Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx

Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of i...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 21; no. 1; p. 233
Main Authors Gay, Nicole R., Gloudemans, Michael, Antonio, Margaret L., Abell, Nathan S., Balliu, Brunilda, Park, YoSon, Martin, Alicia R., Musharoff, Shaila, Rao, Abhiram S., Aguet, François, Barbeira, Alvaro N., Bonazzola, Rodrigo, Hormozdiari, Farhad, Ardlie, Kristin G., Brown, Christopher D., Im, Hae Kyung, Lappalainen, Tuuli, Wen, Xiaoquan, Montgomery, Stephen B.
Format Journal Article
LanguageEnglish
Published London BioMed Central 11.09.2020
BMC
Subjects
Online AccessGet full text
ISSN1474-760X
1474-7596
1474-760X
DOI10.1186/s13059-020-02113-0

Cover

Loading…
Abstract Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. Results Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis -eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. Conclusions We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.
AbstractList BACKGROUND: Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. RESULTS: Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. CONCLUSIONS: We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.
Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.
Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization.BACKGROUNDPopulation structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization.Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up.RESULTSHere, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up.We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.CONCLUSIONSWe provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.
Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. Results Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis -eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. Conclusions We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.
Abstract Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The Genotype-Tissue Expression (GTEx) project largely contains individuals of European ancestry, but the v8 release also includes up to 15% of individuals of non-European ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this research across populations and further characterizes the impact of population structure on GWAS colocalization. Results Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree of population admixture and estimate genome-wide local ancestry. We perform genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted by either global or local ancestry. Consistent with previous work, we observe improved power with local ancestry adjustment. At loci where the two adjustments produce different lead variants, we observe 31 loci (0.02%) where a significant colocalization is called only with one eQTL ancestry adjustment method. Notably, both adjustments produce similar numbers of significant colocalizations within each of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a small subset of eQTL-associated variants highly correlated with local ancestry, providing a resource to enhance functional follow-up. Conclusions We provide a local ancestry map for admixed individuals in the GTEx v8 release and describe the impact of ancestry and admixture on gene expression, eQTLs, and GWAS colocalization. While the majority of the results are concordant between local and global ancestry-based adjustments, we identify distinct advantages and disadvantages to each approach.
ArticleNumber 233
Author Antonio, Margaret L.
Rao, Abhiram S.
Martin, Alicia R.
Musharoff, Shaila
Gloudemans, Michael
Balliu, Brunilda
Brown, Christopher D.
Barbeira, Alvaro N.
Im, Hae Kyung
Gay, Nicole R.
Aguet, François
Abell, Nathan S.
Lappalainen, Tuuli
Park, YoSon
Montgomery, Stephen B.
Wen, Xiaoquan
Bonazzola, Rodrigo
Hormozdiari, Farhad
Ardlie, Kristin G.
Author_xml – sequence: 1
  givenname: Nicole R.
  surname: Gay
  fullname: Gay, Nicole R.
  organization: Department of Genetics, Stanford University
– sequence: 2
  givenname: Michael
  surname: Gloudemans
  fullname: Gloudemans, Michael
  organization: Biomedical Informatics, Stanford University
– sequence: 3
  givenname: Margaret L.
  surname: Antonio
  fullname: Antonio, Margaret L.
  organization: Biomedical Informatics, Stanford University
– sequence: 4
  givenname: Nathan S.
  surname: Abell
  fullname: Abell, Nathan S.
  organization: Department of Genetics, Stanford University
– sequence: 5
  givenname: Brunilda
  surname: Balliu
  fullname: Balliu, Brunilda
  organization: Department of Biomathematics, University of California, Los Angeles
– sequence: 6
  givenname: YoSon
  surname: Park
  fullname: Park, YoSon
  organization: Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania
– sequence: 7
  givenname: Alicia R.
  surname: Martin
  fullname: Martin, Alicia R.
  organization: Analytic and Translational Genetics Unit, Massachusetts General Hospital, Stanley Center for Psychiatric Research, Broad Institute
– sequence: 8
  givenname: Shaila
  surname: Musharoff
  fullname: Musharoff, Shaila
  organization: Department of Genetics, Stanford University
– sequence: 9
  givenname: Abhiram S.
  surname: Rao
  fullname: Rao, Abhiram S.
  organization: Department of Bioengineering, Stanford University
– sequence: 10
  givenname: François
  surname: Aguet
  fullname: Aguet, François
  organization: The Broad Institute of MIT and Harvard
– sequence: 11
  givenname: Alvaro N.
  surname: Barbeira
  fullname: Barbeira, Alvaro N.
  organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago
– sequence: 12
  givenname: Rodrigo
  surname: Bonazzola
  fullname: Bonazzola, Rodrigo
  organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago
– sequence: 13
  givenname: Farhad
  surname: Hormozdiari
  fullname: Hormozdiari, Farhad
  organization: The Broad Institute of MIT and Harvard, Department of Epidemiology, Harvard T.H. Chan School of Public Health
– sequence: 15
  givenname: Kristin G.
  surname: Ardlie
  fullname: Ardlie, Kristin G.
  organization: The Broad Institute of MIT and Harvard
– sequence: 16
  givenname: Christopher D.
  surname: Brown
  fullname: Brown, Christopher D.
  organization: Department of Genetics, Perelman School of Medicine, University of Pennsylvania
– sequence: 17
  givenname: Hae Kyung
  surname: Im
  fullname: Im, Hae Kyung
  organization: Section of Genetic Medicine, Department of Medicine, The University of Chicago
– sequence: 18
  givenname: Tuuli
  surname: Lappalainen
  fullname: Lappalainen, Tuuli
  organization: New York Genome Center, Department of Systems Biology, Columbia University
– sequence: 19
  givenname: Xiaoquan
  surname: Wen
  fullname: Wen, Xiaoquan
  organization: Department of Biostatistics, University of Michigan
– sequence: 20
  givenname: Stephen B.
  orcidid: 0000-0002-5200-3903
  surname: Montgomery
  fullname: Montgomery, Stephen B.
  email: smontgom@stanford.edu
  organization: Department of Genetics, Stanford University, Department of Pathology, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32912333$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUtFAR_YA_wAFF4sIl4Gc7sX1BqqqyrLQSqlgEN8txnMWrJF7spOry6_EmLbQ9VBwsW-_NjOb5zSk66n1vEXoN-D2AKD9EoLiQOSY4HQCa42foBBhnOS_xj6N772N0GuMWY5CMlC_QMSUSCKX0BF0tu502Q-abTNeduxnGYDPd1-kYG4ewz3yf2av1KhV0u48uTt3F9_OvmfGtN7p1v_XgEsr12WJ9efMSPW90G-2r2_sMfft0ub74nK--LJYX56vcFJwOeZoAW85IUQgreEOJMVBbasqGSEEsyMJaYJQJKBtbNZTJEstCVIXmtayxoWdoOevWXm_VLrhOh73y2qmp4MNG6TA401qlJRHaMjBNYRgwLaERRVWZmlWYYS2S1sdZazdWna2N7Yeg2weiDzu9-6k2_lpxJgSTPAm8uxUI_teYPk51Lhrbtrq3foyKMM5LIrgU_wFlkEalgBP07SPo1o8h7WFCMYC09YPgm_vm_7q-W3ICiBlggo8x2EYZN0w7S7O4VgFWhzypOU8q5UlNeVIHB-QR9U79SRKdSTGB-40N_2w_wfoDTYrazA
CitedBy_id crossref_primary_10_1016_j_xhgg_2024_100315
crossref_primary_10_1038_s41467_025_57216_8
crossref_primary_10_1038_s41380_023_02089_w
crossref_primary_10_1016_j_ajhg_2022_03_003
crossref_primary_10_1111_cts_13243
crossref_primary_10_1016_j_ajhg_2022_12_005
crossref_primary_10_1186_s13073_022_01039_5
crossref_primary_10_3389_fgene_2023_1171217
crossref_primary_10_1016_j_molmet_2024_101973
crossref_primary_10_1038_s41467_022_30650_8
crossref_primary_10_1158_1055_9965_EPI_23_0849
crossref_primary_10_3389_fpls_2023_1125551
crossref_primary_10_1016_j_trecan_2021_12_006
crossref_primary_10_1002_gepi_22492
crossref_primary_10_1038_s41467_024_44710_8
crossref_primary_10_1038_s41588_023_01509_5
crossref_primary_10_3390_pr9122144
crossref_primary_10_1016_j_ajhg_2022_01_002
crossref_primary_10_1016_j_placenta_2023_04_007
crossref_primary_10_1158_2159_8290_CD_22_0138
crossref_primary_10_1158_2767_9764_CRC_22_0136
crossref_primary_10_3390_ijms232012493
crossref_primary_10_3389_fgene_2021_713230
crossref_primary_10_1016_j_ajhg_2024_09_004
crossref_primary_10_1038_s42003_022_03353_5
crossref_primary_10_1093_molbev_msad054
crossref_primary_10_1002_ana_26764
crossref_primary_10_1016_j_isci_2024_109047
crossref_primary_10_1038_s43586_022_00188_6
crossref_primary_10_3389_fgene_2022_797129
crossref_primary_10_1093_schbul_sbaa167
crossref_primary_10_1186_s13195_021_00866_9
crossref_primary_10_1002_cpt_2818
crossref_primary_10_1016_j_jgg_2025_02_003
crossref_primary_10_3390_cells10092395
crossref_primary_10_1038_s41598_023_49791_x
crossref_primary_10_1126_sciadv_abq2969
crossref_primary_10_1186_s12916_022_02335_y
crossref_primary_10_1093_molbev_msae115
crossref_primary_10_7554_eLife_79834
crossref_primary_10_1016_j_isci_2023_107555
crossref_primary_10_3390_cancers16173020
crossref_primary_10_1186_s13059_023_03151_0
crossref_primary_10_1007_s00439_023_02593_7
crossref_primary_10_1016_j_ajhg_2021_11_017
crossref_primary_10_1101_gr_275636_121
crossref_primary_10_1038_s41588_023_01338_6
crossref_primary_10_1038_s41598_024_77921_6
crossref_primary_10_1016_j_ajhg_2022_02_013
crossref_primary_10_1093_hmg_ddae184
crossref_primary_10_1186_s12967_023_04357_3
crossref_primary_10_1038_s41467_024_54741_w
crossref_primary_10_1016_j_ebiom_2022_104000
crossref_primary_10_1016_j_xgen_2023_100465
Cites_doi 10.1016/j.ajhg.2009.11.016
10.1073/pnas.0437015100
10.4274/Tjh.2012.0187
10.1089/bio.2015.0032
10.1016/j.ygeno.2006.05.009
10.1038/s41586-019-1310-4
10.1093/bioinformatics/btq709
10.1016/S0026-0495(96)90011-6
10.5281/zenodo.3924788
10.1101/787903
10.1093/bioinformatics/btt500
10.1038/ng1847
10.1093/bioinformatics/btr330
10.1126/science.1197005
10.1186/1753-6561-8-S1-S6
10.1371/journal.pgen.1000294
10.1093/nar/gky1120
10.1111/exd.12518
10.1093/bioinformatics/btq560
10.1053/j.gastro.2007.03.059
10.1086/519795
10.1016/j.ajhg.2019.04.009
10.1093/bioinformatics/btw018
10.1371/journal.pgen.1008720
10.1186/1753-6561-3-S7-S107
10.1093/aje/kws234
10.3389/fgene.2015.00324
10.1093/bioinformatics/btp197
10.1016/j.ajhg.2018.04.011
10.5281/zenodo.3629742
10.1016/j.ajhg.2013.06.020
10.1002/gepi.21819
10.1002/ajhb.20956
10.1371/journal.pgen.1006646
10.1038/nature24277
10.1093/bioinformatics/bts144
10.1371/journal.pgen.1004383
10.1093/bioinformatics/bts635
10.1038/nprot.2011.457
10.1016/j.ajhg.2016.10.003
10.1371/journal.pgen.1007586
10.1038/nature15393
10.1101/814350
10.1093/nar/gkj144
10.1002/gepi.21835
10.1186/1753-6561-8-S1-S3
10.1111/j.1365-2796.2007.01852.x
10.5281/zenodo.3926871
10.1002/gepi.22103
10.1371/journal.pgen.1001371
10.1371/journal.pone.0022070
10.1038/nrg2760
10.1016/j.jaci.2014.10.033
10.1038/nmeth.2307
10.1002/gepi.22104
10.1093/bioinformatics/btu416
10.1073/pnas.85.23.9119
10.1016/j.alit.2019.05.012
10.1038/sj.ijo.0801723
10.1001/archpediatrics.2010.100
10.1093/bioinformatics/btp324
10.1093/bioinformatics/bts196
10.1101/2020.02.21.959510
ContentType Journal Article
Copyright The Author(s) 2020
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor GTEx Consortium
CorporateAuthor_xml – name: GTEx Consortium
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-020-02113-0
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 233
ExternalDocumentID oai_doaj_org_article_a928ae41cf5c414a91f85bbcd4b040a8
PMC7488497
32912333
10_1186_s13059_020_02113_0
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01HG008150; U01HG009080; R01HL142015; U01HG009431
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Human Genome Research Institute
  grantid: 5T32HG000044-22; R01HG010067
  funderid: http://dx.doi.org/10.13039/100000051
– fundername: NHGRI NIH HHS
  grantid: R01HG010067
– fundername: NHGRI NIH HHS
  grantid: U01 HG009431
– fundername: NIH HHS
  grantid: R01HL142015
– fundername: NIMH NIH HHS
  grantid: R00 MH117229
– fundername: NIMH NIH HHS
  grantid: K99 MH117229
– fundername: NIH HHS
  grantid: U01HG009431
– fundername: NIH HHS
  grantid: U01HG009080
– fundername: NHGRI NIH HHS
  grantid: T32 HG000044
– fundername: NIH HHS
  grantid: R01HG008150
– fundername: NHGRI NIH HHS
  grantid: R01 HG010067
– fundername: ;
  grantid: 5T32HG000044-22; R01HG010067
– fundername: ;
  grantid: R01HG008150; U01HG009080; R01HL142015; U01HG009431
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c573t-1180e742558e87f32cc1de3c6f2982e195ee1434816febf34960958b5a7d9d0c3
IEDL.DBID DOA
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:07:50 EDT 2025
Thu Aug 21 18:30:01 EDT 2025
Thu Sep 04 20:52:54 EDT 2025
Thu Sep 04 19:05:52 EDT 2025
Fri Jul 25 12:08:06 EDT 2025
Mon Jul 21 05:51:32 EDT 2025
Tue Jul 01 03:10:47 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Sat Sep 06 07:24:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Colocalization
GTEx
Admixture
Population structure
eQTL
Local ancestry
Gene expression
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-1180e742558e87f32cc1de3c6f2982e195ee1434816febf34960958b5a7d9d0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5200-3903
OpenAccessLink https://doaj.org/article/a928ae41cf5c414a91f85bbcd4b040a8
PMID 32912333
PQID 2444112118
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a928ae41cf5c414a91f85bbcd4b040a8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7488497
proquest_miscellaneous_2477628798
proquest_miscellaneous_2441609310
proquest_journals_2444112118
pubmed_primary_32912333
crossref_citationtrail_10_1186_s13059_020_02113_0
crossref_primary_10_1186_s13059_020_02113_0
springer_journals_10_1186_s13059_020_02113_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-11
PublicationDateYYYYMMDD 2020-09-11
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2020
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References 2113_CR30
2113_CR72
J Hellwege (2113_CR2) 2017; 95
2113_CR73
SJ Kang (2113_CR13) 2009; 3
P Danecek (2113_CR63) 2011; 27
2113_CR33
L Yin (2113_CR23) 2014; 23
D Lee (2113_CR65) 2013; 29
H Sunadome (2113_CR36) 2020; 69
2113_CR70
AS Hinrichs (2113_CR57) 2006; 34
2113_CR71
J Liu (2113_CR8) 2013; 177
Q Duan (2113_CR12) 2018; 42
The 1000 Genomes Project Consortium (2113_CR19) 2015; 526
C Wallace (2113_CR43) 2020; 16
A Dobbyn (2113_CR44) 2018; 102
J Zhang (2113_CR9) 2014; 38
H Qin (2113_CR14) 2010; 26
X Wang (2113_CR15) 2011; 27
E Altunoğlu (2113_CR37) 2014; 31
2113_CR1
GTEx Consortium (2113_CR7) 2017; 550
2113_CR20
A Buniello (2113_CR35) 2019; 47
2113_CR61
2113_CR62
AL Price (2113_CR6) 2006; 38
2113_CR68
N Zaitlen (2113_CR49) 2010; 86
NG Forouhi (2113_CR22) 2001; 25
AM Silva (2113_CR24) 2010; 22
2113_CR60
M Pino-Yanes (2113_CR18) 2015; 135
TA Thornton (2113_CR3) 2014; 38
JC Lovejoy (2113_CR21) 1996; 45
O Delaneau (2113_CR52) 2013; 10
A Dobin (2113_CR54) 2013; 29
2113_CR27
Y Baran (2113_CR46) 2012; 28
2113_CR69
O Stegle (2113_CR64) 2012; 7
D Yorgov (2113_CR42) 2014; 8
LJ Carithers (2113_CR74) 2015; 13
2113_CR50
Y Zhong (2113_CR10) 2019; 104
2113_CR51
PH Sudmant (2113_CR29) 2010; 330
2113_CR56
S Purcell (2113_CR53) 2007; 81
X Wen (2113_CR67) 2017; 13
SE Shoelson (2113_CR39) 2007; 132
CA Paulding (2113_CR28) 2003; 100
AW Ferrante (2113_CR38) 2007; 262
2113_CR17
2113_CR58
2113_CR59
ER Martin (2113_CR5) 2018; 42
R Chakraborty (2113_CR4) 1988; 85
NA Rosenberg (2113_CR48) 2010; 11
2113_CR40
2113_CR45
GL Wojcik (2113_CR34) 2019; 570
BK Maples (2113_CR26) 2013; 93
M Chen (2113_CR16) 2014; 8
DS DeLuca (2113_CR55) 2012; 28
F Hormozdiari (2113_CR32) 2016; 99
D Hodzic (2113_CR41) 2006; 88
B Pasaniuc (2113_CR66) 2014; 30
2113_CR47
B Paşaniuc (2113_CR11) 2009; 25
KA Stewart (2113_CR25) 2010; 164
C Benner (2113_CR31) 2016; 32
References_xml – volume: 86
  start-page: 23
  issue: 1
  year: 2010
  ident: 2113_CR49
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2009.11.016
– ident: 2113_CR72
– volume: 100
  start-page: 2507
  issue: 5
  year: 2003
  ident: 2113_CR28
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0437015100
– volume: 31
  start-page: 61
  issue: 1
  year: 2014
  ident: 2113_CR37
  publication-title: Turk J Hematol
  doi: 10.4274/Tjh.2012.0187
– volume: 13
  start-page: 311
  issue: 5
  year: 2015
  ident: 2113_CR74
  publication-title: Biopreserv Biobank
  doi: 10.1089/bio.2015.0032
– volume: 88
  start-page: 731
  issue: 6
  year: 2006
  ident: 2113_CR41
  publication-title: Genomics.
  doi: 10.1016/j.ygeno.2006.05.009
– volume: 570
  start-page: 514
  issue: 7762
  year: 2019
  ident: 2113_CR34
  publication-title: Nature.
  doi: 10.1038/s41586-019-1310-4
– volume: 27
  start-page: 670
  issue: 5
  year: 2011
  ident: 2113_CR15
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq709
– volume: 45
  start-page: 1119
  issue: 9
  year: 1996
  ident: 2113_CR21
  publication-title: Metabolism.
  doi: 10.1016/S0026-0495(96)90011-6
– ident: 2113_CR73
  doi: 10.5281/zenodo.3924788
– ident: 2113_CR1
  doi: 10.1101/787903
– volume: 29
  start-page: 2925
  issue: 22
  year: 2013
  ident: 2113_CR65
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btt500
– volume: 38
  start-page: 904
  issue: 8
  year: 2006
  ident: 2113_CR6
  publication-title: Nat Genet
  doi: 10.1038/ng1847
– volume: 27
  start-page: 2156
  issue: 15
  year: 2011
  ident: 2113_CR63
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr330
– volume: 330
  start-page: 641
  issue: 6004
  year: 2010
  ident: 2113_CR29
  publication-title: Science.
  doi: 10.1126/science.1197005
– ident: 2113_CR69
– volume: 8
  start-page: S6
  issue: Suppl 1
  year: 2014
  ident: 2113_CR42
  publication-title: BMC Proc
  doi: 10.1186/1753-6561-8-S1-S6
– ident: 2113_CR40
  doi: 10.1371/journal.pgen.1000294
– volume: 47
  start-page: D1005
  issue: D1
  year: 2019
  ident: 2113_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1120
– volume: 23
  start-page: 731
  issue: 10
  year: 2014
  ident: 2113_CR23
  publication-title: Exp Dermatol
  doi: 10.1111/exd.12518
– volume: 26
  start-page: 2961
  issue: 23
  year: 2010
  ident: 2113_CR14
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq560
– volume: 132
  start-page: 2169
  issue: 6
  year: 2007
  ident: 2113_CR39
  publication-title: Gastroenterology.
  doi: 10.1053/j.gastro.2007.03.059
– ident: 2113_CR60
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  ident: 2113_CR53
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– ident: 2113_CR58
– volume: 104
  start-page: 1097
  issue: 6
  year: 2019
  ident: 2113_CR10
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2019.04.009
– volume: 32
  start-page: 1493
  issue: 10
  year: 2016
  ident: 2113_CR31
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw018
– volume: 16
  start-page: e1008720
  issue: 4
  year: 2020
  ident: 2113_CR43
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008720
– volume: 3
  start-page: S107
  issue: Suppl 7
  year: 2009
  ident: 2113_CR13
  publication-title: BMC Proc
  doi: 10.1186/1753-6561-3-S7-S107
– ident: 2113_CR68
– volume: 177
  start-page: 351
  issue: 4
  year: 2013
  ident: 2113_CR8
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kws234
– ident: 2113_CR27
  doi: 10.3389/fgene.2015.00324
– ident: 2113_CR51
– volume: 25
  start-page: i213
  issue: 12
  year: 2009
  ident: 2113_CR11
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp197
– volume: 102
  start-page: 1169
  issue: 6
  year: 2018
  ident: 2113_CR44
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.04.011
– ident: 2113_CR71
  doi: 10.5281/zenodo.3629742
– volume: 93
  start-page: 278
  issue: 2
  year: 2013
  ident: 2113_CR26
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2013.06.020
– volume: 38
  start-page: S5
  issue: S1
  year: 2014
  ident: 2113_CR3
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21819
– volume: 22
  start-page: 76
  issue: 1
  year: 2010
  ident: 2113_CR24
  publication-title: Am J Hum Biol
  doi: 10.1002/ajhb.20956
– volume: 95
  start-page: 1.22.1
  year: 2017
  ident: 2113_CR2
  publication-title: Curr Protoc Hum Genet
– ident: 2113_CR61
– volume: 13
  start-page: e1006646
  issue: 3
  year: 2017
  ident: 2113_CR67
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006646
– ident: 2113_CR59
– volume: 550
  start-page: 204
  issue: 7675
  year: 2017
  ident: 2113_CR7
  publication-title: Nature.
  doi: 10.1038/nature24277
– volume: 28
  start-page: 1359
  issue: 10
  year: 2012
  ident: 2113_CR46
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts144
– ident: 2113_CR30
  doi: 10.1371/journal.pgen.1004383
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 2113_CR54
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts635
– volume: 7
  start-page: 500
  issue: 3
  year: 2012
  ident: 2113_CR64
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.457
– volume: 99
  start-page: 1245
  issue: 6
  year: 2016
  ident: 2113_CR32
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2016.10.003
– ident: 2113_CR45
  doi: 10.1371/journal.pgen.1007586
– volume: 526
  start-page: 68
  issue: 7571
  year: 2015
  ident: 2113_CR19
  publication-title: Nature
  doi: 10.1038/nature15393
– ident: 2113_CR33
  doi: 10.1101/814350
– volume: 34
  start-page: D590
  issue: Database issue
  year: 2006
  ident: 2113_CR57
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj144
– volume: 38
  start-page: 502
  issue: 6
  year: 2014
  ident: 2113_CR9
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21835
– volume: 8
  start-page: S3
  issue: Suppl 1
  year: 2014
  ident: 2113_CR16
  publication-title: BMC Proc
  doi: 10.1186/1753-6561-8-S1-S3
– volume: 262
  start-page: 408
  issue: 4
  year: 2007
  ident: 2113_CR38
  publication-title: J Intern Med
  doi: 10.1111/j.1365-2796.2007.01852.x
– ident: 2113_CR70
  doi: 10.5281/zenodo.3926871
– volume: 42
  start-page: 214
  issue: 2
  year: 2018
  ident: 2113_CR5
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22103
– ident: 2113_CR17
  doi: 10.1371/journal.pgen.1001371
– ident: 2113_CR20
  doi: 10.1371/journal.pone.0022070
– volume: 11
  start-page: 356
  issue: 5
  year: 2010
  ident: 2113_CR48
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2760
– volume: 135
  start-page: 1502
  issue: 6
  year: 2015
  ident: 2113_CR18
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2014.10.033
– volume: 10
  start-page: 5
  issue: 1
  year: 2013
  ident: 2113_CR52
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2307
– volume: 42
  start-page: 288
  issue: 3
  year: 2018
  ident: 2113_CR12
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22104
– ident: 2113_CR62
– volume: 30
  start-page: 2906
  issue: 20
  year: 2014
  ident: 2113_CR66
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu416
– volume: 85
  start-page: 9119
  issue: 23
  year: 1988
  ident: 2113_CR4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.85.23.9119
– volume: 69
  start-page: 46
  issue: 1
  year: 2020
  ident: 2113_CR36
  publication-title: Allergol Int
  doi: 10.1016/j.alit.2019.05.012
– volume: 25
  start-page: 1327
  issue: 9
  year: 2001
  ident: 2113_CR22
  publication-title: Int J Obes Relat Metab Disord
  doi: 10.1038/sj.ijo.0801723
– volume: 164
  start-page: 720
  issue: 8
  year: 2010
  ident: 2113_CR25
  publication-title: Arch Pediatr Adolesc Med
  doi: 10.1001/archpediatrics.2010.100
– ident: 2113_CR56
– ident: 2113_CR50
  doi: 10.1093/bioinformatics/btp324
– volume: 28
  start-page: 1530
  issue: 11
  year: 2012
  ident: 2113_CR55
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts196
– ident: 2113_CR47
  doi: 10.1101/2020.02.21.959510
SSID ssj0019426
ssj0017866
Score 2.5683103
Snippet Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The...
Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The...
Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings. The...
BACKGROUND: Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious findings....
Abstract Background Population structure among study subjects may confound genetic association studies, and lack of proper correction can lead to spurious...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 233
SubjectTerms Admixture
ancestry
Animal Genetics and Genomics
Bioinformatics
Biomedical and Life Sciences
Colocalization
eQTL
Evolutionary Biology
Gene Expression
Gene mapping
genome
Genome, Human
Genome-Wide Association Study
Genomes
Genotype
Genotype & phenotype
Genotypes
GTEx
Human Genetics
Humans
lead
Life Sciences
Local ancestry
Microbial Genetics and Genomics
Plant Genetics and Genomics
Population
Population structure
Population studies
Quantitative Trait Loci
Racial Groups - genetics
Sample size
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3q2uEsE3LTtpkiZ5klX2ooiwOIvzFtpcdEDbdWcW1n_vOWnaZbzMY5u0pOeW7zTJdwh5KbwBICBN6WTkpYDwhy4lS-11rU3tkIIcd1t8qo9PxYeFXOQfbqu8rXKMiSlQ-97hP_I9mIYEQz4y_ebsZ4lVo3B1NZfQuE5uJOoysGe1mBIupjRilXxhRDUcNcINiNLU4wkaXe-tIJDDcDGTgikPyx1szFKJzP9fCPTvjZR_rKamSerwDrmd0SXdH8zhLrkWunvk5lBv8td9cvI-nYmkfaSN_7G8xNUD2nSeouqx6hvtOxpO5h_hxsBVklqPvux_pshuDfrMxzbpsqNH84PLB-T08GD-7rjMNRVAGYqvS2R8C5AOS6mDVpFXzjEfuKtjZXQVQIghAIQSmtUxtBHp5AGE6VY2yhs_c_wh2en6LjwmNAbpZfCVg4xDxBlrIDRAPiZ4jBxwjCgIG2VoXSYcx7oX321KPHRtB7lbkLtNcrezgryanjkb6Da29n6Lqpl6IlV2utGff7XZ82xjKt0EwVyUTjDRGBa1bFvnRQsBrNEF2R0Va7P_ruyVtRXkxdQMnofLKU0X-ovUh4FwAB9v66NgttHKwHseDbYyjZZXBmAD5wVRG1a08TmbLd3yW2IAVxB2hVEFeT3a29XQ_y-uJ9u_9Cm5VSUXMGAlu2RnfX4RngHiWrfPk1v9Bun1IQE
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB60Ivgi3o1WWcE3DZ7NXrL7WEsvigjFU-zbstkLPaA5Yk-h_ntnNjnRo7Xga3YSkrnsfMNkvwF4KaNFIKBsHVQWtcTtj0JK1SYabawOREFOf1t81IfH8v2JOhlpcugszO_9e270mzPcY_FJVORgNqJJBNfhhuJCl8as3p06BhZTzfpQzKX3bSSews9_Gaj8-9_IPxqkJe_s34HbI2BkO4OF78K11N-Dm8MIyR_34ehdOebIlpn5-HVxQQ0B5vvIyJo0yI0te5aO5h_wwkA_UlYPPu98YkRYjSYaT2KyRc8O5nsXD-B4f2--e1iPYxJQv61Y1UTilrDCVcok02bRhMBjEkHnxpomcatSQlQkDdc5dZkY4hFXmU75Nto4C-IhbPXLPj0GlpOKKsUmYBEh84x7jHYssaTIWSA0kRXwtQ5dGDnEaZTFF1dqCaPdoHeHendF725Wwavpnm8Dg8aV0m_JNJMksV-XC-gUbgwm521jfJI8ZBUkl97ybFTXhSg73JO8qWB7bVg3huSZQxwjORHa4fKLaRmDiTokvk_L8yLDUTkIea-SaTGBmNbicx4NvjK9rWgsIgEhKmg3vGjjczZX-sVpIfVucSeVtq3g9drffr36v9X15P_En8KtpoSERa_Zhq3V9_P0DEHVqnteouknSMoVIQ
  priority: 102
  providerName: Springer Nature
Title Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx
URI https://link.springer.com/article/10.1186/s13059-020-02113-0
https://www.ncbi.nlm.nih.gov/pubmed/32912333
https://www.proquest.com/docview/2444112118
https://www.proquest.com/docview/2441609310
https://www.proquest.com/docview/2477628798
https://pubmed.ncbi.nlm.nih.gov/PMC7488497
https://doaj.org/article/a928ae41cf5c414a91f85bbcd4b040a8
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BERIXxJuFEhmJG6y6Xttr-9hEaQtCFS2piLhYu36okWBTtalU_j1j724gPMqFS6Ssncj7ecbzjWx_A_CKO41EQOjcisByjstfdCmRK6cqpSsbJcjjaYvD6uCEv5uL-U-lvuKZsE4euANup9alqj2nNgjLKa81DUo0jXW8Qfur0zXfQhdDMtXvH2gMPMMVGVXtXOBKjeOJqRLGtFjPYCMMJbX-P1HM309K_rJdmqLQ3j2429NHstsN-z7c8O0DuN0VlPz2EI7epkuPZBlI7b4uruL2AKlbR-LcxrJuZNkSfzR7jw86MZLUuv9p9yOJ8tU4Yf29TLJoyf5sevUITvams8lB3hdNQLQlW-VR0s1jviuE8koGVlpLnWe2CqVWpadaeI8ciStaBd-EqBePLEs1opZOu8Kyx7DVLlv_FEjwwgnvSospBQ8FrdH3MeHiLASGRIVnQAcMje0VxWNhiy8mZRaqMh3uBnE3CXdTZPB6_ZuzTk_j2t7jODXrnlELOz1ACzG9hZh_WUgG28PEmt5BLwyyGk6jvB02v1w3o2vF_ZK69cvL1IciOEiAr-sjMZwoqfF_nnS2sh4tKzXyAsYykBtWtPE6my3t4jRJfEtcV7mWGbwZ7O3H0P8O17P_AddzuFMmR9FoS9uwtTq_9C-QeK2aEdyUczmCW-Pp4Ydj_DapJqPkd_h5PP78HQrxKhY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE0TdJHZiHxBqYdtduqwobEVvJvEDVoKkdLei_VP8RmacR7U89tZjYidyxvPMeL4h5CkzEhwBLkPNXRIyUH8oUjwURqRCphohyPG0xSQdHrC3h_xwjfxqa2HwWGWrE72iNpXGf-SbYIZYhHhk4tXRjxC7RmF2tW2hUbPFnj37CSHb_OXoDezvszjeGUxfD8OmqwAsJ0sWIWKeWQgIORdWZC6JtY6MTXTqYiliG0luLTgRTESps4VDQHVwQ0TB88xI09cJvPcSWWdY0doj69uDyfsPXd4iE-gdNReSxXVxEx555DJta3ZEujkH0wEEwtgNjCw2WFiyi759wL983r-Pbv6Rv_Vmcec6udb4s3SrZsAbZM2WN8nlusPl2S2yP_JVmLRyNDffZ6eYr6B5aSgyG_aZo1VJ7f50DDdqdBQ_uvtp6yNFPG3goKZQlM5KujsdnN4mBxdC7zukV1alvUeos9xwa2INMQ5z_SgHZQQRIEucS8BzYgGJWhoq3UCcY6eNb8qHOiJVNd0V0F15uqt-QJ53zxzVAB8rZ2_j1nQzEZzb36iOv6hG1lUuY5FbFmnHNYtYLiMneFFowwpQmbkIyEa7sarRGHN1zt8BedINg6xjAicvbXXi50RAHPDIV83JwL6JTMJ77ta80q02iSU4KkkSkGyJi5Y-Z3mknH31mOMZKHoms4C8aPntfOn_J9f91V_6mFwZTt-N1Xg02XtArsZeHCRwzAbpLY5P7EPw9xbFo0bIKPl80XL9GyuKXjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQFlVcJFDASN4i6ju3EPpa22xaqioqt6M1y_ICVIKnarVT-PTPOAxZKJa7xOEpmPC-N5xtCXguvIRCQOncy8lyA-UOVkrnyqlS6dAhBjrctDsu9Y_H-RJ781sWfbrsPJcmupwFRmprFxqmPnYqrcuMcLC-8H1Mf8FE4n-AmuSXQ9WG5ttwa6wgaHNDQKnPlviV3lFD7rwo1_74x-UfZNHmj6Sq514eRdLOT-31yIzQPyO1usOSPh-RoPzU_0jZS67_PL7FMQG3jKcoYx7vRtqHhaHYADzpQkrS6-3nzE0UYaxBc359J5w3dne1cPiLH053Z1l7eD08Arld8kSO0W4C8V0oVVBV54RzzgbsyFloVgWkZAsRKQrEyhjoibjxEW6qWtvLaTxx_TFaatglPCI1Behl84SC1EHHCLNgASLwEj5FDwCIywgYeGtcji-OAi28mZRiqNB3fDfDdJL6bSUbejHtOO1yNa6nfoWhGSsTETg_asy-mVzFjdaFsEMxF6QQTVrOoZF07L2qwVFZlZH0QrOkV9dxAdCMYwtzB8qtxGVQM6ya2Ce1FomHAHAiEr6OpwK2oSsN71rqzMn4tLzTEB5xnpFo6RUu_s7zSzL8mqO8K7KvQVUbeDuft16f_m11P_4_8JbnzcXtqDvYPPzwjd4ukHRoO0DpZWZxdhOcQdS3qF0mxfgJ_WSBV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+admixture+and+ancestry+on+eQTL+analysis+and+GWAS+colocalization+in+GTEx&rft.jtitle=Genome+biology&rft.au=Gay%2C+Nicole+R&rft.au=Gloudemans%2C+Michael&rft.au=Antonio%2C+Margaret+L&rft.au=Abell%2C+Nathan+S&rft.date=2020-09-11&rft.issn=1474-760X&rft.volume=21&rft.issue=1+p.233-233&rft.spage=233&rft.epage=233&rft_id=info:doi/10.1186%2Fs13059-020-02113-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon