Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies
Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process syste...
Saved in:
Published in | Topics in catalysis Vol. 61; no. 3-4; pp. 254 - 266 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1022-5528 1572-9028 |
DOI | 10.1007/s11244-018-0894-5 |
Cover
Loading…
Abstract | Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H
2
selectivity and a high catalytic activity (TOF = 1136 h
−1
) at 30 °C toward the selective dehydrogenation of formic acid to H
2
and CO
2
. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface. |
---|---|
AbstractList | Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H
2
selectivity and a high catalytic activity (TOF = 1136 h
−1
) at 30 °C toward the selective dehydrogenation of formic acid to H
2
and CO
2
. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface. Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H selectivity and a high catalytic activity (TOF = 1136 h ) at 30 °C toward the selective dehydrogenation of formic acid to H and CO . The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface. Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H2 selectivity and a high catalytic activity (TOF = 1136 h−1) at 30 °C toward the selective dehydrogenation of formic acid to H2 and CO2. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface. Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H2 selectivity and a high catalytic activity (TOF = 1136 h-1) at 30 °C toward the selective dehydrogenation of formic acid to H2 and CO2. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface.Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated for the catalytic, additive-free decomposition of formic acid at mild conditions, and the experimental parameters affecting the process systematically have been investigated and optimised. The 5 wt% Pd/C catalyst exhibited a remarkable 99.9% H2 selectivity and a high catalytic activity (TOF = 1136 h-1) at 30 °C toward the selective dehydrogenation of formic acid to H2 and CO2. The present commercial catalyst demonstrates to be a promising candidate for the efficient in-situ hydrogen generation at mild conditions possibiliting practical applications of formic acid systems on fuel cells. Finally DFT studies have been carried out to provide insights into the reactivity and decomposition of formic acid along with the two-reaction pathways on the Pd (111) surface. |
Author | Roldan, Alberto Hammond, Ceri Sanchez, Felipe Villa, Alberto Motta, Davide Dimitratos, Nikolaos |
Author_xml | – sequence: 1 givenname: Felipe surname: Sanchez fullname: Sanchez, Felipe organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University – sequence: 2 givenname: Davide surname: Motta fullname: Motta, Davide organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University – sequence: 3 givenname: Alberto surname: Roldan fullname: Roldan, Alberto email: RoldanMartinezA@cardiff.ac.uk organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University – sequence: 4 givenname: Ceri surname: Hammond fullname: Hammond, Ceri email: HammondC4@cardiff.ac.uk organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University – sequence: 5 givenname: Alberto surname: Villa fullname: Villa, Alberto organization: Dipartimento di Chimica, Universitá degli Studi di Milano – sequence: 6 givenname: Nikolaos surname: Dimitratos fullname: Dimitratos, Nikolaos email: DimitratosN@Cardiff.ac.uk organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30956509$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl9rFDEUxQep2D_6AXyRgC99mTbJJJOJD8KydluhomD7HDLJzZoyk6zJbHHBD2-621Yt6FNC8juHc7nnsNoLMUBVvSb4hGAsTjMhlLEak67GnWQ1f1YdEC5oLTHt9sodU1pzTrv96jDnG4wpEVK-qPYbLHnLsTyofl5sbIpLCOgcAiQ9-RiQS3FEM2v95G-hXiQAtIhp9AbNjLfoA5g4rmL2W_g6WEjokx8smsdgt48Z9Rv0xZ7O36GzHytIfoQw6QHpUNSLK_R1WlsP-WX13Okhw6v786i6XpxdzS_qy8_nH-ezy9pw0Uw1sZ3QPebAnKZa2rbTuBVaY8qss0z2TAjumDMNtA4aoH1PnSGNsVJoB21zVL3f-a7W_QjWlDBJD2pVcum0UVF79fdP8N_UMt6qlpGmw7IYHN8bpPh9DXlSo88GhkEHiOusKMWc4VbKrqBvn6A3cZ1CGU_Rsg7eYdaQQr35M9FjlIfFFEDsAJNizgmcMn7abqcE9IMiWN1VQO0qoEoF1F0FFC9K8kT5YP4_Dd1pcmHDEtLv0P8W_QKHPMSN |
CitedBy_id | crossref_primary_10_1039_D3TA05644A crossref_primary_10_1080_01614940_2020_1864860 crossref_primary_10_1016_j_mcat_2021_111482 crossref_primary_10_1016_j_ijhydene_2021_03_022 crossref_primary_10_1002_cssc_201801620 crossref_primary_10_1016_j_apcatb_2022_121802 crossref_primary_10_3390_molecules28145399 crossref_primary_10_1016_j_seta_2021_101078 crossref_primary_10_3390_app11188462 crossref_primary_10_3390_app10051752 crossref_primary_10_3390_en12214198 crossref_primary_10_1002_cssc_202002433 crossref_primary_10_1002_cssc_201901313 crossref_primary_10_1002_slct_202302061 crossref_primary_10_3390_coatings13101740 crossref_primary_10_3390_catal12030251 crossref_primary_10_1016_j_ijhydene_2022_01_184 crossref_primary_10_1039_D0TA08433F crossref_primary_10_1016_j_ijhydene_2025_01_502 crossref_primary_10_1021_acs_iecr_1c04128 crossref_primary_10_1016_j_cattod_2021_04_011 crossref_primary_10_1021_acs_energyfuels_8b01724 crossref_primary_10_1002_cctc_201900087 crossref_primary_10_1016_j_mtchem_2022_101120 crossref_primary_10_1007_s10562_020_03098_y crossref_primary_10_1016_j_cattod_2021_07_005 crossref_primary_10_1016_j_jcat_2021_10_007 crossref_primary_10_3390_c4020026 crossref_primary_10_1039_C8SE00338F crossref_primary_10_1002_cctc_202100886 crossref_primary_10_1016_j_mcat_2020_111289 crossref_primary_10_3390_nano13232993 crossref_primary_10_1016_j_jcat_2022_11_015 crossref_primary_10_1007_s41918_023_00193_7 crossref_primary_10_1016_j_ijhydene_2018_12_208 crossref_primary_10_1088_1361_6528_ac5e84 crossref_primary_10_1016_j_cattod_2024_114828 crossref_primary_10_1016_j_diamond_2023_109771 crossref_primary_10_1016_j_surfin_2024_104833 crossref_primary_10_3390_ma14123258 crossref_primary_10_1021_acscatal_9b01977 crossref_primary_10_1016_j_electacta_2023_143580 crossref_primary_10_1016_j_ijhydene_2021_09_191 crossref_primary_10_1016_j_mcat_2022_112438 crossref_primary_10_1016_j_ijhydene_2018_12_192 crossref_primary_10_1007_s11356_022_23614_4 crossref_primary_10_1016_j_cattod_2019_02_062 crossref_primary_10_3390_catal11030341 crossref_primary_10_1002_smll_202407922 crossref_primary_10_1016_j_ijhydene_2022_01_164 crossref_primary_10_1021_acs_energyfuels_4c05960 crossref_primary_10_1002_cjce_23678 crossref_primary_10_3390_su142013156 crossref_primary_10_1016_j_jechem_2020_04_031 crossref_primary_10_1039_D1SE00861G crossref_primary_10_1039_D3GC03021K crossref_primary_10_1039_D3NJ01188G crossref_primary_10_1039_D0CY00055H crossref_primary_10_1002_cctc_201900343 crossref_primary_10_1007_s11814_022_1276_z crossref_primary_10_1007_s11244_021_01499_w crossref_primary_10_1007_s11164_018_3522_x crossref_primary_10_1627_jpi_64_203 crossref_primary_10_1021_acs_energyfuels_0c02399 crossref_primary_10_1016_j_ijhydene_2020_11_058 crossref_primary_10_1016_j_ceramint_2023_04_087 crossref_primary_10_1016_j_jcat_2021_06_019 crossref_primary_10_1039_D1TA05910F crossref_primary_10_1007_s10563_021_09332_w crossref_primary_10_1039_D1NJ01181B crossref_primary_10_2139_ssrn_4200037 |
Cites_doi | 10.1038/nnano.2011.42 10.1002/jcc.20495 10.1016/j.ijhydene.2004.06.010 10.1016/j.jorganchem.2009.03.052 10.1021/jp3094353 10.3390/min4010089 10.1038/nchem.1295 10.1016/j.apcatb.2015.06.060 10.1016/j.apcatb.2014.09.065 10.1016/j.apenergy.2014.01.063 10.1007/s11244-010-9522-8 10.1063/1.4865107 10.1002/anie.200805723 10.1063/1.3382344 10.1103/PhysRevB.88.054112 10.1103/PhysRevLett.100.136406 10.1016/j.jcat.2013.07.008 10.1016/0927-0256(96)00008-0 10.1021/cs400148n 10.1016/j.ijhydene.2015.10.074 10.1002/anie.201300276 10.1039/b803661f 10.1021/ar400170j 10.1021/cr010350j 10.1021/ja9015765 10.1039/c2ee21928j 10.1016/j.ijhydene.2014.05.047 10.1039/b908121f 10.1103/PhysRev.137.A1441 10.1016/j.ijhydene.2014.11.031 10.1016/j.ijhydene.2013.10.067 10.1039/c2cs35296f 10.1002/anie.200705972 10.1021/om900099u 10.1039/b711509a 10.1039/c3nr05809c 10.2320/matertrans.46.2093 10.1063/1.4976971 10.1039/B718842K 10.1016/j.cattod.2010.03.050 10.1002/chem.201501760 10.1039/C39940000801 10.1149/1.3035822 10.1039/b916507j 10.1016/j.ijhydene.2014.03.043 10.1002/cssc.201402926 10.1002/anie.200800320 10.1016/S0378-7753(99)00301-8 10.1103/PhysRevB.59.1758 10.1063/1.4822040 10.1039/tf9575301483 10.1039/C5TA03111G 10.1021/jp409522q 10.1016/j.rser.2013.08.032 10.1039/b707319b 10.1063/1.2338028 10.1016/j.ijhydene.2013.12.148 10.1002/cssc.200800133 10.1039/c2jm14787d 10.1039/C5CC02078F 10.1021/ja067149g 10.1016/S0926-860X(99)00512-8 10.1039/c3cc46248j 10.1039/C2NR33637E 10.1016/j.apcatb.2013.10.022 10.1039/c4ta02066a 10.1103/PhysRevB.13.5188 10.1016/j.tetlet.2009.01.101 10.1088/0305-4608/8/1/007 10.1038/nnano.2011.70 10.1016/j.susc.2013.11.013 10.1038/35005040 10.1016/j.ijhydene.2013.10.154 10.1103/PhysRevB.47.558 10.1021/cr030698+ 10.1039/C4RA16440G |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s11244-018-0894-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 266 |
ExternalDocumentID | PMC6413809 30956509 10_1007_s11244_018_0894_5 |
Genre | Journal Article |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ABRTQ 7X8 5PM |
ID | FETCH-LOGICAL-c573t-1d87ab05e4fa2a9d68a067aa024dfd49b4775f4fc3e6fe3e2bb2fc13cd97afe63 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Thu Aug 21 17:56:05 EDT 2025 Fri Jul 11 02:14:59 EDT 2025 Fri Jul 25 11:01:18 EDT 2025 Wed Feb 19 02:31:56 EST 2025 Tue Jul 01 01:10:49 EDT 2025 Thu Apr 24 23:07:25 EDT 2025 Fri Feb 21 02:36:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Pd nanoparticles production H Renewable feedstock Green chemistry Formic acid decomposition DFT calculations H2 production |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-1d87ab05e4fa2a9d68a067aa024dfd49b4775f4fc3e6fe3e2bb2fc13cd97afe63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s11244-018-0894-5 |
PMID | 30956509 |
PQID | 2022580431 |
PQPubID | 2043828 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6413809 proquest_miscellaneous_2205406998 proquest_journals_2022580431 pubmed_primary_30956509 crossref_citationtrail_10_1007_s11244_018_0894_5 crossref_primary_10_1007_s11244_018_0894_5 springer_journals_10_1007_s11244_018_0894_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationTitleAlternate | Top Catal |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | PerdewJRuzsinszkyACsonkaGVydrovOScuseriaGConstantinLZhouXBurkeKPhys Rev Lett200810013640610.1103/PhysRevLett.100.136406 VeluswamyHPKumarRLingaPAppl Energy20141221121321:CAS:528:DC%2BC2cXmsVCiur4%3D10.1016/j.apenergy.2014.01.063 JiaLBulushevDAPodyachevaOYBoroninAIKibisLSGerasimovEYBeloshapkinSSeryakIAIsmagilovZRRossJRHJ Catal2013307941021:CAS:528:DC%2BC3sXhs1agsbfM10.1016/j.jcat.2013.07.008 FellayCDysonPJLaurenczyGAngew Chem Int Ed200847396639681:CAS:528:DC%2BD1cXmsVCitrk%3D10.1002/anie.200800320 KingHWManchesterFDJ Phys F: Met Phys1978815261:CAS:528:DyaE1cXktlCmsrc%3D10.1088/0305-4608/8/1/007 WangXQiGWTanCHLiYPGuoJPangXJZhangSYInt J Hydrogen Energy2014398378431:CAS:528:DC%2BC3sXhvFKgu7fM10.1016/j.ijhydene.2013.10.154 HullJFHimedaYWangWHHashiguchiBPerianaRSzaldaDJMuckermanJTFujitaENat Chem201243833881:CAS:528:DC%2BC38XktVarsbY%3D10.1038/nchem.1295 IulianelliARibeirinhaPMendesABasileARenew Sustain Energy Rev2014293553681:CAS:528:DC%2BC3sXhslGlsrzL10.1016/j.rser.2013.08.032 DanielMCAstrucDChem Rev20041042933461:CAS:528:DC%2BD3sXpvFGlur0%3D10.1021/cr030698 MorrisDJClarksonGJWillsMOrganometallics200928413341401:CAS:528:DC%2BD1MXotV2ntLc%3D10.1021/om900099u GrimmeSJ Comput Chem200627178717991:CAS:528:DC%2BD28XhtFenu7bO10.1002/jcc.20495 JungeHBoddienACapittaFLogesBNoyesJRGladialiSBellerMTetrahedron Lett200950160316061:CAS:528:DC%2BD1MXitlWltLs%3D10.1016/j.tetlet.2009.01.101 ShenJYangLHuKLuoWChengGInt J Hydrogen Energy201540106210701:CAS:528:DC%2BC2cXhvF2qsr7J10.1016/j.ijhydene.2014.11.031 GraetzJChem Soc Rev20093873821:CAS:528:DC%2BD1cXhsFWjtLzF10.1039/B718842K DaiHCaoNYangLSuJLuoWChengGJ Mater Chem A2014211060110641:CAS:528:DC%2BC2cXhtVarsLbE10.1039/c4ta02066a GrasemannMLaurenczyGEnergy Environ Sci20125817181811:CAS:528:DC%2BC38XhtVylu7bE10.1039/c2ee21928j Qin Y, Wang J, Meng F, Wang L, Zhang X (2013) Chem Commun 10028–10030 Sundararaman R, Schwarz K (2017) J Chem Phys 146:084111 LogesBBoddienAGartnerFJungeHBellerMTop Catal2010539029141:CAS:528:DC%2BC3cXnvVehsb8%3D10.1007/s11244-010-9522-8 DaiHXiaBWenLDuCSuJLuoWChengGAppl Catal B201516557621:CAS:528:DC%2BC2cXhslCgs7vJ10.1016/j.apcatb.2014.09.065 Roldan A, Hollingsworth N, Roffey A, Islam HU, Goodall JBM, Catlow CRA, Darr JA, Bras W, Sankar G, Holt KB, Hogarth G, De Leeuw NH (2015) Chem Commun 7501–7504 MoriKTanakaHDojoMYoshizawaKYamashitaHChem-A Eur J20152112085120921:CAS:528:DC%2BC2MXhtFOrtL%2FF10.1002/chem.201501760 LaraLRSZottisADEliasWCFaggionDDe CamposCEMAcuñaJJSDomingosJBRSC Adv20155828982961:CAS:528:DC%2BC2cXitFOgtLbJ10.1039/C4RA16440G Ting SW, Cheng S, Tsang KY, Van der Laak N, Chan KY (2009) Chem Commun 7333–7335 Della PinaCFallettaEPratiLRossiMChem Soc Rev200837207720951:CAS:528:DC%2BD1cXhtVOitbzP10.1039/b707319b MathewKSundararamanRLetchworth-WeaverKAriasTAHennigRGJ Chem Phys201414008410610.1063/1.4865107 GermainJFréchetJMJSvecFJ Mater Chem200717498949971:CAS:528:DC%2BD2sXhtlGht7fE10.1039/b711509a GrimmeSAntonyJEhrlichSKriegHJ Chem Phys201013215410410.1063/1.3382344 RoucouxASchulzJPatinHChem Rev2002102375737781:CAS:528:DC%2BD38XmvVShsr0%3D10.1021/cr010350j WangZLYanJMZhangYFPingYWangHLJiangQNanoscale20146307330771:CAS:528:DC%2BC2cXjt1ylt74%3D10.1039/c3nr05809c KresseGHafnerJPhys Rev B1993475585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 KaratasYBulutAYurderiMErtasIEAlalOGulcanMCelebiMKivrakHKayaMZahmakiranMAppl Catal B20161805865951:CAS:528:DC%2BC2MXht1eltLbO10.1016/j.apcatb.2015.06.060 LiSJPingYYanJMWangHLWuMJiangQJ Mater Chem A2015314535145381:CAS:528:DC%2BC2MXhtVShu7vF10.1039/C5TA03111G KresseGPhys Rev B199959175817751:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758 HaiderSRoldanADe LeeuwNHJ Phys Chem C2014118195819671:CAS:528:DC%2BC3sXhvFOntbrM10.1021/jp409522q ZhangSMetinÖSuDSunSAngew Chem Int Ed201352368136841:CAS:528:DC%2BC3sXivVKisb0%3D10.1002/anie.201300276 DatyeAKBravoJNelsonTRAtanasovaPLyubovskyMPfefferleLAppl Catal A20001981791961:CAS:528:DC%2BD3cXisFaksLg%3D10.1016/S0926-860X(99)00512-8 BaykaraSZInt J Hydrogen Energy2005305455531:CAS:528:DC%2BD2MXhtlShsbw%3D10.1016/j.ijhydene.2004.06.010 WangZTonksIBelliJJensenCMJ Organomet Chem2009694285428571:CAS:528:DC%2BD1MXoslCltb8%3D10.1016/j.jorganchem.2009.03.052 SankarMDimitratosNMiedziakPJWellsPPKielyCJHutchingsGJChem Soc Rev201241809981391:CAS:528:DC%2BC38Xhs12rsL%2FL10.1039/c2cs35296f AmendolaSCSharp-GoldmanSLJanjuaMSKellyMTPetilloPJBinderMJ Power Sources2000851861891:CAS:528:DC%2BD3cXht1eqsLk%3D10.1016/S0378-7753(99)00301-8 PackJDMonkhorstHJPhys Rev B1976135188519210.1103/PhysRevB.13.5188 TedsreeKLiTJonesSChanCWAYuKMKBagotPAJMarquisEASmithGDWTsangSCENat Nanotechnol201163023071:CAS:528:DC%2BC3MXls1Kgsr0%3D10.1038/nnano.2011.42 ParkSVohsJMGorteRJNature20004042652671:CAS:528:DC%2BD3cXit1ags7g%3D10.1038/35005040 Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Chem Commun 801–802 ZhangFGaleJDUberuagaBPStanekCRMarksNAPhys Rev B20138805411210.1103/PhysRevB.88.054112 LogesBBoddienAJungeHBellerMAngew Chem Int Ed200847396239651:CAS:528:DC%2BD1cXmsVCitr0%3D10.1002/anie.200705972 Loges B, Boddien A, Junge H, Noyes JR, Baumann W, Beller M (2009) Chem Commun 4185–4187 HuangCJPanFMTzengTCLiCSheuJTJ Electrochem Soc2009156J28J311:CAS:528:DC%2BD1cXhsFCisbnE10.1149/1.3035822 NakamoriYKitaharaGNinomiyaAAokiMNoritakeTTowataSOrimoSMater Trans200546209320971:CAS:528:DC%2BD2MXht1WqsLrL10.2320/matertrans.46.2093 HillAKTorrente-MurcianoLInt J Hydrogen Energy201439764676541:CAS:528:DC%2BC2cXmtVansbw%3D10.1016/j.ijhydene.2014.03.043 Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) Chem Commun 3540–3542 WangCYangTLiuYRuanJYangSLiuXInt J Hydrogen Energy20143910843108521:CAS:528:DC%2BC2cXpsl2is74%3D10.1016/j.ijhydene.2014.05.047 YangZXiaYMokayaRJ Am Chem Soc2007129167316791:CAS:528:DC%2BD2sXot1Whtw%3D%3D10.1021/ja067149g MerminNDPhys Rev19651371441144310.1103/PhysRev.137.A1441 LuZHJiangHLYadavMAranishiKXuQJ Mater Chem201222506550711:CAS:528:DC%2BC38Xislartrc%3D10.1039/c2jm14787d MetinÖSunXSunSNanoscale201359109121:CAS:528:DC%2BC3sXhtV2jsrk%3D10.1039/C2NR33637E YangLLuoWChengGInt J Hydrogen Energy2016414394461:CAS:528:DC%2BC2MXhslyqs7zN10.1016/j.ijhydene.2015.10.074 KresseGFurthmüllerJComput Mater Sci1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 QinYLLiuYCLiangFWangLMChemSusChem201582602631:CAS:528:DC%2BC2cXitVyhtrfJ10.1002/cssc.201402926 BulushevDABeloshapkinSRossJRHCatal Today20101547121:CAS:528:DC%2BC3cXptVaru7c%3D10.1016/j.cattod.2010.03.050 TafreshiSSRoldanADzadeNYDe LeeuwNHSurf Sci2014622181:CAS:528:DC%2BC2cXisFyjsLY%3D10.1016/j.susc.2013.11.013 PratiLVillaAAcc Chem Res2014478558631:CAS:528:DC%2BC3sXhvVars7%2FP10.1021/ar400170j HeLHuangYLiuXYLiLWangAWangXMouCYZhangTAppl Catal B20141477797881:CAS:528:DC%2BC3sXhvFOjtL3E10.1016/j.apcatb.2013.10.022 EleyDDLueticPTrans Faraday Soc195753148314871:CAS:528:DyaG1cXntVSntw%3D%3D10.1039/tf9575301483 WangZLPingYYanJMWangHLJiangQInt J Hydrogen Energy201439485048561:CAS:528:DC%2BC2cXjtFSksbs%3D10.1016/j.ijhydene.2013.12.148 FurukawaHYaghiOMJ Am Chem Soc2009131887588831:CAS:528:DC%2BD1MXmvVektrg%3D10.1021/ja9015765 IrreraSRoldanAPortaloneGDe LeeuwNHJ Phys Chem C2013117394939571:CAS:528:DC%2BC3sXhsVemt7g%3D10.1021/jp3094353 PennerSWangDJeneweinBGabaschHKlötzerBKnop-GerickeASchlöglRHayekKJ Chem Phys200612509470310.1063/1.2338028 TafreshiSSRoldanADe LeeuwNHFaraday Discuss20170117 JoóFChemSusChem2008180580810.1002/cssc.200800133 BoddienAJungeHNat Nanotechnol201162652661:CAS:528:DC%2BC3MXls1Khu7Y%3D10.1038/nnano.2011.70 MoriKDojoMYamashitaHACS Catal20133111411191:CAS:528:DC%2BC3sXmtVynsro%3D10.1021/cs400148n DzadeNYRoldanADe LeeuwNHJ Chem Phys20131391247081:STN:280:DC%2BC2c%2FlvVyltA%3D%3D10.1063/1.4822040 DzadeNRoldanADe LeeuwNHMinerals20144891151:CAS:528:DC%2BC2MXjsFKmt70%3D10.3390/min4010089 HuCPulleriJKTingSWChanKYInt J Hydrogen Energy2014393813901:CAS:528:DC%2BC3sXhslKrsb7N10.1016/j.ijhydene.2013.10.067 OjedaMIglesiaEAngew Chem Int Ed200948480048031:CAS:528:DC%2BD1MXntlOit7Y%3D10.1002/anie.200805723 C Wang (894_CR15) 2014; 39 HP Veluswamy (894_CR5) 2014; 122 SS Tafreshi (894_CR16) 2017; 0 MC Daniel (894_CR46) 2004; 104 ND Mermin (894_CR54) 1965; 137 L Jia (894_CR75) 2013; 307 ZL Wang (894_CR36) 2014; 6 K Tedsree (894_CR34) 2011; 6 Y Karatas (894_CR37) 2016; 180 G Kresse (894_CR55) 1999; 59 J Shen (894_CR8) 2015; 40 894_CR38 L He (894_CR17) 2014; 147 DA Bulushev (894_CR30) 2010; 154 DJ Morris (894_CR27) 2009; 28 Y Nakamori (894_CR9) 2005; 46 Z Yang (894_CR3) 2007; 129 F Zhang (894_CR63) 2013; 88 F Joó (894_CR18) 2008; 1 C Fellay (894_CR26) 2008; 47 NY Dzade (894_CR59) 2013; 139 G Kresse (894_CR52) 1996; 6 M Sankar (894_CR47) 2012; 41 K Mori (894_CR32) 2013; 3 HW King (894_CR67) 1978; 8 M Ojeda (894_CR77) 2009; 48 L Prati (894_CR48) 2014; 47 C Hu (894_CR50) 2014; 39 894_CR49 S Penner (894_CR71) 2006; 125 SS Tafreshi (894_CR60) 2014; 622 LRS Lara (894_CR69) 2015; 5 JF Hull (894_CR20) 2012; 4 S Grimme (894_CR57) 2010; 132 894_CR21 894_CR64 A Roucoux (894_CR45) 2002; 102 894_CR25 N Dzade (894_CR62) 2014; 4 B Loges (894_CR23) 2008; 47 S Grimme (894_CR56) 2006; 27 CJ Huang (894_CR70) 2009; 156 H Dai (894_CR35) 2014; 2 H Junge (894_CR24) 2009; 50 G Kresse (894_CR51) 1993; 47 H Furukawa (894_CR6) 2009; 131 K Mathew (894_CR65) 2014; 140 YL Qin (894_CR39) 2015; 8 Ö Metin (894_CR73) 2013; 5 S Haider (894_CR61) 2014; 118 A Iulianelli (894_CR12) 2014; 29 C Della Pina (894_CR44) 2008; 37 S Park (894_CR1) 2000; 404 JD Pack (894_CR66) 1976; 13 M Grasemann (894_CR19) 2012; 5 X Wang (894_CR31) 2014; 39 894_CR33 SJ Li (894_CR41) 2015; 3 894_CR76 S Irrera (894_CR58) 2013; 117 J Perdew (894_CR53) 2008; 100 AK Datye (894_CR68) 2000; 198 Z Wang (894_CR11) 2009; 694 L Yang (894_CR42) 2016; 41 J Germain (894_CR72) 2007; 17 J Graetz (894_CR7) 2009; 38 ZH Lu (894_CR10) 2012; 22 SZ Baykara (894_CR2) 2005; 30 ZL Wang (894_CR43) 2014; 39 AK Hill (894_CR14) 2014; 39 DD Eley (894_CR29) 1957; 53 SC Amendola (894_CR13) 2000; 85 B Loges (894_CR22) 2010; 53 S Zhang (894_CR74) 2013; 52 H Dai (894_CR4) 2015; 165 K Mori (894_CR40) 2015; 21 A Boddien (894_CR28) 2011; 6 |
References_xml | – reference: KingHWManchesterFDJ Phys F: Met Phys1978815261:CAS:528:DyaE1cXktlCmsrc%3D10.1088/0305-4608/8/1/007 – reference: DzadeNRoldanADe LeeuwNHMinerals20144891151:CAS:528:DC%2BC2MXjsFKmt70%3D10.3390/min4010089 – reference: PackJDMonkhorstHJPhys Rev B1976135188519210.1103/PhysRevB.13.5188 – reference: BoddienAJungeHNat Nanotechnol201162652661:CAS:528:DC%2BC3MXls1Khu7Y%3D10.1038/nnano.2011.70 – reference: FellayCDysonPJLaurenczyGAngew Chem Int Ed200847396639681:CAS:528:DC%2BD1cXmsVCitrk%3D10.1002/anie.200800320 – reference: JoóFChemSusChem2008180580810.1002/cssc.200800133 – reference: PerdewJRuzsinszkyACsonkaGVydrovOScuseriaGConstantinLZhouXBurkeKPhys Rev Lett200810013640610.1103/PhysRevLett.100.136406 – reference: MerminNDPhys Rev19651371441144310.1103/PhysRev.137.A1441 – reference: KaratasYBulutAYurderiMErtasIEAlalOGulcanMCelebiMKivrakHKayaMZahmakiranMAppl Catal B20161805865951:CAS:528:DC%2BC2MXht1eltLbO10.1016/j.apcatb.2015.06.060 – reference: PennerSWangDJeneweinBGabaschHKlötzerBKnop-GerickeASchlöglRHayekKJ Chem Phys200612509470310.1063/1.2338028 – reference: Qin Y, Wang J, Meng F, Wang L, Zhang X (2013) Chem Commun 10028–10030 – reference: TafreshiSSRoldanADzadeNYDe LeeuwNHSurf Sci2014622181:CAS:528:DC%2BC2cXisFyjsLY%3D10.1016/j.susc.2013.11.013 – reference: LogesBBoddienAJungeHBellerMAngew Chem Int Ed200847396239651:CAS:528:DC%2BD1cXmsVCitr0%3D10.1002/anie.200705972 – reference: MathewKSundararamanRLetchworth-WeaverKAriasTAHennigRGJ Chem Phys201414008410610.1063/1.4865107 – reference: LaraLRSZottisADEliasWCFaggionDDe CamposCEMAcuñaJJSDomingosJBRSC Adv20155828982961:CAS:528:DC%2BC2cXitFOgtLbJ10.1039/C4RA16440G – reference: IulianelliARibeirinhaPMendesABasileARenew Sustain Energy Rev2014293553681:CAS:528:DC%2BC3sXhslGlsrzL10.1016/j.rser.2013.08.032 – reference: DzadeNYRoldanADe LeeuwNHJ Chem Phys20131391247081:STN:280:DC%2BC2c%2FlvVyltA%3D%3D10.1063/1.4822040 – reference: DaiHXiaBWenLDuCSuJLuoWChengGAppl Catal B201516557621:CAS:528:DC%2BC2cXhslCgs7vJ10.1016/j.apcatb.2014.09.065 – reference: DanielMCAstrucDChem Rev20041042933461:CAS:528:DC%2BD3sXpvFGlur0%3D10.1021/cr030698+ – reference: AmendolaSCSharp-GoldmanSLJanjuaMSKellyMTPetilloPJBinderMJ Power Sources2000851861891:CAS:528:DC%2BD3cXht1eqsLk%3D10.1016/S0378-7753(99)00301-8 – reference: TafreshiSSRoldanADe LeeuwNHFaraday Discuss20170117 – reference: Della PinaCFallettaEPratiLRossiMChem Soc Rev200837207720951:CAS:528:DC%2BD1cXhtVOitbzP10.1039/b707319b – reference: HullJFHimedaYWangWHHashiguchiBPerianaRSzaldaDJMuckermanJTFujitaENat Chem201243833881:CAS:528:DC%2BC38XktVarsbY%3D10.1038/nchem.1295 – reference: KresseGHafnerJPhys Rev B1993475585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 – reference: GrimmeSAntonyJEhrlichSKriegHJ Chem Phys201013215410410.1063/1.3382344 – reference: Roldan A, Hollingsworth N, Roffey A, Islam HU, Goodall JBM, Catlow CRA, Darr JA, Bras W, Sankar G, Holt KB, Hogarth G, De Leeuw NH (2015) Chem Commun 7501–7504 – reference: WangZLYanJMZhangYFPingYWangHLJiangQNanoscale20146307330771:CAS:528:DC%2BC2cXjt1ylt74%3D10.1039/c3nr05809c – reference: MetinÖSunXSunSNanoscale201359109121:CAS:528:DC%2BC3sXhtV2jsrk%3D10.1039/C2NR33637E – reference: LuZHJiangHLYadavMAranishiKXuQJ Mater Chem201222506550711:CAS:528:DC%2BC38Xislartrc%3D10.1039/c2jm14787d – reference: VeluswamyHPKumarRLingaPAppl Energy20141221121321:CAS:528:DC%2BC2cXmsVCiur4%3D10.1016/j.apenergy.2014.01.063 – reference: OjedaMIglesiaEAngew Chem Int Ed200948480048031:CAS:528:DC%2BD1MXntlOit7Y%3D10.1002/anie.200805723 – reference: EleyDDLueticPTrans Faraday Soc195753148314871:CAS:528:DyaG1cXntVSntw%3D%3D10.1039/tf9575301483 – reference: Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) Chem Commun 3540–3542 – reference: SankarMDimitratosNMiedziakPJWellsPPKielyCJHutchingsGJChem Soc Rev201241809981391:CAS:528:DC%2BC38Xhs12rsL%2FL10.1039/c2cs35296f – reference: RoucouxASchulzJPatinHChem Rev2002102375737781:CAS:528:DC%2BD38XmvVShsr0%3D10.1021/cr010350j – reference: IrreraSRoldanAPortaloneGDe LeeuwNHJ Phys Chem C2013117394939571:CAS:528:DC%2BC3sXhsVemt7g%3D10.1021/jp3094353 – reference: LogesBBoddienAGartnerFJungeHBellerMTop Catal2010539029141:CAS:528:DC%2BC3cXnvVehsb8%3D10.1007/s11244-010-9522-8 – reference: MorrisDJClarksonGJWillsMOrganometallics200928413341401:CAS:528:DC%2BD1MXotV2ntLc%3D10.1021/om900099u – reference: DaiHCaoNYangLSuJLuoWChengGJ Mater Chem A2014211060110641:CAS:528:DC%2BC2cXhtVarsLbE10.1039/c4ta02066a – reference: PratiLVillaAAcc Chem Res2014478558631:CAS:528:DC%2BC3sXhvVars7%2FP10.1021/ar400170j – reference: HuangCJPanFMTzengTCLiCSheuJTJ Electrochem Soc2009156J28J311:CAS:528:DC%2BD1cXhsFCisbnE10.1149/1.3035822 – reference: LiSJPingYYanJMWangHLWuMJiangQJ Mater Chem A2015314535145381:CAS:528:DC%2BC2MXhtVShu7vF10.1039/C5TA03111G – reference: KresseGFurthmüllerJComput Mater Sci1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 – reference: WangZTonksIBelliJJensenCMJ Organomet Chem2009694285428571:CAS:528:DC%2BD1MXoslCltb8%3D10.1016/j.jorganchem.2009.03.052 – reference: HeLHuangYLiuXYLiLWangAWangXMouCYZhangTAppl Catal B20141477797881:CAS:528:DC%2BC3sXhvFOjtL3E10.1016/j.apcatb.2013.10.022 – reference: DatyeAKBravoJNelsonTRAtanasovaPLyubovskyMPfefferleLAppl Catal A20001981791961:CAS:528:DC%2BD3cXisFaksLg%3D10.1016/S0926-860X(99)00512-8 – reference: Loges B, Boddien A, Junge H, Noyes JR, Baumann W, Beller M (2009) Chem Commun 4185–4187 – reference: GraetzJChem Soc Rev20093873821:CAS:528:DC%2BD1cXhsFWjtLzF10.1039/B718842K – reference: GrimmeSJ Comput Chem200627178717991:CAS:528:DC%2BD28XhtFenu7bO10.1002/jcc.20495 – reference: YangLLuoWChengGInt J Hydrogen Energy2016414394461:CAS:528:DC%2BC2MXhslyqs7zN10.1016/j.ijhydene.2015.10.074 – reference: KresseGPhys Rev B199959175817751:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758 – reference: ParkSVohsJMGorteRJNature20004042652671:CAS:528:DC%2BD3cXit1ags7g%3D10.1038/35005040 – reference: WangXQiGWTanCHLiYPGuoJPangXJZhangSYInt J Hydrogen Energy2014398378431:CAS:528:DC%2BC3sXhvFKgu7fM10.1016/j.ijhydene.2013.10.154 – reference: HaiderSRoldanADe LeeuwNHJ Phys Chem C2014118195819671:CAS:528:DC%2BC3sXhvFOntbrM10.1021/jp409522q – reference: ZhangSMetinÖSuDSunSAngew Chem Int Ed201352368136841:CAS:528:DC%2BC3sXivVKisb0%3D10.1002/anie.201300276 – reference: QinYLLiuYCLiangFWangLMChemSusChem201582602631:CAS:528:DC%2BC2cXitVyhtrfJ10.1002/cssc.201402926 – reference: GrasemannMLaurenczyGEnergy Environ Sci20125817181811:CAS:528:DC%2BC38XhtVylu7bE10.1039/c2ee21928j – reference: NakamoriYKitaharaGNinomiyaAAokiMNoritakeTTowataSOrimoSMater Trans200546209320971:CAS:528:DC%2BD2MXht1WqsLrL10.2320/matertrans.46.2093 – reference: MoriKDojoMYamashitaHACS Catal20133111411191:CAS:528:DC%2BC3sXmtVynsro%3D10.1021/cs400148n – reference: YangZXiaYMokayaRJ Am Chem Soc2007129167316791:CAS:528:DC%2BD2sXot1Whtw%3D%3D10.1021/ja067149g – reference: HuCPulleriJKTingSWChanKYInt J Hydrogen Energy2014393813901:CAS:528:DC%2BC3sXhslKrsb7N10.1016/j.ijhydene.2013.10.067 – reference: TedsreeKLiTJonesSChanCWAYuKMKBagotPAJMarquisEASmithGDWTsangSCENat Nanotechnol201163023071:CAS:528:DC%2BC3MXls1Kgsr0%3D10.1038/nnano.2011.42 – reference: Ting SW, Cheng S, Tsang KY, Van der Laak N, Chan KY (2009) Chem Commun 7333–7335 – reference: ShenJYangLHuKLuoWChengGInt J Hydrogen Energy201540106210701:CAS:528:DC%2BC2cXhvF2qsr7J10.1016/j.ijhydene.2014.11.031 – reference: MoriKTanakaHDojoMYoshizawaKYamashitaHChem-A Eur J20152112085120921:CAS:528:DC%2BC2MXhtFOrtL%2FF10.1002/chem.201501760 – reference: GermainJFréchetJMJSvecFJ Mater Chem200717498949971:CAS:528:DC%2BD2sXhtlGht7fE10.1039/b711509a – reference: BaykaraSZInt J Hydrogen Energy2005305455531:CAS:528:DC%2BD2MXhtlShsbw%3D10.1016/j.ijhydene.2004.06.010 – reference: JungeHBoddienACapittaFLogesBNoyesJRGladialiSBellerMTetrahedron Lett200950160316061:CAS:528:DC%2BD1MXitlWltLs%3D10.1016/j.tetlet.2009.01.101 – reference: Sundararaman R, Schwarz K (2017) J Chem Phys 146:084111 – reference: JiaLBulushevDAPodyachevaOYBoroninAIKibisLSGerasimovEYBeloshapkinSSeryakIAIsmagilovZRRossJRHJ Catal2013307941021:CAS:528:DC%2BC3sXhs1agsbfM10.1016/j.jcat.2013.07.008 – reference: HillAKTorrente-MurcianoLInt J Hydrogen Energy201439764676541:CAS:528:DC%2BC2cXmtVansbw%3D10.1016/j.ijhydene.2014.03.043 – reference: BulushevDABeloshapkinSRossJRHCatal Today20101547121:CAS:528:DC%2BC3cXptVaru7c%3D10.1016/j.cattod.2010.03.050 – reference: Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Chem Commun 801–802 – reference: WangZLPingYYanJMWangHLJiangQInt J Hydrogen Energy201439485048561:CAS:528:DC%2BC2cXjtFSksbs%3D10.1016/j.ijhydene.2013.12.148 – reference: ZhangFGaleJDUberuagaBPStanekCRMarksNAPhys Rev B20138805411210.1103/PhysRevB.88.054112 – reference: FurukawaHYaghiOMJ Am Chem Soc2009131887588831:CAS:528:DC%2BD1MXmvVektrg%3D10.1021/ja9015765 – reference: WangCYangTLiuYRuanJYangSLiuXInt J Hydrogen Energy20143910843108521:CAS:528:DC%2BC2cXpsl2is74%3D10.1016/j.ijhydene.2014.05.047 – volume: 6 start-page: 302 year: 2011 ident: 894_CR34 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2011.42 – volume: 27 start-page: 1787 year: 2006 ident: 894_CR56 publication-title: J Comput Chem doi: 10.1002/jcc.20495 – volume: 30 start-page: 545 year: 2005 ident: 894_CR2 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2004.06.010 – volume: 694 start-page: 2854 year: 2009 ident: 894_CR11 publication-title: J Organomet Chem doi: 10.1016/j.jorganchem.2009.03.052 – volume: 117 start-page: 3949 year: 2013 ident: 894_CR58 publication-title: J Phys Chem C doi: 10.1021/jp3094353 – volume: 4 start-page: 89 year: 2014 ident: 894_CR62 publication-title: Minerals doi: 10.3390/min4010089 – volume: 4 start-page: 383 year: 2012 ident: 894_CR20 publication-title: Nat Chem doi: 10.1038/nchem.1295 – volume: 180 start-page: 586 year: 2016 ident: 894_CR37 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2015.06.060 – volume: 165 start-page: 57 year: 2015 ident: 894_CR4 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2014.09.065 – volume: 122 start-page: 112 year: 2014 ident: 894_CR5 publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.01.063 – volume: 53 start-page: 902 year: 2010 ident: 894_CR22 publication-title: Top Catal doi: 10.1007/s11244-010-9522-8 – volume: 140 start-page: 084106 year: 2014 ident: 894_CR65 publication-title: J Chem Phys doi: 10.1063/1.4865107 – volume: 48 start-page: 4800 year: 2009 ident: 894_CR77 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200805723 – volume: 132 start-page: 154104 year: 2010 ident: 894_CR57 publication-title: J Chem Phys doi: 10.1063/1.3382344 – volume: 88 start-page: 054112 year: 2013 ident: 894_CR63 publication-title: Phys Rev B doi: 10.1103/PhysRevB.88.054112 – volume: 100 start-page: 136406 year: 2008 ident: 894_CR53 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.100.136406 – volume: 307 start-page: 94 year: 2013 ident: 894_CR75 publication-title: J Catal doi: 10.1016/j.jcat.2013.07.008 – volume: 6 start-page: 15 year: 1996 ident: 894_CR52 publication-title: Comput Mater Sci doi: 10.1016/0927-0256(96)00008-0 – volume: 3 start-page: 1114 year: 2013 ident: 894_CR32 publication-title: ACS Catal doi: 10.1021/cs400148n – volume: 41 start-page: 439 year: 2016 ident: 894_CR42 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.10.074 – volume: 52 start-page: 3681 year: 2013 ident: 894_CR74 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201300276 – ident: 894_CR33 doi: 10.1039/b803661f – volume: 47 start-page: 855 year: 2014 ident: 894_CR48 publication-title: Acc Chem Res doi: 10.1021/ar400170j – volume: 102 start-page: 3757 year: 2002 ident: 894_CR45 publication-title: Chem Rev doi: 10.1021/cr010350j – volume: 131 start-page: 8875 year: 2009 ident: 894_CR6 publication-title: J Am Chem Soc doi: 10.1021/ja9015765 – volume: 5 start-page: 8171 year: 2012 ident: 894_CR19 publication-title: Energy Environ Sci doi: 10.1039/c2ee21928j – volume: 39 start-page: 10843 year: 2014 ident: 894_CR15 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.05.047 – ident: 894_CR25 doi: 10.1039/b908121f – volume: 137 start-page: 1441 year: 1965 ident: 894_CR54 publication-title: Phys Rev doi: 10.1103/PhysRev.137.A1441 – volume: 40 start-page: 1062 year: 2015 ident: 894_CR8 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.11.031 – volume: 39 start-page: 381 year: 2014 ident: 894_CR50 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.10.067 – volume: 41 start-page: 8099 year: 2012 ident: 894_CR47 publication-title: Chem Soc Rev doi: 10.1039/c2cs35296f – volume: 47 start-page: 3962 year: 2008 ident: 894_CR23 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200705972 – volume: 28 start-page: 4133 year: 2009 ident: 894_CR27 publication-title: Organometallics doi: 10.1021/om900099u – volume: 17 start-page: 4989 year: 2007 ident: 894_CR72 publication-title: J Mater Chem doi: 10.1039/b711509a – volume: 6 start-page: 3073 year: 2014 ident: 894_CR36 publication-title: Nanoscale doi: 10.1039/c3nr05809c – volume: 46 start-page: 2093 year: 2005 ident: 894_CR9 publication-title: Mater Trans doi: 10.2320/matertrans.46.2093 – ident: 894_CR64 doi: 10.1063/1.4976971 – volume: 38 start-page: 73 year: 2009 ident: 894_CR7 publication-title: Chem Soc Rev doi: 10.1039/B718842K – volume: 154 start-page: 7 year: 2010 ident: 894_CR30 publication-title: Catal Today doi: 10.1016/j.cattod.2010.03.050 – volume: 21 start-page: 12085 year: 2015 ident: 894_CR40 publication-title: Chem-A Eur J doi: 10.1002/chem.201501760 – ident: 894_CR49 doi: 10.1039/C39940000801 – volume: 156 start-page: J28 year: 2009 ident: 894_CR70 publication-title: J Electrochem Soc doi: 10.1149/1.3035822 – ident: 894_CR76 doi: 10.1039/b916507j – volume: 39 start-page: 7646 year: 2014 ident: 894_CR14 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.03.043 – volume: 8 start-page: 260 year: 2015 ident: 894_CR39 publication-title: ChemSusChem doi: 10.1002/cssc.201402926 – volume: 47 start-page: 3966 year: 2008 ident: 894_CR26 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200800320 – volume: 85 start-page: 186 year: 2000 ident: 894_CR13 publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00301-8 – volume: 59 start-page: 1758 year: 1999 ident: 894_CR55 publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.1758 – volume: 139 start-page: 124708 year: 2013 ident: 894_CR59 publication-title: J Chem Phys doi: 10.1063/1.4822040 – volume: 53 start-page: 1483 year: 1957 ident: 894_CR29 publication-title: Trans Faraday Soc doi: 10.1039/tf9575301483 – volume: 3 start-page: 14535 year: 2015 ident: 894_CR41 publication-title: J Mater Chem A doi: 10.1039/C5TA03111G – volume: 118 start-page: 1958 year: 2014 ident: 894_CR61 publication-title: J Phys Chem C doi: 10.1021/jp409522q – volume: 29 start-page: 355 year: 2014 ident: 894_CR12 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.08.032 – volume: 37 start-page: 2077 year: 2008 ident: 894_CR44 publication-title: Chem Soc Rev doi: 10.1039/b707319b – volume: 125 start-page: 094703 year: 2006 ident: 894_CR71 publication-title: J Chem Phys doi: 10.1063/1.2338028 – volume: 39 start-page: 4850 year: 2014 ident: 894_CR43 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.148 – volume: 0 start-page: 1 year: 2017 ident: 894_CR16 publication-title: Faraday Discuss – volume: 1 start-page: 805 year: 2008 ident: 894_CR18 publication-title: ChemSusChem doi: 10.1002/cssc.200800133 – volume: 22 start-page: 5065 year: 2012 ident: 894_CR10 publication-title: J Mater Chem doi: 10.1039/c2jm14787d – ident: 894_CR21 doi: 10.1039/C5CC02078F – volume: 129 start-page: 1673 year: 2007 ident: 894_CR3 publication-title: J Am Chem Soc doi: 10.1021/ja067149g – volume: 198 start-page: 179 year: 2000 ident: 894_CR68 publication-title: Appl Catal A doi: 10.1016/S0926-860X(99)00512-8 – ident: 894_CR38 doi: 10.1039/c3cc46248j – volume: 5 start-page: 910 year: 2013 ident: 894_CR73 publication-title: Nanoscale doi: 10.1039/C2NR33637E – volume: 147 start-page: 779 year: 2014 ident: 894_CR17 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2013.10.022 – volume: 2 start-page: 11060 year: 2014 ident: 894_CR35 publication-title: J Mater Chem A doi: 10.1039/c4ta02066a – volume: 13 start-page: 5188 year: 1976 ident: 894_CR66 publication-title: Phys Rev B doi: 10.1103/PhysRevB.13.5188 – volume: 50 start-page: 1603 year: 2009 ident: 894_CR24 publication-title: Tetrahedron Lett doi: 10.1016/j.tetlet.2009.01.101 – volume: 8 start-page: 15 year: 1978 ident: 894_CR67 publication-title: J Phys F: Met Phys doi: 10.1088/0305-4608/8/1/007 – volume: 6 start-page: 265 year: 2011 ident: 894_CR28 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2011.70 – volume: 622 start-page: 1 year: 2014 ident: 894_CR60 publication-title: Surf Sci doi: 10.1016/j.susc.2013.11.013 – volume: 404 start-page: 265 year: 2000 ident: 894_CR1 publication-title: Nature doi: 10.1038/35005040 – volume: 39 start-page: 837 year: 2014 ident: 894_CR31 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.10.154 – volume: 47 start-page: 558 year: 1993 ident: 894_CR51 publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.558 – volume: 104 start-page: 293 year: 2004 ident: 894_CR46 publication-title: Chem Rev doi: 10.1021/cr030698+ – volume: 5 start-page: 8289 year: 2015 ident: 894_CR69 publication-title: RSC Adv doi: 10.1039/C4RA16440G |
SSID | ssj0021799 |
Score | 2.4754376 |
Snippet | Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated... Safe and efficient hydrogen generation and storage has received much attention in recent years. Herein, a commercial 5 wt% Pd/C catalyst has been investigated... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 254 |
SubjectTerms | Acids Carbon dioxide Catalysis Catalysts Catalytic activity Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Decomposition Decomposition reactions Dehydrogenation Formic acid Fossil fuels Fuel cells Hydrogen production Hydrogen storage Industrial Chemistry/Chemical Engineering Original Paper Pharmacy Physical Chemistry Process parameters |
Title | Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies |
URI | https://link.springer.com/article/10.1007/s11244-018-0894-5 https://www.ncbi.nlm.nih.gov/pubmed/30956509 https://www.proquest.com/docview/2022580431 https://www.proquest.com/docview/2205406998 https://pubmed.ncbi.nlm.nih.gov/PMC6413809 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VOLSXqvSFW4gWqSeqVcl6H3ZvxsSNqEAciERP1r4sIiEHhXBA6o_vjmM7TXlIPfmws37szHpmdma-AfgiK66MFJYG5eEoTy2nCIlClRPMDDUiWmHt8OmZHE_4yaW4bOu4b7ts9y4k2fypV8VuqIqC64uIyimnYgO2BLruQYgnLOu9LIQ4a0Kc6GUJlnShzMdusa6MHliYDxMl_4mWNkqoeAOvW-uRZEt2b8MLX7-Fl3nXtO0d_B7fu_ksCAVZ4knjshMsISGZc02aEC3m3pMimKpTSzI7deTYY155m7xFmkZI5HR67Ug-w3g2yiUx9-Tcfcu_k9FfHQGIrsPs4oK0yYjvYVKMLvIxbRssUCtUvKBDlyhtDoXnlWY6dTLRQXlpHfS2qxxPDVdKVLyysZeVjz0zhlV2GFuXKl15GX-AzXpW-x0ginM9VHEc3NGUW8W0ZzrhSWpsapwwSQSH3UqXtkUfxyYY1-UKNxmZUwbmlMicUkRw0E-5WUJvPEe827GvbHfhbRmkg4kE4YMi2O-HA0cwKKJrP7sLNAyNVhm8zgg-LrndPy1GlMZgUUWg1uSgJ0Bs7vWRenrVYHTLYBwkOPNrJzGr13ryIz79F_VneMUaUcbzoF3YXMzv_F6wkBZmAFtZcXR0htcfv36OBrCRy3zQ7JM_2pUMLA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOZQL4k2ggJE4gaw2jh8Jt1VotEC34rCVeov8irpSlUXb7aESP56ZbJKyLSBx9thJ_I01M5nxNwDvdSON08pzNB6By8JLTpQo3AQlXGqJ0YruDs-O9fREfj1Vpz1ZNN2FuZG_379IyQBhwEs8yoXk6i7ckxgoU_VeqcsxtiJisy6xSbGVEvmQwPzTEtsm6JZfebs88kaOtDM91UN40PuMbLIB-RHcie1j2C2HVm1P4Of0KqyWqApswyJNm83o4gibhNAVB_FqFSOr0EFdeDbxi8A-R6om70u2WNf-iM0W54GVS8pikzYyd8W-h_3yEzv8rQ8Asy3OruasL0F8CifV4byc8r6tAvfKZGuehtxYd6CibKywRdC5RZNlLVrr0ARZOGmMamTjs6ibmEXhnGh8mvlQGNtEnT2DnXbZxhfAjJQ2NVmGQWghvRE2CpvLvHC-cEG5PIGDYadr33OOU-uL8_qaLZnAqRGcmsCpVQIfxik_NoQb_xLeG-Cr-7N3UQvUAZUTaVAC78ZhRIRSIbaNy0uUEeSqaow1E3i-QXt8WkbcjOhHJWC29GAUIEbu7ZF2cdYxc2t0CXKa-XHQmOvX-utHvPwv6bewO53PjuqjL8ffXsF90ak1_RHag5316jK-Rh9p7d50p-MXc-oHEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEK4oJOrFgPgYRW0STprOsj39mPG2GZisCoQDJNwm_YybkFmyLAcSf7xd81pW1MRzV8_rq05VTVV9BbAvA1dGCkuj8XCU55ZTpEShyglmxhoZrbB3-ORUTi_4t0tx2c05vemr3fuUZNvTgCxN9XJ07cJo1fiGZimGwciunHMqHsNmDFSaPG0hiyHiQrqzJt2JEZdgWZ_W_NMl1g3TA2_zYdHkb5nTxiCVW_C88yTJpIV-Gx75-gU8LfoBbjvwc3rnFvOoIKTllkYICLaTkIlzTckQLRfekzK6rTNLJnbmyKHHGvOukIs0Q5HIyezKkWKOuW3UUWLuyJkbFV_I0b3pAETXcXd5TrrCxJdwUR6dF1PaDVugVqh0SccuU9ocCM-DZjp3MtPRkGkdbbgLjueGKyUCDzb1MvjUM2NYsOPUulzp4GX6Cjbqee3fAFGc67FK0xia5twqpj3TGc9yY3PjhMkSOOi_dGU7JnIciHFVrTiUEZwqglMhOJVI4NOw5bql4fiX8G4PX9WdyJuKRR0QGVIJJbA3LEdEMEGiaz-_jTIMHVgZI9AEXrdoD3dLkbExelcJqDU9GASQp3t9pZ79aPi6ZXQUMtz5udeY1WP99SXe_pf0R3hydlhWx19Pv7-DZ6zRavxNtAsby8Wtfx8dp6X50ByOX5DuD1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Generation+from+Additive-Free+Formic+Acid+Decomposition+Under+Mild+Conditions+by+Pd%2FC%3A+Experimental+and+DFT+Studies&rft.jtitle=Topics+in+catalysis&rft.au=Sanchez%2C+Felipe&rft.au=Motta%2C+Davide&rft.au=Roldan%2C+Alberto&rft.au=Hammond%2C+Ceri&rft.date=2018-01-01&rft.issn=1022-5528&rft.volume=61&rft.issue=3&rft.spage=254&rft_id=info:doi/10.1007%2Fs11244-018-0894-5&rft_id=info%3Apmid%2F30956509&rft.externalDocID=30956509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |