MORC2 Signaling Integrates Phosphorylation-Dependent, ATPase-Coupled Chromatin Remodeling during the DNA Damage Response
Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiol...
Saved in:
Published in | Cell reports (Cambridge) Vol. 2; no. 6; pp. 1657 - 1669 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes.
[Display omitted]
► MORC2 is a DNA damage-responsive phosphoprotein activated by PAK1 kinase ► MORC2 regulates phosphorylation-coupled, ATPase-dependent chromatin remodeling ► MORC2 facilitates gamma-H2AX induction independently of PIKK kinases ► MORC2 promotes DSB repair in a PAK1 phosphorylation-dependent manner
Chromatin dynamics play a critical role in maintaining genome integrity. Li, Kumar, and colleagues demonstrate that microrchidia CW-type zinc finger 2 (MORC2) is a chromatin remodeling protein and a modifier of radiosensitivity. MORC2 facilitates ATPase-coupled chromatin relaxation to govern DNA double-strand break signaling in a p21-activated kinase 1 (PAK1) phosphorylation-dependent manner. These findings establish that the PAK1-MORC2 axis is emerging as a central mediator of the cellular response to DNA damage through sequentially integrating multiple essential enzymatic processes. |
---|---|
AbstractList | Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes. Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes.Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes. Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes. [Display omitted] ► MORC2 is a DNA damage-responsive phosphoprotein activated by PAK1 kinase ► MORC2 regulates phosphorylation-coupled, ATPase-dependent chromatin remodeling ► MORC2 facilitates gamma-H2AX induction independently of PIKK kinases ► MORC2 promotes DSB repair in a PAK1 phosphorylation-dependent manner Chromatin dynamics play a critical role in maintaining genome integrity. Li, Kumar, and colleagues demonstrate that microrchidia CW-type zinc finger 2 (MORC2) is a chromatin remodeling protein and a modifier of radiosensitivity. MORC2 facilitates ATPase-coupled chromatin relaxation to govern DNA double-strand break signaling in a p21-activated kinase 1 (PAK1) phosphorylation-dependent manner. These findings establish that the PAK1-MORC2 axis is emerging as a central mediator of the cellular response to DNA damage through sequentially integrating multiple essential enzymatic processes. Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia CW-type zinc finger 2 (MORC2), an uncharacterized protein with a derived PHD finger domain and a conserved GHKL-type ATPase module, is a physiological substrate of p21-activated kinase 1 (PAK1), an important integrator of extracellular signals and nuclear processes. Following DNA damage, MORC2 is phosphorylated on serine 739 in a PAK1-dependent manner, and phosphorylated MORC2 regulates its DNA-dependent ATPase activity to facilitate chromatin remodeling. Moreover, MORC2 associates with chromatin and promotes gamma-H2AX induction in a PAK1 phosphorylation-dependent manner. Consequently, cells expressing MORC2-S739A mutation displayed a reduction in DNA repair efficiency and were hypersensitive to DNA-damaging agent. These findings suggest that the PAK1-MORC2 axis is critical for orchestrating the interplay between chromatin dynamics and the maintenance of genomic integrity through sequentially integrating multiple essential enzymatic processes. |
Author | Nair, Vasudha S. Kumar, Rakesh Ohshiro, Kazufumi Gajula, Rajendra P. Eswaran, Jeyanthy Li, Da-Qiang Kumar, Anupam Aravind, L. Nair, Sujit S. Pakala, Suresh B. Reddy, Sirigiri Divijendra Natha |
Author_xml | – sequence: 1 givenname: Da-Qiang surname: Li fullname: Li, Da-Qiang email: bcmdql@gwu.edu organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 2 givenname: Sujit S. surname: Nair fullname: Nair, Sujit S. organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 3 givenname: Kazufumi surname: Ohshiro fullname: Ohshiro, Kazufumi organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 4 givenname: Anupam surname: Kumar fullname: Kumar, Anupam organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 5 givenname: Vasudha S. surname: Nair fullname: Nair, Vasudha S. organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 6 givenname: Suresh B. surname: Pakala fullname: Pakala, Suresh B. organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 7 givenname: Sirigiri Divijendra Natha surname: Reddy fullname: Reddy, Sirigiri Divijendra Natha organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 8 givenname: Rajendra P. surname: Gajula fullname: Gajula, Rajendra P. organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 9 givenname: Jeyanthy surname: Eswaran fullname: Eswaran, Jeyanthy organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA – sequence: 10 givenname: L. surname: Aravind fullname: Aravind, L. organization: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA – sequence: 11 givenname: Rakesh surname: Kumar fullname: Kumar, Rakesh email: bcmrxk@gwu.edu organization: Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23260667$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9v0zAUxSM0xMbYN0AojzyQ4msnccoDUpXyp9Jg0xjPlmvfpK4SO9guYt8et90Q4gHwy7Wsc362fM7T7MQ6i1n2HMgMCNSvtzOFg8dpRgnQGcCMQPMoO6MUoABa8pPf9qfZRQhbklZNAOblk-yUMlqTuuZn2Y9PVzctzb-Y3srB2D5f2Yi9lxFDfr1xYdo4fzfIaJwtljih1Wjjq3xxey0DFq3bTQPqvN14NyaRzW9wdBoPJL3z-xE3mC8_L_KlHGWPSRAmZwM-yx53cgh4cT_Ps6_v3922H4vLqw-rdnFZqIqzWABjpeTdXNasIpryal1WQJUqCasb2XUNqqppuGoqrruKEE7WjWJrWCvJtFScnWerI1c7uRWTN6P0d8JJIw4HzvdC-mjUgCJdVDOkVfo4XkrSJSZvKMNOVmUis8R6eWRN3n3bYYhiNCEFMUiLbhcE0KYCQoDP_0OaeCkS2Etf3Et36xH1rzc-hJQEb44C5V0IHjuhTDxEEr00gwAi9qUQW3EshdiXQgCIVIpkLv8wP_D_YXt7tGHK5rtBL4IyaBVq41HF9Hnm74CfRWjQRA |
CitedBy_id | crossref_primary_10_1186_1745_6150_8_15 crossref_primary_10_1074_jbc_RA117_001684 crossref_primary_10_1002_ctm2_1210 crossref_primary_10_1371_journal_pone_0066585 crossref_primary_10_3390_cells11142133 crossref_primary_10_3892_ijmm_2021_5071 crossref_primary_10_1038_s41564_020_0674_4 crossref_primary_10_1093_brain_awae017 crossref_primary_10_1002_humu_24445 crossref_primary_10_1016_j_pediatrneurol_2023_01_011 crossref_primary_10_1093_annonc_mdw184 crossref_primary_10_1093_nar_gkaa130 crossref_primary_10_3390_genes13030500 crossref_primary_10_3390_cancers14030560 crossref_primary_10_3390_molecules27196247 crossref_primary_10_1080_14786419_2023_2254454 crossref_primary_10_3389_fncel_2022_896854 crossref_primary_10_1038_s41418_018_0095_6 crossref_primary_10_1038_s41467_018_03045_x crossref_primary_10_3390_cells11223639 crossref_primary_10_1038_s10038_022_01031_2 crossref_primary_10_1002_1873_3468_14062 crossref_primary_10_1038_s41467_020_19278_8 crossref_primary_10_1186_s13023_021_01881_7 crossref_primary_10_1093_brain_aww252 crossref_primary_10_1002_mc_23902 crossref_primary_10_1080_07357907_2020_1858097 crossref_primary_10_1016_j_bcp_2023_115628 crossref_primary_10_3748_wjg_v21_i34_9945 crossref_primary_10_1146_annurev_arplant_043014_114633 crossref_primary_10_3389_fphar_2023_1137151 crossref_primary_10_1080_15548627_2019_1659609 crossref_primary_10_3390_biom13101527 crossref_primary_10_1016_j_gene_2016_12_014 crossref_primary_10_1371_journal_ppat_1011894 crossref_primary_10_3389_fmicb_2019_00224 crossref_primary_10_1242_dmm_049123 crossref_primary_10_1016_j_dnarep_2021_103070 crossref_primary_10_1038_s41419_024_06908_y crossref_primary_10_1007_s42764_020_00024_9 crossref_primary_10_1093_brain_awx019 crossref_primary_10_1093_brain_awx138 crossref_primary_10_1002_ana_24575 crossref_primary_10_1016_j_dnarep_2018_03_004 crossref_primary_10_1080_09553002_2022_2110326 crossref_primary_10_2147_IJGM_S420715 crossref_primary_10_4161_cc_26078 crossref_primary_10_1016_j_prp_2023_154990 crossref_primary_10_1186_s13059_016_1043_8 crossref_primary_10_1016_j_bbrc_2015_10_059 crossref_primary_10_1093_brain_awx083 crossref_primary_10_1016_j_gendis_2023_05_010 crossref_primary_10_1073_pnas_1819524116 crossref_primary_10_1093_brain_aww156 crossref_primary_10_1007_s10555_020_09922_6 crossref_primary_10_1101_gr_227280_117 crossref_primary_10_1016_j_ajhg_2020_06_013 crossref_primary_10_1111_cas_13863 crossref_primary_10_18632_oncotarget_3185 crossref_primary_10_1016_j_jmb_2022_167664 crossref_primary_10_3389_fgene_2024_1431564 crossref_primary_10_1080_07391102_2020_1743757 crossref_primary_10_18632_oncotarget_12576 crossref_primary_10_1128_JVI_00621_16 crossref_primary_10_3390_ijms160612035 crossref_primary_10_18632_oncotarget_18556 crossref_primary_10_1002_jcp_25665 crossref_primary_10_1016_j_molcel_2018_09_023 crossref_primary_10_3892_ijo_2018_4333 crossref_primary_10_3390_brainsci10120986 crossref_primary_10_4161_epi_24976 crossref_primary_10_1080_21541248_2019_1612694 crossref_primary_10_1093_hmg_ddz006 crossref_primary_10_1007_s12032_024_02464_9 crossref_primary_10_3389_fonc_2020_573502 crossref_primary_10_1016_j_bbamcr_2013_11_012 crossref_primary_10_3390_biomedicines11020462 crossref_primary_10_1038_s41418_018_0259_4 crossref_primary_10_1093_nar_gkz545 crossref_primary_10_1186_s12964_019_0477_5 crossref_primary_10_1016_j_drup_2017_10_004 crossref_primary_10_3389_fcell_2021_641498 crossref_primary_10_2147_CMAR_S346052 crossref_primary_10_1038_onc_2017_218 crossref_primary_10_1093_brain_aww082 crossref_primary_10_1016_j_humpath_2018_03_011 crossref_primary_10_1093_brain_awv311 crossref_primary_10_1002_ctm2_825 crossref_primary_10_1093_nar_gkae1273 crossref_primary_10_3389_fcell_2021_641381 crossref_primary_10_1038_s41419_021_04393_1 crossref_primary_10_1158_0008_5472_CAN_17_1394 crossref_primary_10_1038_onc_2017_201 crossref_primary_10_1042_BCJ20230304 crossref_primary_10_18632_aging_102003 crossref_primary_10_1016_j_mocell_2024_100166 crossref_primary_10_3389_fgene_2024_1400906 crossref_primary_10_1038_ncomms3545 crossref_primary_10_1371_journal_pgen_1007175 crossref_primary_10_1007_s12551_021_00812_x crossref_primary_10_1093_gbe_evy136 crossref_primary_10_1038_ng_3878 crossref_primary_10_1038_s41418_021_00901_0 crossref_primary_10_1158_1078_0432_CCR_18_1776 crossref_primary_10_18632_oncotarget_3889 crossref_primary_10_1016_j_biopha_2019_108812 crossref_primary_10_1094_MPMI_10_16_0208_R |
Cites_doi | 10.1073/pnas.0504211102 10.1016/j.molcel.2004.10.029 10.1158/0008-5472.CAN-03-3207 10.1016/j.ymeth.2006.06.023 10.1074/jbc.C100569200 10.1038/nrc1892 10.1038/ncb838 10.1038/nrm2693 10.1038/nprot.2006.5 10.1016/S0092-8674(00)80796-5 10.1038/ncb1446 10.1128/MCB.00484-09 10.1073/pnas.0507722102 10.1074/jbc.273.10.5858 10.1038/nrc1011 10.1093/nar/11.5.1475 10.1126/science.282.5395.1893 10.1126/science.281.5383.1677 10.1016/S0960-9822(00)00610-2 10.1016/S0092-8674(00)81958-3 10.1016/j.molcel.2008.05.017 10.1016/j.gde.2007.02.010 10.1038/nrg3017 10.1074/jbc.M301051200 10.1093/nar/gkq006 10.1016/j.ijpara.2007.07.018 10.1038/nrc3344 10.1126/science.1221472 10.1038/sj.emboj.7601291 10.1016/S0076-6879(96)74024-7 10.1038/nsmb.2077 10.1091/mbc.9.9.2361 10.1038/sj.onc.1209172 10.1093/hmg/8.7.1201 10.1074/jbc.M111.314088 10.1038/27699 10.1126/science.1069398 10.1038/nprot.2006.339 10.1073/pnas.97.3.1038 10.1038/embor.2009.60 10.1038/ncb1982 10.1016/j.molcel.2012.06.002 10.1016/j.cell.2008.06.035 10.1021/bi060043d 10.1038/sj.onc.1201319 10.1186/1745-6150-3-8 10.1016/j.cell.2007.01.030 10.1073/pnas.0908027106 |
ContentType | Journal Article |
Copyright | 2012 The Authors Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2012 The Authors – notice: Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM DOA |
DOI | 10.1016/j.celrep.2012.11.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts |
DatabaseTitleList | Nucleic Acids Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1669 |
ExternalDocumentID | oai_doaj_org_article_4a763e2521174a0f8577823efa540073 23260667 10_1016_j_celrep_2012_11_018 S2211124712004159 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS – fundername: NCI NIH HHS grantid: R01 CA139573 – fundername: NCI NIH HHS grantid: CA139573 – fundername: NCI NIH HHS grantid: CA90970 – fundername: NCI NIH HHS grantid: R01 CA090970 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 HZ~ IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM |
ID | FETCH-LOGICAL-c573t-1334a7f9a6350d275b4512cc40368aff8ec5887c857df50070b8c3b1bca3dac73 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:32:01 EDT 2025 Fri Jul 11 11:59:40 EDT 2025 Thu Jul 10 17:22:27 EDT 2025 Mon Jul 21 06:03:38 EDT 2025 Tue Jul 01 03:07:16 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Wed May 17 01:06:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-1334a7f9a6350d275b4512cc40368aff8ec5887c857df50070b8c3b1bca3dac73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doaj.org/article/4a763e2521174a0f8577823efa540073 |
PMID | 23260667 |
PQID | 1273300019 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a763e2521174a0f8577823efa540073 proquest_miscellaneous_1285100179 proquest_miscellaneous_1273300019 pubmed_primary_23260667 crossref_citationtrail_10_1016_j_celrep_2012_11_018 crossref_primary_10_1016_j_celrep_2012_11_018 elsevier_sciencedirect_doi_10_1016_j_celrep_2012_11_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-27 |
PublicationDateYYYYMMDD | 2012-12-27 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Tsutsui, Sano, Tsutsui (bib35) 2005; 59 Ziv, Bielopolski, Galanty, Lukas, Taya, Schultz, Lukas, Bekker-Jensen, Bartek, Shiloh (bib39) 2006; 8 Vadlamudi, Li, Adam, Nguyen, Ohta, Stossel, Kumar (bib36) 2002; 4 Gately, Hittle, Chan, Yen (bib8) 1998; 9 Ward, Chen (bib37) 2001; 276 Shao, Li, Zhang, Liu, Liu, Zhao, Shen, Li (bib29) 2010; 38 Chen, Carson, Feser, Tamburini, Zabaronick, Linger, Tyler (bib6) 2008; 134 Tomimatsu, Mukherjee, Burma (bib34) 2009; 10 Hamiche, Sandaltzopoulos, Gdula, Wu (bib13) 1999; 97 Celeste, Petersen, Romanienko, Fernandez-Capetillo, Chen, Sedelnikova, Reina-San-Martin, Coppola, Meffre, Difilippantonio (bib5) 2002; 296 Rogakou, Pilch, Orr, Ivanova, Bonner (bib28) 1998; 273 Park, Park, Lee, Kim, Hur, Imbalzano, Kwon (bib25) 2006; 25 Bochar, Savard, Wang, Lafleur, Moore, Côté, Shiekhattar (bib3) 2000; 97 Joshi, Grant (bib17) 2005; 291 Inoue, Hess, Moreadith, Richardson, Handel, Watson, Zinn (bib14) 1999; 8 Paull, Rogakou, Yamazaki, Kirchgessner, Gellert, Bonner (bib26) 2000; 10 Goodarzi, Noon, Deckbar, Ziv, Shiloh, Löbrich, Jeggo (bib11) 2008; 31 Groth, Rocha, Verreault, Almouzni (bib12) 2007; 128 Iyer, Anantharaman, Wolf, Aravind (bib16) 2008; 38 Goodarzi, Kurka, Jeggo (bib9) 2011; 18 Kornberg, Lorch (bib18) 1999; 98 Canman, Lim, Cimprich, Taya, Tamai, Sakaguchi, Appella, Kastan, Siliciano (bib4) 1998; 281 Moissiard, Cokus, Cary, Feng, Billi, Stroud, Husmann, Zhan, Lajoie, McCord, Hale, Feng, Michaels, Frand, Pellegrini, Dekker, Kim, Jacobsen (bib22) 2012; 336 Ben-Yehoyada, Ben-Dor, Shaul (bib2) 2003; 278 Franken, Rodermond, Stap, Haveman, van Bree (bib7) 2006; 1 Matsuoka, Huang, Elledge (bib21) 1998; 282 Olive, Banáth (bib24) 2006; 1 Shiloh (bib30) 2003; 3 Li, Ohshiro, Reddy, Pakala, Lee, Zhang, Rayala, Kumar (bib20) 2009; 106 Sulli, Di Micco, d’Adda di Fagagna (bib33) 2012; 12 Soria, Polo, Almouzni (bib31) 2012; 46 Riballo, Kühne, Rief, Doherty, Smith, Recio, Reis, Dahm, Fricke, Krempler (bib27) 2004; 16 Morrison, Shen (bib23) 2009; 10 Bao, Shen (bib1) 2007; 17 Ziv, Bar-Shira, Pecker, Russell, Jorgensen, Tsarfati, Shiloh (bib38) 1997; 15 Stiff, O’Driscoll, Rief, Iwabuchi, Löbrich, Jeggo (bib32) 2004; 64 Kumar, Gururaj, Barnes (bib19) 2006; 6 Iyer, Abhiman, Aravind (bib15) 2008; 3 Goodarzi, Kurka, Jeggo (bib10) 2011; 18 10.1016/j.celrep.2012.11.018_bib44 Ziv (10.1016/j.celrep.2012.11.018_bib39) 2006; 8 10.1016/j.celrep.2012.11.018_bib43 10.1016/j.celrep.2012.11.018_bib46 Goodarzi (10.1016/j.celrep.2012.11.018_bib10) 2011; 18 10.1016/j.celrep.2012.11.018_bib45 10.1016/j.celrep.2012.11.018_bib48 10.1016/j.celrep.2012.11.018_bib47 10.1016/j.celrep.2012.11.018_bib49 Matsuoka (10.1016/j.celrep.2012.11.018_bib21) 1998; 282 Shao (10.1016/j.celrep.2012.11.018_bib29) 2010; 38 Tomimatsu (10.1016/j.celrep.2012.11.018_bib34) 2009; 10 10.1016/j.celrep.2012.11.018_bib40 Celeste (10.1016/j.celrep.2012.11.018_bib5) 2002; 296 10.1016/j.celrep.2012.11.018_bib42 10.1016/j.celrep.2012.11.018_bib41 Groth (10.1016/j.celrep.2012.11.018_bib12) 2007; 128 Iyer (10.1016/j.celrep.2012.11.018_bib15) 2008; 3 Iyer (10.1016/j.celrep.2012.11.018_bib16) 2008; 38 Rogakou (10.1016/j.celrep.2012.11.018_bib28) 1998; 273 Li (10.1016/j.celrep.2012.11.018_bib20) 2009; 106 Goodarzi (10.1016/j.celrep.2012.11.018_bib9) 2011; 18 Bochar (10.1016/j.celrep.2012.11.018_bib3) 2000; 97 Kornberg (10.1016/j.celrep.2012.11.018_bib18) 1999; 98 Shiloh (10.1016/j.celrep.2012.11.018_bib30) 2003; 3 Bao (10.1016/j.celrep.2012.11.018_bib1) 2007; 17 Chen (10.1016/j.celrep.2012.11.018_bib6) 2008; 134 Stiff (10.1016/j.celrep.2012.11.018_bib32) 2004; 64 Vadlamudi (10.1016/j.celrep.2012.11.018_bib36) 2002; 4 Soria (10.1016/j.celrep.2012.11.018_bib31) 2012; 46 Hamiche (10.1016/j.celrep.2012.11.018_bib13) 1999; 97 Tsutsui (10.1016/j.celrep.2012.11.018_bib35) 2005; 59 Ward (10.1016/j.celrep.2012.11.018_bib37) 2001; 276 Ziv (10.1016/j.celrep.2012.11.018_bib38) 1997; 15 Ben-Yehoyada (10.1016/j.celrep.2012.11.018_bib2) 2003; 278 Gately (10.1016/j.celrep.2012.11.018_bib8) 1998; 9 Inoue (10.1016/j.celrep.2012.11.018_bib14) 1999; 8 Canman (10.1016/j.celrep.2012.11.018_bib4) 1998; 281 Goodarzi (10.1016/j.celrep.2012.11.018_bib11) 2008; 31 Paull (10.1016/j.celrep.2012.11.018_bib26) 2000; 10 Riballo (10.1016/j.celrep.2012.11.018_bib27) 2004; 16 Moissiard (10.1016/j.celrep.2012.11.018_bib22) 2012; 336 Morrison (10.1016/j.celrep.2012.11.018_bib23) 2009; 10 Kumar (10.1016/j.celrep.2012.11.018_bib19) 2006; 6 Park (10.1016/j.celrep.2012.11.018_bib25) 2006; 25 10.1016/j.celrep.2012.11.018_bib51 10.1016/j.celrep.2012.11.018_bib50 Sulli (10.1016/j.celrep.2012.11.018_bib33) 2012; 12 Olive (10.1016/j.celrep.2012.11.018_bib24) 2006; 1 Joshi (10.1016/j.celrep.2012.11.018_bib17) 2005; 291 Franken (10.1016/j.celrep.2012.11.018_bib7) 2006; 1 17949725 - Int J Parasitol. 2008 Jan;38(1):1-31 18662539 - Cell. 2008 Jul 25;134(2):231-43 11934988 - Science. 2002 May 3;296(5569):922-7 9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68 22749398 - Mol Cell. 2012 Jun 29;46(6):722-34 12824179 - J Biol Chem. 2003 Sep 5;278(36):34475-82 22952011 - Nat Rev Cancer. 2012 Oct;12(10):709-20 9244351 - Oncogene. 1997 Jul 10;15(2):159-67 17406473 - Nat Protoc. 2006;1(5):2315-9 19805145 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17493-8 18657500 - Mol Cell. 2008 Jul 25;31(2):167-77 17320375 - Curr Opin Genet Dev. 2007 Apr;17(2):126-31 15502217 - Methods Mol Biol. 2005;291:121-9 9836640 - Science. 1998 Dec 4;282(5395):1893-7 15574327 - Mol Cell. 2004 Dec 3;16(5):715-24 15059890 - Cancer Res. 2004 Apr 1;64(7):2390-6 19424290 - Nat Rev Mol Cell Biol. 2009 Jun;10(6):373-84 10399912 - Cell. 1999 Jun 25;97(7):833-42 16932743 - EMBO J. 2006 Sep 6;25(17):3986-97 10959836 - Curr Biol. 2000 Jul 27-Aug 10;10(15):886-95 12612651 - Nat Rev Cancer. 2003 Mar;3(3):155-68 16723992 - Nat Rev Cancer. 2006 Jun;6(6):459-71 11673449 - J Biol Chem. 2001 Dec 21;276(51):47759-62 17320509 - Cell. 2007 Feb 23;128(4):721-33 19444312 - EMBO Rep. 2009 Jun;10(6):629-35 18346280 - Biol Direct. 2008;3:8 9725899 - Mol Biol Cell. 1998 Sep;9(9):2361-74 10655480 - Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1038-43 10369865 - Hum Mol Genet. 1999 Jul;8(7):1201-7 16155636 - Acta Med Okayama. 2005 Aug;59(4):113-20 16862143 - Nat Cell Biol. 2006 Aug;8(8):870-6 12198493 - Nat Cell Biol. 2002 Sep;4(9):681-90 10458604 - Cell. 1999 Aug 6;98(3):285-94 17406208 - Nat Protoc. 2006;1(1):23-9 21642969 - Nat Struct Mol Biol. 2011 Jul;18(7):831-9 |
References_xml | – volume: 97 start-page: 1038 year: 2000 end-page: 1043 ident: bib3 article-title: A family of chromatin remodeling factors related to Williams syndrome transcription factor publication-title: Proc. Natl. Acad. Sci. USA – volume: 281 start-page: 1677 year: 1998 end-page: 1679 ident: bib4 article-title: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 publication-title: Science – volume: 18 start-page: 831 year: 2011 end-page: 839 ident: bib10 article-title: KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response publication-title: Nat. Struct. Mol. Biol. – volume: 128 start-page: 721 year: 2007 end-page: 733 ident: bib12 article-title: Chromatin challenges during DNA replication and repair publication-title: Cell – volume: 282 start-page: 1893 year: 1998 end-page: 1897 ident: bib21 article-title: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase publication-title: Science – volume: 38 start-page: 1 year: 2008 end-page: 31 ident: bib16 article-title: Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes publication-title: Int. J. Parasitol. – volume: 98 start-page: 285 year: 1999 end-page: 294 ident: bib18 article-title: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome publication-title: Cell – volume: 273 start-page: 5858 year: 1998 end-page: 5868 ident: bib28 article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 publication-title: J. Biol. Chem. – volume: 59 start-page: 113 year: 2005 end-page: 120 ident: bib35 article-title: Dynamic view of the nuclear matrix publication-title: Acta Med. Okayama – volume: 18 start-page: 831 year: 2011 end-page: 839 ident: bib9 article-title: KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response publication-title: Nat. Struct. Mol. Biol. – volume: 25 start-page: 3986 year: 2006 end-page: 3997 ident: bib25 article-title: Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction publication-title: EMBO J. – volume: 278 start-page: 34475 year: 2003 end-page: 34482 ident: bib2 article-title: c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association publication-title: J. Biol. Chem. – volume: 97 start-page: 833 year: 1999 end-page: 842 ident: bib13 article-title: ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF publication-title: Cell – volume: 38 start-page: 2813 year: 2010 end-page: 2824 ident: bib29 article-title: Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX publication-title: Nucleic Acids Res. – volume: 3 start-page: 8 year: 2008 ident: bib15 article-title: MutL homologs in restriction-modification systems and the origin of eukaryotic MORC ATPases publication-title: Biol. Direct – volume: 336 start-page: 1448 year: 2012 end-page: 1451 ident: bib22 article-title: MORC family ATPases required for heterochromatin condensation and gene silencing publication-title: Science – volume: 15 start-page: 159 year: 1997 end-page: 167 ident: bib38 article-title: Recombinant ATM protein complements the cellular A-T phenotype publication-title: Oncogene – volume: 8 start-page: 870 year: 2006 end-page: 876 ident: bib39 article-title: Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway publication-title: Nat. Cell Biol. – volume: 276 start-page: 47759 year: 2001 end-page: 47762 ident: bib37 article-title: Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress publication-title: J. Biol. Chem. – volume: 16 start-page: 715 year: 2004 end-page: 724 ident: bib27 article-title: A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci publication-title: Mol. Cell – volume: 46 start-page: 722 year: 2012 end-page: 734 ident: bib31 article-title: Prime, repair, restore: the active role of chromatin in the DNA damage response publication-title: Mol. Cell – volume: 10 start-page: 886 year: 2000 end-page: 895 ident: bib26 article-title: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage publication-title: Curr. Biol. – volume: 296 start-page: 922 year: 2002 end-page: 927 ident: bib5 article-title: Genomic instability in mice lacking histone H2AX publication-title: Science – volume: 291 start-page: 121 year: 2005 end-page: 129 ident: bib17 article-title: DNA double-strand break damage and repair assessed by pulsed-field gel electrophoresis publication-title: Methods Mol. Biol. – volume: 106 start-page: 17493 year: 2009 end-page: 17498 ident: bib20 article-title: E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 681 year: 2002 end-page: 690 ident: bib36 article-title: Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1 publication-title: Nat. Cell Biol. – volume: 6 start-page: 459 year: 2006 end-page: 471 ident: bib19 article-title: p21-activated kinases in cancer publication-title: Nat. Rev. Cancer – volume: 134 start-page: 231 year: 2008 end-page: 243 ident: bib6 article-title: Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair publication-title: Cell – volume: 64 start-page: 2390 year: 2004 end-page: 2396 ident: bib32 article-title: ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation publication-title: Cancer Res. – volume: 10 start-page: 373 year: 2009 end-page: 384 ident: bib23 article-title: Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes publication-title: Nat. Rev. Mol. Cell Biol. – volume: 10 start-page: 629 year: 2009 end-page: 635 ident: bib34 article-title: Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells publication-title: EMBO Rep. – volume: 3 start-page: 155 year: 2003 end-page: 168 ident: bib30 article-title: ATM and related protein kinases: safeguarding genome integrity publication-title: Nat. Rev. Cancer – volume: 9 start-page: 2361 year: 1998 end-page: 2374 ident: bib8 article-title: Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity publication-title: Mol. Biol. Cell – volume: 8 start-page: 1201 year: 1999 end-page: 1207 ident: bib14 article-title: New gene family defined by MORC, a nuclear protein required for mouse spermatogenesis publication-title: Hum. Mol. Genet. – volume: 1 start-page: 2315 year: 2006 end-page: 2319 ident: bib7 article-title: Clonogenic assay of cells in vitro publication-title: Nat. Protoc. – volume: 31 start-page: 167 year: 2008 end-page: 177 ident: bib11 article-title: ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin publication-title: Mol. Cell – volume: 12 start-page: 709 year: 2012 end-page: 720 ident: bib33 article-title: Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer publication-title: Nat. Rev. Cancer – volume: 17 start-page: 126 year: 2007 end-page: 131 ident: bib1 article-title: Chromatin remodeling in DNA double-strand break repair publication-title: Curr. Opin. Genet. Dev. – volume: 1 start-page: 23 year: 2006 end-page: 29 ident: bib24 article-title: The comet assay: a method to measure DNA damage in individual cells publication-title: Nat. Protoc. – ident: 10.1016/j.celrep.2012.11.018_bib47 doi: 10.1073/pnas.0504211102 – volume: 16 start-page: 715 year: 2004 ident: 10.1016/j.celrep.2012.11.018_bib27 article-title: A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.10.029 – volume: 64 start-page: 2390 year: 2004 ident: 10.1016/j.celrep.2012.11.018_bib32 article-title: ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-3207 – ident: 10.1016/j.celrep.2012.11.018_bib41 doi: 10.1016/j.ymeth.2006.06.023 – volume: 276 start-page: 47759 year: 2001 ident: 10.1016/j.celrep.2012.11.018_bib37 article-title: Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.C100569200 – volume: 6 start-page: 459 year: 2006 ident: 10.1016/j.celrep.2012.11.018_bib19 article-title: p21-activated kinases in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1892 – volume: 4 start-page: 681 year: 2002 ident: 10.1016/j.celrep.2012.11.018_bib36 article-title: Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb838 – volume: 10 start-page: 373 year: 2009 ident: 10.1016/j.celrep.2012.11.018_bib23 article-title: Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2693 – volume: 1 start-page: 23 year: 2006 ident: 10.1016/j.celrep.2012.11.018_bib24 article-title: The comet assay: a method to measure DNA damage in individual cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.5 – volume: 97 start-page: 833 year: 1999 ident: 10.1016/j.celrep.2012.11.018_bib13 article-title: ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF publication-title: Cell doi: 10.1016/S0092-8674(00)80796-5 – volume: 8 start-page: 870 year: 2006 ident: 10.1016/j.celrep.2012.11.018_bib39 article-title: Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb1446 – ident: 10.1016/j.celrep.2012.11.018_bib43 doi: 10.1128/MCB.00484-09 – ident: 10.1016/j.celrep.2012.11.018_bib44 doi: 10.1073/pnas.0507722102 – volume: 273 start-page: 5858 year: 1998 ident: 10.1016/j.celrep.2012.11.018_bib28 article-title: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.10.5858 – volume: 3 start-page: 155 year: 2003 ident: 10.1016/j.celrep.2012.11.018_bib30 article-title: ATM and related protein kinases: safeguarding genome integrity publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1011 – ident: 10.1016/j.celrep.2012.11.018_bib42 doi: 10.1093/nar/11.5.1475 – volume: 282 start-page: 1893 year: 1998 ident: 10.1016/j.celrep.2012.11.018_bib21 article-title: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase publication-title: Science doi: 10.1126/science.282.5395.1893 – volume: 281 start-page: 1677 year: 1998 ident: 10.1016/j.celrep.2012.11.018_bib4 article-title: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 publication-title: Science doi: 10.1126/science.281.5383.1677 – volume: 10 start-page: 886 year: 2000 ident: 10.1016/j.celrep.2012.11.018_bib26 article-title: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00610-2 – volume: 98 start-page: 285 year: 1999 ident: 10.1016/j.celrep.2012.11.018_bib18 article-title: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome publication-title: Cell doi: 10.1016/S0092-8674(00)81958-3 – volume: 31 start-page: 167 year: 2008 ident: 10.1016/j.celrep.2012.11.018_bib11 article-title: ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.05.017 – volume: 17 start-page: 126 year: 2007 ident: 10.1016/j.celrep.2012.11.018_bib1 article-title: Chromatin remodeling in DNA double-strand break repair publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2007.02.010 – ident: 10.1016/j.celrep.2012.11.018_bib40 doi: 10.1038/nrg3017 – volume: 278 start-page: 34475 year: 2003 ident: 10.1016/j.celrep.2012.11.018_bib2 article-title: c-Abl tyrosine kinase selectively regulates p73 nuclear matrix association publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301051200 – volume: 38 start-page: 2813 year: 2010 ident: 10.1016/j.celrep.2012.11.018_bib29 article-title: Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq006 – volume: 38 start-page: 1 year: 2008 ident: 10.1016/j.celrep.2012.11.018_bib16 article-title: Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes publication-title: Int. J. Parasitol. doi: 10.1016/j.ijpara.2007.07.018 – volume: 12 start-page: 709 year: 2012 ident: 10.1016/j.celrep.2012.11.018_bib33 article-title: Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3344 – volume: 336 start-page: 1448 year: 2012 ident: 10.1016/j.celrep.2012.11.018_bib22 article-title: MORC family ATPases required for heterochromatin condensation and gene silencing publication-title: Science doi: 10.1126/science.1221472 – volume: 25 start-page: 3986 year: 2006 ident: 10.1016/j.celrep.2012.11.018_bib25 article-title: Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction publication-title: EMBO J. doi: 10.1038/sj.emboj.7601291 – ident: 10.1016/j.celrep.2012.11.018_bib51 doi: 10.1016/S0076-6879(96)74024-7 – volume: 291 start-page: 121 year: 2005 ident: 10.1016/j.celrep.2012.11.018_bib17 article-title: DNA double-strand break damage and repair assessed by pulsed-field gel electrophoresis publication-title: Methods Mol. Biol. – volume: 18 start-page: 831 year: 2011 ident: 10.1016/j.celrep.2012.11.018_bib9 article-title: KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2077 – volume: 9 start-page: 2361 year: 1998 ident: 10.1016/j.celrep.2012.11.018_bib8 article-title: Characterization of ATM expression, localization, and associated DNA-dependent protein kinase activity publication-title: Mol. Biol. Cell doi: 10.1091/mbc.9.9.2361 – ident: 10.1016/j.celrep.2012.11.018_bib49 doi: 10.1038/sj.onc.1209172 – volume: 59 start-page: 113 year: 2005 ident: 10.1016/j.celrep.2012.11.018_bib35 article-title: Dynamic view of the nuclear matrix publication-title: Acta Med. Okayama – volume: 8 start-page: 1201 year: 1999 ident: 10.1016/j.celrep.2012.11.018_bib14 article-title: New gene family defined by MORC, a nuclear protein required for mouse spermatogenesis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.7.1201 – ident: 10.1016/j.celrep.2012.11.018_bib45 doi: 10.1074/jbc.M111.314088 – ident: 10.1016/j.celrep.2012.11.018_bib50 doi: 10.1038/27699 – volume: 296 start-page: 922 year: 2002 ident: 10.1016/j.celrep.2012.11.018_bib5 article-title: Genomic instability in mice lacking histone H2AX publication-title: Science doi: 10.1126/science.1069398 – volume: 1 start-page: 2315 year: 2006 ident: 10.1016/j.celrep.2012.11.018_bib7 article-title: Clonogenic assay of cells in vitro publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.339 – volume: 18 start-page: 831 year: 2011 ident: 10.1016/j.celrep.2012.11.018_bib10 article-title: KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2077 – volume: 97 start-page: 1038 year: 2000 ident: 10.1016/j.celrep.2012.11.018_bib3 article-title: A family of chromatin remodeling factors related to Williams syndrome transcription factor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.3.1038 – volume: 10 start-page: 629 year: 2009 ident: 10.1016/j.celrep.2012.11.018_bib34 article-title: Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells publication-title: EMBO Rep. doi: 10.1038/embor.2009.60 – ident: 10.1016/j.celrep.2012.11.018_bib48 doi: 10.1038/ncb1982 – volume: 46 start-page: 722 year: 2012 ident: 10.1016/j.celrep.2012.11.018_bib31 article-title: Prime, repair, restore: the active role of chromatin in the DNA damage response publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.002 – volume: 134 start-page: 231 year: 2008 ident: 10.1016/j.celrep.2012.11.018_bib6 article-title: Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair publication-title: Cell doi: 10.1016/j.cell.2008.06.035 – ident: 10.1016/j.celrep.2012.11.018_bib46 doi: 10.1021/bi060043d – volume: 15 start-page: 159 year: 1997 ident: 10.1016/j.celrep.2012.11.018_bib38 article-title: Recombinant ATM protein complements the cellular A-T phenotype publication-title: Oncogene doi: 10.1038/sj.onc.1201319 – volume: 3 start-page: 8 year: 2008 ident: 10.1016/j.celrep.2012.11.018_bib15 article-title: MutL homologs in restriction-modification systems and the origin of eukaryotic MORC ATPases publication-title: Biol. Direct doi: 10.1186/1745-6150-3-8 – volume: 128 start-page: 721 year: 2007 ident: 10.1016/j.celrep.2012.11.018_bib12 article-title: Chromatin challenges during DNA replication and repair publication-title: Cell doi: 10.1016/j.cell.2007.01.030 – volume: 106 start-page: 17493 year: 2009 ident: 10.1016/j.celrep.2012.11.018_bib20 article-title: E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908027106 – reference: 11673449 - J Biol Chem. 2001 Dec 21;276(51):47759-62 – reference: 9836640 - Science. 1998 Dec 4;282(5395):1893-7 – reference: 10458604 - Cell. 1999 Aug 6;98(3):285-94 – reference: 19424290 - Nat Rev Mol Cell Biol. 2009 Jun;10(6):373-84 – reference: 17949725 - Int J Parasitol. 2008 Jan;38(1):1-31 – reference: 16155636 - Acta Med Okayama. 2005 Aug;59(4):113-20 – reference: 17406208 - Nat Protoc. 2006;1(1):23-9 – reference: 16932743 - EMBO J. 2006 Sep 6;25(17):3986-97 – reference: 18346280 - Biol Direct. 2008;3:8 – reference: 9488723 - J Biol Chem. 1998 Mar 6;273(10):5858-68 – reference: 18657500 - Mol Cell. 2008 Jul 25;31(2):167-77 – reference: 10369865 - Hum Mol Genet. 1999 Jul;8(7):1201-7 – reference: 22749398 - Mol Cell. 2012 Jun 29;46(6):722-34 – reference: 15502217 - Methods Mol Biol. 2005;291:121-9 – reference: 17406473 - Nat Protoc. 2006;1(5):2315-9 – reference: 9244351 - Oncogene. 1997 Jul 10;15(2):159-67 – reference: 10655480 - Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1038-43 – reference: 11934988 - Science. 2002 May 3;296(5569):922-7 – reference: 21642969 - Nat Struct Mol Biol. 2011 Jul;18(7):831-9 – reference: 15574327 - Mol Cell. 2004 Dec 3;16(5):715-24 – reference: 17320375 - Curr Opin Genet Dev. 2007 Apr;17(2):126-31 – reference: 10399912 - Cell. 1999 Jun 25;97(7):833-42 – reference: 19444312 - EMBO Rep. 2009 Jun;10(6):629-35 – reference: 9725899 - Mol Biol Cell. 1998 Sep;9(9):2361-74 – reference: 10959836 - Curr Biol. 2000 Jul 27-Aug 10;10(15):886-95 – reference: 16723992 - Nat Rev Cancer. 2006 Jun;6(6):459-71 – reference: 15059890 - Cancer Res. 2004 Apr 1;64(7):2390-6 – reference: 12824179 - J Biol Chem. 2003 Sep 5;278(36):34475-82 – reference: 16862143 - Nat Cell Biol. 2006 Aug;8(8):870-6 – reference: 12198493 - Nat Cell Biol. 2002 Sep;4(9):681-90 – reference: 18662539 - Cell. 2008 Jul 25;134(2):231-43 – reference: 17320509 - Cell. 2007 Feb 23;128(4):721-33 – reference: 19805145 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17493-8 – reference: 22952011 - Nat Rev Cancer. 2012 Oct;12(10):709-20 – reference: 12612651 - Nat Rev Cancer. 2003 Mar;3(3):155-68 |
SSID | ssj0000601194 |
Score | 2.3767445 |
Snippet | Chromatin dynamics play a central role in maintaining genome integrity, but how this is achieved remains largely unknown. Here, we report that microrchidia... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1657 |
SubjectTerms | Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Adenosinetriphosphatase Amino Acid Substitution Chromatin Assembly and Disassembly DNA Damage DNA Repair - genetics HeLa Cells Humans Mutation, Missense p21-Activated Kinases - genetics p21-Activated Kinases - metabolism Phosphorylation - genetics Protein Structure, Tertiary Transcription Factors - genetics Transcription Factors - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NrxIxFG0MiYkb4_MTfZqauHQU2ul0WCJI0AQkCAm7ptNpAYMzhI_k8e_fve0MwYWycUsu89F723OauT2HkA-wj2WZ6Igo0WhhJlsi0oDTEWvbNEmMgRrC08ijcTKcx98XYnFh9YU9YUEeOAzc51jDDLAMUAa4s265VEgANW6dFmjp7XU-AfMuNlNhDUYtM_ykzBj2bLFY1ufmfHOXsZudRbnKNvuEIp7o-XGBS16-_w94-hv99DA0eEIeV_yRdsNz35AHtnhKHgZHydMzcjf6Me0x-nO9RIJdLOm3Wg5iTyercr9dlbtTaH-L-pX_7eEj7c4mgGZRrzxuNzanqJiLTLagU-utcvBK4UAjBcJI--Mu7evfsBRBgO-xtc_JfPB11htGlblCZITkaEHPYWhdRwPjaOVMiiwG7DcmBkhLtXOpNQIWIAPjnTuBqkBZanjWzozmuTaSvyCNoizsK0Jly0jhOs44VAEWQrs4yTpc8BzWA21lk_B6aJWplMfRAGOj6hazXyokRGFCYFOiICFNEp3_tQ3KG1fiv2DWzrGom-1_gGpSVTWpa9XUJLLOuaooSKAWcKn1ldu_r0tEwQzFzy66sOVxr9rAELnn0v-KAeaLjAFiXob6Or8IcF7cZcrX_-MF35BH-NDYkMPkLWkcdkf7FmjVIXvnZ9A97UwZSg priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La-MwEBalUOil7KPbpt0tWuixamLLspxjHlu6hT7IA3ITsiylKakd8oDtv98Z2Q6bw25hjzFjx_KMZz4lM99HyCXsY8NUtAWLNUqYyZZgGuo0CwObxLExEEM4jXz_EN-Oo7uJmOyRXj0Lg22VVe4vc7rP1tWRZvU0m4vZrDkMYe8C1UkG6GioypCHeZT4Ib5Jd_s7C_KNBF4PEe0ZnlBP0Pk2L2PnS4vElUF4jXSeqP7xR4XyRP47hepvQNQXpJsP5KhCkrRT3uxHsmfzT-Sg1JZ8-0x-3T8OeiEdzqYItfMp_VkTQ6zo03OxWjwXy7eyEY71KyXc9RXtjJ6grrFesVnMbUaROxcxbU4H1ovm4JXK0UYK0JH2Hzq0r18hKYGB77a1x2R882PUu2WVzAIzQnIUo-eRlq6tAXu0slCKNAIUYEwExS3RziXWCEhFJhEycwL5gdLE8DRIjeaZNpJ_Ift5kdtTQmXLSOHazjjkAxZCuyhO21zwDDKDtrJBeP1olak4yFEKY67qZrMXVTpEoUNge6LAIQ3CtmctSg6Od-y76LWtLTJo-wPFcqqqEFKw5JjbENAL7Ml0y8HqACxx67RAqXjeILL2udoJSLjU7J2v_16HiIJ3Ff-A0bktNisVAFbkHlX_ywYwMGIHsDkp42u7EEC_uN-UZ_99b-fkED9hP04ov5L99XJjvwGqWqcX_rX5DYEMHD8 priority: 102 providerName: Elsevier |
Title | MORC2 Signaling Integrates Phosphorylation-Dependent, ATPase-Coupled Chromatin Remodeling during the DNA Damage Response |
URI | https://dx.doi.org/10.1016/j.celrep.2012.11.018 https://www.ncbi.nlm.nih.gov/pubmed/23260667 https://www.proquest.com/docview/1273300019 https://www.proquest.com/docview/1285100179 https://doaj.org/article/4a763e2521174a0f8577823efa540073 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT-MwELWgCIkLWj63sCAjcSSoieM4PaBVy4IAqYAQlXqzHMcGViUpaSvRf78zcVKEtIVDc2gnaZ2Z8Tw34_cIOYZ1bJDwNvcihRJmosU9BXXaC3wTR5HWEEO4G7l3G131w5sBHyyRWrO1uoHj_y7tUE-qXwxP399mvyHhzz56tbQZFgbZJ_3gFDk5_XiZrEBtEpiqvQrwu7kZOc7Ceg_dgpORIRhgDfZ_fipXJav_p6q1CJWW1enyB1mvYCXtuDjYIEsm2ySrTmhytkXee3cP5wHFZg2F-8_pnCViTEfP-Rhexcx1xXm1LO7khHYe76HIeTqfjoYmpfq5yBHgZrQwpYIOXsntc6SAI-mf2w5N1SvMUGBQtt6abdK_vHg8v_IqzQVPc8FQmZ6FSti2AiDSSgPBkxAggdYhVLpYWRsbzWFe0jEXqeVIFpTEmiV-ohVLlRZshzSyPDM_CRUtLbhtW22RHJhzZcMoaTPOUpgmlBFNwupbK3VFSI66GENZd579lc43En0DaxUJvmkSb37WyBFyfGPfRa_NbZFOu3wjL55klZ0ShhwxEwCUgQWaalkYHSAnZqziqBvPmkTUPpcVMnGIAy718s3XH9UhIiFx8WmMykw-HUsfgCMrIfZXNgCIEUiAza6Lr_lA6gjdW_jJPlnDX4LNN4H4RRqTYmoOAEJNksPyrwc4Xg-6h2WG_AMNqRhw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcY07S9oH2vsA8j8TivTRzH6WNph9qNFgRF6pvlOHbpVJKqHxL899w5SQUPG9JeUzuJc5e736Xn34-QI6hjw1S0BYs1SpjJlmAa8jQLA5vEsTHgQ7gbeTiK-1fRr4mY7JBuvRcG2yqr2F_GdB-tqyPN6mk2F7NZ8zKE2gWykwzQ0JCVn5HncBWJ-g2DyfH2QwsSjgReEBEnMJxRb6HzfV7GzpcWmSuD8AfyeaL8x4MU5Zn8H2WqvyFRn5FOXpO9CkrSTnm3b8iOzd-SF6W45N07cjs8u-iG9HI2RaydT-mgZoZY0fPrYrW4LpZ3ZScc61VSuOvvtDM-h8TGusVmMbcZRfJcBLU5vbBeNQfPVO5tpIAdaW_UoT19A1EJBvh2W_ueXJ38HHf7rNJZYEZIjmr0PNLStTWAj1YWSpFGAAOMiSC7Jdq5xBoBscgkQmZOIEFQmhieBqnRPNNG8g9kNy9y-4lQ2TJSuLYzDgmBhdAuitM2FzyD0KCtbBBeP1plKhJy1MKYq7rb7I8qDaLQIFCfKDBIg7DtrEVJwvHE-GO02nYsUmj7A8VyqiofUrDkmNsQ4AsUZbrlYHWAlrh1WqBWPG8QWdtcPfJIONXsicsf1i6i4GXFf2B0bovNSgUAFrmH1f8aAyAYwQOM-Vj613YhAH-x4JT7_31v38jL_nh4qk4Ho98H5BX-gs05ofxMdtfLjf0CEGudfvWv0D3F7h9e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MORC2+signaling+integrates+phosphorylation-dependent%2C+ATPase-coupled+chromatin+remodeling+during+the+DNA+damage+response&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Li%2C+Da-Qiang&rft.au=Nair%2C+Sujit+S&rft.au=Ohshiro%2C+Kazufumi&rft.au=Kumar%2C+Anupam&rft.date=2012-12-27&rft.eissn=2211-1247&rft.volume=2&rft.issue=6&rft.spage=1657&rft_id=info:doi/10.1016%2Fj.celrep.2012.11.018&rft_id=info%3Apmid%2F23260667&rft.externalDocID=23260667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |