Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies

Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process syste...

Full description

Saved in:
Bibliographic Details
Published inTopics in catalysis Vol. 61; no. 3-4; pp. 254 - 266
Main Authors Sanchez, Felipe, Motta, Davide, Roldan, Alberto, Hammond, Ceri, Villa, Alberto, Dimitratos, Nikolaos
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1022-5528
1572-9028
DOI10.1007/s11244-018-0894-5

Cover

Loading…
Abstract Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H 2 selectivity and a high catalytic activity (TOF = 1136 h −1 ) at 30 °C toward the selective dehydrogenation of formic acid to H 2 and CO 2 . The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.
AbstractList Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H 2 selectivity and a high catalytic activity (TOF = 1136 h −1 ) at 30 °C toward the selective dehydrogenation of formic acid to H 2 and CO 2 . The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.
Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H selectivity and a high catalytic activity (TOF = 1136 h ) at 30 °C toward the selective dehydrogenation of formic acid to H and CO . The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.
Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H2 selectivity and a high catalytic activity (TOF = 1136 h−1) at 30 °C toward the selective dehydrogenation of formic acid to H2 and CO2. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.
Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H2 selectivity and a high catalytic activity (TOF = 1136 h-1) at 30 °C toward the selective dehydrogenation of formic acid to H2 and CO2. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H2 selectivity and a high catalytic activity (TOF = 1136 h-1) at 30 °C toward the selective dehydrogenation of formic acid to H2 and CO2. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.
Author Roldan, Alberto
Hammond, Ceri
Sanchez, Felipe
Villa, Alberto
Motta, Davide
Dimitratos, Nikolaos
Author_xml – sequence: 1
  givenname: Felipe
  surname: Sanchez
  fullname: Sanchez, Felipe
  organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University
– sequence: 2
  givenname: Davide
  surname: Motta
  fullname: Motta, Davide
  organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University
– sequence: 3
  givenname: Alberto
  surname: Roldan
  fullname: Roldan, Alberto
  email: RoldanMartinezA@cardiff.ac.uk
  organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University
– sequence: 4
  givenname: Ceri
  surname: Hammond
  fullname: Hammond, Ceri
  email: HammondC4@cardiff.ac.uk
  organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University
– sequence: 5
  givenname: Alberto
  surname: Villa
  fullname: Villa, Alberto
  organization: Dipartimento di Chimica, Universitá degli Studi di Milano
– sequence: 6
  givenname: Nikolaos
  surname: Dimitratos
  fullname: Dimitratos, Nikolaos
  email: DimitratosN@Cardiff.ac.uk
  organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30956509$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9rFDEUxQep2D_6AXyRgC99mTbJJJOJD8KydluhomD7HDLJzZoyk6zJbHHBD2-621Yt6FNC8juHc7nnsNoLMUBVvSb4hGAsTjMhlLEak67GnWQ1f1YdEC5oLTHt9sodU1pzTrv96jDnG4wpEVK-qPYbLHnLsTyofl5sbIpLCOgcAiQ9-RiQS3FEM2v95G-hXiQAtIhp9AbNjLfoA5g4rmL2W_g6WEjokx8smsdgt48Z9Rv0xZ7O36GzHytIfoQw6QHpUNSLK_R1WlsP-WX13Okhw6v786i6XpxdzS_qy8_nH-ezy9pw0Uw1sZ3QPebAnKZa2rbTuBVaY8qss0z2TAjumDMNtA4aoH1PnSGNsVJoB21zVL3f-a7W_QjWlDBJD2pVcum0UVF79fdP8N_UMt6qlpGmw7IYHN8bpPh9DXlSo88GhkEHiOusKMWc4VbKrqBvn6A3cZ1CGU_Rsg7eYdaQQr35M9FjlIfFFEDsAJNizgmcMn7abqcE9IMiWN1VQO0qoEoF1F0FFC9K8kT5YP4_Dd1pcmHDEtLv0P8W_QKHPMSN
CitedBy_id crossref_primary_10_1039_D3TA05644A
crossref_primary_10_1080_01614940_2020_1864860
crossref_primary_10_1016_j_mcat_2021_111482
crossref_primary_10_1016_j_ijhydene_2021_03_022
crossref_primary_10_1002_cssc_201801620
crossref_primary_10_1016_j_apcatb_2022_121802
crossref_primary_10_3390_molecules28145399
crossref_primary_10_1016_j_seta_2021_101078
crossref_primary_10_3390_app11188462
crossref_primary_10_3390_app10051752
crossref_primary_10_3390_en12214198
crossref_primary_10_1002_cssc_202002433
crossref_primary_10_1002_cssc_201901313
crossref_primary_10_1002_slct_202302061
crossref_primary_10_3390_coatings13101740
crossref_primary_10_3390_catal12030251
crossref_primary_10_1016_j_ijhydene_2022_01_184
crossref_primary_10_1039_D0TA08433F
crossref_primary_10_1016_j_ijhydene_2025_01_502
crossref_primary_10_1021_acs_iecr_1c04128
crossref_primary_10_1016_j_cattod_2021_04_011
crossref_primary_10_1021_acs_energyfuels_8b01724
crossref_primary_10_1002_cctc_201900087
crossref_primary_10_1016_j_mtchem_2022_101120
crossref_primary_10_1007_s10562_020_03098_y
crossref_primary_10_1016_j_cattod_2021_07_005
crossref_primary_10_1016_j_jcat_2021_10_007
crossref_primary_10_3390_c4020026
crossref_primary_10_1039_C8SE00338F
crossref_primary_10_1002_cctc_202100886
crossref_primary_10_1016_j_mcat_2020_111289
crossref_primary_10_3390_nano13232993
crossref_primary_10_1016_j_jcat_2022_11_015
crossref_primary_10_1007_s41918_023_00193_7
crossref_primary_10_1016_j_ijhydene_2018_12_208
crossref_primary_10_1088_1361_6528_ac5e84
crossref_primary_10_1016_j_cattod_2024_114828
crossref_primary_10_1016_j_diamond_2023_109771
crossref_primary_10_1016_j_surfin_2024_104833
crossref_primary_10_3390_ma14123258
crossref_primary_10_1021_acscatal_9b01977
crossref_primary_10_1016_j_electacta_2023_143580
crossref_primary_10_1016_j_ijhydene_2021_09_191
crossref_primary_10_1016_j_mcat_2022_112438
crossref_primary_10_1016_j_ijhydene_2018_12_192
crossref_primary_10_1007_s11356_022_23614_4
crossref_primary_10_1016_j_cattod_2019_02_062
crossref_primary_10_3390_catal11030341
crossref_primary_10_1002_smll_202407922
crossref_primary_10_1016_j_ijhydene_2022_01_164
crossref_primary_10_1021_acs_energyfuels_4c05960
crossref_primary_10_1002_cjce_23678
crossref_primary_10_3390_su142013156
crossref_primary_10_1016_j_jechem_2020_04_031
crossref_primary_10_1039_D1SE00861G
crossref_primary_10_1039_D3GC03021K
crossref_primary_10_1039_D3NJ01188G
crossref_primary_10_1039_D0CY00055H
crossref_primary_10_1002_cctc_201900343
crossref_primary_10_1007_s11814_022_1276_z
crossref_primary_10_1007_s11244_021_01499_w
crossref_primary_10_1007_s11164_018_3522_x
crossref_primary_10_1627_jpi_64_203
crossref_primary_10_1021_acs_energyfuels_0c02399
crossref_primary_10_1016_j_ijhydene_2020_11_058
crossref_primary_10_1016_j_ceramint_2023_04_087
crossref_primary_10_1016_j_jcat_2021_06_019
crossref_primary_10_1039_D1TA05910F
crossref_primary_10_1007_s10563_021_09332_w
crossref_primary_10_1039_D1NJ01181B
crossref_primary_10_2139_ssrn_4200037
Cites_doi 10.1038/nnano.2011.42
10.1002/jcc.20495
10.1016/j.ijhydene.2004.06.010
10.1016/j.jorganchem.2009.03.052
10.1021/jp3094353
10.3390/min4010089
10.1038/nchem.1295
10.1016/j.apcatb.2015.06.060
10.1016/j.apcatb.2014.09.065
10.1016/j.apenergy.2014.01.063
10.1007/s11244-010-9522-8
10.1063/1.4865107
10.1002/anie.200805723
10.1063/1.3382344
10.1103/PhysRevB.88.054112
10.1103/PhysRevLett.100.136406
10.1016/j.jcat.2013.07.008
10.1016/0927-0256(96)00008-0
10.1021/cs400148n
10.1016/j.ijhydene.2015.10.074
10.1002/anie.201300276
10.1039/b803661f
10.1021/ar400170j
10.1021/cr010350j
10.1021/ja9015765
10.1039/c2ee21928j
10.1016/j.ijhydene.2014.05.047
10.1039/b908121f
10.1103/PhysRev.137.A1441
10.1016/j.ijhydene.2014.11.031
10.1016/j.ijhydene.2013.10.067
10.1039/c2cs35296f
10.1002/anie.200705972
10.1021/om900099u
10.1039/b711509a
10.1039/c3nr05809c
10.2320/matertrans.46.2093
10.1063/1.4976971
10.1039/B718842K
10.1016/j.cattod.2010.03.050
10.1002/chem.201501760
10.1039/C39940000801
10.1149/1.3035822
10.1039/b916507j
10.1016/j.ijhydene.2014.03.043
10.1002/cssc.201402926
10.1002/anie.200800320
10.1016/S0378-7753(99)00301-8
10.1103/PhysRevB.59.1758
10.1063/1.4822040
10.1039/tf9575301483
10.1039/C5TA03111G
10.1021/jp409522q
10.1016/j.rser.2013.08.032
10.1039/b707319b
10.1063/1.2338028
10.1016/j.ijhydene.2013.12.148
10.1002/cssc.200800133
10.1039/c2jm14787d
10.1039/C5CC02078F
10.1021/ja067149g
10.1016/S0926-860X(99)00512-8
10.1039/c3cc46248j
10.1039/C2NR33637E
10.1016/j.apcatb.2013.10.022
10.1039/c4ta02066a
10.1103/PhysRevB.13.5188
10.1016/j.tetlet.2009.01.101
10.1088/0305-4608/8/1/007
10.1038/nnano.2011.70
10.1016/j.susc.2013.11.013
10.1038/35005040
10.1016/j.ijhydene.2013.10.154
10.1103/PhysRevB.47.558
10.1021/cr030698+
10.1039/C4RA16440G
ContentType Journal Article
Copyright The Author(s) 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Author(s) 2018
– notice: Copyright Springer Science & Business Media 2018
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s11244-018-0894-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-9028
EndPage 266
ExternalDocumentID PMC6413809
30956509
10_1007_s11244_018_0894_5
Genre Journal Article
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
ABRTQ
7X8
5PM
ID FETCH-LOGICAL-c573t-1d87ab05e4fa2a9d68a067aa024dfd49b4775f4fc3e6fe3e2bb2fc13cd97afe63
IEDL.DBID U2A
ISSN 1022-5528
IngestDate Thu Aug 21 17:56:05 EDT 2025
Fri Jul 11 02:14:59 EDT 2025
Fri Jul 25 11:01:18 EDT 2025
Wed Feb 19 02:31:56 EST 2025
Tue Jul 01 01:10:49 EDT 2025
Thu Apr 24 23:07:25 EDT 2025
Fri Feb 21 02:36:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Pd nanoparticles
production
H
Renewable feedstock
Green chemistry
Formic acid decomposition
DFT calculations
H2 production
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-1d87ab05e4fa2a9d68a067aa024dfd49b4775f4fc3e6fe3e2bb2fc13cd97afe63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s11244-018-0894-5
PMID 30956509
PQID 2022580431
PQPubID 2043828
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6413809
proquest_miscellaneous_2205406998
proquest_journals_2022580431
pubmed_primary_30956509
crossref_citationtrail_10_1007_s11244_018_0894_5
crossref_primary_10_1007_s11244_018_0894_5
springer_journals_10_1007_s11244_018_0894_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180101
  day: 1
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Topics in catalysis
PublicationTitleAbbrev Top Catal
PublicationTitleAlternate Top Catal
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PerdewJRuzsinszkyACsonkaGVydrovOScuseriaGConstantinLZhouXBurkeKPhys Rev Lett200810013640610.1103/PhysRevLett.100.136406
VeluswamyHPKumarRLingaPAppl Energy20141221121321:CAS:528:DC%2BC2cXmsVCiur4%3D10.1016/j.apenergy.2014.01.063
JiaLBulushevDAPodyachevaOYBoroninAIKibisLSGerasimovEYBeloshapkinSSeryakIAIsmagilovZRRossJRHJ Catal2013307941021:CAS:528:DC%2BC3sXhs1agsbfM10.1016/j.jcat.2013.07.008
FellayCDysonPJLaurenczyGAngew Chem Int Ed200847396639681:CAS:528:DC%2BD1cXmsVCitrk%3D10.1002/anie.200800320
KingHWManchesterFDJ Phys F: Met Phys1978815261:CAS:528:DyaE1cXktlCmsrc%3D10.1088/0305-4608/8/1/007
WangXQiGWTanCHLiYPGuoJPangXJZhangSYInt J Hydrogen Energy2014398378431:CAS:528:DC%2BC3sXhvFKgu7fM10.1016/j.ijhydene.2013.10.154
HullJFHimedaYWangWHHashiguchiBPerianaRSzaldaDJMuckermanJTFujitaENat Chem201243833881:CAS:528:DC%2BC38XktVarsbY%3D10.1038/nchem.1295
IulianelliARibeirinhaPMendesABasileARenew Sustain Energy Rev2014293553681:CAS:528:DC%2BC3sXhslGlsrzL10.1016/j.rser.2013.08.032
DanielMCAstrucDChem Rev20041042933461:CAS:528:DC%2BD3sXpvFGlur0%3D10.1021/cr030698
MorrisDJClarksonGJWillsMOrganometallics200928413341401:CAS:528:DC%2BD1MXotV2ntLc%3D10.1021/om900099u
GrimmeSJ Comput Chem200627178717991:CAS:528:DC%2BD28XhtFenu7bO10.1002/jcc.20495
JungeHBoddienACapittaFLogesBNoyesJRGladialiSBellerMTetrahedron Lett200950160316061:CAS:528:DC%2BD1MXitlWltLs%3D10.1016/j.tetlet.2009.01.101
ShenJYangLHuKLuoWChengGInt J Hydrogen Energy201540106210701:CAS:528:DC%2BC2cXhvF2qsr7J10.1016/j.ijhydene.2014.11.031
GraetzJChem Soc Rev20093873821:CAS:528:DC%2BD1cXhsFWjtLzF10.1039/B718842K
DaiHCaoNYangLSuJLuoWChengGJ Mater Chem A2014211060110641:CAS:528:DC%2BC2cXhtVarsLbE10.1039/c4ta02066a
GrasemannMLaurenczyGEnergy Environ Sci20125817181811:CAS:528:DC%2BC38XhtVylu7bE10.1039/c2ee21928j
Qin Y, Wang J, Meng F, Wang L, Zhang X (2013) Chem Commun 10028–10030
Sundararaman R, Schwarz K (2017) J Chem Phys 146:084111
LogesBBoddienAGartnerFJungeHBellerMTop Catal2010539029141:CAS:528:DC%2BC3cXnvVehsb8%3D10.1007/s11244-010-9522-8
DaiHXiaBWenLDuCSuJLuoWChengGAppl Catal B201516557621:CAS:528:DC%2BC2cXhslCgs7vJ10.1016/j.apcatb.2014.09.065
Roldan A, Hollingsworth N, Roffey A, Islam HU, Goodall JBM, Catlow CRA, Darr JA, Bras W, Sankar G, Holt KB, Hogarth G, De Leeuw NH (2015) Chem Commun 7501–7504
MoriKTanakaHDojoMYoshizawaKYamashitaHChem-A Eur J20152112085120921:CAS:528:DC%2BC2MXhtFOrtL%2FF10.1002/chem.201501760
LaraLRSZottisADEliasWCFaggionDDe CamposCEMAcuñaJJSDomingosJBRSC Adv20155828982961:CAS:528:DC%2BC2cXitFOgtLbJ10.1039/C4RA16440G
Ting SW, Cheng S, Tsang KY, Van der Laak N, Chan KY (2009) Chem Commun 7333–7335
Della PinaCFallettaEPratiLRossiMChem Soc Rev200837207720951:CAS:528:DC%2BD1cXhtVOitbzP10.1039/b707319b
MathewKSundararamanRLetchworth-WeaverKAriasTAHennigRGJ Chem Phys201414008410610.1063/1.4865107
GermainJFréchetJMJSvecFJ Mater Chem200717498949971:CAS:528:DC%2BD2sXhtlGht7fE10.1039/b711509a
GrimmeSAntonyJEhrlichSKriegHJ Chem Phys201013215410410.1063/1.3382344
RoucouxASchulzJPatinHChem Rev2002102375737781:CAS:528:DC%2BD38XmvVShsr0%3D10.1021/cr010350j
WangZLYanJMZhangYFPingYWangHLJiangQNanoscale20146307330771:CAS:528:DC%2BC2cXjt1ylt74%3D10.1039/c3nr05809c
KresseGHafnerJPhys Rev B1993475585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
KaratasYBulutAYurderiMErtasIEAlalOGulcanMCelebiMKivrakHKayaMZahmakiranMAppl Catal B20161805865951:CAS:528:DC%2BC2MXht1eltLbO10.1016/j.apcatb.2015.06.060
LiSJPingYYanJMWangHLWuMJiangQJ Mater Chem A2015314535145381:CAS:528:DC%2BC2MXhtVShu7vF10.1039/C5TA03111G
KresseGPhys Rev B199959175817751:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758
HaiderSRoldanADe LeeuwNHJ Phys Chem C2014118195819671:CAS:528:DC%2BC3sXhvFOntbrM10.1021/jp409522q
ZhangSMetinÖSuDSunSAngew Chem Int Ed201352368136841:CAS:528:DC%2BC3sXivVKisb0%3D10.1002/anie.201300276
DatyeAKBravoJNelsonTRAtanasovaPLyubovskyMPfefferleLAppl Catal A20001981791961:CAS:528:DC%2BD3cXisFaksLg%3D10.1016/S0926-860X(99)00512-8
BaykaraSZInt J Hydrogen Energy2005305455531:CAS:528:DC%2BD2MXhtlShsbw%3D10.1016/j.ijhydene.2004.06.010
WangZTonksIBelliJJensenCMJ Organomet Chem2009694285428571:CAS:528:DC%2BD1MXoslCltb8%3D10.1016/j.jorganchem.2009.03.052
SankarMDimitratosNMiedziakPJWellsPPKielyCJHutchingsGJChem Soc Rev201241809981391:CAS:528:DC%2BC38Xhs12rsL%2FL10.1039/c2cs35296f
AmendolaSCSharp-GoldmanSLJanjuaMSKellyMTPetilloPJBinderMJ Power Sources2000851861891:CAS:528:DC%2BD3cXht1eqsLk%3D10.1016/S0378-7753(99)00301-8
PackJDMonkhorstHJPhys Rev B1976135188519210.1103/PhysRevB.13.5188
TedsreeKLiTJonesSChanCWAYuKMKBagotPAJMarquisEASmithGDWTsangSCENat Nanotechnol201163023071:CAS:528:DC%2BC3MXls1Kgsr0%3D10.1038/nnano.2011.42
ParkSVohsJMGorteRJNature20004042652671:CAS:528:DC%2BD3cXit1ags7g%3D10.1038/35005040
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Chem Commun 801–802
ZhangFGaleJDUberuagaBPStanekCRMarksNAPhys Rev B20138805411210.1103/PhysRevB.88.054112
LogesBBoddienAJungeHBellerMAngew Chem Int Ed200847396239651:CAS:528:DC%2BD1cXmsVCitr0%3D10.1002/anie.200705972
Loges B, Boddien A, Junge H, Noyes JR, Baumann W, Beller M (2009) Chem Commun 4185–4187
HuangCJPanFMTzengTCLiCSheuJTJ Electrochem Soc2009156J28J311:CAS:528:DC%2BD1cXhsFCisbnE10.1149/1.3035822
NakamoriYKitaharaGNinomiyaAAokiMNoritakeTTowataSOrimoSMater Trans200546209320971:CAS:528:DC%2BD2MXht1WqsLrL10.2320/matertrans.46.2093
HillAKTorrente-MurcianoLInt J Hydrogen Energy201439764676541:CAS:528:DC%2BC2cXmtVansbw%3D10.1016/j.ijhydene.2014.03.043
Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) Chem Commun 3540–3542
WangCYangTLiuYRuanJYangSLiuXInt J Hydrogen Energy20143910843108521:CAS:528:DC%2BC2cXpsl2is74%3D10.1016/j.ijhydene.2014.05.047
YangZXiaYMokayaRJ Am Chem Soc2007129167316791:CAS:528:DC%2BD2sXot1Whtw%3D%3D10.1021/ja067149g
MerminNDPhys Rev19651371441144310.1103/PhysRev.137.A1441
LuZHJiangHLYadavMAranishiKXuQJ Mater Chem201222506550711:CAS:528:DC%2BC38Xislartrc%3D10.1039/c2jm14787d
MetinÖSunXSunSNanoscale201359109121:CAS:528:DC%2BC3sXhtV2jsrk%3D10.1039/C2NR33637E
YangLLuoWChengGInt J Hydrogen Energy2016414394461:CAS:528:DC%2BC2MXhslyqs7zN10.1016/j.ijhydene.2015.10.074
KresseGFurthmüllerJComput Mater Sci1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
QinYLLiuYCLiangFWangLMChemSusChem201582602631:CAS:528:DC%2BC2cXitVyhtrfJ10.1002/cssc.201402926
BulushevDABeloshapkinSRossJRHCatal Today20101547121:CAS:528:DC%2BC3cXptVaru7c%3D10.1016/j.cattod.2010.03.050
TafreshiSSRoldanADzadeNYDe LeeuwNHSurf Sci2014622181:CAS:528:DC%2BC2cXisFyjsLY%3D10.1016/j.susc.2013.11.013
PratiLVillaAAcc Chem Res2014478558631:CAS:528:DC%2BC3sXhvVars7%2FP10.1021/ar400170j
HeLHuangYLiuXYLiLWangAWangXMouCYZhangTAppl Catal B20141477797881:CAS:528:DC%2BC3sXhvFOjtL3E10.1016/j.apcatb.2013.10.022
EleyDDLueticPTrans Faraday Soc195753148314871:CAS:528:DyaG1cXntVSntw%3D%3D10.1039/tf9575301483
WangZLPingYYanJMWangHLJiangQInt J Hydrogen Energy201439485048561:CAS:528:DC%2BC2cXjtFSksbs%3D10.1016/j.ijhydene.2013.12.148
FurukawaHYaghiOMJ Am Chem Soc2009131887588831:CAS:528:DC%2BD1MXmvVektrg%3D10.1021/ja9015765
IrreraSRoldanAPortaloneGDe LeeuwNHJ Phys Chem C2013117394939571:CAS:528:DC%2BC3sXhsVemt7g%3D10.1021/jp3094353
PennerSWangDJeneweinBGabaschHKlötzerBKnop-GerickeASchlöglRHayekKJ Chem Phys200612509470310.1063/1.2338028
TafreshiSSRoldanADe LeeuwNHFaraday Discuss20170117
JoóFChemSusChem2008180580810.1002/cssc.200800133
BoddienAJungeHNat Nanotechnol201162652661:CAS:528:DC%2BC3MXls1Khu7Y%3D10.1038/nnano.2011.70
MoriKDojoMYamashitaHACS Catal20133111411191:CAS:528:DC%2BC3sXmtVynsro%3D10.1021/cs400148n
DzadeNYRoldanADe LeeuwNHJ Chem Phys20131391247081:STN:280:DC%2BC2c%2FlvVyltA%3D%3D10.1063/1.4822040
DzadeNRoldanADe LeeuwNHMinerals20144891151:CAS:528:DC%2BC2MXjsFKmt70%3D10.3390/min4010089
HuCPulleriJKTingSWChanKYInt J Hydrogen Energy2014393813901:CAS:528:DC%2BC3sXhslKrsb7N10.1016/j.ijhydene.2013.10.067
OjedaMIglesiaEAngew Chem Int Ed200948480048031:CAS:528:DC%2BD1MXntlOit7Y%3D10.1002/anie.200805723
C Wang (894_CR15) 2014; 39
HP Veluswamy (894_CR5) 2014; 122
SS Tafreshi (894_CR16) 2017; 0
MC Daniel (894_CR46) 2004; 104
ND Mermin (894_CR54) 1965; 137
L Jia (894_CR75) 2013; 307
ZL Wang (894_CR36) 2014; 6
K Tedsree (894_CR34) 2011; 6
Y Karatas (894_CR37) 2016; 180
G Kresse (894_CR55) 1999; 59
J Shen (894_CR8) 2015; 40
894_CR38
L He (894_CR17) 2014; 147
DA Bulushev (894_CR30) 2010; 154
DJ Morris (894_CR27) 2009; 28
Y Nakamori (894_CR9) 2005; 46
Z Yang (894_CR3) 2007; 129
F Zhang (894_CR63) 2013; 88
F Joó (894_CR18) 2008; 1
C Fellay (894_CR26) 2008; 47
NY Dzade (894_CR59) 2013; 139
G Kresse (894_CR52) 1996; 6
M Sankar (894_CR47) 2012; 41
K Mori (894_CR32) 2013; 3
HW King (894_CR67) 1978; 8
M Ojeda (894_CR77) 2009; 48
L Prati (894_CR48) 2014; 47
C Hu (894_CR50) 2014; 39
894_CR49
S Penner (894_CR71) 2006; 125
SS Tafreshi (894_CR60) 2014; 622
LRS Lara (894_CR69) 2015; 5
JF Hull (894_CR20) 2012; 4
S Grimme (894_CR57) 2010; 132
894_CR21
894_CR64
A Roucoux (894_CR45) 2002; 102
894_CR25
N Dzade (894_CR62) 2014; 4
B Loges (894_CR23) 2008; 47
S Grimme (894_CR56) 2006; 27
CJ Huang (894_CR70) 2009; 156
H Dai (894_CR35) 2014; 2
H Junge (894_CR24) 2009; 50
G Kresse (894_CR51) 1993; 47
H Furukawa (894_CR6) 2009; 131
K Mathew (894_CR65) 2014; 140
YL Qin (894_CR39) 2015; 8
Ö Metin (894_CR73) 2013; 5
S Haider (894_CR61) 2014; 118
A Iulianelli (894_CR12) 2014; 29
C Della Pina (894_CR44) 2008; 37
S Park (894_CR1) 2000; 404
JD Pack (894_CR66) 1976; 13
M Grasemann (894_CR19) 2012; 5
X Wang (894_CR31) 2014; 39
894_CR33
SJ Li (894_CR41) 2015; 3
894_CR76
S Irrera (894_CR58) 2013; 117
J Perdew (894_CR53) 2008; 100
AK Datye (894_CR68) 2000; 198
Z Wang (894_CR11) 2009; 694
L Yang (894_CR42) 2016; 41
J Germain (894_CR72) 2007; 17
J Graetz (894_CR7) 2009; 38
ZH Lu (894_CR10) 2012; 22
SZ Baykara (894_CR2) 2005; 30
ZL Wang (894_CR43) 2014; 39
AK Hill (894_CR14) 2014; 39
DD Eley (894_CR29) 1957; 53
SC Amendola (894_CR13) 2000; 85
B Loges (894_CR22) 2010; 53
S Zhang (894_CR74) 2013; 52
H Dai (894_CR4) 2015; 165
K Mori (894_CR40) 2015; 21
A Boddien (894_CR28) 2011; 6
References_xml – reference: KingHWManchesterFDJ Phys F: Met Phys1978815261:CAS:528:DyaE1cXktlCmsrc%3D10.1088/0305-4608/8/1/007
– reference: DzadeNRoldanADe LeeuwNHMinerals20144891151:CAS:528:DC%2BC2MXjsFKmt70%3D10.3390/min4010089
– reference: PackJDMonkhorstHJPhys Rev B1976135188519210.1103/PhysRevB.13.5188
– reference: BoddienAJungeHNat Nanotechnol201162652661:CAS:528:DC%2BC3MXls1Khu7Y%3D10.1038/nnano.2011.70
– reference: FellayCDysonPJLaurenczyGAngew Chem Int Ed200847396639681:CAS:528:DC%2BD1cXmsVCitrk%3D10.1002/anie.200800320
– reference: JoóFChemSusChem2008180580810.1002/cssc.200800133
– reference: PerdewJRuzsinszkyACsonkaGVydrovOScuseriaGConstantinLZhouXBurkeKPhys Rev Lett200810013640610.1103/PhysRevLett.100.136406
– reference: MerminNDPhys Rev19651371441144310.1103/PhysRev.137.A1441
– reference: KaratasYBulutAYurderiMErtasIEAlalOGulcanMCelebiMKivrakHKayaMZahmakiranMAppl Catal B20161805865951:CAS:528:DC%2BC2MXht1eltLbO10.1016/j.apcatb.2015.06.060
– reference: PennerSWangDJeneweinBGabaschHKlötzerBKnop-GerickeASchlöglRHayekKJ Chem Phys200612509470310.1063/1.2338028
– reference: Qin Y, Wang J, Meng F, Wang L, Zhang X (2013) Chem Commun 10028–10030
– reference: TafreshiSSRoldanADzadeNYDe LeeuwNHSurf Sci2014622181:CAS:528:DC%2BC2cXisFyjsLY%3D10.1016/j.susc.2013.11.013
– reference: LogesBBoddienAJungeHBellerMAngew Chem Int Ed200847396239651:CAS:528:DC%2BD1cXmsVCitr0%3D10.1002/anie.200705972
– reference: MathewKSundararamanRLetchworth-WeaverKAriasTAHennigRGJ Chem Phys201414008410610.1063/1.4865107
– reference: LaraLRSZottisADEliasWCFaggionDDe CamposCEMAcuñaJJSDomingosJBRSC Adv20155828982961:CAS:528:DC%2BC2cXitFOgtLbJ10.1039/C4RA16440G
– reference: IulianelliARibeirinhaPMendesABasileARenew Sustain Energy Rev2014293553681:CAS:528:DC%2BC3sXhslGlsrzL10.1016/j.rser.2013.08.032
– reference: DzadeNYRoldanADe LeeuwNHJ Chem Phys20131391247081:STN:280:DC%2BC2c%2FlvVyltA%3D%3D10.1063/1.4822040
– reference: DaiHXiaBWenLDuCSuJLuoWChengGAppl Catal B201516557621:CAS:528:DC%2BC2cXhslCgs7vJ10.1016/j.apcatb.2014.09.065
– reference: DanielMCAstrucDChem Rev20041042933461:CAS:528:DC%2BD3sXpvFGlur0%3D10.1021/cr030698+
– reference: AmendolaSCSharp-GoldmanSLJanjuaMSKellyMTPetilloPJBinderMJ Power Sources2000851861891:CAS:528:DC%2BD3cXht1eqsLk%3D10.1016/S0378-7753(99)00301-8
– reference: TafreshiSSRoldanADe LeeuwNHFaraday Discuss20170117
– reference: Della PinaCFallettaEPratiLRossiMChem Soc Rev200837207720951:CAS:528:DC%2BD1cXhtVOitbzP10.1039/b707319b
– reference: HullJFHimedaYWangWHHashiguchiBPerianaRSzaldaDJMuckermanJTFujitaENat Chem201243833881:CAS:528:DC%2BC38XktVarsbY%3D10.1038/nchem.1295
– reference: KresseGHafnerJPhys Rev B1993475585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
– reference: GrimmeSAntonyJEhrlichSKriegHJ Chem Phys201013215410410.1063/1.3382344
– reference: Roldan A, Hollingsworth N, Roffey A, Islam HU, Goodall JBM, Catlow CRA, Darr JA, Bras W, Sankar G, Holt KB, Hogarth G, De Leeuw NH (2015) Chem Commun 7501–7504
– reference: WangZLYanJMZhangYFPingYWangHLJiangQNanoscale20146307330771:CAS:528:DC%2BC2cXjt1ylt74%3D10.1039/c3nr05809c
– reference: MetinÖSunXSunSNanoscale201359109121:CAS:528:DC%2BC3sXhtV2jsrk%3D10.1039/C2NR33637E
– reference: LuZHJiangHLYadavMAranishiKXuQJ Mater Chem201222506550711:CAS:528:DC%2BC38Xislartrc%3D10.1039/c2jm14787d
– reference: VeluswamyHPKumarRLingaPAppl Energy20141221121321:CAS:528:DC%2BC2cXmsVCiur4%3D10.1016/j.apenergy.2014.01.063
– reference: OjedaMIglesiaEAngew Chem Int Ed200948480048031:CAS:528:DC%2BD1MXntlOit7Y%3D10.1002/anie.200805723
– reference: EleyDDLueticPTrans Faraday Soc195753148314871:CAS:528:DyaG1cXntVSntw%3D%3D10.1039/tf9575301483
– reference: Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) Chem Commun 3540–3542
– reference: SankarMDimitratosNMiedziakPJWellsPPKielyCJHutchingsGJChem Soc Rev201241809981391:CAS:528:DC%2BC38Xhs12rsL%2FL10.1039/c2cs35296f
– reference: RoucouxASchulzJPatinHChem Rev2002102375737781:CAS:528:DC%2BD38XmvVShsr0%3D10.1021/cr010350j
– reference: IrreraSRoldanAPortaloneGDe LeeuwNHJ Phys Chem C2013117394939571:CAS:528:DC%2BC3sXhsVemt7g%3D10.1021/jp3094353
– reference: LogesBBoddienAGartnerFJungeHBellerMTop Catal2010539029141:CAS:528:DC%2BC3cXnvVehsb8%3D10.1007/s11244-010-9522-8
– reference: MorrisDJClarksonGJWillsMOrganometallics200928413341401:CAS:528:DC%2BD1MXotV2ntLc%3D10.1021/om900099u
– reference: DaiHCaoNYangLSuJLuoWChengGJ Mater Chem A2014211060110641:CAS:528:DC%2BC2cXhtVarsLbE10.1039/c4ta02066a
– reference: PratiLVillaAAcc Chem Res2014478558631:CAS:528:DC%2BC3sXhvVars7%2FP10.1021/ar400170j
– reference: HuangCJPanFMTzengTCLiCSheuJTJ Electrochem Soc2009156J28J311:CAS:528:DC%2BD1cXhsFCisbnE10.1149/1.3035822
– reference: LiSJPingYYanJMWangHLWuMJiangQJ Mater Chem A2015314535145381:CAS:528:DC%2BC2MXhtVShu7vF10.1039/C5TA03111G
– reference: KresseGFurthmüllerJComput Mater Sci1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
– reference: WangZTonksIBelliJJensenCMJ Organomet Chem2009694285428571:CAS:528:DC%2BD1MXoslCltb8%3D10.1016/j.jorganchem.2009.03.052
– reference: HeLHuangYLiuXYLiLWangAWangXMouCYZhangTAppl Catal B20141477797881:CAS:528:DC%2BC3sXhvFOjtL3E10.1016/j.apcatb.2013.10.022
– reference: DatyeAKBravoJNelsonTRAtanasovaPLyubovskyMPfefferleLAppl Catal A20001981791961:CAS:528:DC%2BD3cXisFaksLg%3D10.1016/S0926-860X(99)00512-8
– reference: Loges B, Boddien A, Junge H, Noyes JR, Baumann W, Beller M (2009) Chem Commun 4185–4187
– reference: GraetzJChem Soc Rev20093873821:CAS:528:DC%2BD1cXhsFWjtLzF10.1039/B718842K
– reference: GrimmeSJ Comput Chem200627178717991:CAS:528:DC%2BD28XhtFenu7bO10.1002/jcc.20495
– reference: YangLLuoWChengGInt J Hydrogen Energy2016414394461:CAS:528:DC%2BC2MXhslyqs7zN10.1016/j.ijhydene.2015.10.074
– reference: KresseGPhys Rev B199959175817751:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758
– reference: ParkSVohsJMGorteRJNature20004042652671:CAS:528:DC%2BD3cXit1ags7g%3D10.1038/35005040
– reference: WangXQiGWTanCHLiYPGuoJPangXJZhangSYInt J Hydrogen Energy2014398378431:CAS:528:DC%2BC3sXhvFKgu7fM10.1016/j.ijhydene.2013.10.154
– reference: HaiderSRoldanADe LeeuwNHJ Phys Chem C2014118195819671:CAS:528:DC%2BC3sXhvFOntbrM10.1021/jp409522q
– reference: ZhangSMetinÖSuDSunSAngew Chem Int Ed201352368136841:CAS:528:DC%2BC3sXivVKisb0%3D10.1002/anie.201300276
– reference: QinYLLiuYCLiangFWangLMChemSusChem201582602631:CAS:528:DC%2BC2cXitVyhtrfJ10.1002/cssc.201402926
– reference: GrasemannMLaurenczyGEnergy Environ Sci20125817181811:CAS:528:DC%2BC38XhtVylu7bE10.1039/c2ee21928j
– reference: NakamoriYKitaharaGNinomiyaAAokiMNoritakeTTowataSOrimoSMater Trans200546209320971:CAS:528:DC%2BD2MXht1WqsLrL10.2320/matertrans.46.2093
– reference: MoriKDojoMYamashitaHACS Catal20133111411191:CAS:528:DC%2BC3sXmtVynsro%3D10.1021/cs400148n
– reference: YangZXiaYMokayaRJ Am Chem Soc2007129167316791:CAS:528:DC%2BD2sXot1Whtw%3D%3D10.1021/ja067149g
– reference: HuCPulleriJKTingSWChanKYInt J Hydrogen Energy2014393813901:CAS:528:DC%2BC3sXhslKrsb7N10.1016/j.ijhydene.2013.10.067
– reference: TedsreeKLiTJonesSChanCWAYuKMKBagotPAJMarquisEASmithGDWTsangSCENat Nanotechnol201163023071:CAS:528:DC%2BC3MXls1Kgsr0%3D10.1038/nnano.2011.42
– reference: Ting SW, Cheng S, Tsang KY, Van der Laak N, Chan KY (2009) Chem Commun 7333–7335
– reference: ShenJYangLHuKLuoWChengGInt J Hydrogen Energy201540106210701:CAS:528:DC%2BC2cXhvF2qsr7J10.1016/j.ijhydene.2014.11.031
– reference: MoriKTanakaHDojoMYoshizawaKYamashitaHChem-A Eur J20152112085120921:CAS:528:DC%2BC2MXhtFOrtL%2FF10.1002/chem.201501760
– reference: GermainJFréchetJMJSvecFJ Mater Chem200717498949971:CAS:528:DC%2BD2sXhtlGht7fE10.1039/b711509a
– reference: BaykaraSZInt J Hydrogen Energy2005305455531:CAS:528:DC%2BD2MXhtlShsbw%3D10.1016/j.ijhydene.2004.06.010
– reference: JungeHBoddienACapittaFLogesBNoyesJRGladialiSBellerMTetrahedron Lett200950160316061:CAS:528:DC%2BD1MXitlWltLs%3D10.1016/j.tetlet.2009.01.101
– reference: Sundararaman R, Schwarz K (2017) J Chem Phys 146:084111
– reference: JiaLBulushevDAPodyachevaOYBoroninAIKibisLSGerasimovEYBeloshapkinSSeryakIAIsmagilovZRRossJRHJ Catal2013307941021:CAS:528:DC%2BC3sXhs1agsbfM10.1016/j.jcat.2013.07.008
– reference: HillAKTorrente-MurcianoLInt J Hydrogen Energy201439764676541:CAS:528:DC%2BC2cXmtVansbw%3D10.1016/j.ijhydene.2014.03.043
– reference: BulushevDABeloshapkinSRossJRHCatal Today20101547121:CAS:528:DC%2BC3cXptVaru7c%3D10.1016/j.cattod.2010.03.050
– reference: Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Chem Commun 801–802
– reference: WangZLPingYYanJMWangHLJiangQInt J Hydrogen Energy201439485048561:CAS:528:DC%2BC2cXjtFSksbs%3D10.1016/j.ijhydene.2013.12.148
– reference: ZhangFGaleJDUberuagaBPStanekCRMarksNAPhys Rev B20138805411210.1103/PhysRevB.88.054112
– reference: FurukawaHYaghiOMJ Am Chem Soc2009131887588831:CAS:528:DC%2BD1MXmvVektrg%3D10.1021/ja9015765
– reference: WangCYangTLiuYRuanJYangSLiuXInt J Hydrogen Energy20143910843108521:CAS:528:DC%2BC2cXpsl2is74%3D10.1016/j.ijhydene.2014.05.047
– volume: 6
  start-page: 302
  year: 2011
  ident: 894_CR34
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.42
– volume: 27
  start-page: 1787
  year: 2006
  ident: 894_CR56
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20495
– volume: 30
  start-page: 545
  year: 2005
  ident: 894_CR2
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.06.010
– volume: 694
  start-page: 2854
  year: 2009
  ident: 894_CR11
  publication-title: J Organomet Chem
  doi: 10.1016/j.jorganchem.2009.03.052
– volume: 117
  start-page: 3949
  year: 2013
  ident: 894_CR58
  publication-title: J Phys Chem C
  doi: 10.1021/jp3094353
– volume: 4
  start-page: 89
  year: 2014
  ident: 894_CR62
  publication-title: Minerals
  doi: 10.3390/min4010089
– volume: 4
  start-page: 383
  year: 2012
  ident: 894_CR20
  publication-title: Nat Chem
  doi: 10.1038/nchem.1295
– volume: 180
  start-page: 586
  year: 2016
  ident: 894_CR37
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2015.06.060
– volume: 165
  start-page: 57
  year: 2015
  ident: 894_CR4
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2014.09.065
– volume: 122
  start-page: 112
  year: 2014
  ident: 894_CR5
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.063
– volume: 53
  start-page: 902
  year: 2010
  ident: 894_CR22
  publication-title: Top Catal
  doi: 10.1007/s11244-010-9522-8
– volume: 140
  start-page: 084106
  year: 2014
  ident: 894_CR65
  publication-title: J Chem Phys
  doi: 10.1063/1.4865107
– volume: 48
  start-page: 4800
  year: 2009
  ident: 894_CR77
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200805723
– volume: 132
  start-page: 154104
  year: 2010
  ident: 894_CR57
  publication-title: J Chem Phys
  doi: 10.1063/1.3382344
– volume: 88
  start-page: 054112
  year: 2013
  ident: 894_CR63
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.88.054112
– volume: 100
  start-page: 136406
  year: 2008
  ident: 894_CR53
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.100.136406
– volume: 307
  start-page: 94
  year: 2013
  ident: 894_CR75
  publication-title: J Catal
  doi: 10.1016/j.jcat.2013.07.008
– volume: 6
  start-page: 15
  year: 1996
  ident: 894_CR52
  publication-title: Comput Mater Sci
  doi: 10.1016/0927-0256(96)00008-0
– volume: 3
  start-page: 1114
  year: 2013
  ident: 894_CR32
  publication-title: ACS Catal
  doi: 10.1021/cs400148n
– volume: 41
  start-page: 439
  year: 2016
  ident: 894_CR42
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.10.074
– volume: 52
  start-page: 3681
  year: 2013
  ident: 894_CR74
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201300276
– ident: 894_CR33
  doi: 10.1039/b803661f
– volume: 47
  start-page: 855
  year: 2014
  ident: 894_CR48
  publication-title: Acc Chem Res
  doi: 10.1021/ar400170j
– volume: 102
  start-page: 3757
  year: 2002
  ident: 894_CR45
  publication-title: Chem Rev
  doi: 10.1021/cr010350j
– volume: 131
  start-page: 8875
  year: 2009
  ident: 894_CR6
  publication-title: J Am Chem Soc
  doi: 10.1021/ja9015765
– volume: 5
  start-page: 8171
  year: 2012
  ident: 894_CR19
  publication-title: Energy Environ Sci
  doi: 10.1039/c2ee21928j
– volume: 39
  start-page: 10843
  year: 2014
  ident: 894_CR15
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.05.047
– ident: 894_CR25
  doi: 10.1039/b908121f
– volume: 137
  start-page: 1441
  year: 1965
  ident: 894_CR54
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.137.A1441
– volume: 40
  start-page: 1062
  year: 2015
  ident: 894_CR8
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.11.031
– volume: 39
  start-page: 381
  year: 2014
  ident: 894_CR50
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.10.067
– volume: 41
  start-page: 8099
  year: 2012
  ident: 894_CR47
  publication-title: Chem Soc Rev
  doi: 10.1039/c2cs35296f
– volume: 47
  start-page: 3962
  year: 2008
  ident: 894_CR23
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200705972
– volume: 28
  start-page: 4133
  year: 2009
  ident: 894_CR27
  publication-title: Organometallics
  doi: 10.1021/om900099u
– volume: 17
  start-page: 4989
  year: 2007
  ident: 894_CR72
  publication-title: J Mater Chem
  doi: 10.1039/b711509a
– volume: 6
  start-page: 3073
  year: 2014
  ident: 894_CR36
  publication-title: Nanoscale
  doi: 10.1039/c3nr05809c
– volume: 46
  start-page: 2093
  year: 2005
  ident: 894_CR9
  publication-title: Mater Trans
  doi: 10.2320/matertrans.46.2093
– ident: 894_CR64
  doi: 10.1063/1.4976971
– volume: 38
  start-page: 73
  year: 2009
  ident: 894_CR7
  publication-title: Chem Soc Rev
  doi: 10.1039/B718842K
– volume: 154
  start-page: 7
  year: 2010
  ident: 894_CR30
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2010.03.050
– volume: 21
  start-page: 12085
  year: 2015
  ident: 894_CR40
  publication-title: Chem-A Eur J
  doi: 10.1002/chem.201501760
– ident: 894_CR49
  doi: 10.1039/C39940000801
– volume: 156
  start-page: J28
  year: 2009
  ident: 894_CR70
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3035822
– ident: 894_CR76
  doi: 10.1039/b916507j
– volume: 39
  start-page: 7646
  year: 2014
  ident: 894_CR14
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.03.043
– volume: 8
  start-page: 260
  year: 2015
  ident: 894_CR39
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402926
– volume: 47
  start-page: 3966
  year: 2008
  ident: 894_CR26
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200800320
– volume: 85
  start-page: 186
  year: 2000
  ident: 894_CR13
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00301-8
– volume: 59
  start-page: 1758
  year: 1999
  ident: 894_CR55
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.1758
– volume: 139
  start-page: 124708
  year: 2013
  ident: 894_CR59
  publication-title: J Chem Phys
  doi: 10.1063/1.4822040
– volume: 53
  start-page: 1483
  year: 1957
  ident: 894_CR29
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9575301483
– volume: 3
  start-page: 14535
  year: 2015
  ident: 894_CR41
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA03111G
– volume: 118
  start-page: 1958
  year: 2014
  ident: 894_CR61
  publication-title: J Phys Chem C
  doi: 10.1021/jp409522q
– volume: 29
  start-page: 355
  year: 2014
  ident: 894_CR12
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.08.032
– volume: 37
  start-page: 2077
  year: 2008
  ident: 894_CR44
  publication-title: Chem Soc Rev
  doi: 10.1039/b707319b
– volume: 125
  start-page: 094703
  year: 2006
  ident: 894_CR71
  publication-title: J Chem Phys
  doi: 10.1063/1.2338028
– volume: 39
  start-page: 4850
  year: 2014
  ident: 894_CR43
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.148
– volume: 0
  start-page: 1
  year: 2017
  ident: 894_CR16
  publication-title: Faraday Discuss
– volume: 1
  start-page: 805
  year: 2008
  ident: 894_CR18
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200800133
– volume: 22
  start-page: 5065
  year: 2012
  ident: 894_CR10
  publication-title: J Mater Chem
  doi: 10.1039/c2jm14787d
– ident: 894_CR21
  doi: 10.1039/C5CC02078F
– volume: 129
  start-page: 1673
  year: 2007
  ident: 894_CR3
  publication-title: J Am Chem Soc
  doi: 10.1021/ja067149g
– volume: 198
  start-page: 179
  year: 2000
  ident: 894_CR68
  publication-title: Appl Catal A
  doi: 10.1016/S0926-860X(99)00512-8
– ident: 894_CR38
  doi: 10.1039/c3cc46248j
– volume: 5
  start-page: 910
  year: 2013
  ident: 894_CR73
  publication-title: Nanoscale
  doi: 10.1039/C2NR33637E
– volume: 147
  start-page: 779
  year: 2014
  ident: 894_CR17
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2013.10.022
– volume: 2
  start-page: 11060
  year: 2014
  ident: 894_CR35
  publication-title: J Mater Chem A
  doi: 10.1039/c4ta02066a
– volume: 13
  start-page: 5188
  year: 1976
  ident: 894_CR66
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.13.5188
– volume: 50
  start-page: 1603
  year: 2009
  ident: 894_CR24
  publication-title: Tetrahedron Lett
  doi: 10.1016/j.tetlet.2009.01.101
– volume: 8
  start-page: 15
  year: 1978
  ident: 894_CR67
  publication-title: J Phys F: Met Phys
  doi: 10.1088/0305-4608/8/1/007
– volume: 6
  start-page: 265
  year: 2011
  ident: 894_CR28
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.70
– volume: 622
  start-page: 1
  year: 2014
  ident: 894_CR60
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2013.11.013
– volume: 404
  start-page: 265
  year: 2000
  ident: 894_CR1
  publication-title: Nature
  doi: 10.1038/35005040
– volume: 39
  start-page: 837
  year: 2014
  ident: 894_CR31
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.10.154
– volume: 47
  start-page: 558
  year: 1993
  ident: 894_CR51
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.47.558
– volume: 104
  start-page: 293
  year: 2004
  ident: 894_CR46
  publication-title: Chem Rev
  doi: 10.1021/cr030698+
– volume: 5
  start-page: 8289
  year: 2015
  ident: 894_CR69
  publication-title: RSC Adv
  doi: 10.1039/C4RA16440G
SSID ssj0021799
Score 2.4754376
Snippet Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated...
Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 254
SubjectTerms Acids
Carbon dioxide
Catalysis
Catalysts
Catalytic activity
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Decomposition
Decomposition reactions
Dehydrogenation
Formic acid
Fossil fuels
Fuel cells
Hydrogen production
Hydrogen storage
Industrial Chemistry/Chemical Engineering
Original Paper
Pharmacy
Physical Chemistry
Process parameters
Title Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies
URI https://link.springer.com/article/10.1007/s11244-018-0894-5
https://www.ncbi.nlm.nih.gov/pubmed/30956509
https://www.proquest.com/docview/2022580431
https://www.proquest.com/docview/2205406998
https://pubmed.ncbi.nlm.nih.gov/PMC6413809
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VOLSXqvSFW4gWqSeqVcl6H3ZvxsSNqEAciERP1r4sIiEHhXBA6o_vjmM7TXlIPfmws37szHpmdma-AfgiK66MFJYG5eEoTy2nCIlClRPMDDUiWmHt8OmZHE_4yaW4bOu4b7ts9y4k2fypV8VuqIqC64uIyimnYgO2BLruQYgnLOu9LIQ4a0Kc6GUJlnShzMdusa6MHliYDxMl_4mWNkqoeAOvW-uRZEt2b8MLX7-Fl3nXtO0d_B7fu_ksCAVZ4knjshMsISGZc02aEC3m3pMimKpTSzI7deTYY155m7xFmkZI5HR67Ug-w3g2yiUx9-Tcfcu_k9FfHQGIrsPs4oK0yYjvYVKMLvIxbRssUCtUvKBDlyhtDoXnlWY6dTLRQXlpHfS2qxxPDVdKVLyysZeVjz0zhlV2GFuXKl15GX-AzXpW-x0ginM9VHEc3NGUW8W0ZzrhSWpsapwwSQSH3UqXtkUfxyYY1-UKNxmZUwbmlMicUkRw0E-5WUJvPEe827GvbHfhbRmkg4kE4YMi2O-HA0cwKKJrP7sLNAyNVhm8zgg-LrndPy1GlMZgUUWg1uSgJ0Bs7vWRenrVYHTLYBwkOPNrJzGr13ryIz79F_VneMUaUcbzoF3YXMzv_F6wkBZmAFtZcXR0htcfv36OBrCRy3zQ7JM_2pUMLA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQL4k2ggJE4gaw2jh8Jt1VotEC34rCVeov8irpSlUXb7aESP56ZbJKyLSBx9thJ_I01M5nxNwDvdSON08pzNB6By8JLTpQo3AQlXGqJ0YruDs-O9fREfj1Vpz1ZNN2FuZG_379IyQBhwEs8yoXk6i7ckxgoU_VeqcsxtiJisy6xSbGVEvmQwPzTEtsm6JZfebs88kaOtDM91UN40PuMbLIB-RHcie1j2C2HVm1P4Of0KqyWqApswyJNm83o4gibhNAVB_FqFSOr0EFdeDbxi8A-R6om70u2WNf-iM0W54GVS8pikzYyd8W-h_3yEzv8rQ8Asy3OruasL0F8CifV4byc8r6tAvfKZGuehtxYd6CibKywRdC5RZNlLVrr0ARZOGmMamTjs6ibmEXhnGh8mvlQGNtEnT2DnXbZxhfAjJQ2NVmGQWghvRE2CpvLvHC-cEG5PIGDYadr33OOU-uL8_qaLZnAqRGcmsCpVQIfxik_NoQb_xLeG-Cr-7N3UQvUAZUTaVAC78ZhRIRSIbaNy0uUEeSqaow1E3i-QXt8WkbcjOhHJWC29GAUIEbu7ZF2cdYxc2t0CXKa-XHQmOvX-utHvPwv6bewO53PjuqjL8ffXsF90ak1_RHag5316jK-Rh9p7d50p-MXc-oHEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEK4oJOrFgPgYRW0STprOsj39mPG2GZisCoQDJNwm_YybkFmyLAcSf7xd81pW1MRzV8_rq05VTVV9BbAvA1dGCkuj8XCU55ZTpEShyglmxhoZrbB3-ORUTi_4t0tx2c05vemr3fuUZNvTgCxN9XJ07cJo1fiGZimGwciunHMqHsNmDFSaPG0hiyHiQrqzJt2JEZdgWZ_W_NMl1g3TA2_zYdHkb5nTxiCVW_C88yTJpIV-Gx75-gU8LfoBbjvwc3rnFvOoIKTllkYICLaTkIlzTckQLRfekzK6rTNLJnbmyKHHGvOukIs0Q5HIyezKkWKOuW3UUWLuyJkbFV_I0b3pAETXcXd5TrrCxJdwUR6dF1PaDVugVqh0SccuU9ocCM-DZjp3MtPRkGkdbbgLjueGKyUCDzb1MvjUM2NYsOPUulzp4GX6Cjbqee3fAFGc67FK0xia5twqpj3TGc9yY3PjhMkSOOi_dGU7JnIciHFVrTiUEZwqglMhOJVI4NOw5bql4fiX8G4PX9WdyJuKRR0QGVIJJbA3LEdEMEGiaz-_jTIMHVgZI9AEXrdoD3dLkbExelcJqDU9GASQp3t9pZ79aPi6ZXQUMtz5udeY1WP99SXe_pf0R3hydlhWx19Pv7-DZ6zRavxNtAsby8Wtfx8dp6X50ByOX5DuD1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Generation+from+Additive-Free+Formic+Acid+Decomposition+Under+Mild+Conditions+by+Pd%2FC%3A+Experimental+and+DFT+Studies&rft.jtitle=Topics+in+catalysis&rft.au=Sanchez%2C+Felipe&rft.au=Motta%2C+Davide&rft.au=Roldan%2C+Alberto&rft.au=Hammond%2C+Ceri&rft.date=2018-01-01&rft.issn=1022-5528&rft.volume=61&rft.issue=3&rft.spage=254&rft_id=info:doi/10.1007%2Fs11244-018-0894-5&rft_id=info%3Apmid%2F30956509&rft.externalDocID=30956509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon