Paeoniflorin improves functional recovery through repressing neuroinflammation and facilitating neurogenesis in rat stroke model

Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 9; p. e10921
Main Authors Tang, Hongli, Wu, Leiruo, Chen, Xixi, Li, Huiting, Huang, Baojun, Huang, Zhenyang, Zheng, Yiyang, Zhu, Liqing, Geng, Wujun
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 28.05.2021
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic injury. However, the mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit after cerebral ischemia are still unclear. In this study, adult male rats were treated with Paeoniflorin following transient middle cerebral artery occlusion (tMCAO), and then the functional behavioral tests (Foot-fault test and modified improved neurological function score, mNSS), microglial activation, neurogenesis and vasculogenesis were assessed. The current study showed that Paeoniflorin treatment exhibited a sensorimotor functional recovery as suggested via the Foot-fault test and the enhancement of spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment repressed microglial cell proliferation and thus resulted in a significant decrease in proinflammatory cytokines IL-1 , IL-6 and TNF- . Compared with control, Paeoniflorin administration facilitated von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically, we verified that Paeoniflorin repressed JNK and NF- B signaling activation. These results demonstrate that Paeoniflorin represses neuroinflammation and facilitates neurogenesis in rat stroke model and might be a potential drug for the therapy of ischemic stroke.
AbstractList Background Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic injury. However, the mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit after cerebral ischemia are still unclear. Methods In this study, adult male rats were treated with Paeoniflorin following transient middle cerebral artery occlusion (tMCAO), and then the functional behavioral tests (Foot-fault test and modified improved neurological function score, mNSS), microglial activation, neurogenesis and vasculogenesis were assessed. Results The current study showed that Paeoniflorin treatment exhibited a sensorimotor functional recovery as suggested via the Foot-fault test and the enhancement of spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment repressed microglial cell proliferation and thus resulted in a significant decrease in proinflammatory cytokines IL-1β, IL-6 and TNF-α. Compared with control, Paeoniflorin administration facilitated von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically, we verified that Paeoniflorin repressed JNK and NF-κB signaling activation. Conclusions These results demonstrate that Paeoniflorin represses neuroinflammation and facilitates neurogenesis in rat stroke model and might be a potential drug for the therapy of ischemic stroke.
Background Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic injury. However, the mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit after cerebral ischemia are still unclear. Methods In this study, adult male rats were treated with Paeoniflorin following transient middle cerebral artery occlusion (tMCAO), and then the functional behavioral tests (Foot-fault test and modified improved neurological function score, mNSS), microglial activation, neurogenesis and vasculogenesis were assessed. Results The current study showed that Paeoniflorin treatment exhibited a sensorimotor functional recovery as suggested via the Foot-fault test and the enhancement of spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment repressed microglial cell proliferation and thus resulted in a significant decrease in proinflammatory cytokines IL-1[beta], IL-6 and TNF-[alpha]. Compared with control, Paeoniflorin administration facilitated von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically, we verified that Paeoniflorin repressed JNK and NF-[kappa]B signaling activation. Conclusions These results demonstrate that Paeoniflorin represses neuroinflammation and facilitates neurogenesis in rat stroke model and might be a potential drug for the therapy of ischemic stroke.
Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic injury. However, the mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit after cerebral ischemia are still unclear. In this study, adult male rats were treated with Paeoniflorin following transient middle cerebral artery occlusion (tMCAO), and then the functional behavioral tests (Foot-fault test and modified improved neurological function score, mNSS), microglial activation, neurogenesis and vasculogenesis were assessed. The current study showed that Paeoniflorin treatment exhibited a sensorimotor functional recovery as suggested via the Foot-fault test and the enhancement of spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment repressed microglial cell proliferation and thus resulted in a significant decrease in proinflammatory cytokines IL-1 , IL-6 and TNF- . Compared with control, Paeoniflorin administration facilitated von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically, we verified that Paeoniflorin repressed JNK and NF- B signaling activation. These results demonstrate that Paeoniflorin represses neuroinflammation and facilitates neurogenesis in rat stroke model and might be a potential drug for the therapy of ischemic stroke.
Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic injury. However, the mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit after cerebral ischemia are still unclear. In this study, adult male rats were treated with Paeoniflorin following transient middle cerebral artery occlusion (tMCAO), and then the functional behavioral tests (Foot-fault test and modified improved neurological function score, mNSS), microglial activation, neurogenesis and vasculogenesis were assessed. The current study showed that Paeoniflorin treatment exhibited a sensorimotor functional recovery as suggested via the Foot-fault test and the enhancement of spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment repressed microglial cell proliferation and thus resulted in a significant decrease in proinflammatory cytokines IL-1[beta], IL-6 and TNF-[alpha]. Compared with control, Paeoniflorin administration facilitated von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically, we verified that Paeoniflorin repressed JNK and NF-[kappa]B signaling activation. These results demonstrate that Paeoniflorin represses neuroinflammation and facilitates neurogenesis in rat stroke model and might be a potential drug for the therapy of ischemic stroke.
Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic injury. However, the mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit after cerebral ischemia are still unclear.BACKGROUNDMicroglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic stroke. Paeoniflorin, the principal active component of Paeoniae Radix, has been verified to exhibit neuroprotective roles in cerebralischemic injury. However, the mechanisms underlying the regulatory function of Paeoniflorin on neurovascular unit after cerebral ischemia are still unclear.In this study, adult male rats were treated with Paeoniflorin following transient middle cerebral artery occlusion (tMCAO), and then the functional behavioral tests (Foot-fault test and modified improved neurological function score, mNSS), microglial activation, neurogenesis and vasculogenesis were assessed.METHODSIn this study, adult male rats were treated with Paeoniflorin following transient middle cerebral artery occlusion (tMCAO), and then the functional behavioral tests (Foot-fault test and modified improved neurological function score, mNSS), microglial activation, neurogenesis and vasculogenesis were assessed.The current study showed that Paeoniflorin treatment exhibited a sensorimotor functional recovery as suggested via the Foot-fault test and the enhancement of spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment repressed microglial cell proliferation and thus resulted in a significant decrease in proinflammatory cytokines IL-1β, IL-6 and TNF-α. Compared with control, Paeoniflorin administration facilitated von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically, we verified that Paeoniflorin repressed JNK and NF-κB signaling activation.RESULTSThe current study showed that Paeoniflorin treatment exhibited a sensorimotor functional recovery as suggested via the Foot-fault test and the enhancement of spatial learning as suggested by the mNSS in rat stroke model. Paeoniflorin treatment repressed microglial cell proliferation and thus resulted in a significant decrease in proinflammatory cytokines IL-1β, IL-6 and TNF-α. Compared with control, Paeoniflorin administration facilitated von Willebrand factor (an endothelia cell marker) and doublecortin (a neuroblasts marker) expression, indicating that Paeoniflorin contributed to neurogenesis and vasculogenesis in rat stroke model. Mechanistically, we verified that Paeoniflorin repressed JNK and NF-κB signaling activation.These results demonstrate that Paeoniflorin represses neuroinflammation and facilitates neurogenesis in rat stroke model and might be a potential drug for the therapy of ischemic stroke.CONCLUSIONSThese results demonstrate that Paeoniflorin represses neuroinflammation and facilitates neurogenesis in rat stroke model and might be a potential drug for the therapy of ischemic stroke.
ArticleNumber e10921
Audience Academic
Author Zheng, Yiyang
Zhu, Liqing
Tang, Hongli
Wu, Leiruo
Huang, Zhenyang
Li, Huiting
Huang, Baojun
Geng, Wujun
Chen, Xixi
Author_xml – sequence: 1
  givenname: Hongli
  surname: Tang
  fullname: Tang, Hongli
  organization: Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 2
  givenname: Leiruo
  surname: Wu
  fullname: Wu, Leiruo
  organization: Endoscopy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 3
  givenname: Xixi
  surname: Chen
  fullname: Chen, Xixi
  organization: Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 4
  givenname: Huiting
  surname: Li
  fullname: Li, Huiting
  organization: Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 5
  givenname: Baojun
  surname: Huang
  fullname: Huang, Baojun
  organization: Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 6
  givenname: Zhenyang
  surname: Huang
  fullname: Huang, Zhenyang
  organization: Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 7
  givenname: Yiyang
  surname: Zheng
  fullname: Zheng, Yiyang
  organization: Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 8
  givenname: Liqing
  surname: Zhu
  fullname: Zhu, Liqing
  organization: Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
– sequence: 9
  givenname: Wujun
  surname: Geng
  fullname: Geng, Wujun
  organization: Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34123580$$D View this record in MEDLINE/PubMed
BookMark eNptks1r3DAQxU1JadI0p96LoVAKZbeWZFnyJRBCPwKB9tCehT7GXm1laSvZgdz6p1fezba7IfJB5vk3b_DMe1mc-OChKF6jaskYYh83AHG9RFWL0bPiDKOGLTih7cnB-2lxkdK6yofjpuLkRXFKaoQJ5dVZ8ee7hOBt50K0vrTDJoY7SGU3eT3a4KUrI-gsxftyXMUw9assbCKkZH1fephisL5zchjkzJfSm7KT2jo7ZmGP9OAh2VTmFlGOZRpj-AXlEAy4V8XzTroEFw_3efHz86cf118Xt9--3Fxf3S40ZWRcEI4k1Jq3TLecKwpYdUqRlnGENWlUZaiukOqQMrVqtJGEE1xjSaVqKaKGnBc3O18T5Fpsoh1kvBdBWrEVQuyFjKPVDgQhyHBjTM0UrhtGW9R0LYZGc0ZaZGj2utx5bSY1gNHgxyjdkenxF29Xog93gqOmwTXKBu8fDGL4PUEaxWCTBuekhzAlgWldMYwIntG3j9B1mGJezEwRQimrav6f6mX-gbyRkPvq2VRcNQ3Jc8Jo9lo-QeXHwGB1DlZns35U8O6gYAXSjasU3DSvOh2Dbw4n8m8U-6BlAO0AHUNKETqhtwkJ84CsE6gSc57FNs9im-dc8-FRzd72KfovsIf4aQ
CitedBy_id crossref_primary_10_3389_fphar_2022_827770
crossref_primary_10_3389_fphar_2023_1274343
crossref_primary_10_1002_ibra_12132
crossref_primary_10_1155_2022_5507472
crossref_primary_10_1007_s12035_021_02563_y
crossref_primary_10_1007_s12035_022_03102_z
crossref_primary_10_1142_S0192415X24500824
crossref_primary_10_3389_fphar_2024_1250918
crossref_primary_10_1016_j_phymed_2024_155483
crossref_primary_10_1080_13880209_2023_2220360
crossref_primary_10_3389_fimmu_2023_1193053
crossref_primary_10_3389_fnins_2022_942188
crossref_primary_10_1186_s13020_023_00872_z
crossref_primary_10_1016_j_cbi_2024_111035
crossref_primary_10_3389_fbioe_2022_830574
crossref_primary_10_1016_j_phymed_2022_154609
crossref_primary_10_2147_DDDT_S369111
crossref_primary_10_3390_molecules27227963
Cites_doi 10.1111/j.1476-5381.2011.01464.x
10.3390/ijms18030496
10.1016/j.surneu.2005.12.028
10.1210/en.2018-00465
10.1016/S0140-6736(14)60584-5
10.1016/j.ejphar.2019.03.025
10.1016/j.metabol.2018.03.004
10.1142/S0192415X10007786
10.1016/S0140-6736(15)00551-6
10.1016/j.intimp.2012.07.005
10.1016/j.neuroscience.2008.06.052
10.1161/STROKEAHA.113.003806
10.1186/1742-2094-8-182
10.1016/j.pneurobio.2016.01.005
10.1007/s12035-019-1496-3
10.3109/08923973.2015.1026603
10.1371/journal.pone.0079084
10.1371/journal.pone.0049701
10.3171/2014.11.JNS14770
10.1155/2016/8082753
10.1186/s12974-019-1516-2
10.1016/j.neuron.2010.07.002
10.1002/jcp.29183
10.1016/S1474-4422(18)30500-3
10.1186/1742-2094-8-54
10.3390/molecules22030359
10.1016/j.brainres.2006.02.115
10.1016/j.expneurol.2018.05.022
10.1038/jcbfm.2014.181
10.1016/S0140-6736(16)30962-X
10.1186/2040-7378-2-13
10.1155/2018/9865403
10.1016/j.jep.2019.112051
10.1016/j.lfs.2019.116925
10.1016/S0140-6736(13)61953-4
10.1161/STROKEAHA.115.011426
10.1016/j.pnpbp.2016.07.003
10.1097/00004647-199804000-00004
10.1142/S0192415X15500342
10.1113/EP087656
10.1161/hs1101.098367
10.1007/s12975-019-00731-w
10.1055/s-0038-1649503
10.1016/j.biopha.2016.03.032
10.1016/S0140-6736(17)32152-9
10.1038/nri1733
ContentType Journal Article
Copyright 2021 Tang et al.
COPYRIGHT 2021 PeerJ. Ltd.
2021 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Tang et al. 2021 Tang et al.
Copyright_xml – notice: 2021 Tang et al.
– notice: COPYRIGHT 2021 PeerJ. Ltd.
– notice: 2021 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Tang et al. 2021 Tang et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj.10921
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_331d8ddd47b24675916f92e6c87391d5
PMC8166241
A663397211
34123580
10_7717_peerj_10921
Genre Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: Zhejiang public welfare technology research plan
  grantid: LGD20H290002
– fundername: Major Scientific and Technological Innovation Medical and Health projects of Wenzhou Science and Technology Bureau
  grantid: ZY2019015
– fundername: National Natural Science Foundation of China
  grantid: 81973620; 81774109
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
W2D
YAO
3V.
NPM
PMFND
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c573t-381ae4c897c988b5e2bfbb397812c36b0d5c01bf1bd4b6cda383242a5ab9515d3
IEDL.DBID M48
ISSN 2167-8359
IngestDate Wed Aug 27 01:27:35 EDT 2025
Thu Aug 21 14:00:21 EDT 2025
Fri Jul 11 03:19:17 EDT 2025
Sun Jul 13 03:56:40 EDT 2025
Tue Jun 17 21:37:00 EDT 2025
Tue Jun 10 20:23:50 EDT 2025
Thu May 22 21:21:50 EDT 2025
Thu Jan 02 22:55:51 EST 2025
Tue Jul 01 00:18:58 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Paeoniflorin
Neuroinflammation
Ischemic stroke
JNK
Microglia
Language English
License https://creativecommons.org/licenses/by/4.0
2021 Tang et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-381ae4c897c988b5e2bfbb397812c36b0d5c01bf1bd4b6cda383242a5ab9515d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.10921
PMID 34123580
PQID 2533557048
PQPubID 2045935
ParticipantIDs doaj_primary_oai_doaj_org_article_331d8ddd47b24675916f92e6c87391d5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8166241
proquest_miscellaneous_2540721321
proquest_journals_2533557048
gale_infotracmisc_A663397211
gale_infotracacademiconefile_A663397211
gale_healthsolutions_A663397211
pubmed_primary_34123580
crossref_citationtrail_10_7717_peerj_10921
crossref_primary_10_7717_peerj_10921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-28
PublicationDateYYYYMMDD 2021-05-28
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2021
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Zhou (10.7717/peerj.10921/ref-48) 2016; 2016
Tang (10.7717/peerj.10921/ref-35) 2010; 38
Zhu (10.7717/peerj.10921/ref-50) 2019; 104
She (10.7717/peerj.10921/ref-32) 2019; 242
Jin (10.7717/peerj.10921/ref-20) 2011; 164
Hata (10.7717/peerj.10921/ref-17) 1998; 18
Wang (10.7717/peerj.10921/ref-37) 2012; 14
Gordon (10.7717/peerj.10921/ref-11) 2005; 5
Katan (10.7717/peerj.10921/ref-21) 2018; 38
Ekdahl (10.7717/peerj.10921/ref-7) 2009; 158
Guruswamy (10.7717/peerj.10921/ref-14) 2017; 18
Zhang (10.7717/peerj.10921/ref-46) 2017; 22
Zhang (10.7717/peerj.10921/ref-45) 2015; 43
Roy-O’Reilly (10.7717/peerj.10921/ref-30) 2018; 159
Goyal (10.7717/peerj.10921/ref-12) 2016; 47
Moraga (10.7717/peerj.10921/ref-27) 2017; 390
Pan (10.7717/peerj.10921/ref-29) 2013; 8
Anttila (10.7717/peerj.10921/ref-1) 2017; 79
Hankey (10.7717/peerj.10921/ref-16) 2017; 389
Moskowitz (10.7717/peerj.10921/ref-28) 2010; 67
Liu (10.7717/peerj.10921/ref-24) 2006; 1089
Zhou (10.7717/peerj.10921/ref-49) 2016; 387
Liu (10.7717/peerj.10921/ref-25) 2019; 853
Ma (10.7717/peerj.10921/ref-26) 2017; 157
Wu (10.7717/peerj.10921/ref-39) 2019; 18
Strbian (10.7717/peerj.10921/ref-33) 2014; 45
Dai (10.7717/peerj.10921/ref-6) 2015; 37
Burton (10.7717/peerj.10921/ref-2) 2011; 8
Jayaraj (10.7717/peerj.10921/ref-19) 2019; 16
Chen (10.7717/peerj.10921/ref-4) 2001; 32
Liang (10.7717/peerj.10921/ref-23) 2011; 8
Schaar (10.7717/peerj.10921/ref-31) 2010; 2
Huang (10.7717/peerj.10921/ref-18) 2006; 66
Zhang (10.7717/peerj.10921/ref-43) 2017; 14
Feigin (10.7717/peerj.10921/ref-10) 2014; 383
Zhang (10.7717/peerj.10921/ref-44) 2015; 122
Wang (10.7717/peerj.10921/ref-36) 2018; 2018
Ko (10.7717/peerj.10921/ref-22) 2018; 21
Tang (10.7717/peerj.10921/ref-34) 2010; 38
Emmrich (10.7717/peerj.10921/ref-9) 2015; 35
Guo (10.7717/peerj.10921/ref-13) 2012; 7
Zong (10.7717/peerj.10921/ref-51) 2019; 11
Guzik (10.7717/peerj.10921/ref-15) 2017; 23
Zheng (10.7717/peerj.10921/ref-47) 2020; 235
Cai (10.7717/peerj.10921/ref-3) 2019; 56
Xin (10.7717/peerj.10921/ref-40) 2019; 237
Zhai (10.7717/peerj.10921/ref-42) 2016; 80
Chen (10.7717/peerj.10921/ref-5) 2018; 83
Emberson (10.7717/peerj.10921/ref-8) 2014; 384
Wu (10.7717/peerj.10921/ref-38) 2019; 105
Yu (10.7717/peerj.10921/ref-41) 2018; 307
References_xml – volume: 164
  start-page: 694
  year: 2011
  ident: 10.7717/peerj.10921/ref-20
  article-title: Paeoniflorin suppresses the expression of intercellular adhesion molecule-1 (ICAM-1) in endotoxin-treated human monocytic cells
  publication-title: British Journal of Pharmacology
  doi: 10.1111/j.1476-5381.2011.01464.x
– volume: 18
  start-page: 496
  year: 2017
  ident: 10.7717/peerj.10921/ref-14
  article-title: Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms18030496
– volume: 66
  start-page: 232
  year: 2006
  ident: 10.7717/peerj.10921/ref-18
  article-title: Inflammation in stroke and focal cerebral ischemia
  publication-title: Surgical Neurology International
  doi: 10.1016/j.surneu.2005.12.028
– volume: 159
  start-page: 3120
  year: 2018
  ident: 10.7717/peerj.10921/ref-30
  article-title: Age and sex are critical factors in ischemic stroke pathology
  publication-title: Endocrinology
  doi: 10.1210/en.2018-00465
– volume: 384
  start-page: 1929
  year: 2014
  ident: 10.7717/peerj.10921/ref-8
  article-title: Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)60584-5
– volume: 853
  start-page: 18
  year: 2019
  ident: 10.7717/peerj.10921/ref-25
  article-title: Paeoniflorin protects pancreatic beta cells from STZ-induced damage through inhibition of the p38 MAPK and JNK signaling pathways
  publication-title: European Journal of Pharmacology
  doi: 10.1016/j.ejphar.2019.03.025
– volume: 83
  start-page: 256
  year: 2018
  ident: 10.7717/peerj.10921/ref-5
  article-title: Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-kappaB pathway
  publication-title: Metabolism: Clinical and Experimental
  doi: 10.1016/j.metabol.2018.03.004
– volume: 38
  start-page: 51
  year: 2010
  ident: 10.7717/peerj.10921/ref-35
  article-title: The anti-inflammatory effect of paeoniflorin on cerebral infarction induced by ischemia-reperfusion injury in Sprague-Dawley rats
  publication-title: The American Journal of Chinese Medicine
  doi: 10.1142/S0192415X10007786
– volume: 387
  start-page: 251
  year: 2016
  ident: 10.7717/peerj.10921/ref-49
  article-title: Cause-specific mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for the Global Burden of Disease Study 2013
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(15)00551-6
– volume: 21
  start-page: 1174
  year: 2018
  ident: 10.7717/peerj.10921/ref-22
  article-title: Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats
  publication-title: The Iranian Journal of Basic Medical Sciences
– volume: 14
  start-page: 172
  year: 2012
  ident: 10.7717/peerj.10921/ref-37
  article-title: Paeoniflorin inhibits function and down-regulates HLA-DR and CD80 expression of human peripheral blood monocytes stimulated by rhIL-1β
  publication-title: International Immunopharmacology
  doi: 10.1016/j.intimp.2012.07.005
– volume: 158
  start-page: 1021
  year: 2009
  ident: 10.7717/peerj.10921/ref-7
  article-title: Brain inflammation and adult neurogenesis: the dual role of microglia
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.06.052
– volume: 45
  start-page: 752
  year: 2014
  ident: 10.7717/peerj.10921/ref-33
  article-title: Symptomatic intracranial hemorrhage after stroke thrombolysis: comparison of prediction scores
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.003806
– volume: 8
  start-page: 182
  year: 2011
  ident: 10.7717/peerj.10921/ref-23
  article-title: Participation of MCP-induced protein 1 in lipopolysaccharide preconditioning-induced ischemic stroke tolerance by regulating the expression of proinflammatory cytokines
  publication-title: Journal of Neuroinflammation
  doi: 10.1186/1742-2094-8-182
– volume: 157
  start-page: 247
  year: 2017
  ident: 10.7717/peerj.10921/ref-26
  article-title: The biphasic function of microglia in ischemic stroke
  publication-title: Progress in Neurobiology
  doi: 10.1016/j.pneurobio.2016.01.005
– volume: 56
  start-page: 6218
  year: 2019
  ident: 10.7717/peerj.10921/ref-3
  article-title: Water-soluble arginyl-diosgenin analog attenuates hippocampal neurogenesis impairment through blocking microglial activation underlying NF-kappaB and JNK MAPK signaling in adult mice challenged by LPS
  publication-title: Molecular Neurobiology
  doi: 10.1007/s12035-019-1496-3
– volume: 37
  start-page: 252
  year: 2015
  ident: 10.7717/peerj.10921/ref-6
  article-title: Paeoniflorin regulates the function of human peripheral blood mononuclear cells stimulated by rhIL-1β by up-regulating Treg expression
  publication-title: Immunopharmacology and Immunotoxicology
  doi: 10.3109/08923973.2015.1026603
– volume: 14
  start-page: 5445
  year: 2017
  ident: 10.7717/peerj.10921/ref-43
  article-title: Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF-kappaB signaling pathways
  publication-title: Experimental and Therapeutic Medicine
– volume: 8
  start-page: e79084
  year: 2013
  ident: 10.7717/peerj.10921/ref-29
  article-title: Targeting JNK by a new curcumin analog to inhibit NF-kB-mediated expression of cell adhesion molecules attenuates renal macrophage infiltration and injury in diabetic mice
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0079084
– volume: 7
  start-page: e49701
  year: 2012
  ident: 10.7717/peerj.10921/ref-13
  article-title: Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0049701
– volume: 122
  start-page: 856
  year: 2015
  ident: 10.7717/peerj.10921/ref-44
  article-title: Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury
  publication-title: Journal of Neurosurgery
  doi: 10.3171/2014.11.JNS14770
– volume: 38
  start-page: 51
  year: 2010
  ident: 10.7717/peerj.10921/ref-34
  article-title: The anti-inflammatory effect of paeoniflorin on cerebral infarction induced by ischemia-reperfusion injury in Sprague-Dawley rats
  publication-title: American Journal of Chinese Medicine
  doi: 10.1142/S0192415X10007786
– volume: 23
  start-page: 15
  year: 2017
  ident: 10.7717/peerj.10921/ref-15
  article-title: Stroke epidemiology and risk factor management
  publication-title: Continuum
– volume: 2016
  start-page: 8082753
  year: 2016
  ident: 10.7717/peerj.10921/ref-48
  article-title: Paeoniflorin and albiflorin attenuate neuropathic pain via mapk pathway in chronic constriction injury rats
  publication-title: Evidence-Based Complementary and Alternative Medicine
  doi: 10.1155/2016/8082753
– volume: 16
  start-page: 142
  year: 2019
  ident: 10.7717/peerj.10921/ref-19
  article-title: Neuroinflammation: friend and foe for ischemic stroke
  publication-title: Journal of Neuroinflammation
  doi: 10.1186/s12974-019-1516-2
– volume: 67
  start-page: 181
  year: 2010
  ident: 10.7717/peerj.10921/ref-28
  article-title: The science of stroke: mechanisms in search of treatments
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.07.002
– volume: 235
  start-page: 2792
  year: 2020
  ident: 10.7717/peerj.10921/ref-47
  article-title: JNK-IN-8, a c-Jun N-terminal kinase inhibitor, improves functional recovery through suppressing neuroinflammation in ischemic stroke
  publication-title: Journal of Cellular Physiology
  doi: 10.1002/jcp.29183
– volume: 18
  start-page: 394
  year: 2019
  ident: 10.7717/peerj.10921/ref-39
  article-title: Stroke in China: advances and challenges in epidemiology, prevention, and management
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(18)30500-3
– volume: 8
  start-page: 54
  year: 2011
  ident: 10.7717/peerj.10921/ref-2
  article-title: Inhibition of interleukin-6 trans-signaling in the brain facilitates recovery from lipopolysaccharide-induced sickness behavior
  publication-title: Journal of Neuroinflammation
  doi: 10.1186/1742-2094-8-54
– volume: 22
  start-page: 359
  year: 2017
  ident: 10.7717/peerj.10921/ref-46
  article-title: Paeoniflorin attenuates cerebral ischemia-induced injury by regulating Ca(2+)/CaMKII/CREB signaling pathway
  publication-title: Molecules
  doi: 10.3390/molecules22030359
– volume: 1089
  start-page: 162
  year: 2006
  ident: 10.7717/peerj.10921/ref-24
  article-title: Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rats
  publication-title: Brain Research
  doi: 10.1016/j.brainres.2006.02.115
– volume: 105
  start-page: 1
  year: 2019
  ident: 10.7717/peerj.10921/ref-38
  article-title: Paeoniflorin on rat myocardial ischemia reperfusion injury of protection and mechanism research
  publication-title: Pharmacology
– volume: 307
  start-page: 12
  year: 2018
  ident: 10.7717/peerj.10921/ref-41
  article-title: Ezetimibe, a NPC1L1 inhibitor, attenuates neuronal apoptosis through AMPK dependent autophagy activation after MCAO in rats
  publication-title: Experimental Neurology
  doi: 10.1016/j.expneurol.2018.05.022
– volume: 35
  start-page: 20
  year: 2015
  ident: 10.7717/peerj.10921/ref-9
  article-title: Regional distribution of selective neuronal loss and microglial activation across the MCA territory after transient focal ischemia: quantitative versus semiquantitative systematic immunohistochemical assessment
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2014.181
– volume: 389
  start-page: 641
  year: 2017
  ident: 10.7717/peerj.10921/ref-16
  article-title: Stroke
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(16)30962-X
– volume: 2
  start-page: 13
  year: 2010
  ident: 10.7717/peerj.10921/ref-31
  article-title: Functional assessments in the rodent stroke model
  publication-title: Experimental & Translational Stroke Medicine
  doi: 10.1186/2040-7378-2-13
– volume: 2018
  start-page: 9865403
  year: 2018
  ident: 10.7717/peerj.10921/ref-36
  article-title: Neuroprotection by paeoniflorin against nuclear factor kappa B-induced neuroinflammation on spinal cord injury
  publication-title: BioMed Research International
  doi: 10.1155/2018/9865403
– volume: 242
  start-page: 112051
  year: 2019
  ident: 10.7717/peerj.10921/ref-32
  article-title: Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats
  publication-title: Journal of Ethnopharmacology
  doi: 10.1016/j.jep.2019.112051
– volume: 237
  start-page: 116925
  year: 2019
  ident: 10.7717/peerj.10921/ref-40
  article-title: A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders
  publication-title: Life Sciences
  doi: 10.1016/j.lfs.2019.116925
– volume: 383
  start-page: 245
  year: 2014
  ident: 10.7717/peerj.10921/ref-10
  article-title: Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(13)61953-4
– volume: 47
  start-page: 548
  year: 2016
  ident: 10.7717/peerj.10921/ref-12
  article-title: Endovascular therapy in acute ischemic stroke: challenges and transition from trials to bedside
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.011426
– volume: 79
  start-page: 3
  year: 2017
  ident: 10.7717/peerj.10921/ref-1
  article-title: Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors
  publication-title: Progress in Neuro-Psychopharmacology and Biological Psychiatry
  doi: 10.1016/j.pnpbp.2016.07.003
– volume: 18
  start-page: 367
  year: 1998
  ident: 10.7717/peerj.10921/ref-17
  article-title: A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging
  publication-title: Journal of Cerebral Blood Flow & Metabolism
  doi: 10.1097/00004647-199804000-00004
– volume: 43
  start-page: 543
  year: 2015
  ident: 10.7717/peerj.10921/ref-45
  article-title: Paeoniflorin, a monoterpene glycoside, protects the brain from cerebral ischemic injury via inhibition of apoptosis
  publication-title: The American Journal of Chinese Medicine
  doi: 10.1142/S0192415X15500342
– volume: 104
  start-page: 837
  issue: 6
  year: 2019
  ident: 10.7717/peerj.10921/ref-50
  article-title: Long non-coding RNA activated by transforming growth factor-β promotes proliferation and invasion of cervical cancer cells by regulating the miR-144/ITGA6 axis
  publication-title: Experimental Physiology
  doi: 10.1113/EP087656
– volume: 32
  start-page: 2682
  year: 2001
  ident: 10.7717/peerj.10921/ref-4
  article-title: Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats
  publication-title: Stroke
  doi: 10.1161/hs1101.098367
– volume: 11
  start-page: 450
  issue: 3
  year: 2019
  ident: 10.7717/peerj.10921/ref-51
  article-title: Beneficial effects of theta-burst transcranial magnetic stimulation on stroke injury via improving neuronal microenvironment and mitochondrial integrity
  publication-title: Translational Stroke Research
  doi: 10.1007/s12975-019-00731-w
– volume: 38
  start-page: 208
  year: 2018
  ident: 10.7717/peerj.10921/ref-21
  article-title: Global burden of stroke
  publication-title: Seminars in Neurology
  doi: 10.1055/s-0038-1649503
– volume: 80
  start-page: 200
  year: 2016
  ident: 10.7717/peerj.10921/ref-42
  article-title: Paeoniflorin attenuates cardiac dysfunction in endotoxemic mice via the inhibition of nuclear factor-κB
  publication-title: Biomedicine & Pharmacotherapy
  doi: 10.1016/j.biopha.2016.03.032
– volume: 390
  start-page: 1151
  year: 2017
  ident: 10.7717/peerj.10921/ref-27
  article-title: Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(17)32152-9
– volume: 5
  start-page: 953
  year: 2005
  ident: 10.7717/peerj.10921/ref-11
  article-title: Monocyte and macrophage heterogeneity
  publication-title: Nature Reviews Immunology
  doi: 10.1038/nri1733
SSID ssj0000826083
Score 2.3289006
Snippet Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after ischemic...
Background Microglia, neuron, and vascular cells constitute a dynamic functional neurovascular unit, which exerts the crucial role in functional recovery after...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e10921
SubjectTerms Antibodies
Biochemistry
Carotid arteries
Cell Biology
Cell proliferation
Cerebral blood flow
Cytokines
Doublecortin protein
Drugs and Devices
Experiments
Feet
Genotype & phenotype
IL-1β
Inflammation
Interleukin 6
Ischemia
Ischemic stroke
JNK
Laboratory animals
Microglia
Mortality
Neuroblasts
Neurogenesis
Neuroinflammation
Neurology
Neurons
Neuroprotection
Neuroscience
NF-κB protein
Paeoniflorin
Proteins
Recovery of function
Sensorimotor system
Spatial discrimination learning
Stroke
Tumor necrosis factor-α
Veins & arteries
Von Willebrand factor
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhh5JLaZO0dR6NCoFCwcSWLEs-piUhFFpyaCA3oZfTbYM37G4OvfWnd0bSmjUt9JLrahZbmm80M_LMJ0JOZeultTUvpe0rPK2qy061qvQiVFZZ4bs-Fsh-ba9ums-34nbjqi-sCUv0wGnhzjivvfLeN9IyMGoB4UzfsdA6JXlX-8heCj5vI5mKezBEzRBcpIY8CSnL2UMIix9InsTqiQuKTP1_78cbDmlaLLnhfS5fkOc5bKTn6XVfkq0w7JJnX_KH8T3y-9oEsM4-1tPRWTwpCEuKXisd9lHMfAG2v2i-mYcucg3scEcjqSVADdCROhmpGTztjcsU3muRO9wYZ0sKjwDg0OVqMf8ZaLxMZ5_cXF58-3RV5ssVSickX5XgqU1onOqk6xQoJTDbW8uRAos53trKC1fVtq-tb2zrvIFUFty5EcZCUCY8f0W2h_kQ3hDqORM9Ur0FSBchn1KVY8xIwbrK8pq1BfmwXm_tMvM4XoBxryEDQeXoqBwdlVOQ01H4IRFu_FvsIypuFEGW7PgDYEdn7Oj_YacgJ6h2nVpOR1vX5xCGcaQ1gse8jxJo7fDKzuSmBZg48mZNJI8mkmClbjq8hpbOu8RSM4i1kQKtUQV5Nw7jP7HybQjzR5SJFHYcp_w6IXGcNEQg2OlcFUROMDpZlenIMPseOcTxczEEbwdPsYyHZIdhpU8lSqaOyPZq8RiOIVRb2bfRKv8A61Q-9Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF_0CuJL8dto1RUKghCa7GazmydppaUIliIW-rZkP3I9leSaXB988093ZrMXGxRfb-dINvM9O_sbQvZl6aQxOU-laTKsVuVppUqVOuEzo4xwVRMaZM_K04vi06W4jAW3IbZVbm1iMNSus1gjP2AQlyBcVKE-rK9TnBqFp6txhMZdsgMmWKkF2Tk6Pjv_MlVZwMGVEGSMF_MkpC4Ha-_7bwiixPKZKwqI_X_b5VuOad40ecsLnTwguzF8pIcjvx-SO759RO59jgfkj8mv89qDljahr46uQsXADxS911j0o5gBg_j-pHFCD-1jL2y7pAHcEkQOpGS80Ujr1tGmthHKe0uyRAO5Gig8AgSIDpu---5pGKrzhFycHH_9eJrGIQupFZJvUvDYtS-sqqStFDDHM9MYwxEKi1lemswJm-WmyY0rTGldDSktuPVa1AaCM-H4U7Jou9Y_J9RxJhqEfPOQNkJepTLLWC0FqzLDc1Ym5P32e2sbEchxEMYPDZkIMkcH5ujAnITsT8TrEXjj32RHyLiJBNGyww9dv9RR-TTnuVPOuUIaBo5BQEjcVMyXVkle5U4k5A2yXY9XTyed14cQjnGEN4LHvAsUqPXwyraOlxdg44ifNaPcm1GCttr58la0dLQWg_4j2wl5Oy3jP7EDrvXdDdIEKDuOW342SuK0aYhE8MZzlhA5k9HZV5mvtKurgCWOx8YQxL34_2u9JPcZ9vJkImVqjyw2_Y1_BcHYxryOGvcbKH84tw
  priority: 102
  providerName: ProQuest
Title Paeoniflorin improves functional recovery through repressing neuroinflammation and facilitating neurogenesis in rat stroke model
URI https://www.ncbi.nlm.nih.gov/pubmed/34123580
https://www.proquest.com/docview/2533557048
https://www.proquest.com/docview/2540721321
https://pubmed.ncbi.nlm.nih.gov/PMC8166241
https://doaj.org/article/331d8ddd47b24675916f92e6c87391d5
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDDelhbGXse_d1t08KAwG6RI7jp2n0Y52ZdBSxg7uzcQfud5Wcl3uCuvb_vRJjhOarY97yUOskNiSLMmRfiJkTxZOGpPxRJo6xdOqLClVoRInfGqUEa6sQ4LsWXEyy7_MxXyL9M044wKu7wztsJ_UrL3c__Xz5iMoPPiv-xKikQ9X3rffERcJC8p3wCRJbGVwGv38sCWDEw2-Rlef9_czI4sUgPv_3Z5v2adx7uQtY3T8kDyIXiQ96Nj-iGz55jG5dxr_kz8hv88rD8pah_Q6ugwHB35N0Yh1Z38UA2GQ4hsaG_XQNqbENgsaMC5hLUBYusJGWjWO1pWNiN49yQL3yeWawitAjuh6065-eBp66zwls-Ojb59OkthrIbFC8k0ChrvyuVWltKUCHnlmamM4ImIxywuTOmHTzNSZcbkprKsgsgXrXonKgI8mHH9GtptV418Q6jgTNSK_eYgeIbxSqWWskoKVqeEZKybkfb_e2kYgcuyHcakhIEHm6MAcHZgzIXsD8VWHv3E32SEybiBB0OxwY9UudNRBzXnmlHMul4aBfRDgGdcl84VVkpeZExPyBtmuuwrUQfX1AXhlHFGO4DXvAgWKI3yyrWINA0wcYbRGlLsjSlBaOx7uRUv3Mq8ZuN6IiJarCXk7DOOTmAjX-NU10gREO45Tft5J4jBpcEiw8DmdEDmS0dGqjEea5UWAFMe_x6A4L__HMr4i9xkm_qQiYWqXbG_aa_8aPLeNmZKdw6Oz86_TcPIB18_zbBo09Q8ATUoJ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBQo1UhIQUNbHjPA4ItdBqS9tVhVqpNzd-ZNkWZZfdrVBv_CJ-IzOOExqBuPW6nmxiz3ge9sw3hGxkqcmUinmYqSrC06o4LPI0D42wkcqVMEXlEmRH6fAk-XwqTlfIr7YWBtMqW53oFLWZajwj32TglyBcVJJ_mH0PsWsU3q62LTQasdi3Vz8gZFu83_sE_H3D2O7O8cdh6LsKhFpkfBmCiSptovMi00UOX2OZqpTiiP3ENE9VZISOYlXFyiQq1aaEGA7sWClKBd6IMBz-9xZZTXgasQFZ3d4ZHX3pTnXAoKbg1DSFgBmESpsza-fnCNrE4p7pcx0C_rYD1wxhP0nzmtXbvU_ueXeVbjXy9YCs2PohuX3oL-QfkZ9HpQWtULk8PjpxJxR2QdFaNoeMFCNu2C5X1HcEonOfe1uPqQPTBBEHqWwqKGlZG1qV2kOHtyRjVMiTBYVXgMDSxXI-vbDUNfF5TE5uZPmfkEE9re0zQg1nokKIOQthKsRxeaQZKzPBikjxmKUBedeut9Qe8Rwbb3yTEPkgc6RjjnTMCchGRzxrgD7-TbaNjOtIEJ3b_TCdj6Xf7JLz2OTGmCRTDAyRABe8KphNdZ7xIjYiIOvIdtmUunY6Rm6B-8cRTgle89ZRoJaBT9alL5aAiSNeV49yrUcJ2kH3h1vRkl47LeSfvRSQ190wPokZd7WdXiKNg87jOOWnjSR2kwbPByuso4BkPRntrUp_pJ58ddjleE0NTuPz_3_WOrkzPD48kAd7o_0X5C7DPKJIhCxfI4Pl_NK-BEdwqV753UfJ2U1v-N8OhnYK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJ028IO4rDGakISSkqIldx8kDQhtbtTGoKsSkvZn4klJAaWk7ob3xu_h1nOM4YRGIt73WJ03sc7ePv0PInkyt1DrhkdRljLtVSZRnaRZZ4WKdaWHz0hfIjtPjs-Hbc3G-QX41d2GwrLKxid5Q27nBPfIBg7gE4aKG2aAMZRGTw9HrxfcIO0jhSWvTTqMWkVN3-QPSt9Wrk0Pg9XPGRkcf3xxHocNAZITk6wjcVeGGJsulyTP4Msd0qTVHHChmeKpjK0yc6DLRdqhTYwvI58CnFaLQEJkIy-F_b5BNiVlRj2weHI0nH9odHnCuKQQ49aVACWnTYOHc8gsCOLGk4wZ9t4C_fcIVp9gt2LziAUe3ya0QutL9WtbukA1X3SVb78Ph_D3yc1I4sBClr-mjM79b4VYUPWe94Ugx-wbVuaShOxBdhjrcako9sCaIO0hofZuSFpWlZWECjHhDMkXjPFtReAUIL12tl_OvjvqGPvfJ2bUs_wPSq-aV2ybUciZKhJtzkLJCTpfFhrFCCpbHmics7ZOXzXorE9DPsQnHNwVZEDJHeeYoz5w-2WuJFzXox7_JDpBxLQkidfsf5supCoqvOE9sZq0dSs3AKQkIx8ucudRkkueJFX2yi2xX9bXX1t6ofQgFOUIrwWteeAq0OPDJpggXJ2DiiN3VodzpUIKlMN3hRrRUsFQr9Uev-uRZO4xPYvVd5eYXSONh9DhO-WEtie2kIQrC29Zxn8iOjHZWpTtSzT57HHM8soYA8tH_P2uXbIGiq3cn49PH5CbDkqJYRCzbIb318sI9gZhwrZ8G5aPk03Xr-29GnXo_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paeoniflorin+improves+functional+recovery+through+repressing+neuroinflammation+and+facilitating+neurogenesis+in+rat+stroke+model&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Hongli+Tang&rft.au=Leiruo+Wu&rft.au=Xixi+Chen&rft.au=Huiting+Li&rft.date=2021-05-28&rft.pub=PeerJ+Inc&rft.eissn=2167-8359&rft.volume=9&rft.spage=e10921&rft_id=info:doi/10.7717%2Fpeerj.10921&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_331d8ddd47b24675916f92e6c87391d5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon