S. and Ueda H.R. 2016. Mammalian reverse genetics without crossing reveals Nr3a as a short-sleeper gene. Cell Rep. 14: 662–677. – reference: 4. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., Gross F., Yvon E., Nusbaum P., Selz F., Hue C., Certain S., Casanova J.L., Bousso P., Deist F.L. and Fischer A. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669–672. – reference: 20. Kawahara A., Minami Y., Miyazaki T., Ihle J.N. and Taniguchi T. 1995. Critical role of the interleukin 2 (IL-2) receptor gamma-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Proc. Natl. Acad. Sci. USA 92: 8724–8728. – reference: 24. Morgulis A., Gertz E.M., Schäffer A.A. and Agarwala R. 2006. WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22: 134–141. – reference: 28. Oliver D., Yuan S., McSwiggin H. and Yan W. 2015. Pervasive genotypic mosaicism in founder mice derived from genome editing through pronuclear injection. PLoS One 10: e0129457. – reference: 10. Darwish M., Nishizono H., Uosaki H., Sawada H., Sadahiro T., Ieda M. and Takao K. 2019. Rapid and high-efficient generation of mutant mice using freeze-thawed embryos of the C57BL/6J strain. J. Neurosci. Methods 317: 149–156. – reference: 13. Hacein-Bey-Abina S., Hauer J., Lim A., Picard C., Wang G.P., Berry C.C., Martinache C., Rieux-Laucat F., Latour S., Belohradsky B.H., Leiva L., Sorensen R., Debré M., Casanova J.L., Blanche S., Durandy A., Bushman F.D., Fischer A. and Cavazzana-Calvo M. 2010. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 363: 355–364. – reference: 8. Chen S., Sun S., Moonen D., Lee C., Lee A.Y., Schaffer D.V. and He L. 2019. CRISPR-READI: Efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep. 27: 3780–3789.e4. – reference: 15. Hashimoto M., and Takemoto T. 2015. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 5: 11315. – reference: 22. Labun K., Guo X., Chavez A., Church G., Gagnon J.A. and Valen E. 2019. Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Res. 29: 843–847. – reference: 31. Smits A.H., Ziebell F., Joberty G., Zinn N., Mueller W.F., Clauder-Münster S., Eberhard D., Fälth Savitski M., Grandi P., Jakob P., Michon A.M., Sun H., Tessmer K., Bürckstümmer T., Bantscheff M., Steinmetz L.M., Drewes G. and Huber W. 2019. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16: 1087–1093. – reference: 3. Cao X., Shores E.W., Hu-Li J., Anver M.R., Kelsall B.L., Russell S.M., Drago J., Noguchi M., Grinberg A., Bloom E.T., Pau L.W.E., Katz S.I., Love P.E. and Leonard W.J. 1995. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2: 223–238. – reference: 30. Sharpe J.J., and Cooper T.A. 2017. Unexpected consequences: exon skipping caused by CRISPR-generated mutations. Genome Biol. 18: 109. – reference: 36. Yoshimi K., Kunihiro Y., Kaneko T., Nagahora H., Voigt B. and Mashimo T. 2016. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat. Commun. 7: 10431. – reference: 9. Cheng C., Deng P. Y., Ikeuchi Y., Yuede C., Li D., Rensing N., Huang J., Baldridge D., Maloney S. E., Dougherty J. D., Constantino J., Jahani-Asl A., Wong M., Wozniak D. F., Wang T., Klyachko V. A. and Bonni A. 2018. Characterization of a mouse model of Borjeson-Forssman-Lehmann syndrome. Cell Rep 25: 1404–1414 e1406. – reference: 7. Chen S., Lee B., Lee A.Y., Modzelewski A.J. and He L. 2016. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291: 14457–14467. – reference: 17. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G. and Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31: 827–832. – reference: 6. Chen D., Xu T., Tu M., Xu J., Zhou C., Cheng L., Yang R., Yang T., Zheng W., He X., Deng R., Ge X., Li J., Song Z., Zhao J. and Gu F. 2018. Recapitulating X-Linked juvenile retinoschisis in mouse model by knock-in patient-specific novel mutation. Front. Mol. Neurosci. 10: 453. – reference: 14. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., McCormack M.P., Wulffraat N., Leboulch P., Lim A., Osborne C.S., Pawliuk R., Morillon E., Sorensen R., Forster A., Fraser P., Cohen J.I., de Saint Basile G., Alexander I., Wintergerst U., Frebourg T., Aurias A., Stoppa-Lyonnet D., Romana S., Radford-Weiss I., Gross F., Valensi F., Delabesse E., Macintyre E., Sigaux F., Soulier J., Leiva L.E., Wissler M., Prinz C., Rabbitts T.H., Le Deist F., Fischer A. and Cavazzana-Calvo M. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419. – reference: 25. Naito Y., Hino K., Bono H. and Ui-Tei K. 2015. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31: 1120–1123. – reference: 21. Kovanen P.E., and Leonard W.J. 2004. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202: 67–83. – reference: 2. Birling M.C., Herault Y. and Pavlovic G. 2017. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm. Genome 28: 291–301. – reference: 11. DiSanto J.P., Müller W., Guy-Grand D., Fischer A. and Rajewsky K. 1995. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA 92: 377–381. – reference: 18. Inui M., Miyado M., Igarashi M., Tamano M., Kubo A., Yamashita S., Asahara H., Fukami M. and Takada S. 2014. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4: 5396. – reference: 23. Menon T., Firth A.L., Scripture-Adams D.D., Galic Z., Qualls S.J., Gilmore W.B., Ke E., Singer O., Anderson L.S., Bornzin A.R., Alexander I.E., Zack J.A. and Verma I.M. 2015. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 16: 367–372. – reference: 1. Bae S., Park J. and Kim J.S. 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30: 1473–1475. – reference: 12. Goh T.S., Jo Y., Lee B., Kim G., Hwang H., Ko E., Kang S.W., Oh S.O., Baek S.Y., Yoon S., Lee J.S. and Hong C. 2017. IL-7 induces an epitope masking of gammac protein in IL-7 receptor signaling complex. Mediators Inflamm. 2017: 9096829. – reference: 16. Hashimoto M., Yamashita Y. and Takemoto T. 2016. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. 418: 1–9. – reference: 34. Xiao A., Cheng Z., Kong L., Zhu Z., Lin S., Gao G. and Zhang B. 2014. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30: 1180–1182. – ident: 19 doi: 10.1182/blood-2001-12-0207 – ident: 31 doi: 10.1038/s41592-019-0614-5 – ident: 25 doi: 10.1093/bioinformatics/btu743 – ident: 26 doi: 10.1038/ncomms6560 – ident: 33 doi: 10.1016/j.celrep.2015.12.052 – ident: 5 doi: 10.1016/j.celrep.2015.08.013 – ident: 15 doi: 10.1038/srep12658 – ident: 20 doi: 10.1073/pnas.92.19.8724 – ident: 17 doi: 10.1038/nbt.2647 – ident: 9 doi: 10.1016/j.celrep.2018.10.043 – ident: 24 doi: 10.1093/bioinformatics/bti774 – ident: 27 doi: 10.1182/blood.V87.3.956.bloodjournal873956 – ident: 34 doi: 10.1093/bioinformatics/btt764 – ident: 36 doi: 10.1038/ncomms10431 – ident: 12 doi: 10.1155/2017/9096829 – ident: 14 doi: 10.1126/science.1088547 – ident: 35 doi: 10.1016/j.cell.2013.08.022 – ident: 1 doi: 10.1093/bioinformatics/btu048 – ident: 10 doi: 10.1016/j.jneumeth.2019.01.010 – ident: 6 doi: 10.3389/fnmol.2017.00453 – ident: 13 doi: 10.1056/NEJMoa1000164 – ident: 8 doi: 10.1016/j.celrep.2019.05.103 – ident: 22 doi: 10.1101/gr.244293.118 – ident: 4 doi: 10.1126/science.288.5466.669 – ident: 16 doi: 10.1016/j.ydbio.2016.07.017 – ident: 32 – ident: 29 – ident: 2 doi: 10.1007/s00335-017-9703-x – ident: 11 doi: 10.1073/pnas.92.2.377 – ident: 3 doi: 10.1016/1074-7613(95)90047-0 – ident: 7 doi: 10.1074/jbc.M116.733154 – ident: 28 doi: 10.1371/journal.pone.0129457 – ident: 30 doi: 10.1186/s13059-017-1240-0 – ident: 21 – ident: 18 doi: 10.1038/srep05396 – ident: 23 doi: 10.1016/j.stem.2015.02.005 |
SSID | ssj0027729 |
Score | 2.2190602 |
Snippet | X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2... X-linked severe combined immunodeficiency (X-SCID) is an inherited genetic disorder. A majority of X-SCID subjects carries point mutations in the Interleukin-2... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 189 |
SubjectTerms | animal model clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 CRISPR Exons Gene deletion Genetic disorders genome-editing II2rg Insertion Interleukin 2 Interleukins Lymphocytes Lymphocytes B Lymphocytes T mRNA Mutants Mutation Nucleotides Original Peripheral blood Phenotypes Proteins Rodents Severe combined immunodeficiency X-linked severe combined immunodeficiency (X-SCID) Zygotes |
Title | Generation of novel Il2rg-knockout mice with clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 |
URI | https://www.jstage.jst.go.jp/article/expanim/69/2/69_19-0120/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/31801915 https://www.proquest.com/docview/2397247347 https://pubmed.ncbi.nlm.nih.gov/PMC7220705 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental Animals, 2020, Vol.69(2), pp.189-198 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWggMQF8VkCpfKBQzlkke04Tg6A0IrSIm1VFVZacYkcZ9IupMk2u4u2_56ZJJuyaDlxySGeWNGMPX4zSt5j7LXJwlTrNPY1uMDHesP6sdGBDyEIp4zK8oz6kKOT8GgcfJnoyY0cUOfA-dbSjvSkxnUxWF1df8AN_65R71HRW1jhxpleDuh3HCGxfr-Dx5IhOYNREN1UX6aRLCMCM18obTqeny0TbBxRd38gSjuHbQD07-8o_ziYDh-yBx2i5B_bJfCI3YLyMbv3vWr65U_YqiWWJv_zKudl9QsKflzI-tz_WWIyrJYLTpL0nDqy3BVLYk6AjNeNSH1dXHNilEAXWYd35xfoKT5D8N4QHUwd2s0wnc_5wfDs-Ovp2Rtuy4wP7Tx-ysaHn74Nj_xObsF32qiFrxyCoTQzKZZk0obW5rGQuXMiRZSgI-EQ-2mSwc3AWatBZABKRjmEUQAakc0ztlNWJTxnPDKAQEECxCQnYyASAFFohQEVYUGqPDZYezhxHRc5SWIUCdUkGJKkC0ki4oRC4rGD_oFZS8Pxb9P3bch6w24P9oZhnEi6dA_04_SfGyYLj-2tQ52s12MiEbfJwKjAeGy3jXo_P6ZFBMpCe8xsrIfegCi8N0fK6UVD5W2kxJyrX_zvO79k9yU1Apre0B7bWdRLeIVoaZHus9ufJ2K_2Qt4PTkd_QbH4BuI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+novel+Il2rg-knockout+mice+with+clustered+regularly+interspaced+short+palindromic+repeats+%28CRISPR%29+and+Cas9&rft.jtitle=Experimental+Animals&rft.au=Byambaa%2C+Suvd&rft.au=Uosaki%2C+Hideki&rft.au=Hara%2C+Hiromasa&rft.au=Nagao%2C+Yasumitsu&rft.date=2020-01-01&rft.pub=Japanese+Association+for+Laboratory+Animal+Science&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=69&rft.issue=2&rft.spage=189&rft.epage=198&rft_id=info:doi/10.1538%2Fexpanim.19-0120&rft.externalDocID=article_expanim_69_2_69_19_0120_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon |