Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography

Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 281; no. 30; pp. 21286 - 21295
Main Authors Pecqueur, Ludovic, D'Autréaux, Benoît, Dupuy, Jérome, Nicolet, Yvain, Jacquamet, Lilian, Brutscher, Bernhard, Michaud-Soret, Isabelle, Bersch, Beate
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.07.2006
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
DOI10.1074/jbc.M601278200

Cover

Loading…
Abstract Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8Å resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
AbstractList Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8Aa resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8Ã... resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8Å resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, mono-mer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disul-fide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono-and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8 Å resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the mono-meric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8Å resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Author Brutscher, Bernhard
Bersch, Beate
Jacquamet, Lilian
Pecqueur, Ludovic
Nicolet, Yvain
Dupuy, Jérome
Michaud-Soret, Isabelle
D'Autréaux, Benoît
Author_xml – sequence: 1
  givenname: Ludovic
  surname: Pecqueur
  fullname: Pecqueur, Ludovic
  organization: Laboratoire de Résonance Magnétique Nucléaire des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
– sequence: 2
  givenname: Benoît
  surname: D'Autréaux
  fullname: D'Autréaux, Benoît
  organization: Laboratoire de Physicochimie des Métaux en Biologie (Unité Mixte de Recherche 5155 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), Département Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
– sequence: 3
  givenname: Jérome
  surname: Dupuy
  fullname: Dupuy, Jérome
  organization: Laboratoire de Cristallographie et de Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
– sequence: 4
  givenname: Yvain
  surname: Nicolet
  fullname: Nicolet, Yvain
  organization: Laboratoire de Cristallographie et de Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
– sequence: 5
  givenname: Lilian
  surname: Jacquamet
  fullname: Jacquamet, Lilian
  organization: Laboratoire de Cristallographie et de Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
– sequence: 6
  givenname: Bernhard
  surname: Brutscher
  fullname: Brutscher, Bernhard
  organization: Laboratoire de Résonance Magnétique Nucléaire des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
– sequence: 7
  givenname: Isabelle
  surname: Michaud-Soret
  fullname: Michaud-Soret, Isabelle
  email: imichaud@cea.fr
  organization: Laboratoire de Physicochimie des Métaux en Biologie (Unité Mixte de Recherche 5155 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), Département Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
– sequence: 8
  givenname: Beate
  surname: Bersch
  fullname: Bersch, Beate
  email: beate.bersch@ibs.fr
  organization: Laboratoire de Résonance Magnétique Nucléaire des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16690618$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02975695$$DView record in HAL
BookMark eNqFksFv0zAUxiM0xLrBlSPyASFxSLGdxHaOVekYUgvSYNJulmO_NB5pHGynUP4V_lnStQwJaZov1rN_32frve8sOelcB0nykuApwTx_d1vp6YphQrmgGD9JJgSLLM0KcnOSTDCmJC1pIU6TsxBu8bjykjxLTgljJWZETJLfX6IfdBy8atG8Ud0aAnI1WgTdgLe6sQpp11p0AX4s0XUf1TdAV7AeWhWdR2bwtlujFUTVpgZ66Ax0Eb23m1H-S0XrOqQ6g2Y62u2hXPzsW-fBoGqHPq2u7q5vUq92aO53YfRp3dqrvtk9T57Wqg3w4rifJ9cXi6_zy3T5-cPH-WyZ6oJnMaVFVRJecWYoKDAlVVVea05MpTQhBhORl4ZxIfKaiQJoWRNVCTrKNNScs-w8eXvwbVQre283yu-kU1ZezpZyf4ZpyQtWFlsysm8ObO_d9wFClBsbNLSt6sANQTLBmCBZ-SiYc5LRAtNHQVJmrOB8D746gkO1AXP_07_DHIH8AGjvQvBQS23jXc-jV7aVBMt9ZuSYGfkvM6Ns-p_s3vkhwetjv-y6-WE9yMq6MS8bSQWRGZaUULFvqzhgMM5ua8HLoC10Gswo0VEaZx964Q8FgeL-
CitedBy_id crossref_primary_10_1534_g3_112_003863
crossref_primary_10_1016_j_jbc_2024_107142
crossref_primary_10_1111_j_1365_2958_2010_07517_x
crossref_primary_10_1021_cr900077w
crossref_primary_10_1128_JB_01532_07
crossref_primary_10_3390_pathogens10030344
crossref_primary_10_1074_jbc_RA120_014814
crossref_primary_10_1016_j_micres_2012_07_005
crossref_primary_10_1074_jbc_RA119_011855
crossref_primary_10_21307_PM_2019_58_4_415
crossref_primary_10_7717_peerj_3461
crossref_primary_10_1073_pnas_1810379115
crossref_primary_10_1007_s10534_020_00240_6
crossref_primary_10_1016_j_jprot_2021_104389
crossref_primary_10_3390_ijms9081548
crossref_primary_10_1089_ars_2010_3146
crossref_primary_10_1074_mcp_M700105_MCP200
crossref_primary_10_1007_s10534_022_00390_9
crossref_primary_10_1007_s10822_008_9251_2
crossref_primary_10_1093_nar_gkaa696
crossref_primary_10_1371_journal_pbio_1001987
crossref_primary_10_1099_mic_0_000166
crossref_primary_10_1186_1472_6807_12_1
crossref_primary_10_1021_cb5005977
crossref_primary_10_1042_BCJ20170692
crossref_primary_10_1073_pnas_1017744108
crossref_primary_10_1111_j_1574_6976_2010_00233_x
crossref_primary_10_1021_acs_biochem_5b01061
crossref_primary_10_1128_MMBR_00012_07
crossref_primary_10_1371_journal_pone_0174485
crossref_primary_10_1007_s10534_019_00177_5
crossref_primary_10_1007_s10534_018_0120_8
crossref_primary_10_1074_jbc_M609974200
crossref_primary_10_3412_jsb_69_565
crossref_primary_10_3390_life10120312
crossref_primary_10_1021_bi9004396
crossref_primary_10_1016_j_pnmrs_2017_11_004
crossref_primary_10_1016_j_abb_2014_01_029
crossref_primary_10_1093_nar_gkab432
crossref_primary_10_1089_ars_2012_4533
crossref_primary_10_1111_omi_12077
crossref_primary_10_2323_jgam_55_351
crossref_primary_10_1016_j_csbj_2025_02_017
crossref_primary_10_1007_s12275_008_0113_3
crossref_primary_10_1089_ars_2014_6175
crossref_primary_10_1007_s10534_014_9815_7
crossref_primary_10_1128_mBio_02391_21
crossref_primary_10_1007_s12275_010_9199_5
crossref_primary_10_3389_fcimb_2019_00233
crossref_primary_10_3389_fcimb_2019_00109
crossref_primary_10_1111_mmi_12782
crossref_primary_10_1016_j_biortech_2025_132058
crossref_primary_10_1038_s41598_018_26127_8
crossref_primary_10_1042_BJ20061168
crossref_primary_10_1007_s10534_006_9067_2
crossref_primary_10_1128_ecosalplus_ESP_0034_2020
crossref_primary_10_1111_j_1462_2920_2010_02412_x
crossref_primary_10_1128_JB_00276_17
crossref_primary_10_1002_prot_22247
crossref_primary_10_1016_j_bbapap_2010_04_002
crossref_primary_10_1016_j_gene_2007_12_007
crossref_primary_10_1002_prot_22205
crossref_primary_10_1002_prot_22002
crossref_primary_10_1021_cr9002787
crossref_primary_10_3390_biom14080981
crossref_primary_10_1038_s41598_018_25157_6
crossref_primary_10_1007_s42770_019_00207_x
crossref_primary_10_1016_j_vetmic_2012_10_038
crossref_primary_10_1038_ncomms8642
crossref_primary_10_1039_b706769k
crossref_primary_10_1039_C5MT00170F
crossref_primary_10_1073_pnas_1118321109
crossref_primary_10_1186_s12896_016_0298_1
crossref_primary_10_1074_jbc_REV120_007746
crossref_primary_10_1016_j_cub_2017_04_010
crossref_primary_10_1016_j_jbc_2023_104748
crossref_primary_10_1021_bi061636r
crossref_primary_10_1128_MMBR_00035_10
crossref_primary_10_3389_fmicb_2018_01580
crossref_primary_10_1371_journal_pone_0018236
crossref_primary_10_1007_s10534_023_00517_6
crossref_primary_10_1111_mmi_12739
crossref_primary_10_1128_IAI_01227_12
crossref_primary_10_1038_s42003_018_0095_6
crossref_primary_10_1016_j_aquaculture_2023_740361
Cites_doi 10.1107/S0907444994003112
10.1021/bi00247a016
10.1038/nature04537
10.1073/pnas.252591299
10.1128/JB.169.6.2624-2630.1987
10.1107/S0021889893005588
10.1107/S0907444901012471
10.1093/bib/3.3.246
10.1074/jbc.M404924200
10.1007/BF00208811
10.1074/jbc.M313123200
10.1007/BF00203823
10.1107/S0021889892009944
10.1046/j.1365-2958.2003.03337.x
10.1046/j.1365-2958.1996.381426.x
10.1107/S0907444904019158
10.1002/elps.1150181505
10.1006/jmrb.1995.1124
10.1107/S0907444901014007
10.1021/bi9823232
10.1038/90429
10.1007/BF00144124
10.1111/j.1432-1033.1991.tb15879.x
10.1021/bi00391a039
10.1128/JB.177.24.7194-7201.1995
10.1021/bi9902283
10.1016/j.febslet.2005.08.067
10.1007/BF00404280
10.1021/bi982788s
10.1006/jmbi.2001.4769
10.1016/S0014-5793(97)00963-0
10.1107/S0907444902003943
10.1007/BF00175245
10.1016/0014-5793(95)00450-N
10.1111/j.1432-1033.1991.tb15878.x
10.1021/bi036340p
10.1099/00221287-148-8-2449
10.1111/j.1432-1033.1991.tb15880.x
10.1021/bi9721344
10.1016/S1369-5274(00)00184-3
10.1021/ja991932+
ContentType Journal Article
Copyright 2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2006 © 2006 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7S9
L.6
7X8
1XC
VOOES
DOI 10.1074/jbc.M601278200
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Bacteriology Abstracts (Microbiology B)
MEDLINE - Academic
AGRICOLA

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 21295
ExternalDocumentID oai_HAL_hal_02975695v1
16690618
10_1074_jbc_M601278200
281_30_21286
S0021925818952567
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
2WC
34G
39C
3O-
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFFNX
AFMIJ
AFOSN
AFPKN
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
MVM
N9A
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XSW
Y6R
YQT
YSK
YWH
YZZ
ZA5
ZE2
~02
~KM
-
02
55
AAWZA
ABFLS
ABPTK
ABUFD
ABZEH
ADACO
ADCOW
AEILP
AIZTS
DL
DZ
ET
FH7
GJ
H13
KM
LI
MYA
O0-
X
XHC
.7T
0R~
29J
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
BAWUL
CITATION
E.L
J5H
NHB
QZG
XJT
YYP
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7S9
L.6
7X8
1XC
UMC
VOOES
ID FETCH-LOGICAL-c573t-25b917b76d2eaed92ab4fc71dbac11d01849d67884f685e29f1ab8225bcef7763
ISSN 0021-9258
IngestDate Fri May 09 12:16:59 EDT 2025
Fri Jul 11 13:47:19 EDT 2025
Fri Jul 11 15:59:46 EDT 2025
Fri Jul 11 04:57:10 EDT 2025
Mon Jul 21 05:58:26 EDT 2025
Tue Jul 01 02:13:00 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Tue Jan 05 14:52:05 EST 2021
Fri Feb 23 02:45:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License This is an open access article under the CC BY-NC-ND license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c573t-25b917b76d2eaed92ab4fc71dbac11d01849d67884f685e29f1ab8225bcef7763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0396-699X
0000-0002-2721-5365
0000-0002-8936-4964
0000-0003-1138-4911
0000-0002-4189-7067
OpenAccessLink https://hal.science/hal-02975695
PMID 16690618
PQID 19365772
PQPubID 23462
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_02975695v1
proquest_miscellaneous_68668139
proquest_miscellaneous_47132502
proquest_miscellaneous_19365772
pubmed_primary_16690618
crossref_citationtrail_10_1074_jbc_M601278200
crossref_primary_10_1074_jbc_M601278200
highwire_biochem_281_30_21286
elsevier_sciencedirect_doi_10_1074_jbc_M601278200
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-07-28
PublicationDateYYYYMMDD 2006-07-28
PublicationDate_xml – month: 07
  year: 2006
  text: 2006-07-28
  day: 28
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2006
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References (bib21) 1994; 50
Guex, Peitsch (bib44) 1997; 18
D'Autréaux, Touati, Bersch, Latour, Michaud-Soret (bib14) 2002; 99
Perrakis, Harkiolaki, Wilson, Lamzin (bib19) 2001; 57
Laskowski, MacArthur, Moss, Thornton (bib34) 1993; 26
Morelle, Simorre, Caffrey, Meyer, Cusanovich, Marion (bib24) 1995; 365
Gonzalez de Peredo, Saint-Pierre, Latour, Michaud-Soret, Forest (bib30) 2001; 310
Saito, Williams (bib32) 1991; 197
Barton, Johnson, Cox, Vasil, Vasil (bib35) 1996; 21
Pohl, Haller, Mijovilovich, Meyer-Klaucke, Garman, Vasil (bib11) 2003; 47
Kabsch (bib17) 1993; 26
de Lorenzo, Wee, Herrero, Neilands (bib2) 1987; 169
Althaus, Outten, Olson, Cao, O'Halloran (bib8) 1999; 38
Ochsner, Vasil, Vasil (bib4) 1995; 177
Alekshun, Levy, Mealy, Seaton, Head (bib38) 2001; 8
D'Autréaux (bib29) 2002
Lee, Helmann (bib42) 2006; 440
Gonzalez de Peredo, Saint-Pierre, Adrait, Jacquamet, Latour, Forest, Michaud-Soret (bib9) 1999; 38
Read (bib18) 2001; 57
Jansson, Li, Jendeberg, Anderson, Montelione, Nilsson (bib22) 1996; 7
Gonzalez de Peredo (bib37) 2000
Servant, Bru, Carrere, Courcelle, Gouzy, Peyruc, Kahn (bib41) 2002; 3
Hantke (bib1) 2001; 4
Saito, Wormald, Williams (bib33) 1991; 197
Tiss, Barre, Michaud-Soret, Forest (bib23) 2005; 579
Wishart, Sykes (bib27) 1994; 4
Coy, Doyle, Besser, Neilands (bib10) 1994; 7
Roth, Carpentier, Kaïkati, Joly, Charrault, Pirocchi, Kahn, Fanchon, Jacquamet, Borel, Bertoni, Israel-Gouy, Ferrer (bib16) 2002; 58
Bagg, Neilands (bib3) 1987; 26
Farrow, Zhang, Forman-Kay, Kay (bib28) 1994; 4
Brutscher, Cordier, Simorre, Caffrey, Marion (bib25) 1995; 5
Coy, Neilands (bib36) 1991; 30
Maret (bib43) 2004; 43
Jacquamet, Aberdam, Adrait, Hazemann, Latour, Michaud-Soret (bib7) 1998; 37
Emsley, Cowtan (bib20) 2004; 60
Szyperski, Braun, Fernandez, Bartels, Wüthrich (bib26) 1995; 108
Saito, Duly, Williams (bib31) 1991; 197
Garcia-Castellanos, Mallorqui-Fernandez, Marrero, Potempa, Coll, Gomis-Ruth (bib39) 2004; 279
Wee, Neilands, Bittner, Hemming, Haymore, Seetharam (bib15) 1988; 1
Adrait, Jacquamet, Le Pape, Gonzalez de Peredo, Aberdam, Hazemann, Latour, Michaud-Soret (bib5) 1999; 38
Jacquamet, Dole, Jeandey, Oddou, Perret, Le Pape, Aberdam, Hazemann, Michaud-Soret, Latour (bib6) 2000; 122
Lewin, Doughty, Flegg, Moore, Spiro (bib12) 2002; 148
Michaud-Soret, Adrait, Jaquinod, Forest, Touati, Latour (bib13) 1997; 413
Friedman, O'Brian (bib40) 2004; 279
Maret (10.1074/jbc.M601278200_bib43) 2004; 43
Jansson (10.1074/jbc.M601278200_bib22) 1996; 7
Morelle (10.1074/jbc.M601278200_bib24) 1995; 365
Gonzalez de Peredo (10.1074/jbc.M601278200_bib9) 1999; 38
Perrakis (10.1074/jbc.M601278200_bib19) 2001; 57
Roth (10.1074/jbc.M601278200_bib16) 2002; 58
Laskowski (10.1074/jbc.M601278200_bib34) 1993; 26
Saito (10.1074/jbc.M601278200_bib33) 1991; 197
Coy (10.1074/jbc.M601278200_bib10) 1994; 7
Szyperski (10.1074/jbc.M601278200_bib26) 1995; 108
Servant (10.1074/jbc.M601278200_bib41) 2002; 3
Lee (10.1074/jbc.M601278200_bib42) 2006; 440
Althaus (10.1074/jbc.M601278200_bib8) 1999; 38
de Lorenzo (10.1074/jbc.M601278200_bib2) 1987; 169
Saito (10.1074/jbc.M601278200_bib31) 1991; 197
Friedman (10.1074/jbc.M601278200_bib40) 2004; 279
Jacquamet (10.1074/jbc.M601278200_bib7) 1998; 37
Read (10.1074/jbc.M601278200_bib18) 2001; 57
Adrait (10.1074/jbc.M601278200_bib5) 1999; 38
Wee (10.1074/jbc.M601278200_bib15) 1988; 1
(10.1074/jbc.M601278200_bib21) 1994; 50
Brutscher (10.1074/jbc.M601278200_bib25) 1995; 5
Kabsch (10.1074/jbc.M601278200_bib17) 1993; 26
D'Autréaux (10.1074/jbc.M601278200_bib29) 2002
Saito (10.1074/jbc.M601278200_bib32) 1991; 197
Jacquamet (10.1074/jbc.M601278200_bib6) 2000; 122
Hantke (10.1074/jbc.M601278200_bib1) 2001; 4
Emsley (10.1074/jbc.M601278200_bib20) 2004; 60
Gonzalez de Peredo (10.1074/jbc.M601278200_bib37) 2000
Bagg (10.1074/jbc.M601278200_bib3) 1987; 26
Farrow (10.1074/jbc.M601278200_bib28) 1994; 4
Ochsner (10.1074/jbc.M601278200_bib4) 1995; 177
Gonzalez de Peredo (10.1074/jbc.M601278200_bib30) 2001; 310
Michaud-Soret (10.1074/jbc.M601278200_bib13) 1997; 413
Lewin (10.1074/jbc.M601278200_bib12) 2002; 148
Tiss (10.1074/jbc.M601278200_bib23) 2005; 579
Barton (10.1074/jbc.M601278200_bib35) 1996; 21
Coy (10.1074/jbc.M601278200_bib36) 1991; 30
Guex (10.1074/jbc.M601278200_bib44) 1997; 18
Pohl (10.1074/jbc.M601278200_bib11) 2003; 47
D'Autréaux (10.1074/jbc.M601278200_bib14) 2002; 99
Wishart (10.1074/jbc.M601278200_bib27) 1994; 4
Alekshun (10.1074/jbc.M601278200_bib38) 2001; 8
Garcia-Castellanos (10.1074/jbc.M601278200_bib39) 2004; 279
References_xml – volume: 57
  start-page: 1445
  year: 2001
  end-page: 1450
  ident: bib19
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 177
  start-page: 7194
  year: 1995
  end-page: 7201
  ident: bib4
  publication-title: J. Bacteriol.
– volume: 4
  start-page: 172
  year: 2001
  end-page: 177
  ident: bib1
  publication-title: Curr. Opin. Microbiol.
– year: 2002
  ident: bib29
  publication-title: ).
– volume: 30
  start-page: 8201
  year: 1991
  end-page: 8210
  ident: bib36
  publication-title: Biochemistry
– volume: 57
  start-page: 1373
  year: 2001
  end-page: 1382
  ident: bib18
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 279
  start-page: 32100
  year: 2004
  end-page: 32105
  ident: bib40
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 795
  year: 1993
  end-page: 800
  ident: bib17
  publication-title: J. Appl. Crystallogr.
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bib20
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 7
  start-page: 131
  year: 1996
  end-page: 141
  ident: bib22
  publication-title: J. Biomol. NMR
– volume: 122
  start-page: 394
  year: 2000
  end-page: 395
  ident: bib6
  publication-title: J. Am. Chem. Soc.
– volume: 197
  start-page: 43
  year: 1991
  end-page: 47
  ident: bib32
  publication-title: Eur. J. Biochem.
– volume: 47
  start-page: 903
  year: 2003
  end-page: 915
  ident: bib11
  publication-title: Mol. Microbiol.
– volume: 1
  start-page: 62
  year: 1988
  end-page: 68
  ident: bib15
  publication-title: Biometals
– volume: 4
  start-page: 171
  year: 1994
  end-page: 180
  ident: bib27
  publication-title: J. Biomol. NMR
– volume: 38
  start-page: 8582
  year: 1999
  end-page: 8589
  ident: bib9
  publication-title: Biochemistry
– volume: 310
  start-page: 83
  year: 2001
  end-page: 91
  ident: bib30
  publication-title: J. Mol. Biol.
– volume: 50
  start-page: 760
  year: 1994
  end-page: 763
  ident: bib21
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 108
  start-page: 197
  year: 1995
  end-page: 203
  ident: bib26
  publication-title: J. Magn. Reson.
– year: 2000
  ident: bib37
  publication-title: ).
– volume: 38
  start-page: 6248
  year: 1999
  end-page: 6260
  ident: bib5
  publication-title: Biochemistry
– volume: 4
  start-page: 727
  year: 1994
  end-page: 734
  ident: bib28
  publication-title: J. Biomol. NMR
– volume: 148
  start-page: 2449
  year: 2002
  end-page: 2456
  ident: bib12
  publication-title: Microbiology
– volume: 279
  start-page: 17888
  year: 2004
  end-page: 17896
  ident: bib39
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 16619
  year: 2002
  end-page: 16624
  ident: bib14
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 38
  start-page: 6559
  year: 1999
  end-page: 6569
  ident: bib8
  publication-title: Biochemistry
– volume: 169
  start-page: 2624
  year: 1987
  end-page: 2630
  ident: bib2
  publication-title: J. Bacteriol.
– volume: 43
  start-page: 3301
  year: 2004
  end-page: 3309
  ident: bib43
  publication-title: Biochemistry
– volume: 18
  start-page: 2714
  year: 1997
  end-page: 2723
  ident: bib44
  publication-title: Electrophoresis
– volume: 21
  start-page: 1001
  year: 1996
  end-page: 1017
  ident: bib35
  publication-title: Mol. Microbiol.
– volume: 26
  start-page: 283
  year: 1993
  end-page: 291
  ident: bib34
  publication-title: J. Appl. Crystallogr.
– volume: 579
  start-page: 5454
  year: 2005
  end-page: 5460
  ident: bib23
  publication-title: FEBS Lett.
– volume: 365
  start-page: 172
  year: 1995
  end-page: 178
  ident: bib24
  publication-title: FEBS Lett.
– volume: 197
  start-page: 39
  year: 1991
  end-page: 42
  ident: bib31
  publication-title: Eur. J. Biochem.
– volume: 3
  start-page: 246
  year: 2002
  end-page: 251
  ident: bib41
  publication-title: Brief Bioinform.
– volume: 197
  start-page: 29
  year: 1991
  end-page: 38
  ident: bib33
  publication-title: Eur. J. Biochem.
– volume: 413
  start-page: 473
  year: 1997
  end-page: 476
  ident: bib13
  publication-title: FEBS Lett.
– volume: 440
  start-page: 363
  year: 2006
  end-page: 367
  ident: bib42
  publication-title: Nature
– volume: 7
  start-page: 292
  year: 1994
  end-page: 298
  ident: bib10
  publication-title: Biometals
– volume: 26
  start-page: 5471
  year: 1987
  end-page: 5477
  ident: bib3
  publication-title: Biochemistry
– volume: 37
  start-page: 2564
  year: 1998
  end-page: 2571
  ident: bib7
  publication-title: Biochemistry
– volume: 8
  start-page: 710
  year: 2001
  end-page: 714
  ident: bib38
  publication-title: Nat. Struct. Biol.
– volume: 5
  start-page: 202
  year: 1995
  end-page: 206
  ident: bib25
  publication-title: J. Biomol. NMR
– volume: 58
  start-page: 805
  year: 2002
  end-page: 814
  ident: bib16
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 50
  start-page: 760
  year: 1994
  ident: 10.1074/jbc.M601278200_bib21
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444994003112
– volume: 30
  start-page: 8201
  year: 1991
  ident: 10.1074/jbc.M601278200_bib36
  publication-title: Biochemistry
  doi: 10.1021/bi00247a016
– volume: 440
  start-page: 363
  year: 2006
  ident: 10.1074/jbc.M601278200_bib42
  publication-title: Nature
  doi: 10.1038/nature04537
– year: 2000
  ident: 10.1074/jbc.M601278200_bib37
– volume: 99
  start-page: 16619
  year: 2002
  ident: 10.1074/jbc.M601278200_bib14
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.252591299
– volume: 169
  start-page: 2624
  year: 1987
  ident: 10.1074/jbc.M601278200_bib2
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.169.6.2624-2630.1987
– volume: 26
  start-page: 795
  year: 1993
  ident: 10.1074/jbc.M601278200_bib17
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889893005588
– volume: 57
  start-page: 1373
  year: 2001
  ident: 10.1074/jbc.M601278200_bib18
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444901012471
– volume: 3
  start-page: 246
  year: 2002
  ident: 10.1074/jbc.M601278200_bib41
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/3.3.246
– volume: 279
  start-page: 32100
  year: 2004
  ident: 10.1074/jbc.M601278200_bib40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M404924200
– volume: 5
  start-page: 202
  year: 1995
  ident: 10.1074/jbc.M601278200_bib25
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00208811
– volume: 279
  start-page: 17888
  year: 2004
  ident: 10.1074/jbc.M601278200_bib39
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313123200
– volume: 7
  start-page: 131
  year: 1996
  ident: 10.1074/jbc.M601278200_bib22
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00203823
– volume: 26
  start-page: 283
  year: 1993
  ident: 10.1074/jbc.M601278200_bib34
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892009944
– volume: 47
  start-page: 903
  year: 2003
  ident: 10.1074/jbc.M601278200_bib11
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03337.x
– volume: 21
  start-page: 1001
  year: 1996
  ident: 10.1074/jbc.M601278200_bib35
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1996.381426.x
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1074/jbc.M601278200_bib20
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 18
  start-page: 2714
  year: 1997
  ident: 10.1074/jbc.M601278200_bib44
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– volume: 108
  start-page: 197
  year: 1995
  ident: 10.1074/jbc.M601278200_bib26
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmrb.1995.1124
– volume: 57
  start-page: 1445
  year: 2001
  ident: 10.1074/jbc.M601278200_bib19
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444901014007
– volume: 38
  start-page: 6248
  year: 1999
  ident: 10.1074/jbc.M601278200_bib5
  publication-title: Biochemistry
  doi: 10.1021/bi9823232
– volume: 8
  start-page: 710
  year: 2001
  ident: 10.1074/jbc.M601278200_bib38
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/90429
– volume: 7
  start-page: 292
  year: 1994
  ident: 10.1074/jbc.M601278200_bib10
  publication-title: Biometals
  doi: 10.1007/BF00144124
– volume: 197
  start-page: 39
  year: 1991
  ident: 10.1074/jbc.M601278200_bib31
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb15879.x
– volume: 26
  start-page: 5471
  year: 1987
  ident: 10.1074/jbc.M601278200_bib3
  publication-title: Biochemistry
  doi: 10.1021/bi00391a039
– volume: 177
  start-page: 7194
  year: 1995
  ident: 10.1074/jbc.M601278200_bib4
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.177.24.7194-7201.1995
– volume: 38
  start-page: 8582
  year: 1999
  ident: 10.1074/jbc.M601278200_bib9
  publication-title: Biochemistry
  doi: 10.1021/bi9902283
– volume: 579
  start-page: 5454
  year: 2005
  ident: 10.1074/jbc.M601278200_bib23
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.08.067
– volume: 4
  start-page: 727
  year: 1994
  ident: 10.1074/jbc.M601278200_bib28
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00404280
– volume: 38
  start-page: 6559
  year: 1999
  ident: 10.1074/jbc.M601278200_bib8
  publication-title: Biochemistry
  doi: 10.1021/bi982788s
– volume: 310
  start-page: 83
  year: 2001
  ident: 10.1074/jbc.M601278200_bib30
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4769
– volume: 413
  start-page: 473
  year: 1997
  ident: 10.1074/jbc.M601278200_bib13
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(97)00963-0
– volume: 58
  start-page: 805
  year: 2002
  ident: 10.1074/jbc.M601278200_bib16
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
  doi: 10.1107/S0907444902003943
– volume: 4
  start-page: 171
  year: 1994
  ident: 10.1074/jbc.M601278200_bib27
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00175245
– volume: 1
  start-page: 62
  year: 1988
  ident: 10.1074/jbc.M601278200_bib15
  publication-title: Biometals
– volume: 365
  start-page: 172
  year: 1995
  ident: 10.1074/jbc.M601278200_bib24
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)00450-N
– volume: 197
  start-page: 29
  year: 1991
  ident: 10.1074/jbc.M601278200_bib33
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb15878.x
– volume: 43
  start-page: 3301
  year: 2004
  ident: 10.1074/jbc.M601278200_bib43
  publication-title: Biochemistry
  doi: 10.1021/bi036340p
– volume: 148
  start-page: 2449
  year: 2002
  ident: 10.1074/jbc.M601278200_bib12
  publication-title: Microbiology
  doi: 10.1099/00221287-148-8-2449
– volume: 197
  start-page: 43
  year: 1991
  ident: 10.1074/jbc.M601278200_bib32
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb15880.x
– volume: 37
  start-page: 2564
  year: 1998
  ident: 10.1074/jbc.M601278200_bib7
  publication-title: Biochemistry
  doi: 10.1021/bi9721344
– year: 2002
  ident: 10.1074/jbc.M601278200_bib29
– volume: 4
  start-page: 172
  year: 2001
  ident: 10.1074/jbc.M601278200_bib1
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(00)00184-3
– volume: 122
  start-page: 394
  year: 2000
  ident: 10.1074/jbc.M601278200_bib6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991932+
SSID ssj0000491
Score 2.176664
Snippet Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually...
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually...
SourceID hal
proquest
pubmed
crossref
highwire
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21286
SubjectTerms Amino Acid Sequence
Bacterial Proteins - chemistry
Biochemistry
Biochemistry, Molecular Biology
Crystallography, X-Ray - methods
Dimerization
DNA - chemistry
Escherichia coli
Escherichia coli - metabolism
Life Sciences
Magnetic Resonance Spectroscopy - methods
Models, Molecular
Molecular Sequence Data
Protein Denaturation
Protein Folding
Protein Structure, Quaternary
Protein Structure, Secondary
Repressor Proteins - chemistry
Sequence Homology, Amino Acid
Zinc - chemistry
Title Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography
URI https://dx.doi.org/10.1074/jbc.M601278200
http://www.jbc.org/content/281/30/21286.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16690618
https://www.proquest.com/docview/19365772
https://www.proquest.com/docview/47132502
https://www.proquest.com/docview/68668139
https://hal.science/hal-02975695
Volume 281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6ywEuCHZ5FFiwEI9DlVLnnWNZuqpguxKwlcrJsh1HFJam6iaVyl_hF_IvGNtx0haKYC9Rm7hpkvk8nsnMfIPQM57JQMiEOFnKhOOnqZpSmef0vMyXmSvDUL_vGJ2Fw7H_dhJMWq2fa1lLZcG74vsf60quIlXYB3JVVbL_Idn6pLADPoN8YQsShu0_yfijJn_VxBmmSkDnZQwulSCmKom5A2Kedk4U-6LojOcF-6raNOju8_nCliiOJBjgju2GW4AWVFEcU56pYwt9YXugdUzKnrFaz0Yf9OGJs2CgWBYrMDQvNiiwvzRQXDN8De-TYSax7eYaDS1goSo1jE7LNF9ORW1qP3ejfllUoX1W6lXztZzlesegTt95U85L04bZjKz5GHT0BR6ICb98WrKKdHztnUdka8j1izhbjLORK2qyTVzDBN-VRp-DhamKFSbrCt81TWIqZFdhIau_XcvMbb-bHqC_rTRgeqmVhovuKFTh-9gwrm6zd6tgOFEXReIkAPMy2kPXXPBo1Bry7n1DbA-OmmnuWN2D5ReN_Feb_7HLftr7rBJ5a5Lr3Q6TNpzOb6GbleBx38D3NmrJ2QE67M8Agt9W-AXWOcg6uHOArh9bQByiHw26cYVunGd4Dd1YoRsbdGODblyjGxt04y1043V0Y4AvbtCNLboxX2FAtz6s0Y230H0HjU8G58dDp2ol4ogg8grHDXhCIh6FqSuZTBOXcT8TEUk5E4SkPRL7SQp2W-xnYRxIN8kI42A7B1zILII1-C7an-UzeR9hkiWBz9Iec33mZ4HkHrhIPpMRT9IkTII2cqyAqKh49lW7lwuq8z0in4JAaSPQNnpZj58bhpmdI4mVN63sY2P3UgDlzt88BWDUJ1Zk8sP-KVX7VNu6AC54SdroyOKGgg5Qc5_CJKFej-oJ0UZPLJgogECFFNlM5uUlBfcvDADOu0eA8euBm_WXEWEchjE4om10z-C0eQyholEn8YMr3PhDdKPRHI_QPkBWHoH_UPDHeub9Ajn7HUM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Changes+of+Escherichia+coli+Ferric+Uptake+Regulator+during+Metal-dependent+Dimerization+and+Activation+Explored+by+NMR+and+X-ray+Crystallography&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Pecqueur%2C+Ludovic&rft.au=D%27Autr%C3%A9aux%2C+Beno%C3%AEt&rft.au=Dupuy%2C+J%C3%A9rome&rft.au=Nicolet%2C+Yvain&rft.date=2006-07-28&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=281&rft.issue=30&rft.spage=21286&rft.epage=21295&rft_id=info:doi/10.1074%2Fjbc.M601278200&rft.externalDocID=S0021925818952567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon