Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient...
Saved in:
Published in | Cell reports (Cambridge) Vol. 35; no. 3; p. 109014 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.04.2021
The Authors Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2.
[Display omitted]
•A quick PCR-based reverse genetics system is established for SARS-CoV-2•SARS-CoV-2 recombinants harboring reporter genes or mutations can be generated
Torii et al. establish a novel PCR-based, bacterium-free reverse genetics system for SARS-CoV-2 using the CPER method. Recombinant SARS-CoV-2 can be produced with high titers around 2 weeks after amplification of SARS-CoV-2 gene fragments. The method can be applied to generate recombinant SARS-CoV-2 carrying reporter genes or mutations. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2. [Display omitted] •A quick PCR-based reverse genetics system is established for SARS-CoV-2•SARS-CoV-2 recombinants harboring reporter genes or mutations can be generated Torii et al. establish a novel PCR-based, bacterium-free reverse genetics system for SARS-CoV-2 using the CPER method. Recombinant SARS-CoV-2 can be produced with high titers around 2 weeks after amplification of SARS-CoV-2 gene fragments. The method can be applied to generate recombinant SARS-CoV-2 carrying reporter genes or mutations. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although multiple mutations have been observed in SARS-CoV-2, functional analysis of each mutation of SARS-CoV-2 has been limited by the lack of convenient mutagenesis methods. In this study, we establish a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. The construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (∼5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. This reverse genetics system may potentially advance further understanding of SARS-CoV-2. Torii et al. establish a novel PCR-based, bacterium-free reverse genetics system for SARS-CoV-2 using the CPER method. Recombinant SARS-CoV-2 can be produced with high titers around 2 weeks after amplification of SARS-CoV-2 gene fragments. The method can be applied to generate recombinant SARS-CoV-2 carrying reporter genes or mutations. |
ArticleNumber | 109014 |
Author | Ono, Chikako Fauzyah, Yuzy Torii, Shiho Anzai, Itsuki Maeda, Yusuke Kamitani, Wataru Suzuki, Rigel Fukuhara, Takasuke Morioka, Yuhei Matsuura, Yoshiharu |
Author_xml | – sequence: 1 givenname: Shiho surname: Torii fullname: Torii, Shiho organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 2 givenname: Chikako surname: Ono fullname: Ono, Chikako organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 3 givenname: Rigel surname: Suzuki fullname: Suzuki, Rigel organization: Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan – sequence: 4 givenname: Yuhei surname: Morioka fullname: Morioka, Yuhei organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 5 givenname: Itsuki orcidid: 0000-0001-9307-943X surname: Anzai fullname: Anzai, Itsuki organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 6 givenname: Yuzy surname: Fauzyah fullname: Fauzyah, Yuzy organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 7 givenname: Yusuke surname: Maeda fullname: Maeda, Yusuke organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan – sequence: 8 givenname: Wataru surname: Kamitani fullname: Kamitani, Wataru organization: Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan – sequence: 9 givenname: Takasuke surname: Fukuhara fullname: Fukuhara, Takasuke email: fukut@pop.med.hokudai.ac.jp organization: Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan – sequence: 10 givenname: Yoshiharu surname: Matsuura fullname: Matsuura, Yoshiharu email: matsuura@biken.osaka-u.ac.jp organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33838744$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiJbSf4CQj1w2ePyxHxyQqqhApUpIFLhaXu9s6mjXDrYTNf8eh01RywF88Wg884z8zvuyOHHeYVG8BroACtW79cLgGHCzYJRBTrUUxLPijDGAEpioTx7Fp8VFjGuaT0UBWvGiOOW84U0txFkxXMWku9HGuwldIn4gmgTcYYhIVugwWRNJ3MeEExl8ILeXX2_Lpf9RMrKN1q2IscFsRx3Ixo_7CYPOjXif0EXrXUZpk3Lwqng-6DHixfE-L75_vPq2_FzefPl0vby8KY2seSq5NrprENp6EH0OAWlPkdFeIOu6Rg60NZ00vJK0M4Pp-qrVLQ5NC1r0tZD8vLieub3Xa7UJdtJhr7y26nfCh5XSIf9pRMU6KZuMQ8FBSIEZz6u6ElyDZgiQWR9m1mbbTdibrE_Q4xPo0xdn79TK71RDQQoqMuDtERD8zy3GpCYb895G7dBvo2ISoGkFaw-lbx7P-jPkYVG54P1cYIKPMeCgjE36IG0ebUcFVB2ModZqNoY6GEPNxsjN4q_mB_5_2o4CYN7YzmJQ0Vh0Bnsb0KQsqf034Bdb0dWg |
CitedBy_id | crossref_primary_10_1002_advs_202404884 crossref_primary_10_2974_kmj_72_237 crossref_primary_10_1128_spectrum_02692_24 crossref_primary_10_2491_jjsth_34_449 crossref_primary_10_1038_s41467_023_44266_z crossref_primary_10_3390_ijms221910188 crossref_primary_10_3390_vaccines11071250 crossref_primary_10_1128_jvi_01011_23 crossref_primary_10_1126_science_abl6184 crossref_primary_10_15252_embr_202153820 crossref_primary_10_1128_jvi_01638_23 crossref_primary_10_3390_vaccines12091007 crossref_primary_10_1016_j_omtn_2025_102467 crossref_primary_10_1073_pnas_2213317120 crossref_primary_10_1016_j_jviromet_2024_115031 crossref_primary_10_71150_jm_2411023 crossref_primary_10_1016_j_virol_2023_05_013 crossref_primary_10_1021_acssynbio_4c00165 crossref_primary_10_1016_j_antiviral_2022_105486 crossref_primary_10_1038_s42003_022_03427_4 crossref_primary_10_3389_fimmu_2023_1224634 crossref_primary_10_1038_s41598_023_38548_1 crossref_primary_10_1128_spectrum_03385_22 crossref_primary_10_1073_pnas_2410451121 crossref_primary_10_1016_j_ebiom_2023_104561 crossref_primary_10_1128_mBio_01864_21 crossref_primary_10_1038_s41467_024_45274_3 crossref_primary_10_1016_j_virusres_2023_199164 crossref_primary_10_1016_j_bsheal_2024_11_006 crossref_primary_10_1038_s41598_024_63147_z crossref_primary_10_1128_mbio_01388_23 crossref_primary_10_3390_v15102003 crossref_primary_10_15252_embr_202357137 crossref_primary_10_1111_irv_13109 crossref_primary_10_1152_ajprenal_00011_2024 crossref_primary_10_1016_j_tvjl_2024_106122 crossref_primary_10_1080_25785826_2022_2111905 crossref_primary_10_1172_JCI166827 crossref_primary_10_3390_v16050659 crossref_primary_10_1093_intimm_dxac044 crossref_primary_10_1016_j_immuni_2023_06_013 crossref_primary_10_1016_j_antiviral_2022_105268 crossref_primary_10_7554_eLife_89035 crossref_primary_10_1016_j_isci_2022_105720 crossref_primary_10_1111_1348_0421_13034 crossref_primary_10_1111_1348_0421_13157 crossref_primary_10_1016_j_vaccine_2021_08_018 crossref_primary_10_1016_j_virs_2023_10_001 crossref_primary_10_1016_j_virol_2024_110285 crossref_primary_10_1371_journal_pone_0312776 crossref_primary_10_7554_eLife_89035_3 crossref_primary_10_1371_journal_ppat_1011231 crossref_primary_10_1016_j_antiviral_2025_106097 crossref_primary_10_1016_j_jviromet_2024_114894 crossref_primary_10_1016_j_isci_2023_106634 crossref_primary_10_1016_j_cell_2022_04_035 crossref_primary_10_2745_dds_37_372 crossref_primary_10_1146_annurev_virology_111821_104408 crossref_primary_10_1016_j_ebiom_2024_105181 crossref_primary_10_1111_1348_0421_13165 crossref_primary_10_1254_fpj_21072 crossref_primary_10_1016_j_bsheal_2022_08_001 crossref_primary_10_1016_j_isci_2022_105412 crossref_primary_10_1016_j_virusres_2022_198882 crossref_primary_10_1126_science_abj8430 crossref_primary_10_3389_fcimb_2023_1268227 crossref_primary_10_3389_fmicb_2023_1141101 crossref_primary_10_1016_j_xpro_2023_102352 crossref_primary_10_1126_scitranslmed_adi2623 crossref_primary_10_1002_jmv_27738 crossref_primary_10_3389_fcimb_2023_1197349 crossref_primary_10_1016_j_cell_2022_09_018 crossref_primary_10_1016_j_isci_2022_105783 crossref_primary_10_1073_pnas_2419620122 crossref_primary_10_3390_v16060866 crossref_primary_10_1186_s12985_023_02025_y crossref_primary_10_2144_btn_2022_0127 crossref_primary_10_1016_j_isci_2023_106210 crossref_primary_10_1016_j_virs_2022_06_008 crossref_primary_10_1016_j_isci_2024_109647 crossref_primary_10_1039_D3LC00572K crossref_primary_10_1021_acs_jafc_3c08327 crossref_primary_10_1038_s41586_023_05697_2 crossref_primary_10_1038_s43587_022_00170_7 crossref_primary_10_1016_j_ijid_2022_05_010 crossref_primary_10_1038_s41467_023_37787_0 crossref_primary_10_1038_s43856_024_00582_z crossref_primary_10_1016_j_isci_2025_111975 crossref_primary_10_1247_csf_21047 crossref_primary_10_1128_spectrum_02859_23 crossref_primary_10_1128_jcm_00042_24 crossref_primary_10_1016_j_bbrc_2025_151493 crossref_primary_10_1128_spectrum_03655_23 crossref_primary_10_1099_jgv_0_002065 crossref_primary_10_3390_v14122682 crossref_primary_10_1016_j_chom_2021_06_006 crossref_primary_10_1038_s41586_021_04266_9 crossref_primary_10_1016_j_bsheal_2025_01_003 crossref_primary_10_1128_jvi_01671_24 crossref_primary_10_1128_jvi_01784_23 |
Cites_doi | 10.3390/pathogens9050324 10.1128/JVI.03162-12 10.1099/jgv.0.001326 10.1038/s41586-020-2294-9 10.1021/acschembio.7b00549 10.1073/pnas.1735582100 10.1016/j.cell.2020.04.011 10.1128/JVI.01582-17 10.1016/j.jviromet.2005.06.022 10.1128/JVI.01191-19 10.1038/nmeth.1323 10.1073/pnas.1008322108 10.1016/j.chom.2020.04.004 10.1128/mSphereDirect.00190-17 10.1073/pnas.1311542110 10.1128/JVI.00385-06 10.1038/s41598-017-03120-1 10.1038/s41586-020-2008-3 10.1128/JVI.01208-19 10.1056/NEJMc2001737 10.1021/acschembio.5b00753 10.1056/NEJMoa2001017 10.1038/s41564-020-0695-z 10.1038/s41564-019-0399-4 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2021.109014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 109014 |
ExternalDocumentID | oai_doaj_org_article_2b5589cbe431454eb85367643a1a2e11 PMC8015404 33838744 10_1016_j_celrep_2021_109014 S2211124721003284 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c573t-3acab8e197f4dcab1e0d0e20d4e2bb85f09cb5c3650bcfcbd69a9ef891a4d7453 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 13:51:40 EDT 2025 Fri Jul 11 05:25:28 EDT 2025 Thu Jan 02 22:56:11 EST 2025 Thu Apr 24 23:01:10 EDT 2025 Tue Jul 01 02:59:17 EDT 2025 Tue Jul 25 21:02:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SARS-CoV-2 reverse genetics infectious clone CPER mutagenesis |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-3acab8e197f4dcab1e0d0e20d4e2bb85f09cb5c3650bcfcbd69a9ef891a4d7453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
ORCID | 0000-0001-9307-943X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124721003284 |
PMID | 33838744 |
PQID | 2511894294 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2b5589cbe431454eb85367643a1a2e11 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8015404 proquest_miscellaneous_2511894294 pubmed_primary_33838744 crossref_citationtrail_10_1016_j_celrep_2021_109014 crossref_primary_10_1016_j_celrep_2021_109014 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-20 |
PublicationDateYYYYMMDD | 2021-04-20 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2021 |
Publisher | Elsevier Inc The Authors Elsevier |
Publisher_xml | – name: Elsevier Inc – name: The Authors – name: Elsevier |
References | Gorbalenya, Baker, Baric, de Groot, Drosten, Gulyaeva, Haagmans, Lauber, Leontovich, Neuman (bib4) 2020; 5 Schwinn, Machleidt, Zimmerman, Eggers, Dixon, Hurst, Hall, Encell, Binkowski, Wood (bib10) 2018; 13 Terada, Kuroda, Morikawa, Matsuura, Maeda, Kamitani (bib16) 2019; 93 Yusa, Rad, Takeda, Bradley (bib21) 2009; 6 Zou, Ruan, Huang, Liang, Huang, Hong, Yu, Kang, Song, Xia (bib24) 2020; 382 Scobey, Yount, Sims, Donaldson, Agnihothram, Menachery, Graham, Swanstrom, Bove, Kim (bib11) 2013; 110 Yount, Curtis, Fritz, Hensley, Jahrling, Prentice, Denison, Geisbert, Baric (bib20) 2003; 100 Koyama, Weeraratne, Snowdon, Parida (bib6) 2020; 9 Tamura, Fukuhara, Uchida, Ono, Mori, Sato, Fauzyah, Okamoto, Kurosu, Setoh (bib14) 2018; 92 Thi Nhu Thao, Labroussaa, Ebert, V’kovski, Stalder, Portmann, Kelly, Steiner, Holwerda, Kratzel (bib17) 2020; 582 Setoh, Prow, Peng, Hugo, Devine, Hazlewood, Suhrbier, Khromykh (bib12) 2017; 2 Kim, Lee, Yang, Kim, Kim, Chang (bib5) 2020; 181 Edmonds, van Grinsven, Prow, Bosco-Lauth, Brault, Bowen, Hall, Khromykh (bib3) 2013; 87 Piyasena, Setoh, Hobson-Peters, Newton, Bielefeldt-Ohmann, McLean, Vet, Khromykh, Hall (bib8) 2017; 7 Xie, Muruato, Lokugamage, Narayanan, Zhang, Zou, Liu, Schindewolf, Bopp, Aguilar (bib19) 2020; 27 Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib18) 2020; 579 Dixon, Schwinn, Hall, Zimmerman, Otto, Lubben, Butler, Binkowski, Machleidt, Kirkland (bib2) 2016; 11 Setoh, Amarilla, Peng, Griffiths, Carrera, Freney, Nakayama, Ogawa, Watterson, Modhiran (bib13) 2019; 4 Yusa, Zhou, Li, Bradley, Craig (bib22) 2011; 108 Tamura, Igarashi, Enkhbold, Suzuki, Okamatsu, Ono, Mori, Izumi, Sato, Fauzyah (bib15) 2019; 93 Almazán, Dediego, Galán, Escors, Alvarez, Ortego, Sola, Zuñiga, Alonso, Moreno (bib1) 2006; 80 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib23) 2020; 382 Li, Yu, Zhang, Wang, Wang (bib7) 2005; 130 Piyasena, Newton, Hobson-Peters, Vet, Setoh, Bielefeldt-Ohmann, Khromykh, Hall (bib9) 2019; 100 Li (10.1016/j.celrep.2021.109014_bib7) 2005; 130 Terada (10.1016/j.celrep.2021.109014_bib16) 2019; 93 Setoh (10.1016/j.celrep.2021.109014_bib13) 2019; 4 Schwinn (10.1016/j.celrep.2021.109014_bib10) 2018; 13 Koyama (10.1016/j.celrep.2021.109014_bib6) 2020; 9 Yusa (10.1016/j.celrep.2021.109014_bib22) 2011; 108 Tamura (10.1016/j.celrep.2021.109014_bib14) 2018; 92 Edmonds (10.1016/j.celrep.2021.109014_bib3) 2013; 87 Zou (10.1016/j.celrep.2021.109014_bib24) 2020; 382 Zhu (10.1016/j.celrep.2021.109014_bib23) 2020; 382 Kim (10.1016/j.celrep.2021.109014_bib5) 2020; 181 Almazán (10.1016/j.celrep.2021.109014_bib1) 2006; 80 Piyasena (10.1016/j.celrep.2021.109014_bib8) 2017; 7 Xie (10.1016/j.celrep.2021.109014_bib19) 2020; 27 Gorbalenya (10.1016/j.celrep.2021.109014_bib4) 2020; 5 Piyasena (10.1016/j.celrep.2021.109014_bib9) 2019; 100 Tamura (10.1016/j.celrep.2021.109014_bib15) 2019; 93 Thi Nhu Thao (10.1016/j.celrep.2021.109014_bib17) 2020; 582 Scobey (10.1016/j.celrep.2021.109014_bib11) 2013; 110 Yusa (10.1016/j.celrep.2021.109014_bib21) 2009; 6 Wu (10.1016/j.celrep.2021.109014_bib18) 2020; 579 Setoh (10.1016/j.celrep.2021.109014_bib12) 2017; 2 Yount (10.1016/j.celrep.2021.109014_bib20) 2003; 100 Dixon (10.1016/j.celrep.2021.109014_bib2) 2016; 11 |
References_xml | – volume: 2 start-page: e00190-17 year: 2017 ident: bib12 article-title: Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case publication-title: MSphere – volume: 108 start-page: 1531 year: 2011 end-page: 1536 ident: bib22 article-title: A hyperactive piggyBac transposase for mammalian applications publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 400 year: 2016 end-page: 408 ident: bib2 article-title: NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells publication-title: ACS Chem. Biol. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib23 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 100 start-page: 12995 year: 2003 end-page: 13000 ident: bib20 article-title: Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 536 year: 2020 end-page: 544 ident: bib4 article-title: The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 publication-title: Nat. Microbiol. – volume: 27 start-page: 841 year: 2020 end-page: 848.e3 ident: bib19 article-title: An Infectious cDNA Clone of SARS-CoV-2 publication-title: Cell Host Microbe – volume: 80 start-page: 10900 year: 2006 end-page: 10906 ident: bib1 article-title: Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis publication-title: J. Virol. – volume: 92 start-page: e01582-17 year: 2018 ident: bib14 article-title: Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag publication-title: J. Virol. – volume: 93 start-page: e01208-19 year: 2019 ident: bib16 article-title: Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663 publication-title: J. Virol. – volume: 582 start-page: 561 year: 2020 end-page: 565 ident: bib17 article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform publication-title: Nature – volume: 100 start-page: 1580 year: 2019 end-page: 1586 ident: bib9 article-title: Chimeric viruses of the insect-specific flavivirus Palm Creek with structural proteins of vertebrate-infecting flaviviruses identify barriers to replication of insect-specific flaviviruses in vertebrate cells publication-title: J. Gen. Virol. – volume: 13 start-page: 467 year: 2018 end-page: 474 ident: bib10 article-title: CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide publication-title: ACS Chem. Biol. – volume: 9 start-page: 324 year: 2020 ident: bib6 article-title: Emergence of Drift Variants That May Affect COVID-19 Vaccine Development and Antibody Treatment publication-title: Pathogens – volume: 110 start-page: 16157 year: 2013 end-page: 16162 ident: bib11 article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 2940 year: 2017 ident: bib8 article-title: Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells publication-title: Sci. Rep. – volume: 6 start-page: 363 year: 2009 end-page: 369 ident: bib21 article-title: Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon publication-title: Nat. Methods – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: bib18 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature – volume: 130 start-page: 154 year: 2005 end-page: 156 ident: bib7 article-title: Improved rapid amplification of cDNA ends (RACE) for mapping both the 5′ and 3′ terminal sequences of paramyxovirus genomes publication-title: J. Virol. Methods – volume: 93 start-page: e01191-19 year: 2019 ident: bib15 article-title: Dynamics of Reporter publication-title: J. Virol. – volume: 87 start-page: 2367 year: 2013 end-page: 2372 ident: bib3 article-title: A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity publication-title: J. Virol. – volume: 181 start-page: 914 year: 2020 end-page: 921.e10 ident: bib5 article-title: The Architecture of SARS-CoV-2 Transcriptome publication-title: Cell – volume: 4 start-page: 876 year: 2019 end-page: 887 ident: bib13 article-title: Determinants of Zika virus host tropism uncovered by deep mutational scanning publication-title: Nat. Microbiol. – volume: 382 start-page: 1177 year: 2020 end-page: 1179 ident: bib24 article-title: SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients publication-title: N. Engl. J. Med. – volume: 9 start-page: 324 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib6 article-title: Emergence of Drift Variants That May Affect COVID-19 Vaccine Development and Antibody Treatment publication-title: Pathogens doi: 10.3390/pathogens9050324 – volume: 87 start-page: 2367 year: 2013 ident: 10.1016/j.celrep.2021.109014_bib3 article-title: A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity publication-title: J. Virol. doi: 10.1128/JVI.03162-12 – volume: 100 start-page: 1580 year: 2019 ident: 10.1016/j.celrep.2021.109014_bib9 article-title: Chimeric viruses of the insect-specific flavivirus Palm Creek with structural proteins of vertebrate-infecting flaviviruses identify barriers to replication of insect-specific flaviviruses in vertebrate cells publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.001326 – volume: 582 start-page: 561 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib17 article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform publication-title: Nature doi: 10.1038/s41586-020-2294-9 – volume: 13 start-page: 467 year: 2018 ident: 10.1016/j.celrep.2021.109014_bib10 article-title: CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00549 – volume: 100 start-page: 12995 year: 2003 ident: 10.1016/j.celrep.2021.109014_bib20 article-title: Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1735582100 – volume: 181 start-page: 914 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib5 article-title: The Architecture of SARS-CoV-2 Transcriptome publication-title: Cell doi: 10.1016/j.cell.2020.04.011 – volume: 92 start-page: e01582-17 year: 2018 ident: 10.1016/j.celrep.2021.109014_bib14 article-title: Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag publication-title: J. Virol. doi: 10.1128/JVI.01582-17 – volume: 130 start-page: 154 year: 2005 ident: 10.1016/j.celrep.2021.109014_bib7 article-title: Improved rapid amplification of cDNA ends (RACE) for mapping both the 5′ and 3′ terminal sequences of paramyxovirus genomes publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2005.06.022 – volume: 93 start-page: e01191-19 year: 2019 ident: 10.1016/j.celrep.2021.109014_bib15 article-title: In Vivo Dynamics of Reporter Flaviviridae Viruses publication-title: J. Virol. doi: 10.1128/JVI.01191-19 – volume: 6 start-page: 363 year: 2009 ident: 10.1016/j.celrep.2021.109014_bib21 article-title: Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon publication-title: Nat. Methods doi: 10.1038/nmeth.1323 – volume: 108 start-page: 1531 year: 2011 ident: 10.1016/j.celrep.2021.109014_bib22 article-title: A hyperactive piggyBac transposase for mammalian applications publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1008322108 – volume: 27 start-page: 841 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib19 article-title: An Infectious cDNA Clone of SARS-CoV-2 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.004 – volume: 2 start-page: e00190-17 year: 2017 ident: 10.1016/j.celrep.2021.109014_bib12 article-title: De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case publication-title: MSphere doi: 10.1128/mSphereDirect.00190-17 – volume: 110 start-page: 16157 year: 2013 ident: 10.1016/j.celrep.2021.109014_bib11 article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1311542110 – volume: 80 start-page: 10900 year: 2006 ident: 10.1016/j.celrep.2021.109014_bib1 article-title: Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis publication-title: J. Virol. doi: 10.1128/JVI.00385-06 – volume: 7 start-page: 2940 year: 2017 ident: 10.1016/j.celrep.2021.109014_bib8 article-title: Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-03120-1 – volume: 579 start-page: 265 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib18 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 93 start-page: e01208-19 year: 2019 ident: 10.1016/j.celrep.2021.109014_bib16 article-title: Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663 publication-title: J. Virol. doi: 10.1128/JVI.01208-19 – volume: 382 start-page: 1177 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib24 article-title: SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2001737 – volume: 11 start-page: 400 year: 2016 ident: 10.1016/j.celrep.2021.109014_bib2 article-title: NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00753 – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib23 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 5 start-page: 536 year: 2020 ident: 10.1016/j.celrep.2021.109014_bib4 article-title: The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0695-z – volume: 4 start-page: 876 year: 2019 ident: 10.1016/j.celrep.2021.109014_bib13 article-title: Determinants of Zika virus host tropism uncovered by deep mutational scanning publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0399-4 |
SSID | ssj0000601194 |
Score | 2.590377 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). Although... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109014 |
SubjectTerms | Animals COVID-19 - genetics CPER Cricetinae HEK293 Cells Humans infectious clone mutagenesis Reverse Genetics SARS-CoV-2 SARS-CoV-2 - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcLBRmJq4XjOA8f26pVhQQHSlFvlu2MYdEqqXa3h_57ZuxktYHDXrhFiePEnrHn83j8DWMfQ1XqTkMt2jI0QjucB30MIBovY-dwiOgU7f7la315rT_fVDd7qb4oJizTA-eO-6R8VbUmeEBLpysNHu1L3aAddYVTkE_1os3bW0zlOZi4zGhLWSmK2VK6mc7NpeCuAKs1EF2lKohQSRZ6ZpcSff_MPP0LP_-OotwzSxdP2OMRT_KT3I6n7AH0z9jDnGHy_jmL54j-kqOJvIB8iNxxIm1ab4Cj6tAJxg3PbM4c4Su_Ovl2Jc6GH0Jxioj_ycNynSJV-e2wuicHFr6YHOfkZcOq8rmIF-z64vz72aUYUyuIUDXlVpQuON9CYZqoO7wsQHYSlESxKY9dHCV2eRVKxG8-xOC72jgDsTWF012jq_IlO-qHHl4zrpQPAW8GaTrEVtG0BhALd1HWvgRVLFg5dawNI-84pb9Y2SnA7LfN4rAkDpvFsWBi99Zt5t04UP6UZLYrS6zZ6Qbqkh11yR7SpQVrJonbEYBkYIFVLQ98_sOkIBbHJ226uB6Gu41NSziDVh_LvMoKs_tJcg9Q-gH87kyVZq2YP-mXvxIHeEvYV-o3_6PZb9kjagrtkSl5zI626zt4h1Br69-nUfUHE2wmQA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBL6bvpCxV6VZFlaW0dQklDQiikh6ZbchOSLKVbFjv1biD77zsj2du6DwK9-SHr4ZmxPo9G3xDyxqtSNjLMWF36ikkL30EXfWCV47GxYCIyRbuffpydzOWHc3W-Q8acrcMLXP311w7zSc375dvr75t3YPD7P2O1fFj2AdknRYH8SBwzW9-CualCUz0dAH_-NiPHGS41C4GxXEJW4366f1Q0ma8Srf9k2voTlv4eXfnLdHV8j9wdcCY9yIpxn-yE9gG5nTNPbh6SeASoMDmg0DtIu0gtRTKnfhUoqBTubFzRzPJMAdbSs4NPZ-yw-8IExUj5C-oXfYpgpZfdcoOOLXgwOdTR-wZV5f0Sj8j8-Ojz4QkbUi4wr6pyzUrrratDoasoGzgsAm94EBzEKZyrVeTaO-VLwHXOR--ambY6xFoXVjaVVOVjstt2bXhKqBDOe7jouW4Ac0Vd6wAYuYl85sogij1Sji_W-IGPHNNiLM0YePbNZHEYFIfJ4tgjbPvUZebjuKH8e5TZtiyyaacLXX9hBuM0wilVw8ACoCmpZICBIpGdLG1hRSigq9UocTMAkww4oKrFDc2_HhXEgN3iYoxtQ3e1MunXTgMagDJPssJsO4luA0xLAO1OVGkyiumddvE1cYPXiIm5fPbfPX5O7uAZLpgJ_oLsrvur8BJw19q9Sqb0A1OLLOI priority: 102 providerName: Scholars Portal |
Title | Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction |
URI | https://dx.doi.org/10.1016/j.celrep.2021.109014 https://www.ncbi.nlm.nih.gov/pubmed/33838744 https://www.proquest.com/docview/2511894294 https://pubmed.ncbi.nlm.nih.gov/PMC8015404 https://doaj.org/article/2b5589cbe431454eb85367643a1a2e11 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBelMNhlbOs-2m1FhV1FZH3E9rENLWXQHpp15CYkWeo8gh2c9ND_fu_Jdpi3Q2GXkCiSLfk96f30_N5PhHz1WqpKhTkrpM-ZsrAOuugDyx2PlYUpolK0-83t_PpefVvp1QFZjLkwGFY5rP39mp5W66FkNjzN2aauZ0sBexewTrCF4UgKh5ygUhUpiW91sfezIN9Ils5DxPoMG4wZdCnMy4d1F5C4UmRIrcQzNbFQich_Yqj-BaJ_x1P-YaCuXpNXA7Kk533n35CD0LwlL_qzJp-OSLwEHJhcTugPpG2kliJ9U7cNFJQIcxm3tOd1pgBk6fL8bskW7Q8mKMbGP1BfdylmlW7a9RO6sqBhcqGjvw0u1WdIvCP3V5ffF9dsOGSBeZ3LHZPWW1eErMyjquBrFnjFg-AgQOFcoSMvvdNeApJzPnpXzUtbhliUmVVVrrR8Tw6btgkfCRXCeQ-FnpcVoKxYFmUAVFxFPncyiOyYyPHBGj8wkONBGGszhpr9Mr04DIrD9OI4JmzfatMzcDxT_wJltq-L_NmpoO0ezKBARjitCxhYAPyktAowUKSuU9JmVoQMupqPEjcTdYRL1c_c_mxUEAMzFV-_2Ca0j1uTNnMl2H-o86FXmH0n0VGABxHAfSeqNBnF9J-m_pnYwAtEwVyd_HePP5GX-AtfkQn-mRzuusfwBZDWzp0mD8VpmlDweaOK3yZAKh0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEEZpqqq9VH03fVKpV7QYw9o-JqtEmzbJoZtUe0OAIXG1slfezSH_vjPYXtXtIVJvFubpGeBjPHxDyFenUllKP2V56jImDayDNjjPMstDaWCKyOjtfn4xnV_Jb0u13COz4S4MulX2a3-3psfVuk-Z9F9zsq6qyULA2QV2JzjCcCSFkw_IQ0ADGcZvOF0e7QwtSDiSxICIWIBhieEKXfTzcn7VemSuFAlyK_FEjraoyOQ_2qn-RaJ_O1T-sUOdPCNPe2hJD7vePyd7vn5BHnXBJu9eknAMQDDanNAgSJtADUX-pnbjKWgRXmbc0I7YmQKSpYvDHws2a34yQdE5_pq6qo1Oq3TdrO7QlgUFow0dDW5QVXdF4hW5Ojm-nM1ZH2WBOZWlW5YaZ2zukyILsoTHxPOSe8FBgsLaXAVeOKtcClDOuuBsOS1M4UNeJEaWmVTpa7JfN7V_S6gQ1jlIdLwoAWaFIi88wOIy8KlNvUgOSDp8WO16CnKMhLHSg6_ZL92JQ6M4dCeOA8J2pdYdBcc9-Y9QZru8SKAdE5r2WvcapIVVKoeBeQBQUkkPA0XuOpmaxAifQFezQeJ6pI9QVXVP818GBdEwVfH_i6l9c7vR8TRXAACAPG86hdl1Ei0FGIkA2h2p0mgU4zd1dRPpwHOEwVy---8efyaP55fnZ_rs9OL7e_IE3-D_MsE_kP1te-s_Auza2k9xWv0GE5QrbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+a+reverse+genetics+system+for+SARS-CoV-2+using+circular+polymerase+extension+reaction&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Torii%2C+Shiho&rft.au=Ono%2C+Chikako&rft.au=Suzuki%2C+Rigel&rft.au=Morioka%2C+Yuhei&rft.date=2021-04-20&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=35&rft.issue=3&rft_id=info:doi/10.1016%2Fj.celrep.2021.109014&rft.externalDocID=S2211124721003284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |