Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes

Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI)...

Full description

Saved in:
Bibliographic Details
Published inClinical epidemiology Vol. 7; no. default; pp. 91 - 106
Main Authors Biering, Karin, Hjollund, Niels Henrik, Frydenberg, Morten
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2015
Taylor & Francis Ltd
Dove Medical Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate.
AbstractList Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges.OBJECTIVEMissing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges.In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example.METHODSIn a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example.Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate.CONCLUSIONIgnoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate.
Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. Methods: In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Conclusion: Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. Keywords: PCI, SF-12, nonparticipants, nonrespondents
Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. Methods: In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Conclusion: Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate.
Karin Biering,1 Niels Henrik Hjollund,2,3 Morten Frydenberg4 1Danish Ramazzini Centre, Department of Occupational Medicine - University Research Clinic, Hospital West Jutland, Herning, Denmark; 2WestChronic, Regional Hospital West Jutland, Herning, Denmark; 3Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark; 4Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. Methods: In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Conclusion: Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate. Keywords: PCI, SF-12, nonparticipants, nonrespondents
Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies, special problems relate to attrition and death during follow-up. We describe a methodological approach for the use of multiple imputation (MI) to meet these challenges. In a cohort of patients treated with percutaneous coronary intervention followed with use of repetitive questionnaires and information from national registers over 3 years, only 417 out of 1,726 patients had complete data on all measure points and covariates. We suggest strategies for use of MI and different methods for dealing with death along with sensitivity analysis of deviations from the assumption of missing at random, all with the use of standard statistical software. The Mental Component Summary from Short Form 12-item survey was used as an example. Ignoring missing data may cause bias of unknown size and direction in longitudinal studies. We have illustrated that MI is a feasible method to try to deal with bias due to missing data in longitudinal studies, including attrition and nonresponse, and should be considered in combination with analysis of sensitivity in longitudinal studies. How to handle dropout due to death is still open for debate.
Audience Academic
Author Hjollund, Niels Henrik
Frydenberg, Morten
Biering, Karin
AuthorAffiliation 2 WestChronic, Regional Hospital West Jutland, Herning, Denmark
3 Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
4 Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
1 Danish Ramazzini Centre, Department of Occupational Medicine – University Research Clinic, Hospital West Jutland, Herning, Denmark
AuthorAffiliation_xml – name: 2 WestChronic, Regional Hospital West Jutland, Herning, Denmark
– name: 1 Danish Ramazzini Centre, Department of Occupational Medicine – University Research Clinic, Hospital West Jutland, Herning, Denmark
– name: 3 Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
– name: 4 Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark
Author_xml – sequence: 1
  givenname: Karin
  surname: Biering
  fullname: Biering, Karin
– sequence: 2
  givenname: Niels Henrik
  surname: Hjollund
  fullname: Hjollund, Niels Henrik
– sequence: 3
  givenname: Morten
  surname: Frydenberg
  fullname: Frydenberg, Morten
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25653557$$D View this record in MEDLINE/PubMed
BookMark eNptkm9r2zAQxs3oWLuur_Z-GAZjMJLpn-34zaCEbisENtj6WijSOVGwJU-SN_oh-p13jtuSlNoYi7vfPdKdntfZifMOsuwtJXNGRfV5ubr6Of9VMSaqF9kZpVU9o1zUJwfr0-wixh3Bh3NaVeRVdsqKsuBFUZ1ldzfRuk3eDW2yfQu57fohqWS9y5PPDag2_2fTNu9s3INGJZUrZ3KVUrB7zrq89W5j02CsQz6OC4hTXYAeVAKTd6DiEDDsm7zHDcClGSZ9GJN-SNp3EN9kLxvVRri4_59nN1-vfi-_z1Y_vl0vL1czXVQ8YVdMGQrakGrNC9PUCy3qRbPQRpuyLklDKEOGcyVqYgwjpChVLRaNICXSnJ9n15Ou8Won-2A7FW6lV1buAz5spArJ6hZkswCiDDBiyrUAw-o1UYJRDYIIDKxR68uk1Q_rDozGxoJqj0SPM85u5cb_lYLjhZQVCny8Fwj-zwAxSRy2hrZVDvwQJS0LJgR-47nfP0F3fgg49CgZWoDTmuDFPlIbhQ1Y13jcV4-i8hKFSlJWe635MxS-Bjqr0WWNxfhRwYeDgi1aI22jb4fRBPEYfHc4kcdRPLgOAToBOvgYAzRS28l0eATbSkrkaG45mltO5saaT09qHmSfo_8DEr368w
CitedBy_id crossref_primary_10_1186_s13054_020_03275_w
crossref_primary_10_1016_j_outlook_2023_102001
crossref_primary_10_1177_1073191120952886
crossref_primary_10_1177_1087054720959711
crossref_primary_10_1016_j_jsams_2015_12_004
crossref_primary_10_1136_thoraxjnl_2018_212996
crossref_primary_10_1177_21582440231153849
crossref_primary_10_1016_j_jad_2020_08_046
crossref_primary_10_1016_j_socscimed_2022_115543
crossref_primary_10_1111_jar_13327
crossref_primary_10_1016_j_jcrc_2019_10_016
crossref_primary_10_1002_eat_24314
crossref_primary_10_1186_s12889_018_6115_0
crossref_primary_10_1007_s10072_024_07649_8
crossref_primary_10_1186_s12885_022_10089_2
crossref_primary_10_1177_2059799118770996
crossref_primary_10_1093_geronb_gbab004
crossref_primary_10_3390_ijerph19116813
crossref_primary_10_1007_s10488_024_01393_z
crossref_primary_10_1016_j_eurtel_2015_09_001
crossref_primary_10_1186_s13104_018_3228_6
crossref_primary_10_1016_j_lanepe_2024_100972
crossref_primary_10_3171_2021_1_SPINE201958
crossref_primary_10_1016_j_semarthrit_2022_152109
crossref_primary_10_1177_0894845319826251
crossref_primary_10_1007_s40615_016_0239_7
crossref_primary_10_1016_j_lanwpc_2020_100087
crossref_primary_10_1097_CCM_0000000000005936
crossref_primary_10_1080_09500693_2018_1525621
crossref_primary_10_1200_JCO_23_00309
crossref_primary_10_1111_ejh_13175
crossref_primary_10_1016_j_envres_2020_110264
crossref_primary_10_1016_j_clnu_2023_09_004
crossref_primary_10_1371_journal_pone_0253773
crossref_primary_10_1016_j_jss_2017_11_058
crossref_primary_10_1093_swr_svad001
crossref_primary_10_1007_s10926_015_9585_2
crossref_primary_10_1007_s10926_015_9587_0
crossref_primary_10_1177_0004867419827648
crossref_primary_10_1007_s11136_017_1559_8
crossref_primary_10_1002_mds_26885
crossref_primary_10_1080_00324728_2018_1458993
crossref_primary_10_1212_WNL_0000000000004241
crossref_primary_10_1097_MLR_0000000000001298
crossref_primary_10_1111_ecc_13501
crossref_primary_10_4236_am_2016_710093
crossref_primary_10_1071_IB24025
crossref_primary_10_1111_ans_13419
crossref_primary_10_1016_j_genhosppsych_2018_10_001
crossref_primary_10_1016_j_jtcvs_2020_02_084
crossref_primary_10_1017_S1368980016003669
crossref_primary_10_1111_cgf_13662
crossref_primary_10_1186_s13063_018_2962_3
crossref_primary_10_1016_j_jval_2018_06_007
crossref_primary_10_1017_neu_2020_31
crossref_primary_10_1177_0165025419830238
crossref_primary_10_1245_s10434_023_14345_y
crossref_primary_10_1080_01639625_2015_1060804
crossref_primary_10_1186_s12874_018_0548_0
crossref_primary_10_1016_j_cjco_2021_04_006
crossref_primary_10_1371_journal_pone_0308376
crossref_primary_10_1007_s11136_021_03037_3
crossref_primary_10_2196_jmir_8850
crossref_primary_10_3389_fneur_2017_00551
crossref_primary_10_1007_s11136_015_1184_3
crossref_primary_10_1111_dar_12573
crossref_primary_10_1016_j_ijnurstu_2024_104893
crossref_primary_10_1186_s12955_019_1095_z
crossref_primary_10_2196_45456
crossref_primary_10_1016_j_jdiacomp_2017_05_009
crossref_primary_10_1016_j_pdisas_2019_100016
crossref_primary_10_1080_02701367_2020_1724861
crossref_primary_10_1007_s11695_015_1911_4
crossref_primary_10_1111_jep_13376
crossref_primary_10_1111_jcpe_13114
crossref_primary_10_1136_bmjopen_2019_035613
crossref_primary_10_1007_s11764_019_00793_7
crossref_primary_10_4269_ajtmh_20_0002
crossref_primary_10_1097_j_pain_0000000000002619
crossref_primary_10_1186_s12877_024_05090_2
crossref_primary_10_3390_en12061177
crossref_primary_10_1186_s12885_020_07549_y
crossref_primary_10_1080_0886571X_2024_2389041
crossref_primary_10_1111_jir_13021
crossref_primary_10_1002_hed_25684
crossref_primary_10_1016_j_psyneuen_2016_12_015
crossref_primary_10_1007_s11695_019_03885_6
crossref_primary_10_1093_ageing_afad067
crossref_primary_10_3310_hta23040
crossref_primary_10_1016_j_annemergmed_2016_10_014
crossref_primary_10_1007_s11136_019_02407_2
crossref_primary_10_1016_j_psychres_2016_06_041
crossref_primary_10_1186_s13011_017_0110_9
crossref_primary_10_1093_ageing_afaa034
crossref_primary_10_1017_S0033291722002112
ContentType Journal Article
Copyright COPYRIGHT 2015 Dove Medical Press Limited
2015. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2015 Biering et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License 2015
Copyright_xml – notice: COPYRIGHT 2015 Dove Medical Press Limited
– notice: 2015. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2015 Biering et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License 2015
DBID AAYXX
CITATION
NPM
3V.
7XB
8C1
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.2147/CLEP.S72247
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest research library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Public Health
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1179-1349
EndPage 106
ExternalDocumentID oai_doaj_org_article_f8e0ade20d6b4ed29b0a421ce404b4eb
PMC4303367
A445606743
25653557
10_2147_CLEP_S72247
Genre Journal Article
GeographicLocations Denmark
Jutland
Aarhus Denmark
GeographicLocations_xml – name: Denmark
– name: Jutland
– name: Aarhus Denmark
GroupedDBID ---
0YH
29B
2WC
53G
5VS
8C1
8G5
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
C1A
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
M2O
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
RPM
TDBHL
TR2
UKHRP
VDV
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c573t-132ad1ecd07b35df98c498f8cdcd6960f01213233a490dd20056a948f406df933
IEDL.DBID BENPR
ISSN 1179-1349
IngestDate Wed Aug 27 01:17:01 EDT 2025
Thu Aug 21 18:23:25 EDT 2025
Mon Jul 21 11:25:48 EDT 2025
Fri Jul 25 05:55:09 EDT 2025
Tue Jun 17 21:32:33 EDT 2025
Tue Jun 10 20:12:22 EDT 2025
Thu May 22 21:11:26 EDT 2025
Mon Jul 21 05:51:50 EDT 2025
Tue Jul 01 02:28:38 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue default
Keywords SF-12
nonparticipants
nonrespondents
PCI
Language English
License http://creativecommons.org/licenses/by-nc/3.0
The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-132ad1ecd07b35df98c498f8cdcd6960f01213233a490dd20056a948f406df933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2224319065?pq-origsite=%requestingapplication%
PMID 25653557
PQID 2224319065
PQPubID 3933188
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_f8e0ade20d6b4ed29b0a421ce404b4eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4303367
proquest_miscellaneous_1652445243
proquest_journals_2224319065
gale_infotracmisc_A445606743
gale_infotracacademiconefile_A445606743
gale_healthsolutions_A445606743
pubmed_primary_25653557
crossref_citationtrail_10_2147_CLEP_S72247
crossref_primary_10_2147_CLEP_S72247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
– name: Macclesfield
PublicationTitle Clinical epidemiology
PublicationTitleAlternate Clin Epidemiol
PublicationYear 2015
Publisher Dove Medical Press Limited
Taylor & Francis Ltd
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Taylor & Francis Ltd
– name: Dove Medical Press
References 15649666 - J Clin Epidemiol. 2005 Jan;58(1):13-9
20865111 - Clin Epidemiol. 2010 Aug 09;2:137-44
15960697 - Health Serv Res. 2005 Jun;40(3):905-21
18703470 - N Engl J Med. 2008 Aug 14;359(7):677-87
16980149 - J Clin Epidemiol. 2006 Oct;59(10):1087-91
11927199 - J Clin Epidemiol. 2002 Apr;55(4):329-37
17364907 - Exp Aging Res. 2007 Apr-Jun;33(2):187-203
19564179 - BMJ. 2009 Jun 29;338:b2393
20576672 - Clin Trials. 2010 Aug;7(4):333-42
1593914 - Med Care. 1992 Jun;30(6):473-83
21775345 - Scand J Public Health. 2011 Jul;39(7 Suppl):22-5
11864802 - J Clin Epidemiol. 2002 Mar;55(3):306-9
10421985 - Dan Med Bull. 1999 Jun;46(3):263-8
20687909 - BMC Med Res Methodol. 2010 Aug 05;10:71
23316735 - Exp Aging Res. 2013;39(1):27-43
21225900 - Stat Med. 2011 Feb 20;30(4):377-99
20119502 - Stat Sci. 2009;24(2):211
15680747 - J Clin Epidemiol. 2005 Feb;58(2):142-9
11458132 - Med Care. 2001 Jul;39(7):670-80
17852980 - Scand J Public Health. 2007;35(5):497-502
17001268 - Med Care. 2006 Oct;44(10):956-9
25506246 - Clin Epidemiol. 2014 Dec 03;6:441-9
15177275 - Ann Epidemiol. 2004 May;14(5):354-61
12965968 - Ann Intern Med. 2003 Sep 2;139(5 Pt 2):416-20
15841894 - Value Health. 2005 Jan-Feb;8(1):53-8
3558716 - J Chronic Dis. 1987;40(5):373-83
7829785 - J Am Coll Cardiol. 1995 Feb;25(2):333-41
12972846 - Med Care. 2003 Sep;41(9):1065-73
21967118 - Rehabil Psychol. 2011 Nov;56(4):267-88
11927198 - J Clin Epidemiol. 2002 Apr;55(4):319-28
References_xml – reference: 15177275 - Ann Epidemiol. 2004 May;14(5):354-61
– reference: 15841894 - Value Health. 2005 Jan-Feb;8(1):53-8
– reference: 11927199 - J Clin Epidemiol. 2002 Apr;55(4):329-37
– reference: 12972846 - Med Care. 2003 Sep;41(9):1065-73
– reference: 19564179 - BMJ. 2009 Jun 29;338:b2393
– reference: 17852980 - Scand J Public Health. 2007;35(5):497-502
– reference: 23316735 - Exp Aging Res. 2013;39(1):27-43
– reference: 11458132 - Med Care. 2001 Jul;39(7):670-80
– reference: 11927198 - J Clin Epidemiol. 2002 Apr;55(4):319-28
– reference: 21225900 - Stat Med. 2011 Feb 20;30(4):377-99
– reference: 25506246 - Clin Epidemiol. 2014 Dec 03;6:441-9
– reference: 15680747 - J Clin Epidemiol. 2005 Feb;58(2):142-9
– reference: 10421985 - Dan Med Bull. 1999 Jun;46(3):263-8
– reference: 1593914 - Med Care. 1992 Jun;30(6):473-83
– reference: 20865111 - Clin Epidemiol. 2010 Aug 09;2:137-44
– reference: 16980149 - J Clin Epidemiol. 2006 Oct;59(10):1087-91
– reference: 11864802 - J Clin Epidemiol. 2002 Mar;55(3):306-9
– reference: 20576672 - Clin Trials. 2010 Aug;7(4):333-42
– reference: 21775345 - Scand J Public Health. 2011 Jul;39(7 Suppl):22-5
– reference: 20687909 - BMC Med Res Methodol. 2010 Aug 05;10:71
– reference: 15649666 - J Clin Epidemiol. 2005 Jan;58(1):13-9
– reference: 7829785 - J Am Coll Cardiol. 1995 Feb;25(2):333-41
– reference: 18703470 - N Engl J Med. 2008 Aug 14;359(7):677-87
– reference: 20119502 - Stat Sci. 2009;24(2):211
– reference: 12965968 - Ann Intern Med. 2003 Sep 2;139(5 Pt 2):416-20
– reference: 15960697 - Health Serv Res. 2005 Jun;40(3):905-21
– reference: 17001268 - Med Care. 2006 Oct;44(10):956-9
– reference: 17364907 - Exp Aging Res. 2007 Apr-Jun;33(2):187-203
– reference: 21967118 - Rehabil Psychol. 2011 Nov;56(4):267-88
– reference: 3558716 - J Chronic Dis. 1987;40(5):373-83
SSID ssj0000331770
Score 2.3750503
Snippet Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal studies,...
Objective: Missing data is a ubiquitous problem in studies using patient-reported measures, decreasing sample sizes and causing possible bias. In longitudinal...
Karin Biering,1 Niels Henrik Hjollund,2,3 Morten Frydenberg4 1Danish Ramazzini Centre, Department of Occupational Medicine - University Research Clinic,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 91
SubjectTerms Analysis
Bias
Cardiac patients
Clinical medicine
Clinical outcomes
Comorbidity
Confidence intervals
Datasets
Epidemiology
Estimates
Health aspects
Hospitals
Longitudinal studies
Medical records
Methodology
Missing data
Participation
Patient outcomes
Patients
Public health
Quality of life
Sensitivity analysis
Transluminal angioplasty
Variables
Within-subjects design
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp0ApbdKH26RRIVAouJGth-1jGhJCaUuhDeQmZD3oQmKH2Psz-p8zI3nNmhZ66WEv1mixNLMz32hH3xByLFoTPFN1rmRR58K3Nq8la3PJnCoKi5RumCh-_aYur8Tna3m91eoLa8ISPXDauJNQe2acL2FuK7wrm5YZURbWCybgQYveF2LeVjIVfTCHuBg7xSHlWY4cfOlyHrblOTn7cv79448Kole1CEeRtf9P37wVnJaFk1uR6OIpeTJBSHqaXv0ZeeS7PfI4nb_RdK1on_yOtQB0Uy9IV9i8IWqBjj11IEXxCJaCmqMgVopS0zlqxomen646etNjO6O1w9ZZdEglh2nevb8DL-4dvU2HjAPtA51IWvP0RwQM9usRLNoPz8nVxfnPs8t8ar2QW1lxbFBfGld461jVculCU1vR1KG2zjoFSU-IVHAl50Y0zDk8mlKmEXUAfADSnL8gO13f-VeEFtjLg9nKBcjMOLfGioD0o6UKqmStzMiHjQa0nXjJsT3GjYb8BNWlUV06qSsjx7PwXaLj-LvYJ1TlLIIc2vEBWJaeLEv_y7IycoSGoNOF1NkT6FMBoJPh5Y2MvI8S6AvglWFp6UoDLBxZtRaSBwtJUK5dDm-MTU8-ZNCA3ADdNYARM_JuHsaZWBfX-X496EJJwGfwga94mWxzXjSAWQloEjajWljtYleWI93qV2QYFwBsuKpe_49tfEN2AWTKdGx1QHbG-7U_BCA3tm_jb_YBt_RHkg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_n-SKI-G311AgHgtAzbfPRPoicxx2HeCLowr2FNh-6sLbntgv6R_g_O5O0y1UPH_almSxNZpL5TTr5DSH7vKm9Y7JMpcjKlLvGpKVgTSqYlVlmkNINA8Wzj_J0wd-fi_MdMhXjHCewvzK0w3pSi_Xq4OePX29hwb_BNOaMq9dHH44_HXxW4IzUNXIdXJLCFXo24vywJRfgJhWL9_P-7jPzSIG4_9_t-ZJ_mudOXnJGJ7fJrRFF0sOo9jtkx7V3yc14BEfjzaJ75HdIB6BTyiBdYv2GoAg6dNSCFMVTWAqaDoKYLErr1tJ6GBn66bKlqw4rGm0sVs-ifcw6jP3W7gI2cmfp93jO2NPO05GnNY3fIqCx2wxg1K6_TxYnx1-OTtOx-kJqhCqwRn1e28wZy1RTCOur0vCq9KWxxkqIe3xgg8uLouYVsxZPp2Rd8dIDRADponhAdtuudY8IzbCcBzPKegjOisLUhntkIM2llzlrREJeTRrQZqQmxwoZKw0hCqpLo7p0VFdC9rfCF5GR42qxd6jKrQjSaIcH3fqrHlel9qVjtXU5GGbDnc2rhtU8z4zjjMODJiHP0RB0vJO63Qz0IQfcyfD-RkJeBgk0UHhlGFq81QADR2KtmeTeTBKUa-bNk7HpaRVoAG8A8CqAiQl5sW3Gnpga17pu0-tMCoBo8IO_eBhtcztowLMCACVMhppZ7WxW5i3t8lsgGeeAbQqpHv__tZ6QG4AgRTyT2iO7w3rjngJKG5pnYQX-AVzVPcg
  priority: 102
  providerName: Scholars Portal
Title Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes
URI https://www.ncbi.nlm.nih.gov/pubmed/25653557
https://www.proquest.com/docview/2224319065
https://www.proquest.com/docview/1652445243
https://pubmed.ncbi.nlm.nih.gov/PMC4303367
https://doaj.org/article/f8e0ade20d6b4ed29b0a421ce404b4eb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9s-yKI-O3Veq5QEITYTbLZbJ6kPa4cYktRC_VpSfajHtTkesn9Gf7PzmT3YoPiQ_KQnYTszmS-MvsbQg55VTrLhIxEFsuI20pHMmNVlDEj4lgjpBsGimfnYnHJP11lVyHh1oayyq1O7BW1aTTmyI_AjoGtK8BiflzdRtg1Cv-uhhYaO2QPVLCE4GvvZH5-8WXIsrAU7GPO_MY8bMlzNPs8v_jwNYen5SNT1CP2_62X7ximcdHkHSt0-og8DO4jPfb8fkzu2foJeeBzb9RvKXpKfvV1AHRbK0iX2Lih5wDtGmqAimL6lQKLe0KsEqVlbWjZBWh-uqzpTYOtjDYG22bR1pcb-vvWdgUa3Br60ycYW9o4GgBaI_8TAgabTQcra9tn5PJ0_m22iELbhUhneYrN6ZPSxFYblldpZlwhNS-kk9poIyDgcT0MXJKmJS-YMZiWEmXBpQPfAKjT9DnZrZvaviQ0xj4eTOfGQVSWprrU3CH0aCKcSFiVTcj7LQeUDpjk2BrjRkFsguxSyC7l2TUhhwPxykNx_JvsBFk5kCB-dn-hWV-r8DkqJy0rjU1AIituTVJUrORJrC1nHC5UE_IGBUH5zaiDFlDHHBxOhhs3JuRdT4F6AF4Zpua3M8DEEVFrRHkwogTm6vHwVthU0B-t-iPtE_J2GMY7sSauts2mVbHIwDeDAx7xwsvmMGlwZDPwJGEx8pHUjlZlPFIvf_To4hycmlTk-_9_rVfkPriOmU9GHZDdbr2xr8E966op2WHfF3CWs3gavsdpn-qA8xmXvwGDmECu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF_K9UFBxG9Tq12hIgixm2Tz9SDS1itXez2KttC3bbIfetAm5yWH-Ef4r_g3OpNNYoPiWx_ykp2E3czszOxkZn6EbPM8M5pFiRuFXuJynUs3CVnuhkxFniexpRseFI9n0eSMfzwPz9fIr64WBtMqO53YKGpVSoyR74AdA1uXgsV8v_jmImoU_l3tIDSsWBzpH9_hyFa9O_wA_H3l-wfj0_2J26IKuDKMA8Re9zPlaalYnAehMmkieZqYRCqpIvDnTdPlzA-CjKdMKYy6RFnKEwOmD6gxAAoqf50HcJQZkfW98ezkUx_VYQHY45jZQkCEANrZn45P3n6OYfbxwPQ1CAF_24FrhnCYpHnN6h3cI3dbd5XuWvm6T9Z08YDcsbE-akuYHpKfTd4B7XIT6RyBIhqO07qkCqgohnspiFRDiFmpNCsUzeoWCoDOC3pZInTSSiFMF61seqN9bqkXYDG0olc2oFnR0tC2Iaxrf3rAYLmqgZO6ekTOboQhj8moKAv9lFAPcUOYjJWBU2AQyExyg61O_chEPstDh7zpOCBk2wMdoTguBZyFkF0C2SUsuxyy3RMvbOuPf5PtISt7EuzX3dwol19Eu_2FSTTLlPZhB-RcKz_NWcZ9T2rOONzIHbKFgiBs8WuvdcQuBweXYaGIQ143FKh3YMqwNFs-AQvHDl4Dys0BJTBXDoc7YROtvqrEn93lkJf9MD6JOXiFLleV8KIQfEG44BVPrGz2iwbHOQTPFT5GPJDawVcZjhTzr003cw5OVBDFG_-f1ha5NTk9norp4ezoGbkNbmtoA2GbZFQvV_o5uIZ1_qLdj5Rc3LQK-A2Y83kB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KBRFEvJta7QgVQYg7SSa3B5G67dLaWgpa6Ns0mYsutMm6ySL-CP-Qv85zZpLYoPjWh33JnCyZnOucnHM-QrZ5WRjNksxP4iDzuS6ln8Ws9GOmkiCQONIND4ofj5P9U_7hLD5bI7_6Xhgsq-xtojXUqpaYI5-AHwNfl4PHnJiuLOJkd_Zu8c1HBCn80trDaTgROdQ_vsPxrXl7sAu8fhmGs73P032_QxjwZZxGiMMeFirQUrG0jGJl8kzyPDOZVFIlENsbO_EsjKKC50wpzMAkRc4zA24QqDEZCub_RhqBn8Uu9Wkw5HdYBJ45Za4lEMGAJtOjvZM3n1LYRzpyghYr4G-PcMUljss1r_i_2V1ypwtc6Y6TtHtkTVf3yW2X9aOumekB-WkrEGhfpUjnCBlheU_bmiqgopj4pSBclhDrU2lRKVq0HSgAnVf0okYQpZVCwC7auEJHd99SL8B3aEUvXWqzobWh3WhY333-gMV61QJPdfOQnF4LOx6R9aqu9BNCA0QQYTJVBs6DUSQLyQ0OPQ0Tk4SsjD3yuueAkN00dATluBBwKkJ2CWSXcOzyyPZAvHBDQP5N9h5ZOZDg5G57oV5-EZ0hECbTrFA6BF0ouVZhXrKCh4HUnHG4UHpkCwVBuDbYwf6IHQ6hLsOWEY-8shRogeCRYWuukQI2jrO8RpSbI0pgrhwv98ImOsvViD965pEXwzLeidV4la5XjQiSGKJC-MFfPHayOWwaQugYYlh4GelIakdvZbxSzb_aueYcwqkoSTf-_1hb5CYovjg6OD58Sm5B_Bq7jNgmWW-XK_0MYsS2fG6VkZLz69b-3262e6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+multiple+imputation+to+deal+with+missing+data+and+attrition+in+longitudinal+studies+with+repeated+measures+of+patient-reported+outcomes&rft.jtitle=Clinical+epidemiology&rft.au=Biering%2C+Karin&rft.au=Hjollund%2C+Niels+Henrik&rft.au=Frydenberg%2C+Morten&rft.date=2015-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.eissn=1179-1349&rft.volume=7&rft.spage=91&rft_id=info:doi/10.2147%2FCLEP.S72247&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon