Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx
Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of i...
Saved in:
Published in | Genome Biology Vol. 21; no. 1; p. 233 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
11.09.2020
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1474-760X 1474-7596 1474-760X |
DOI | 10.1186/s13059-020-02113-0 |
Cover
Loading…
Abstract | Background
Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization.
Results
Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide
cis
-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up.
Conclusions
We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach. |
---|---|
AbstractList | BACKGROUND: Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. RESULTS: Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. CONCLUSIONS: We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach. Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach. Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization.BACKGROUNDPopulation structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization.Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up.RESULTSHere, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up.We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.CONCLUSIONSWe provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach. Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. Results Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis -eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. Conclusions We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach. Abstract Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. Results Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. Conclusions We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach. |
ArticleNumber | 233 |
Author | Antonio, Margaret L. Rao, Abhiram S. Martin, Alicia R. Musharoff, Shaila Gloudemans, Michael Balliu, Brunilda Brown, Christopher D. Barbeira, Alvaro N. Im, Hae Kyung Gay, Nicole R. Aguet, François Abell, Nathan S. Lappalainen, Tuuli Park, YoSon Montgomery, Stephen B. Wen, Xiaoquan Bonazzola, Rodrigo Hormozdiari, Farhad Ardlie, Kristin G. |
Author_xml | – sequence: 1 givenname: Nicole R. surname: Gay fullname: Gay, Nicole R. organization: Department of Genetics, Stanford University – sequence: 2 givenname: Michael surname: Gloudemans fullname: Gloudemans, Michael organization: Biomedical Informatics, Stanford University – sequence: 3 givenname: Margaret L. surname: Antonio fullname: Antonio, Margaret L. organization: Biomedical Informatics, Stanford University – sequence: 4 givenname: Nathan S. surname: Abell fullname: Abell, Nathan S. organization: Department of Genetics, Stanford University – sequence: 5 givenname: Brunilda surname: Balliu fullname: Balliu, Brunilda organization: Department of Biomathematics, University of California, Los Angeles – sequence: 6 givenname: YoSon surname: Park fullname: Park, YoSon organization: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania – sequence: 7 givenname: Alicia R. surname: Martin fullname: Martin, Alicia R. organization: Analytic and Translational Genetics Unit, Massachusetts General Hospital, Stanley Center for Psychiatric Research, Broad Institute – sequence: 8 givenname: Shaila surname: Musharoff fullname: Musharoff, Shaila organization: Department of Genetics, Stanford University – sequence: 9 givenname: Abhiram S. surname: Rao fullname: Rao, Abhiram S. organization: Department of Bioengineering, Stanford University – sequence: 10 givenname: François surname: Aguet fullname: Aguet, François organization: The Broad Institute of MIT and Harvard – sequence: 11 givenname: Alvaro N. surname: Barbeira fullname: Barbeira, Alvaro N. organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago – sequence: 12 givenname: Rodrigo surname: Bonazzola fullname: Bonazzola, Rodrigo organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago – sequence: 13 givenname: Farhad surname: Hormozdiari fullname: Hormozdiari, Farhad organization: The Broad Institute of MIT and Harvard, Department of Epidemiology, Harvard T.H. Chan School of Public Health – sequence: 15 givenname: Kristin G. surname: Ardlie fullname: Ardlie, Kristin G. organization: The Broad Institute of MIT and Harvard – sequence: 16 givenname: Christopher D. surname: Brown fullname: Brown, Christopher D. organization: Department of Genetics, Perelman School of Medicine, University of Pennsylvania – sequence: 17 givenname: Hae Kyung surname: Im fullname: Im, Hae Kyung organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago – sequence: 18 givenname: Tuuli surname: Lappalainen fullname: Lappalainen, Tuuli organization: New York Genome Center, Department of Systems Biology, Columbia University – sequence: 19 givenname: Xiaoquan surname: Wen fullname: Wen, Xiaoquan organization: Department of Biostatistics, University of Michigan – sequence: 20 givenname: Stephen B. orcidid: 0000-0002-5200-3903 surname: Montgomery fullname: Montgomery, Stephen B. email: smontgom@stanford.edu organization: Department of Genetics, Stanford University, Department of Pathology, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32912333$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1v1DAUtFAR_YA_wAFF4sIl4Gc7sX1BqqqyrLQSqlgEN8txnMWrJF7spOry6_EmLbQ9VBwsW-_NjOb5zSk66n1vEXoN-D2AKD9EoLiQOSY4HQCa42foBBhnOS_xj6N772N0GuMWY5CMlC_QMSUSCKX0BF0tu502Q-abTNeduxnGYDPd1-kYG4ewz3yf2av1KhV0u48uTt3F9_OvmfGtN7p1v_XgEsr12WJ9efMSPW90G-2r2_sMfft0ub74nK--LJYX56vcFJwOeZoAW85IUQgreEOJMVBbasqGSEEsyMJaYJQJKBtbNZTJEstCVIXmtayxoWdoOevWXm_VLrhOh73y2qmp4MNG6TA401qlJRHaMjBNYRgwLaERRVWZmlWYYS2S1sdZazdWna2N7Yeg2weiDzu9-6k2_lpxJgSTPAm8uxUI_teYPk51Lhrbtrq3foyKMM5LIrgU_wFlkEalgBP07SPo1o8h7WFCMYC09YPgm_vm_7q-W3ICiBlggo8x2EYZN0w7S7O4VgFWhzypOU8q5UlNeVIHB-QR9U79SRKdSTGB-40N_2w_wfoDTYrazA |
CitedBy_id | crossref_primary_10_1016_j_xhgg_2024_100315 crossref_primary_10_1038_s41467_025_57216_8 crossref_primary_10_1038_s41380_023_02089_w crossref_primary_10_1016_j_ajhg_2022_03_003 crossref_primary_10_1111_cts_13243 crossref_primary_10_1016_j_ajhg_2022_12_005 crossref_primary_10_1186_s13073_022_01039_5 crossref_primary_10_3389_fgene_2023_1171217 crossref_primary_10_1016_j_molmet_2024_101973 crossref_primary_10_1038_s41467_022_30650_8 crossref_primary_10_1158_1055_9965_EPI_23_0849 crossref_primary_10_3389_fpls_2023_1125551 crossref_primary_10_1016_j_trecan_2021_12_006 crossref_primary_10_1002_gepi_22492 crossref_primary_10_1038_s41467_024_44710_8 crossref_primary_10_1038_s41588_023_01509_5 crossref_primary_10_3390_pr9122144 crossref_primary_10_1016_j_ajhg_2022_01_002 crossref_primary_10_1016_j_placenta_2023_04_007 crossref_primary_10_1158_2159_8290_CD_22_0138 crossref_primary_10_1158_2767_9764_CRC_22_0136 crossref_primary_10_3390_ijms232012493 crossref_primary_10_3389_fgene_2021_713230 crossref_primary_10_1016_j_ajhg_2024_09_004 crossref_primary_10_1038_s42003_022_03353_5 crossref_primary_10_1093_molbev_msad054 crossref_primary_10_1002_ana_26764 crossref_primary_10_1016_j_isci_2024_109047 crossref_primary_10_1038_s43586_022_00188_6 crossref_primary_10_3389_fgene_2022_797129 crossref_primary_10_1093_schbul_sbaa167 crossref_primary_10_1186_s13195_021_00866_9 crossref_primary_10_1002_cpt_2818 crossref_primary_10_1016_j_jgg_2025_02_003 crossref_primary_10_3390_cells10092395 crossref_primary_10_1038_s41598_023_49791_x crossref_primary_10_1126_sciadv_abq2969 crossref_primary_10_1186_s12916_022_02335_y crossref_primary_10_1093_molbev_msae115 crossref_primary_10_7554_eLife_79834 crossref_primary_10_1016_j_isci_2023_107555 crossref_primary_10_3390_cancers16173020 crossref_primary_10_1186_s13059_023_03151_0 crossref_primary_10_1007_s00439_023_02593_7 crossref_primary_10_1016_j_ajhg_2021_11_017 crossref_primary_10_1101_gr_275636_121 crossref_primary_10_1038_s41588_023_01338_6 crossref_primary_10_1038_s41598_024_77921_6 crossref_primary_10_1016_j_ajhg_2022_02_013 crossref_primary_10_1093_hmg_ddae184 crossref_primary_10_1186_s12967_023_04357_3 crossref_primary_10_1038_s41467_024_54741_w crossref_primary_10_1016_j_ebiom_2022_104000 crossref_primary_10_1016_j_xgen_2023_100465 |
Cites_doi | 10.1016/j.ajhg.2009.11.016 10.1073/pnas.0437015100 10.4274/Tjh.2012.0187 10.1089/bio.2015.0032 10.1016/j.ygeno.2006.05.009 10.1038/s41586-019-1310-4 10.1093/bioinformatics/btq709 10.1016/S0026-0495(96)90011-6 10.5281/zenodo.3924788 10.1101/787903 10.1093/bioinformatics/btt500 10.1038/ng1847 10.1093/bioinformatics/btr330 10.1126/science.1197005 10.1186/1753-6561-8-S1-S6 10.1371/journal.pgen.1000294 10.1093/nar/gky1120 10.1111/exd.12518 10.1093/bioinformatics/btq560 10.1053/j.gastro.2007.03.059 10.1086/519795 10.1016/j.ajhg.2019.04.009 10.1093/bioinformatics/btw018 10.1371/journal.pgen.1008720 10.1186/1753-6561-3-S7-S107 10.1093/aje/kws234 10.3389/fgene.2015.00324 10.1093/bioinformatics/btp197 10.1016/j.ajhg.2018.04.011 10.5281/zenodo.3629742 10.1016/j.ajhg.2013.06.020 10.1002/gepi.21819 10.1002/ajhb.20956 10.1371/journal.pgen.1006646 10.1038/nature24277 10.1093/bioinformatics/bts144 10.1371/journal.pgen.1004383 10.1093/bioinformatics/bts635 10.1038/nprot.2011.457 10.1016/j.ajhg.2016.10.003 10.1371/journal.pgen.1007586 10.1038/nature15393 10.1101/814350 10.1093/nar/gkj144 10.1002/gepi.21835 10.1186/1753-6561-8-S1-S3 10.1111/j.1365-2796.2007.01852.x 10.5281/zenodo.3926871 10.1002/gepi.22103 10.1371/journal.pgen.1001371 10.1371/journal.pone.0022070 10.1038/nrg2760 10.1016/j.jaci.2014.10.033 10.1038/nmeth.2307 10.1002/gepi.22104 10.1093/bioinformatics/btu416 10.1073/pnas.85.23.9119 10.1016/j.alit.2019.05.012 10.1038/sj.ijo.0801723 10.1001/archpediatrics.2010.100 10.1093/bioinformatics/btp324 10.1093/bioinformatics/bts196 10.1101/2020.02.21.959510 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | GTEx Consortium |
CorporateAuthor_xml | – name: GTEx Consortium |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-020-02113-0 |
DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 233 |
ExternalDocumentID | oai_doaj_org_article_a928ae41cf5c414a91f85bbcd4b040a8 PMC7488497 32912333 10_1186_s13059_020_02113_0 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01HG008150; U01HG009080; R01HL142015; U01HG009431 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Human Genome Research Institute grantid: 5T32HG000044-22; R01HG010067 funderid: http://dx.doi.org/10.13039/100000051 – fundername: NHGRI NIH HHS grantid: R01HG010067 – fundername: NHGRI NIH HHS grantid: U01 HG009431 – fundername: NIH HHS grantid: R01HL142015 – fundername: NIMH NIH HHS grantid: R00 MH117229 – fundername: NIMH NIH HHS grantid: K99 MH117229 – fundername: NIH HHS grantid: U01HG009431 – fundername: NIH HHS grantid: U01HG009080 – fundername: NHGRI NIH HHS grantid: T32 HG000044 – fundername: NIH HHS grantid: R01HG008150 – fundername: NHGRI NIH HHS grantid: R01 HG010067 – fundername: ; grantid: 5T32HG000044-22; R01HG010067 – fundername: ; grantid: R01HG008150; U01HG009080; R01HL142015; U01HG009431 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c573t-1180e742558e87f32cc1de3c6f2982e195ee1434816febf34960958b5a7d9d0c3 |
IEDL.DBID | DOA |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:07:50 EDT 2025 Thu Aug 21 18:30:01 EDT 2025 Thu Sep 04 20:52:54 EDT 2025 Thu Sep 04 19:05:52 EDT 2025 Fri Jul 25 12:08:06 EDT 2025 Mon Jul 21 05:51:32 EDT 2025 Tue Jul 01 03:10:47 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Sat Sep 06 07:24:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Colocalization GTEx Admixture Population structure eQTL Local ancestry Gene expression |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-1180e742558e87f32cc1de3c6f2982e195ee1434816febf34960958b5a7d9d0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5200-3903 |
OpenAccessLink | https://doaj.org/article/a928ae41cf5c414a91f85bbcd4b040a8 |
PMID | 32912333 |
PQID | 2444112118 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a928ae41cf5c414a91f85bbcd4b040a8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7488497 proquest_miscellaneous_2477628798 proquest_miscellaneous_2441609310 proquest_journals_2444112118 pubmed_primary_32912333 crossref_citationtrail_10_1186_s13059_020_02113_0 crossref_primary_10_1186_s13059_020_02113_0 springer_journals_10_1186_s13059_020_02113_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-11 |
PublicationDateYYYYMMDD | 2020-09-11 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Genome Biology |
PublicationTitleAbbrev | Genome Biol |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2020 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | 2113_CR30 2113_CR72 J Hellwege (2113_CR2) 2017; 95 2113_CR73 SJ Kang (2113_CR13) 2009; 3 P Danecek (2113_CR63) 2011; 27 2113_CR33 L Yin (2113_CR23) 2014; 23 D Lee (2113_CR65) 2013; 29 H Sunadome (2113_CR36) 2020; 69 2113_CR70 AS Hinrichs (2113_CR57) 2006; 34 2113_CR71 J Liu (2113_CR8) 2013; 177 Q Duan (2113_CR12) 2018; 42 The 1000 Genomes Project Consortium (2113_CR19) 2015; 526 C Wallace (2113_CR43) 2020; 16 A Dobbyn (2113_CR44) 2018; 102 J Zhang (2113_CR9) 2014; 38 H Qin (2113_CR14) 2010; 26 X Wang (2113_CR15) 2011; 27 E Altunoğlu (2113_CR37) 2014; 31 2113_CR1 GTEx Consortium (2113_CR7) 2017; 550 2113_CR20 A Buniello (2113_CR35) 2019; 47 2113_CR61 2113_CR62 AL Price (2113_CR6) 2006; 38 2113_CR68 N Zaitlen (2113_CR49) 2010; 86 NG Forouhi (2113_CR22) 2001; 25 AM Silva (2113_CR24) 2010; 22 2113_CR60 M Pino-Yanes (2113_CR18) 2015; 135 TA Thornton (2113_CR3) 2014; 38 JC Lovejoy (2113_CR21) 1996; 45 O Delaneau (2113_CR52) 2013; 10 A Dobin (2113_CR54) 2013; 29 2113_CR27 Y Baran (2113_CR46) 2012; 28 2113_CR69 O Stegle (2113_CR64) 2012; 7 D Yorgov (2113_CR42) 2014; 8 LJ Carithers (2113_CR74) 2015; 13 2113_CR50 Y Zhong (2113_CR10) 2019; 104 2113_CR51 PH Sudmant (2113_CR29) 2010; 330 2113_CR56 S Purcell (2113_CR53) 2007; 81 X Wen (2113_CR67) 2017; 13 SE Shoelson (2113_CR39) 2007; 132 CA Paulding (2113_CR28) 2003; 100 AW Ferrante (2113_CR38) 2007; 262 2113_CR17 2113_CR58 2113_CR59 ER Martin (2113_CR5) 2018; 42 R Chakraborty (2113_CR4) 1988; 85 NA Rosenberg (2113_CR48) 2010; 11 2113_CR40 2113_CR45 GL Wojcik (2113_CR34) 2019; 570 BK Maples (2113_CR26) 2013; 93 M Chen (2113_CR16) 2014; 8 DS DeLuca (2113_CR55) 2012; 28 F Hormozdiari (2113_CR32) 2016; 99 D Hodzic (2113_CR41) 2006; 88 B Pasaniuc (2113_CR66) 2014; 30 2113_CR47 B Paşaniuc (2113_CR11) 2009; 25 KA Stewart (2113_CR25) 2010; 164 C Benner (2113_CR31) 2016; 32 |
References_xml | – volume: 86 start-page: 23 issue: 1 year: 2010 ident: 2113_CR49 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.11.016 – ident: 2113_CR72 – volume: 100 start-page: 2507 issue: 5 year: 2003 ident: 2113_CR28 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0437015100 – volume: 31 start-page: 61 issue: 1 year: 2014 ident: 2113_CR37 publication-title: Turk J Hematol doi: 10.4274/Tjh.2012.0187 – volume: 13 start-page: 311 issue: 5 year: 2015 ident: 2113_CR74 publication-title: Biopreserv Biobank doi: 10.1089/bio.2015.0032 – volume: 88 start-page: 731 issue: 6 year: 2006 ident: 2113_CR41 publication-title: Genomics. doi: 10.1016/j.ygeno.2006.05.009 – volume: 570 start-page: 514 issue: 7762 year: 2019 ident: 2113_CR34 publication-title: Nature. doi: 10.1038/s41586-019-1310-4 – volume: 27 start-page: 670 issue: 5 year: 2011 ident: 2113_CR15 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq709 – volume: 45 start-page: 1119 issue: 9 year: 1996 ident: 2113_CR21 publication-title: Metabolism. doi: 10.1016/S0026-0495(96)90011-6 – ident: 2113_CR73 doi: 10.5281/zenodo.3924788 – ident: 2113_CR1 doi: 10.1101/787903 – volume: 29 start-page: 2925 issue: 22 year: 2013 ident: 2113_CR65 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btt500 – volume: 38 start-page: 904 issue: 8 year: 2006 ident: 2113_CR6 publication-title: Nat Genet doi: 10.1038/ng1847 – volume: 27 start-page: 2156 issue: 15 year: 2011 ident: 2113_CR63 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr330 – volume: 330 start-page: 641 issue: 6004 year: 2010 ident: 2113_CR29 publication-title: Science. doi: 10.1126/science.1197005 – ident: 2113_CR69 – volume: 8 start-page: S6 issue: Suppl 1 year: 2014 ident: 2113_CR42 publication-title: BMC Proc doi: 10.1186/1753-6561-8-S1-S6 – ident: 2113_CR40 doi: 10.1371/journal.pgen.1000294 – volume: 47 start-page: D1005 issue: D1 year: 2019 ident: 2113_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1120 – volume: 23 start-page: 731 issue: 10 year: 2014 ident: 2113_CR23 publication-title: Exp Dermatol doi: 10.1111/exd.12518 – volume: 26 start-page: 2961 issue: 23 year: 2010 ident: 2113_CR14 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq560 – volume: 132 start-page: 2169 issue: 6 year: 2007 ident: 2113_CR39 publication-title: Gastroenterology. doi: 10.1053/j.gastro.2007.03.059 – ident: 2113_CR60 – volume: 81 start-page: 559 issue: 3 year: 2007 ident: 2113_CR53 publication-title: Am J Hum Genet doi: 10.1086/519795 – ident: 2113_CR58 – volume: 104 start-page: 1097 issue: 6 year: 2019 ident: 2113_CR10 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2019.04.009 – volume: 32 start-page: 1493 issue: 10 year: 2016 ident: 2113_CR31 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btw018 – volume: 16 start-page: e1008720 issue: 4 year: 2020 ident: 2113_CR43 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008720 – volume: 3 start-page: S107 issue: Suppl 7 year: 2009 ident: 2113_CR13 publication-title: BMC Proc doi: 10.1186/1753-6561-3-S7-S107 – ident: 2113_CR68 – volume: 177 start-page: 351 issue: 4 year: 2013 ident: 2113_CR8 publication-title: Am J Epidemiol doi: 10.1093/aje/kws234 – ident: 2113_CR27 doi: 10.3389/fgene.2015.00324 – ident: 2113_CR51 – volume: 25 start-page: i213 issue: 12 year: 2009 ident: 2113_CR11 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp197 – volume: 102 start-page: 1169 issue: 6 year: 2018 ident: 2113_CR44 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2018.04.011 – ident: 2113_CR71 doi: 10.5281/zenodo.3629742 – volume: 93 start-page: 278 issue: 2 year: 2013 ident: 2113_CR26 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2013.06.020 – volume: 38 start-page: S5 issue: S1 year: 2014 ident: 2113_CR3 publication-title: Genet Epidemiol doi: 10.1002/gepi.21819 – volume: 22 start-page: 76 issue: 1 year: 2010 ident: 2113_CR24 publication-title: Am J Hum Biol doi: 10.1002/ajhb.20956 – volume: 95 start-page: 1.22.1 year: 2017 ident: 2113_CR2 publication-title: Curr Protoc Hum Genet – ident: 2113_CR61 – volume: 13 start-page: e1006646 issue: 3 year: 2017 ident: 2113_CR67 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006646 – ident: 2113_CR59 – volume: 550 start-page: 204 issue: 7675 year: 2017 ident: 2113_CR7 publication-title: Nature. doi: 10.1038/nature24277 – volume: 28 start-page: 1359 issue: 10 year: 2012 ident: 2113_CR46 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts144 – ident: 2113_CR30 doi: 10.1371/journal.pgen.1004383 – volume: 29 start-page: 15 issue: 1 year: 2013 ident: 2113_CR54 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts635 – volume: 7 start-page: 500 issue: 3 year: 2012 ident: 2113_CR64 publication-title: Nat Protoc doi: 10.1038/nprot.2011.457 – volume: 99 start-page: 1245 issue: 6 year: 2016 ident: 2113_CR32 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2016.10.003 – ident: 2113_CR45 doi: 10.1371/journal.pgen.1007586 – volume: 526 start-page: 68 issue: 7571 year: 2015 ident: 2113_CR19 publication-title: Nature doi: 10.1038/nature15393 – ident: 2113_CR33 doi: 10.1101/814350 – volume: 34 start-page: D590 issue: Database issue year: 2006 ident: 2113_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj144 – volume: 38 start-page: 502 issue: 6 year: 2014 ident: 2113_CR9 publication-title: Genet Epidemiol doi: 10.1002/gepi.21835 – volume: 8 start-page: S3 issue: Suppl 1 year: 2014 ident: 2113_CR16 publication-title: BMC Proc doi: 10.1186/1753-6561-8-S1-S3 – volume: 262 start-page: 408 issue: 4 year: 2007 ident: 2113_CR38 publication-title: J Intern Med doi: 10.1111/j.1365-2796.2007.01852.x – ident: 2113_CR70 doi: 10.5281/zenodo.3926871 – volume: 42 start-page: 214 issue: 2 year: 2018 ident: 2113_CR5 publication-title: Genet Epidemiol doi: 10.1002/gepi.22103 – ident: 2113_CR17 doi: 10.1371/journal.pgen.1001371 – ident: 2113_CR20 doi: 10.1371/journal.pone.0022070 – volume: 11 start-page: 356 issue: 5 year: 2010 ident: 2113_CR48 publication-title: Nat Rev Genet doi: 10.1038/nrg2760 – volume: 135 start-page: 1502 issue: 6 year: 2015 ident: 2113_CR18 publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2014.10.033 – volume: 10 start-page: 5 issue: 1 year: 2013 ident: 2113_CR52 publication-title: Nat Methods doi: 10.1038/nmeth.2307 – volume: 42 start-page: 288 issue: 3 year: 2018 ident: 2113_CR12 publication-title: Genet Epidemiol doi: 10.1002/gepi.22104 – ident: 2113_CR62 – volume: 30 start-page: 2906 issue: 20 year: 2014 ident: 2113_CR66 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu416 – volume: 85 start-page: 9119 issue: 23 year: 1988 ident: 2113_CR4 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.85.23.9119 – volume: 69 start-page: 46 issue: 1 year: 2020 ident: 2113_CR36 publication-title: Allergol Int doi: 10.1016/j.alit.2019.05.012 – volume: 25 start-page: 1327 issue: 9 year: 2001 ident: 2113_CR22 publication-title: Int J Obes Relat Metab Disord doi: 10.1038/sj.ijo.0801723 – volume: 164 start-page: 720 issue: 8 year: 2010 ident: 2113_CR25 publication-title: Arch Pediatr Adolesc Med doi: 10.1001/archpediatrics.2010.100 – ident: 2113_CR56 – ident: 2113_CR50 doi: 10.1093/bioinformatics/btp324 – volume: 28 start-page: 1530 issue: 11 year: 2012 ident: 2113_CR55 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts196 – ident: 2113_CR47 doi: 10.1101/2020.02.21.959510 |
SSID | ssj0019426 ssj0017866 |
Score | 2.5683103 |
Snippet | Background
Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The... Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The... Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The... BACKGROUND: Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings.... Abstract Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 233 |
SubjectTerms | Admixture ancestry Animal Genetics and Genomics Bioinformatics Biomedical and Life Sciences Colocalization eQTL Evolutionary Biology Gene Expression Gene mapping genome Genome, Human Genome-Wide Association Study Genomes Genotype Genotype & phenotype Genotypes GTEx Human Genetics Humans lead Life Sciences Local ancestry Microbial Genetics and Genomics Plant Genetics and Genomics Population Population structure Population studies Quantitative Trait Loci Racial Groups - genetics Sample size |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3q2uEsE3LTtpkiZ5klX2ooiwOIvzFtpcdEDbdWcW1n_vOWnaZbzMY5u0pOeW7zTJdwh5KbwBICBN6WTkpYDwhy4lS-11rU3tkIIcd1t8qo9PxYeFXOQfbqu8rXKMiSlQ-97hP_I9mIYEQz4y_ebsZ4lVo3B1NZfQuE5uJOoysGe1mBIupjRilXxhRDUcNcINiNLU4wkaXe-tIJDDcDGTgikPyx1szFKJzP9fCPTvjZR_rKamSerwDrmd0SXdH8zhLrkWunvk5lBv8td9cvI-nYmkfaSN_7G8xNUD2nSeouqx6hvtOxpO5h_hxsBVklqPvux_pshuDfrMxzbpsqNH84PLB-T08GD-7rjMNRVAGYqvS2R8C5AOS6mDVpFXzjEfuKtjZXQVQIghAIQSmtUxtBHp5AGE6VY2yhs_c_wh2en6LjwmNAbpZfCVg4xDxBlrIDRAPiZ4jBxwjCgIG2VoXSYcx7oX321KPHRtB7lbkLtNcrezgryanjkb6Da29n6Lqpl6IlV2utGff7XZ82xjKt0EwVyUTjDRGBa1bFvnRQsBrNEF2R0Va7P_ruyVtRXkxdQMnofLKU0X-ovUh4FwAB9v66NgttHKwHseDbYyjZZXBmAD5wVRG1a08TmbLd3yW2IAVxB2hVEFeT3a29XQ_y-uJ9u_9Cm5VSUXMGAlu2RnfX4RngHiWrfPk1v9Bun1IQE priority: 102 providerName: ProQuest – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB60Ivgi3o1WWcE3DZ7NXrL7WEsvigjFU-zbstkLPaA5Yk-h_ntnNjnRo7Xga3YSkrnsfMNkvwF4KaNFIKBsHVQWtcTtj0JK1SYabawOREFOf1t81IfH8v2JOhlpcugszO_9e270mzPcY_FJVORgNqJJBNfhhuJCl8as3p06BhZTzfpQzKX3bSSews9_Gaj8-9_IPxqkJe_s34HbI2BkO4OF78K11N-Dm8MIyR_34ehdOebIlpn5-HVxQQ0B5vvIyJo0yI0te5aO5h_wwkA_UlYPPu98YkRYjSYaT2KyRc8O5nsXD-B4f2--e1iPYxJQv61Y1UTilrDCVcok02bRhMBjEkHnxpomcatSQlQkDdc5dZkY4hFXmU75Nto4C-IhbPXLPj0GlpOKKsUmYBEh84x7jHYssaTIWSA0kRXwtQ5dGDnEaZTFF1dqCaPdoHeHendF725Wwavpnm8Dg8aV0m_JNJMksV-XC-gUbgwm521jfJI8ZBUkl97ybFTXhSg73JO8qWB7bVg3huSZQxwjORHa4fKLaRmDiTokvk_L8yLDUTkIea-SaTGBmNbicx4NvjK9rWgsIgEhKmg3vGjjczZX-sVpIfVucSeVtq3g9drffr36v9X15P_En8KtpoSERa_Zhq3V9_P0DEHVqnteouknSMoVIQ priority: 102 providerName: Springer Nature |
Title | Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx |
URI | https://link.springer.com/article/10.1186/s13059-020-02113-0 https://www.ncbi.nlm.nih.gov/pubmed/32912333 https://www.proquest.com/docview/2444112118 https://www.proquest.com/docview/2441609310 https://www.proquest.com/docview/2477628798 https://pubmed.ncbi.nlm.nih.gov/PMC7488497 https://doaj.org/article/a928ae41cf5c414a91f85bbcd4b040a8 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BERIXxJuFEhmJG6y6Xttr-9hEaQtCFS2piLhYu36okWBTtalU_j1j724gPMqFS6Ssncj7ecbzjWx_A_CKO41EQOjcisByjstfdCmRK6cqpSsbJcjjaYvD6uCEv5uL-U-lvuKZsE4euANup9alqj2nNgjLKa81DUo0jXW8Qfur0zXfQhdDMtXvH2gMPMMVGVXtXOBKjeOJqRLGtFjPYCMMJbX-P1HM309K_rJdmqLQ3j2429NHstsN-z7c8O0DuN0VlPz2EI7epkuPZBlI7b4uruL2AKlbR-LcxrJuZNkSfzR7jw86MZLUuv9p9yOJ8tU4Yf29TLJoyf5sevUITvams8lB3hdNQLQlW-VR0s1jviuE8koGVlpLnWe2CqVWpadaeI8ciStaBd-EqBePLEs1opZOu8Kyx7DVLlv_FEjwwgnvSospBQ8FrdH3MeHiLASGRIVnQAcMje0VxWNhiy8mZRaqMh3uBnE3CXdTZPB6_ZuzTk_j2t7jODXrnlELOz1ACzG9hZh_WUgG28PEmt5BLwyyGk6jvB02v1w3o2vF_ZK69cvL1IciOEiAr-sjMZwoqfF_nnS2sh4tKzXyAsYykBtWtPE6my3t4jRJfEtcV7mWGbwZ7O3H0P8O17P_AddzuFMmR9FoS9uwtTq_9C-QeK2aEdyUczmCW-Pp4Ydj_DapJqPkd_h5PP78HQrxKhY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE0TdJHZiHxBqYdtduqwobEVvJvEDVoKkdLei_VP8RmacR7U89tZjYidyxvPMeL4h5CkzEhwBLkPNXRIyUH8oUjwURqRCphohyPG0xSQdHrC3h_xwjfxqa2HwWGWrE72iNpXGf-SbYIZYhHhk4tXRjxC7RmF2tW2hUbPFnj37CSHb_OXoDezvszjeGUxfD8OmqwAsJ0sWIWKeWQgIORdWZC6JtY6MTXTqYiliG0luLTgRTESps4VDQHVwQ0TB88xI09cJvPcSWWdY0doj69uDyfsPXd4iE-gdNReSxXVxEx555DJta3ZEujkH0wEEwtgNjCw2WFiyi759wL983r-Pbv6Rv_Vmcec6udb4s3SrZsAbZM2WN8nlusPl2S2yP_JVmLRyNDffZ6eYr6B5aSgyG_aZo1VJ7f50DDdqdBQ_uvtp6yNFPG3goKZQlM5KujsdnN4mBxdC7zukV1alvUeos9xwa2INMQ5z_SgHZQQRIEucS8BzYgGJWhoq3UCcY6eNb8qHOiJVNd0V0F15uqt-QJ53zxzVAB8rZ2_j1nQzEZzb36iOv6hG1lUuY5FbFmnHNYtYLiMneFFowwpQmbkIyEa7sarRGHN1zt8BedINg6xjAicvbXXi50RAHPDIV83JwL6JTMJ77ta80q02iSU4KkkSkGyJi5Y-Z3mknH31mOMZKHoms4C8aPntfOn_J9f91V_6mFwZTt-N1Xg02XtArsZeHCRwzAbpLY5P7EPw9xbFo0bIKPl80XL9GyuKXjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQFlVcJFDASN4i6ju3EPpa22xaqioqt6M1y_ICVIKnarVT-PTPOAxZKJa7xOEpmPC-N5xtCXguvIRCQOncy8lyA-UOVkrnyqlS6dAhBjrctDsu9Y_H-RJ781sWfbrsPJcmupwFRmprFxqmPnYqrcuMcLC-8H1Mf8FE4n-AmuSXQ9WG5ttwa6wgaHNDQKnPlviV3lFD7rwo1_74x-UfZNHmj6Sq514eRdLOT-31yIzQPyO1usOSPh-RoPzU_0jZS67_PL7FMQG3jKcoYx7vRtqHhaHYADzpQkrS6-3nzE0UYaxBc359J5w3dne1cPiLH053Z1l7eD08Arld8kSO0W4C8V0oVVBV54RzzgbsyFloVgWkZAsRKQrEyhjoibjxEW6qWtvLaTxx_TFaatglPCI1Behl84SC1EHHCLNgASLwEj5FDwCIywgYeGtcji-OAi28mZRiqNB3fDfDdJL6bSUbejHtOO1yNa6nfoWhGSsTETg_asy-mVzFjdaFsEMxF6QQTVrOoZF07L2qwVFZlZH0QrOkV9dxAdCMYwtzB8qtxGVQM6ya2Ce1FomHAHAiEr6OpwK2oSsN71rqzMn4tLzTEB5xnpFo6RUu_s7zSzL8mqO8K7KvQVUbeDuft16f_m11P_4_8JbnzcXtqDvYPPzwjd4ukHRoO0DpZWZxdhOcQdS3qF0mxfgJ_WSBV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+admixture+and+ancestry+on+eQTL+analysis+and+GWAS+colocalization+in+GTEx&rft.jtitle=Genome+biology&rft.au=Gay%2C+Nicole+R&rft.au=Gloudemans%2C+Michael&rft.au=Antonio%2C+Margaret+L&rft.au=Abell%2C+Nathan+S&rft.date=2020-09-11&rft.issn=1474-760X&rft.volume=21&rft.issue=1+p.233-233&rft.spage=233&rft.epage=233&rft_id=info:doi/10.1186%2Fs13059-020-02113-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |