Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes
Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI)...
Saved in:
Published in | Clinical epidemiology Vol. 7; no. default; pp. 91 - 106 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New Zealand
Dove Medical Press Limited
01.01.2015
Taylor & Francis Ltd Dove Medical Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges.
In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example.
Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. |
---|---|
AbstractList | Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges.OBJECTIVEMissing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges.In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example.METHODSIn a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example.Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate.CONCLUSIONIgnoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. Methods: In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Conclusion: Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. Keywords: PCI, SF-12, nonparticipants, nonrespondents Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. Methods: In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Conclusion: Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. Karin Biering,1 Niels Henrik Hjollund,2,3 Morten Frydenberg4 1Danish Ramazzini Centre, Department of Occupational Medicine - University Research Clinic, Hospital West Jutland, Herning, Denmark; 2WestChronic, Regional Hospital West Jutland, Herning, Denmark; 3Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; 4Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. Methods: In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Conclusion: Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. Keywords: PCI, SF-12, nonparticipants, nonrespondents Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. |
Audience | Academic |
Author | Hjollund, Niels Henrik Frydenberg, Morten Biering, Karin |
AuthorAffiliation | 2 WestChronic, Regional Hospital West Jutland, Herning, Denmark 3 Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark 4 Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark 1 Danish Ramazzini Centre, Department of Occupational Medicine – University Research Clinic, Hospital West Jutland, Herning, Denmark |
AuthorAffiliation_xml | – name: 2 WestChronic, Regional Hospital West Jutland, Herning, Denmark – name: 1 Danish Ramazzini Centre, Department of Occupational Medicine – University Research Clinic, Hospital West Jutland, Herning, Denmark – name: 3 Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark – name: 4 Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark |
Author_xml | – sequence: 1 givenname: Karin surname: Biering fullname: Biering, Karin – sequence: 2 givenname: Niels Henrik surname: Hjollund fullname: Hjollund, Niels Henrik – sequence: 3 givenname: Morten surname: Frydenberg fullname: Frydenberg, Morten |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25653557$$D View this record in MEDLINE/PubMed |
BookMark | eNptkm9r2zAQxs3oWLuur_Z-GAZjMJLpn-34zaCEbisENtj6WijSOVGwJU-SN_oh-p13jtuSlNoYi7vfPdKdntfZifMOsuwtJXNGRfV5ubr6Of9VMSaqF9kZpVU9o1zUJwfr0-wixh3Bh3NaVeRVdsqKsuBFUZ1ldzfRuk3eDW2yfQu57fohqWS9y5PPDag2_2fTNu9s3INGJZUrZ3KVUrB7zrq89W5j02CsQz6OC4hTXYAeVAKTd6DiEDDsm7zHDcClGSZ9GJN-SNp3EN9kLxvVRri4_59nN1-vfi-_z1Y_vl0vL1czXVQ8YVdMGQrakGrNC9PUCy3qRbPQRpuyLklDKEOGcyVqYgwjpChVLRaNICXSnJ9n15Ou8Won-2A7FW6lV1buAz5spArJ6hZkswCiDDBiyrUAw-o1UYJRDYIIDKxR68uk1Q_rDozGxoJqj0SPM85u5cb_lYLjhZQVCny8Fwj-zwAxSRy2hrZVDvwQJS0LJgR-47nfP0F3fgg49CgZWoDTmuDFPlIbhQ1Y13jcV4-i8hKFSlJWe635MxS-Bjqr0WWNxfhRwYeDgi1aI22jb4fRBPEYfHc4kcdRPLgOAToBOvgYAzRS28l0eATbSkrkaG45mltO5saaT09qHmSfo_8DEr368w |
CitedBy_id | crossref_primary_10_1186_s13054_020_03275_w crossref_primary_10_1016_j_outlook_2023_102001 crossref_primary_10_1177_1073191120952886 crossref_primary_10_1177_1087054720959711 crossref_primary_10_1016_j_jsams_2015_12_004 crossref_primary_10_1136_thoraxjnl_2018_212996 crossref_primary_10_1177_21582440231153849 crossref_primary_10_1016_j_jad_2020_08_046 crossref_primary_10_1016_j_socscimed_2022_115543 crossref_primary_10_1111_jar_13327 crossref_primary_10_1016_j_jcrc_2019_10_016 crossref_primary_10_1002_eat_24314 crossref_primary_10_1186_s12889_018_6115_0 crossref_primary_10_1007_s10072_024_07649_8 crossref_primary_10_1186_s12885_022_10089_2 crossref_primary_10_1177_2059799118770996 crossref_primary_10_1093_geronb_gbab004 crossref_primary_10_3390_ijerph19116813 crossref_primary_10_1007_s10488_024_01393_z crossref_primary_10_1016_j_eurtel_2015_09_001 crossref_primary_10_1186_s13104_018_3228_6 crossref_primary_10_1016_j_lanepe_2024_100972 crossref_primary_10_3171_2021_1_SPINE201958 crossref_primary_10_1016_j_semarthrit_2022_152109 crossref_primary_10_1177_0894845319826251 crossref_primary_10_1007_s40615_016_0239_7 crossref_primary_10_1016_j_lanwpc_2020_100087 crossref_primary_10_1097_CCM_0000000000005936 crossref_primary_10_1080_09500693_2018_1525621 crossref_primary_10_1200_JCO_23_00309 crossref_primary_10_1111_ejh_13175 crossref_primary_10_1016_j_envres_2020_110264 crossref_primary_10_1016_j_clnu_2023_09_004 crossref_primary_10_1371_journal_pone_0253773 crossref_primary_10_1016_j_jss_2017_11_058 crossref_primary_10_1093_swr_svad001 crossref_primary_10_1007_s10926_015_9585_2 crossref_primary_10_1007_s10926_015_9587_0 crossref_primary_10_1177_0004867419827648 crossref_primary_10_1007_s11136_017_1559_8 crossref_primary_10_1002_mds_26885 crossref_primary_10_1080_00324728_2018_1458993 crossref_primary_10_1212_WNL_0000000000004241 crossref_primary_10_1097_MLR_0000000000001298 crossref_primary_10_1111_ecc_13501 crossref_primary_10_4236_am_2016_710093 crossref_primary_10_1071_IB24025 crossref_primary_10_1111_ans_13419 crossref_primary_10_1016_j_genhosppsych_2018_10_001 crossref_primary_10_1016_j_jtcvs_2020_02_084 crossref_primary_10_1017_S1368980016003669 crossref_primary_10_1111_cgf_13662 crossref_primary_10_1186_s13063_018_2962_3 crossref_primary_10_1016_j_jval_2018_06_007 crossref_primary_10_1017_neu_2020_31 crossref_primary_10_1177_0165025419830238 crossref_primary_10_1245_s10434_023_14345_y crossref_primary_10_1080_01639625_2015_1060804 crossref_primary_10_1186_s12874_018_0548_0 crossref_primary_10_1016_j_cjco_2021_04_006 crossref_primary_10_1371_journal_pone_0308376 crossref_primary_10_1007_s11136_021_03037_3 crossref_primary_10_2196_jmir_8850 crossref_primary_10_3389_fneur_2017_00551 crossref_primary_10_1007_s11136_015_1184_3 crossref_primary_10_1111_dar_12573 crossref_primary_10_1016_j_ijnurstu_2024_104893 crossref_primary_10_1186_s12955_019_1095_z crossref_primary_10_2196_45456 crossref_primary_10_1016_j_jdiacomp_2017_05_009 crossref_primary_10_1016_j_pdisas_2019_100016 crossref_primary_10_1080_02701367_2020_1724861 crossref_primary_10_1007_s11695_015_1911_4 crossref_primary_10_1111_jep_13376 crossref_primary_10_1111_jcpe_13114 crossref_primary_10_1136_bmjopen_2019_035613 crossref_primary_10_1007_s11764_019_00793_7 crossref_primary_10_4269_ajtmh_20_0002 crossref_primary_10_1097_j_pain_0000000000002619 crossref_primary_10_1186_s12877_024_05090_2 crossref_primary_10_3390_en12061177 crossref_primary_10_1186_s12885_020_07549_y crossref_primary_10_1080_0886571X_2024_2389041 crossref_primary_10_1111_jir_13021 crossref_primary_10_1002_hed_25684 crossref_primary_10_1016_j_psyneuen_2016_12_015 crossref_primary_10_1007_s11695_019_03885_6 crossref_primary_10_1093_ageing_afad067 crossref_primary_10_3310_hta23040 crossref_primary_10_1016_j_annemergmed_2016_10_014 crossref_primary_10_1007_s11136_019_02407_2 crossref_primary_10_1016_j_psychres_2016_06_041 crossref_primary_10_1186_s13011_017_0110_9 crossref_primary_10_1093_ageing_afaa034 crossref_primary_10_1017_S0033291722002112 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Dove Medical Press Limited 2015. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2015 Biering et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License 2015 |
Copyright_xml | – notice: COPYRIGHT 2015 Dove Medical Press Limited – notice: 2015. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2015 Biering et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License 2015 |
DBID | AAYXX CITATION NPM 3V. 7XB 8C1 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.2147/CLEP.S72247 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest research library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Public Health Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1179-1349 |
EndPage | 106 |
ExternalDocumentID | oai_doaj_org_article_f8e0ade20d6b4ed29b0a421ce404b4eb PMC4303367 A445606743 25653557 10_2147_CLEP_S72247 |
Genre | Journal Article |
GeographicLocations | Denmark Jutland Aarhus Denmark |
GeographicLocations_xml | – name: Denmark – name: Jutland – name: Aarhus Denmark |
GroupedDBID | --- 0YH 29B 2WC 53G 5VS 8C1 8G5 AAYXX ABUWG ADBBV ADRAZ AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ C1A CCPQU CITATION DIK DWQXO E3Z EBD FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HYE IAO IHR IHW IPNFZ ITC KQ8 M2O M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG RPM TDBHL TR2 UKHRP VDV NPM PJZUB PPXIY PMFND 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c573t-132ad1ecd07b35df98c498f8cdcd6960f01213233a490dd20056a948f406df933 |
IEDL.DBID | BENPR |
ISSN | 1179-1349 |
IngestDate | Wed Aug 27 01:17:01 EDT 2025 Thu Aug 21 18:23:25 EDT 2025 Mon Jul 21 11:25:48 EDT 2025 Fri Jul 25 05:55:09 EDT 2025 Tue Jun 17 21:32:33 EDT 2025 Tue Jun 10 20:12:22 EDT 2025 Thu May 22 21:11:26 EDT 2025 Mon Jul 21 05:51:50 EDT 2025 Tue Jul 01 02:28:38 EDT 2025 Thu Apr 24 23:05:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | default |
Keywords | SF-12 nonparticipants nonrespondents PCI |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-132ad1ecd07b35df98c498f8cdcd6960f01213233a490dd20056a948f406df933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2224319065?pq-origsite=%requestingapplication% |
PMID | 25653557 |
PQID | 2224319065 |
PQPubID | 3933188 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f8e0ade20d6b4ed29b0a421ce404b4eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_4303367 proquest_miscellaneous_1652445243 proquest_journals_2224319065 gale_infotracmisc_A445606743 gale_infotracacademiconefile_A445606743 gale_healthsolutions_A445606743 pubmed_primary_25653557 crossref_citationtrail_10_2147_CLEP_S72247 crossref_primary_10_2147_CLEP_S72247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New Zealand |
PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
PublicationTitle | Clinical epidemiology |
PublicationTitleAlternate | Clin Epidemiol |
PublicationYear | 2015 |
Publisher | Dove Medical Press Limited Taylor & Francis Ltd Dove Medical Press |
Publisher_xml | – name: Dove Medical Press Limited – name: Taylor & Francis Ltd – name: Dove Medical Press |
References | 15649666 - J Clin Epidemiol. 2005 Jan;58(1):13-9 20865111 - Clin Epidemiol. 2010 Aug 09;2:137-44 15960697 - Health Serv Res. 2005 Jun;40(3):905-21 18703470 - N Engl J Med. 2008 Aug 14;359(7):677-87 16980149 - J Clin Epidemiol. 2006 Oct;59(10):1087-91 11927199 - J Clin Epidemiol. 2002 Apr;55(4):329-37 17364907 - Exp Aging Res. 2007 Apr-Jun;33(2):187-203 19564179 - BMJ. 2009 Jun 29;338:b2393 20576672 - Clin Trials. 2010 Aug;7(4):333-42 1593914 - Med Care. 1992 Jun;30(6):473-83 21775345 - Scand J Public Health. 2011 Jul;39(7 Suppl):22-5 11864802 - J Clin Epidemiol. 2002 Mar;55(3):306-9 10421985 - Dan Med Bull. 1999 Jun;46(3):263-8 20687909 - BMC Med Res Methodol. 2010 Aug 05;10:71 23316735 - Exp Aging Res. 2013;39(1):27-43 21225900 - Stat Med. 2011 Feb 20;30(4):377-99 20119502 - Stat Sci. 2009;24(2):211 15680747 - J Clin Epidemiol. 2005 Feb;58(2):142-9 11458132 - Med Care. 2001 Jul;39(7):670-80 17852980 - Scand J Public Health. 2007;35(5):497-502 17001268 - Med Care. 2006 Oct;44(10):956-9 25506246 - Clin Epidemiol. 2014 Dec 03;6:441-9 15177275 - Ann Epidemiol. 2004 May;14(5):354-61 12965968 - Ann Intern Med. 2003 Sep 2;139(5 Pt 2):416-20 15841894 - Value Health. 2005 Jan-Feb;8(1):53-8 3558716 - J Chronic Dis. 1987;40(5):373-83 7829785 - J Am Coll Cardiol. 1995 Feb;25(2):333-41 12972846 - Med Care. 2003 Sep;41(9):1065-73 21967118 - Rehabil Psychol. 2011 Nov;56(4):267-88 11927198 - J Clin Epidemiol. 2002 Apr;55(4):319-28 |
References_xml | – reference: 15177275 - Ann Epidemiol. 2004 May;14(5):354-61 – reference: 15841894 - Value Health. 2005 Jan-Feb;8(1):53-8 – reference: 11927199 - J Clin Epidemiol. 2002 Apr;55(4):329-37 – reference: 12972846 - Med Care. 2003 Sep;41(9):1065-73 – reference: 19564179 - BMJ. 2009 Jun 29;338:b2393 – reference: 17852980 - Scand J Public Health. 2007;35(5):497-502 – reference: 23316735 - Exp Aging Res. 2013;39(1):27-43 – reference: 11458132 - Med Care. 2001 Jul;39(7):670-80 – reference: 11927198 - J Clin Epidemiol. 2002 Apr;55(4):319-28 – reference: 21225900 - Stat Med. 2011 Feb 20;30(4):377-99 – reference: 25506246 - Clin Epidemiol. 2014 Dec 03;6:441-9 – reference: 15680747 - J Clin Epidemiol. 2005 Feb;58(2):142-9 – reference: 10421985 - Dan Med Bull. 1999 Jun;46(3):263-8 – reference: 1593914 - Med Care. 1992 Jun;30(6):473-83 – reference: 20865111 - Clin Epidemiol. 2010 Aug 09;2:137-44 – reference: 16980149 - J Clin Epidemiol. 2006 Oct;59(10):1087-91 – reference: 11864802 - J Clin Epidemiol. 2002 Mar;55(3):306-9 – reference: 20576672 - Clin Trials. 2010 Aug;7(4):333-42 – reference: 21775345 - Scand J Public Health. 2011 Jul;39(7 Suppl):22-5 – reference: 20687909 - BMC Med Res Methodol. 2010 Aug 05;10:71 – reference: 15649666 - J Clin Epidemiol. 2005 Jan;58(1):13-9 – reference: 7829785 - J Am Coll Cardiol. 1995 Feb;25(2):333-41 – reference: 18703470 - N Engl J Med. 2008 Aug 14;359(7):677-87 – reference: 20119502 - Stat Sci. 2009;24(2):211 – reference: 12965968 - Ann Intern Med. 2003 Sep 2;139(5 Pt 2):416-20 – reference: 15960697 - Health Serv Res. 2005 Jun;40(3):905-21 – reference: 17001268 - Med Care. 2006 Oct;44(10):956-9 – reference: 17364907 - Exp Aging Res. 2007 Apr-Jun;33(2):187-203 – reference: 21967118 - Rehabil Psychol. 2011 Nov;56(4):267-88 – reference: 3558716 - J Chronic Dis. 1987;40(5):373-83 |
SSID | ssj0000331770 |
Score | 2.3750503 |
Snippet | Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies,... Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal... Karin Biering,1 Niels Henrik Hjollund,2,3 Morten Frydenberg4 1Danish Ramazzini Centre, Department of Occupational Medicine - University Research Clinic,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 91 |
SubjectTerms | Analysis Bias Cardiac patients Clinical medicine Clinical outcomes Comorbidity Confidence intervals Datasets Epidemiology Estimates Health aspects Hospitals Longitudinal studies Medical records Methodology Missing data Participation Patient outcomes Patients Public health Quality of life Sensitivity analysis Transluminal angioplasty Variables Within-subjects design |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp0ApbdKH26RRIVAouJGth-1jGhJCaUuhDeQmZD3oQmKH2Psz-p8zI3nNmhZ66WEv1mixNLMz32hH3xByLFoTPFN1rmRR58K3Nq8la3PJnCoKi5RumCh-_aYur8Tna3m91eoLa8ISPXDauJNQe2acL2FuK7wrm5YZURbWCybgQYveF2LeVjIVfTCHuBg7xSHlWY4cfOlyHrblOTn7cv79448Kole1CEeRtf9P37wVnJaFk1uR6OIpeTJBSHqaXv0ZeeS7PfI4nb_RdK1on_yOtQB0Uy9IV9i8IWqBjj11IEXxCJaCmqMgVopS0zlqxomen646etNjO6O1w9ZZdEglh2nevb8DL-4dvU2HjAPtA51IWvP0RwQM9usRLNoPz8nVxfnPs8t8ar2QW1lxbFBfGld461jVculCU1vR1KG2zjoFSU-IVHAl50Y0zDk8mlKmEXUAfADSnL8gO13f-VeEFtjLg9nKBcjMOLfGioD0o6UKqmStzMiHjQa0nXjJsT3GjYb8BNWlUV06qSsjx7PwXaLj-LvYJ1TlLIIc2vEBWJaeLEv_y7IycoSGoNOF1NkT6FMBoJPh5Y2MvI8S6AvglWFp6UoDLBxZtRaSBwtJUK5dDm-MTU8-ZNCA3ADdNYARM_JuHsaZWBfX-X496EJJwGfwga94mWxzXjSAWQloEjajWljtYleWI93qV2QYFwBsuKpe_49tfEN2AWTKdGx1QHbG-7U_BCA3tm_jb_YBt_RHkg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_n-SKI-G311AgHgtAzbfPRPoicxx2HeCLowr2FNh-6sLbntgv6R_g_O5O0y1UPH_almSxNZpL5TTr5DSH7vKm9Y7JMpcjKlLvGpKVgTSqYlVlmkNINA8Wzj_J0wd-fi_MdMhXjHCewvzK0w3pSi_Xq4OePX29hwb_BNOaMq9dHH44_HXxW4IzUNXIdXJLCFXo24vywJRfgJhWL9_P-7jPzSIG4_9_t-ZJ_mudOXnJGJ7fJrRFF0sOo9jtkx7V3yc14BEfjzaJ75HdIB6BTyiBdYv2GoAg6dNSCFMVTWAqaDoKYLErr1tJ6GBn66bKlqw4rGm0sVs-ifcw6jP3W7gI2cmfp93jO2NPO05GnNY3fIqCx2wxg1K6_TxYnx1-OTtOx-kJqhCqwRn1e28wZy1RTCOur0vCq9KWxxkqIe3xgg8uLouYVsxZPp2Rd8dIDRADponhAdtuudY8IzbCcBzPKegjOisLUhntkIM2llzlrREJeTRrQZqQmxwoZKw0hCqpLo7p0VFdC9rfCF5GR42qxd6jKrQjSaIcH3fqrHlel9qVjtXU5GGbDnc2rhtU8z4zjjMODJiHP0RB0vJO63Qz0IQfcyfD-RkJeBgk0UHhlGFq81QADR2KtmeTeTBKUa-bNk7HpaRVoAG8A8CqAiQl5sW3Gnpga17pu0-tMCoBo8IO_eBhtcztowLMCACVMhppZ7WxW5i3t8lsgGeeAbQqpHv__tZ6QG4AgRTyT2iO7w3rjngJKG5pnYQX-AVzVPcg priority: 102 providerName: Scholars Portal |
Title | Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25653557 https://www.proquest.com/docview/2224319065 https://www.proquest.com/docview/1652445243 https://pubmed.ncbi.nlm.nih.gov/PMC4303367 https://doaj.org/article/f8e0ade20d6b4ed29b0a421ce404b4eb |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9s-yKI-O3Veq5QEITYTbLZbJ6kPa4cYktRC_VpSfajHtTkesn9Gf7PzmT3YoPiQ_KQnYTszmS-MvsbQg55VTrLhIxEFsuI20pHMmNVlDEj4lgjpBsGimfnYnHJP11lVyHh1oayyq1O7BW1aTTmyI_AjoGtK8BiflzdRtg1Cv-uhhYaO2QPVLCE4GvvZH5-8WXIsrAU7GPO_MY8bMlzNPs8v_jwNYen5SNT1CP2_62X7ximcdHkHSt0-og8DO4jPfb8fkzu2foJeeBzb9RvKXpKfvV1AHRbK0iX2Lih5wDtGmqAimL6lQKLe0KsEqVlbWjZBWh-uqzpTYOtjDYG22bR1pcb-vvWdgUa3Br60ycYW9o4GgBaI_8TAgabTQcra9tn5PJ0_m22iELbhUhneYrN6ZPSxFYblldpZlwhNS-kk9poIyDgcT0MXJKmJS-YMZiWEmXBpQPfAKjT9DnZrZvaviQ0xj4eTOfGQVSWprrU3CH0aCKcSFiVTcj7LQeUDpjk2BrjRkFsguxSyC7l2TUhhwPxykNx_JvsBFk5kCB-dn-hWV-r8DkqJy0rjU1AIituTVJUrORJrC1nHC5UE_IGBUH5zaiDFlDHHBxOhhs3JuRdT4F6AF4Zpua3M8DEEVFrRHkwogTm6vHwVthU0B-t-iPtE_J2GMY7sSauts2mVbHIwDeDAx7xwsvmMGlwZDPwJGEx8pHUjlZlPFIvf_To4hycmlTk-_9_rVfkPriOmU9GHZDdbr2xr8E966op2WHfF3CWs3gavsdpn-qA8xmXvwGDmECu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_K9UFBxG9Tq12hIgixm2Tz9SDS1itXez2KttC3bbIfetAm5yWH-Ef4r_g3OpNNYoPiWx_ykp2E3czszOxkZn6EbPM8M5pFiRuFXuJynUs3CVnuhkxFniexpRseFI9n0eSMfzwPz9fIr64WBtMqO53YKGpVSoyR74AdA1uXgsV8v_jmImoU_l3tIDSsWBzpH9_hyFa9O_wA_H3l-wfj0_2J26IKuDKMA8Re9zPlaalYnAehMmkieZqYRCqpIvDnTdPlzA-CjKdMKYy6RFnKEwOmD6gxAAoqf50HcJQZkfW98ezkUx_VYQHY45jZQkCEANrZn45P3n6OYfbxwPQ1CAF_24FrhnCYpHnN6h3cI3dbd5XuWvm6T9Z08YDcsbE-akuYHpKfTd4B7XIT6RyBIhqO07qkCqgohnspiFRDiFmpNCsUzeoWCoDOC3pZInTSSiFMF61seqN9bqkXYDG0olc2oFnR0tC2Iaxrf3rAYLmqgZO6ekTOboQhj8moKAv9lFAPcUOYjJWBU2AQyExyg61O_chEPstDh7zpOCBk2wMdoTguBZyFkF0C2SUsuxyy3RMvbOuPf5PtISt7EuzX3dwol19Eu_2FSTTLlPZhB-RcKz_NWcZ9T2rOONzIHbKFgiBs8WuvdcQuBweXYaGIQ143FKh3YMqwNFs-AQvHDl4Dys0BJTBXDoc7YROtvqrEn93lkJf9MD6JOXiFLleV8KIQfEG44BVPrGz2iwbHOQTPFT5GPJDawVcZjhTzr003cw5OVBDFG_-f1ha5NTk9norp4ezoGbkNbmtoA2GbZFQvV_o5uIZ1_qLdj5Rc3LQK-A2Y83kB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KBRFEvJta7QgVQYg7SSa3B5G67dLaWgpa6Ns0mYsutMm6ySL-CP-Qv85zZpLYoPjWh33JnCyZnOucnHM-QrZ5WRjNksxP4iDzuS6ln8Ws9GOmkiCQONIND4ofj5P9U_7hLD5bI7_6Xhgsq-xtojXUqpaYI5-AHwNfl4PHnJiuLOJkd_Zu8c1HBCn80trDaTgROdQ_vsPxrXl7sAu8fhmGs73P032_QxjwZZxGiMMeFirQUrG0jGJl8kzyPDOZVFIlENsbO_EsjKKC50wpzMAkRc4zA24QqDEZCub_RhqBn8Uu9Wkw5HdYBJ45Za4lEMGAJtOjvZM3n1LYRzpyghYr4G-PcMUljss1r_i_2V1ypwtc6Y6TtHtkTVf3yW2X9aOumekB-WkrEGhfpUjnCBlheU_bmiqgopj4pSBclhDrU2lRKVq0HSgAnVf0okYQpZVCwC7auEJHd99SL8B3aEUvXWqzobWh3WhY333-gMV61QJPdfOQnF4LOx6R9aqu9BNCA0QQYTJVBs6DUSQLyQ0OPQ0Tk4SsjD3yuueAkN00dATluBBwKkJ2CWSXcOzyyPZAvHBDQP5N9h5ZOZDg5G57oV5-EZ0hECbTrFA6BF0ouVZhXrKCh4HUnHG4UHpkCwVBuDbYwf6IHQ6hLsOWEY-8shRogeCRYWuukQI2jrO8RpSbI0pgrhwv98ImOsvViD965pEXwzLeidV4la5XjQiSGKJC-MFfPHayOWwaQugYYlh4GelIakdvZbxSzb_aueYcwqkoSTf-_1hb5CYovjg6OD58Sm5B_Bq7jNgmWW-XK_0MYsS2fG6VkZLz69b-3262e6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+multiple+imputation+to+deal+with+missing+data+and+attrition+in+longitudinal+studies+with+repeated+measures+of+patient-reported+outcomes&rft.jtitle=Clinical+epidemiology&rft.au=Biering%2C+Karin&rft.au=Hjollund%2C+Niels+Henrik&rft.au=Frydenberg%2C+Morten&rft.date=2015-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=1179-1349&rft.volume=7&rft.spage=91&rft_id=info:doi/10.2147%2FCLEP.S72247&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon |