Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION™ nanopore sequencer

Rapid identification of bacterial pathogens is crucial for appropriate and adequate antibiotic treatment, which significantly improves patient outcomes. 16S ribosomal RNA (rRNA) gene amplicon sequencing has proven to be a powerful strategy for diagnosing bacterial infections. We have recently establ...

Full description

Saved in:
Bibliographic Details
Published inFEBS open bio Vol. 9; no. 3; pp. 548 - 557
Main Authors Kai, Shinichi, Matsuo, Yoshiyuki, Nakagawa, So, Kryukov, Kirill, Matsukawa, Shino, Tanaka, Hiromasa, Iwai, Teppei, Imanishi, Tadashi, Hirota, Kiichi
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.03.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid identification of bacterial pathogens is crucial for appropriate and adequate antibiotic treatment, which significantly improves patient outcomes. 16S ribosomal RNA (rRNA) gene amplicon sequencing has proven to be a powerful strategy for diagnosing bacterial infections. We have recently established a sequencing method and bioinformatics pipeline for 16S rRNA gene analysis utilizing the Oxford Nanopore Technologies MinION™ sequencer. In combination with our taxonomy annotation analysis pipeline, the system enabled the molecular detection of bacterial DNA in a reasonable time frame for diagnostic purposes. However, purification of bacterial DNA from specimens remains a rate‐limiting step in the workflow. To further accelerate the process of sample preparation, we adopted a direct PCR strategy that amplifies 16S rRNA genes from bacterial cell suspensions without DNA purification. Our results indicate that differences in cell wall morphology significantly affect direct PCR efficiency and sequencing data. Notably, mechanical cell disruption preceding direct PCR was indispensable for obtaining an accurate representation of the specimen bacterial composition. Furthermore, 16S rRNA gene analysis of mock polymicrobial samples indicated that primer sequence optimization is required to avoid preferential detection of particular taxa and to cover a broad range of bacterial species. This study establishes a relatively simple workflow for rapid bacterial identification via MinION™ sequencing, which reduces the turnaround time from sample to result, and provides a reliable method that may be applicable to clinical settings. Direct amplification of 16S ribosomal RNA genes combined with MinION™ sequencing provides an attractive option for rapid detection of bacteria. Mechanical cell disruption preceding direct PCR is indispensable for obtaining an accurate representation of the bacterial composition. Our simple workflow for rapid bacterial identification reduces the turnaround time from sample to result and provides a reliable method applicable to clinical settings.
AbstractList Rapid identification of bacterial pathogens is crucial for appropriate and adequate antibiotic treatment, which significantly improves patient outcomes. 16S ribosomal RNA (rRNA) gene amplicon sequencing has proven to be a powerful strategy for diagnosing bacterial infections. We have recently established a sequencing method and bioinformatics pipeline for 16S rRNA gene analysis utilizing the Oxford Nanopore Technologies MinION™ sequencer. In combination with our taxonomy annotation analysis pipeline, the system enabled the molecular detection of bacterial DNA in a reasonable time frame for diagnostic purposes. However, purification of bacterial DNA from specimens remains a rate-limiting step in the workflow. To further accelerate the process of sample preparation, we adopted a direct PCR strategy that amplifies 16S rRNA genes from bacterial cell suspensions without DNA purification. Our results indicate that differences in cell wall morphology significantly affect direct PCR efficiency and sequencing data. Notably, mechanical cell disruption preceding direct PCR was indispensable for obtaining an accurate representation of the specimen bacterial composition. Furthermore, 16S rRNA gene analysis of mock polymicrobial samples indicated that primer sequence optimization is required to avoid preferential detection of particular taxa and to cover a broad range of bacterial species. This study establishes a relatively simple workflow for rapid bacterial identification via MinION™ sequencing, which reduces the turnaround time from sample to result, and provides a reliable method that may be applicable to clinical settings.
Rapid identification of bacterial pathogens is crucial for appropriate and adequate antibiotic treatment, which significantly improves patient outcomes. 16S ribosomal RNA (rRNA) gene amplicon sequencing has proven to be a powerful strategy for diagnosing bacterial infections. We have recently established a sequencing method and bioinformatics pipeline for 16S rRNA gene analysis utilizing the Oxford Nanopore Technologies MinION™ sequencer. In combination with our taxonomy annotation analysis pipeline, the system enabled the molecular detection of bacterial DNA in a reasonable time frame for diagnostic purposes. However, purification of bacterial DNA from specimens remains a rate-limiting step in the workflow. To further accelerate the process of sample preparation, we adopted a direct PCR strategy that amplifies 16S rRNA genes from bacterial cell suspensions without DNA purification. Our results indicate that differences in cell wall morphology significantly affect direct PCR efficiency and sequencing data. Notably, mechanical cell disruption preceding direct PCR was indispensable for obtaining an accurate representation of the specimen bacterial composition. Furthermore, 16S rRNA gene analysis of mock polymicrobial samples indicated that primer sequence optimization is required to avoid preferential detection of particular taxa and to cover a broad range of bacterial species. This study establishes a relatively simple workflow for rapid bacterial identification via MinION™ sequencing, which reduces the turnaround time from sample to result, and provides a reliable method that may be applicable to clinical settings.Rapid identification of bacterial pathogens is crucial for appropriate and adequate antibiotic treatment, which significantly improves patient outcomes. 16S ribosomal RNA (rRNA) gene amplicon sequencing has proven to be a powerful strategy for diagnosing bacterial infections. We have recently established a sequencing method and bioinformatics pipeline for 16S rRNA gene analysis utilizing the Oxford Nanopore Technologies MinION™ sequencer. In combination with our taxonomy annotation analysis pipeline, the system enabled the molecular detection of bacterial DNA in a reasonable time frame for diagnostic purposes. However, purification of bacterial DNA from specimens remains a rate-limiting step in the workflow. To further accelerate the process of sample preparation, we adopted a direct PCR strategy that amplifies 16S rRNA genes from bacterial cell suspensions without DNA purification. Our results indicate that differences in cell wall morphology significantly affect direct PCR efficiency and sequencing data. Notably, mechanical cell disruption preceding direct PCR was indispensable for obtaining an accurate representation of the specimen bacterial composition. Furthermore, 16S rRNA gene analysis of mock polymicrobial samples indicated that primer sequence optimization is required to avoid preferential detection of particular taxa and to cover a broad range of bacterial species. This study establishes a relatively simple workflow for rapid bacterial identification via MinION™ sequencing, which reduces the turnaround time from sample to result, and provides a reliable method that may be applicable to clinical settings.
Rapid identification of bacterial pathogens is crucial for appropriate and adequate antibiotic treatment, which significantly improves patient outcomes. 16S ribosomal RNA (rRNA) gene amplicon sequencing has proven to be a powerful strategy for diagnosing bacterial infections. We have recently established a sequencing method and bioinformatics pipeline for 16S rRNA gene analysis utilizing the Oxford Nanopore Technologies MinION™ sequencer. In combination with our taxonomy annotation analysis pipeline, the system enabled the molecular detection of bacterial DNA in a reasonable time frame for diagnostic purposes. However, purification of bacterial DNA from specimens remains a rate‐limiting step in the workflow. To further accelerate the process of sample preparation, we adopted a direct PCR strategy that amplifies 16S rRNA genes from bacterial cell suspensions without DNA purification. Our results indicate that differences in cell wall morphology significantly affect direct PCR efficiency and sequencing data. Notably, mechanical cell disruption preceding direct PCR was indispensable for obtaining an accurate representation of the specimen bacterial composition. Furthermore, 16S rRNA gene analysis of mock polymicrobial samples indicated that primer sequence optimization is required to avoid preferential detection of particular taxa and to cover a broad range of bacterial species. This study establishes a relatively simple workflow for rapid bacterial identification via MinION™ sequencing, which reduces the turnaround time from sample to result, and provides a reliable method that may be applicable to clinical settings. Direct amplification of 16S ribosomal RNA genes combined with MinION™ sequencing provides an attractive option for rapid detection of bacteria. Mechanical cell disruption preceding direct PCR is indispensable for obtaining an accurate representation of the bacterial composition. Our simple workflow for rapid bacterial identification reduces the turnaround time from sample to result and provides a reliable method applicable to clinical settings.
Author Kryukov, Kirill
Hirota, Kiichi
Matsuo, Yoshiyuki
Matsukawa, Shino
Nakagawa, So
Tanaka, Hiromasa
Iwai, Teppei
Imanishi, Tadashi
Kai, Shinichi
AuthorAffiliation 2 Department of Human Stress Response Science Institute of Biomedical Science Kansai Medical University Hirakata Japan
1 Department of Anesthesia Kyoto University Hospital Japan
3 Department of Molecular Life Science Tokai University School of Medicine Isehara Japan
AuthorAffiliation_xml – name: 3 Department of Molecular Life Science Tokai University School of Medicine Isehara Japan
– name: 2 Department of Human Stress Response Science Institute of Biomedical Science Kansai Medical University Hirakata Japan
– name: 1 Department of Anesthesia Kyoto University Hospital Japan
Author_xml – sequence: 1
  givenname: Shinichi
  surname: Kai
  fullname: Kai, Shinichi
  organization: Kyoto University Hospital
– sequence: 2
  givenname: Yoshiyuki
  orcidid: 0000-0002-3183-4871
  surname: Matsuo
  fullname: Matsuo, Yoshiyuki
  email: ysmatsuo-kyt@umin.ac.jp
  organization: Kansai Medical University
– sequence: 3
  givenname: So
  surname: Nakagawa
  fullname: Nakagawa, So
  organization: Tokai University School of Medicine
– sequence: 4
  givenname: Kirill
  surname: Kryukov
  fullname: Kryukov, Kirill
  organization: Tokai University School of Medicine
– sequence: 5
  givenname: Shino
  surname: Matsukawa
  fullname: Matsukawa, Shino
  organization: Kyoto University Hospital
– sequence: 6
  givenname: Hiromasa
  surname: Tanaka
  fullname: Tanaka, Hiromasa
  organization: Kansai Medical University
– sequence: 7
  givenname: Teppei
  surname: Iwai
  fullname: Iwai, Teppei
  organization: Kansai Medical University
– sequence: 8
  givenname: Tadashi
  surname: Imanishi
  fullname: Imanishi, Tadashi
  organization: Tokai University School of Medicine
– sequence: 9
  givenname: Kiichi
  orcidid: 0000-0003-1110-0827
  surname: Hirota
  fullname: Hirota, Kiichi
  email: hif1@mac.com
  organization: Kansai Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30868063$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxi1UREvpmRuyxIVLWv_Ztb0XpBK1UKm0KMDZsr2zqauNndq7oNx5Eh6NJ8FpSig9UF9seX7feMbzPUc7IQZA6CUlh5QQdsQYpZO6EvyQsrohT9De9mbn3nkXHeR8TcoShApCnqFdTpRQRPA9lGdm6VtsjRsgedNj30IYfOedGXwM2K5w6xO4AX-azrBZLPu_sdhhKj7jNLs4xnMIkPGYfZjj4QrwRx_OLi9-_fiJgwlxGRPgDDcjBAfpBXramT7Dwd2-j76ennyZfpicX74_mx6fT1wtOZnUhghlK9o23EGrnFSMK96yzkrrmo53CqSV1DS2UbKxdSUbZ7lVDsAQJiXfR283eZejXUDrSmPJ9HqZ_MKklY7G638jwV_pefymBW8Er1RJ8OYuQYql9jzohc8O-t4EiGPWTFLFOa1Z9ThKG8prWdeioK8foNdxTKH8hGacKa4EY7xQr-4Xv636z-gKcLQBXIo5J-i2CCV67Q-9doBeO0Df-qMo6gcK54fbUZbuff8fndjovvseVo89o09P3lUb4W-Av8z5
CitedBy_id crossref_primary_10_1038_s41598_020_69450_9
crossref_primary_10_3390_nano12091534
crossref_primary_10_2144_btn_2019_0102
crossref_primary_10_1007_s12072_019_10004_1
crossref_primary_10_1016_j_bios_2024_116521
crossref_primary_10_1128_msystems_00294_21
crossref_primary_10_1186_s40981_022_00506_7
crossref_primary_10_7717_peerj_10029
crossref_primary_10_3389_fmicb_2022_943441
crossref_primary_10_1016_j_isci_2022_104408
crossref_primary_10_1590_1413_7054202347004023
crossref_primary_10_1016_j_scitotenv_2022_159086
crossref_primary_10_1186_s12859_022_04618_w
crossref_primary_10_1016_j_csbj_2021_02_020
crossref_primary_10_1128_spectrum_03088_22
crossref_primary_10_2174_0929867329666220802093415
crossref_primary_10_1186_s12920_024_01835_5
crossref_primary_10_1099_mgen_0_000661
crossref_primary_10_1080_03610470_2020_1712644
crossref_primary_10_1128_msystems_00750_21
crossref_primary_10_3136_nskkk_67_411
crossref_primary_10_1016_j_copbio_2023_102923
crossref_primary_10_3389_fmicb_2021_708550
crossref_primary_10_1038_s41598_021_82903_z
crossref_primary_10_1007_s13762_021_03677_5
crossref_primary_10_1016_j_preteyeres_2021_101031
crossref_primary_10_1016_j_jiph_2021_11_010
crossref_primary_10_1080_15257770_2025_2479620
crossref_primary_10_1177_10406387231182102
crossref_primary_10_1002_2211_5463_13058
crossref_primary_10_1186_s12859_024_05967_4
crossref_primary_10_1016_j_lwt_2024_116639
crossref_primary_10_1080_01490451_2020_1764676
crossref_primary_10_1136_bmjophth_2021_000910
crossref_primary_10_3390_life12010030
crossref_primary_10_1088_1755_1315_1434_1_012006
crossref_primary_10_3390_ijms26031180
crossref_primary_10_1038_s41598_020_80937_3
crossref_primary_10_1186_s12866_021_02094_5
crossref_primary_10_1016_j_eti_2021_101936
crossref_primary_10_1128_aem_00605_23
crossref_primary_10_1007_s00414_023_03092_0
crossref_primary_10_1007_s10792_023_02665_7
crossref_primary_10_1038_s41598_019_55843_y
crossref_primary_10_1007_s12223_022_01022_y
crossref_primary_10_1016_j_csbj_2020_01_005
crossref_primary_10_1039_D4AN00325J
crossref_primary_10_3390_genes12010106
crossref_primary_10_3390_diagnostics10100816
crossref_primary_10_1111_jwas_13002
crossref_primary_10_3390_microorganisms7050130
crossref_primary_10_3389_fmicb_2023_1292526
crossref_primary_10_1186_s13073_020_00765_y
crossref_primary_10_1016_j_ijmm_2019_151338
crossref_primary_10_14777_uti_2022_17_1_1
crossref_primary_10_3390_ijms252312603
crossref_primary_10_1002_imt2_72
crossref_primary_10_1038_s41598_020_59747_0
crossref_primary_10_1016_j_bios_2022_114230
crossref_primary_10_3390_biomedicines9101312
crossref_primary_10_1007_s10123_025_00652_9
crossref_primary_10_1080_03610470_2021_1904491
crossref_primary_10_1093_femsec_fiab001
crossref_primary_10_3390_agriculture12010050
crossref_primary_10_1111_wej_12665
crossref_primary_10_1007_s11901_024_00654_7
crossref_primary_10_3390_genes11091105
crossref_primary_10_1002_asia_202200774
crossref_primary_10_1016_j_jinf_2019_12_011
crossref_primary_10_1128_JCM_00060_20
crossref_primary_10_1128_mSphere_01202_20
crossref_primary_10_1007_s12033_023_00768_1
crossref_primary_10_1016_j_dib_2021_107036
crossref_primary_10_1016_j_msec_2020_111625
crossref_primary_10_1111_1755_0998_13878
crossref_primary_10_4014_jmb_2310_10025
crossref_primary_10_1093_bib_bbaa403
crossref_primary_10_1002_cti2_1087
crossref_primary_10_1080_03610470_2020_1782101
crossref_primary_10_1002_2211_5463_12781
crossref_primary_10_3390_su14159562
crossref_primary_10_1002_naaq_10309
crossref_primary_10_1093_bib_bbz155
Cites_doi 10.1371/journal.pone.0044563
10.1101/220616
10.1038/s41598-017-05772-5
10.1128/mSystems.00132-17
10.1186/s13742-016-0111-z
10.1093/jxb/erx289
10.1097/CCM.0b013e31821e87ab
10.1186/s13059-016-1103-0
10.1186/1471-2105-12-385
10.1128/JCM.34.8.1995-2000.1996
10.1093/nar/gkr1178
10.1038/s41598-018-23634-6
10.1128/AEM.02869-05
10.1099/00207713-41-2-324
10.1038/nrg3129
10.1371/journal.pone.0117617
10.1111/j.1574-6976.1997.tb00351.x
10.1093/jac/dkw397
10.1097/CCM.0b013e3181fa41a7
10.1111/j.1472-765X.2007.02198.x
10.1099/jmm.0.030387-0
10.1093/bioinformatics/bty191
10.1186/s13059-015-0677-2
10.1128/AEM.02272-07
10.1128/CMR.17.4.840-862.2004
10.1099/jmm.0.074377-0
10.1186/s40168-015-0087-4
10.1128/CMR.9.1.18
10.1016/j.nmni.2017.09.003
10.1093/nar/gkq1212
10.1128/JCM.40.8.2779-2785.2002
10.1186/s40168-017-0336-9
10.1101/099960
10.1101/180406
10.1038/nrg3226
ContentType Journal Article
Copyright 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOI 10.1002/2211-5463.12590
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef
AGRICOLA
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate S. Kai et al
EISSN 2211-5463
EndPage 557
ExternalDocumentID PMC6396348
30868063
10_1002_2211_5463_12590
FEB412590
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development
  funderid: JP17fm0108023
– fundername: Japanese Society of Anesthesiologists (JSA)
  funderid: JP16K10975
– fundername: Japan Agency for Medical Research and Development
  grantid: JP17fm0108023
– fundername: Japanese Society of Anesthesiologists (JSA)
  grantid: JP16K10975
GroupedDBID ---
--K
0R~
0SF
1OC
24P
4.4
53G
5VS
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAHHS
AAIKJ
AALRI
AAXUO
AAZKR
ABMAC
ACCFJ
ACCMX
ACXQS
ADBBV
ADEZE
ADKYN
ADPDF
ADRAZ
ADVLN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEXQZ
AFKRA
AGHFR
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EBS
EJD
EMOBN
FDB
GROUPED_DOAJ
HCIFZ
HYE
HZ~
IAO
IGS
IHR
INH
IPNFZ
ITC
IXB
KQ8
LK8
M41
M48
M7P
M~E
NCXOZ
O-L
O9-
OK1
OVD
OVEED
PIMPY
PROAC
R9-
RIG
ROL
RPM
SSZ
TEORI
WIN
XH2
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5730-5a068b41d93ced8c782383d2fb7bc9f3f8e7b71a9b9879b5479cb3b8ceea02773
IEDL.DBID M48
ISSN 2211-5463
IngestDate Thu Aug 21 14:06:28 EDT 2025
Fri Jul 11 18:26:49 EDT 2025
Fri Jul 11 16:43:59 EDT 2025
Wed Aug 13 09:33:39 EDT 2025
Wed Feb 19 02:30:52 EST 2025
Thu Apr 24 23:11:16 EDT 2025
Tue Jul 01 01:14:09 EDT 2025
Wed Jan 22 16:19:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords nanopore sequencer
16S rRNA
MinION
bacterial identification
direct PCR
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5730-5a068b41d93ced8c782383d2fb7bc9f3f8e7b71a9b9879b5479cb3b8ceea02773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Shinichi Kai and Yoshiyuki Matsuo equally contributed to this work
ORCID 0000-0002-3183-4871
0000-0003-1110-0827
OpenAccessLink https://www.proquest.com/docview/2328386223?pq-origsite=%requestingapplication%
PMID 30868063
PQID 2328386223
PQPubID 4368360
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6396348
proquest_miscellaneous_2718331524
proquest_miscellaneous_2191357556
proquest_journals_2328386223
pubmed_primary_30868063
crossref_primary_10_1002_2211_5463_12590
crossref_citationtrail_10_1002_2211_5463_12590
wiley_primary_10_1002_2211_5463_12590_FEB412590
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Amsterdam
– name: Hoboken
PublicationTitle FEBS open bio
PublicationTitleAlternate FEBS Open Bio
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2012; 61
2017; 5
2017; 7
2015; 16
2017; 2
2006; 72
2015; 3
1997; 21
2017; 68
2015; 10
2011; 13
1972
2011; 12
2008; 74
2011; 39
2014; 63
2012; 13
2016; 17
1959; 3
2018; 21
1996; 34
2018; 19
2017; 72
2016; 5
2018; 8
2004; 17
2002; 40
1991; 41
2017
2018; 34
2012; 7
2007; 45
1996; 9
2012; 40
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
Miller JH (e_1_2_9_19_1) 1972
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_20_1
Morisita M (e_1_2_9_26_1) 1959; 3
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 40
  start-page: D136
  year: 2012
  end-page: D143
  article-title: The NCBI taxonomy database
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 376
  year: 2007
  end-page: 381
  article-title: Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers
  publication-title: Lett Appl Microbiol
– volume: 7
  start-page: 5657
  year: 2017
  article-title: A portable system for rapid bacterial composition analysis using a nanopore‐based sequencer and laptop computer
  publication-title: Sci Rep
– volume: 41
  start-page: 324
  year: 1991
  end-page: 325
  article-title: Phylogenetic analysis of using polymerase chain reaction‐amplified 16S rRNA‐specific DNA
  publication-title: Int J Syst Bacteriol
– year: 2017
  article-title: Evaluation of oxford nanopore MinION sequencing for 16S rRNA microbiome characterization
  publication-title: bioRxiv
– year: 2017
  article-title: Rapid MinION metagenomic profiling of the preterm infant gut microbiota to aid in pathogen diagnostics
  publication-title: bioRxiv
– volume: 39
  start-page: 2066
  year: 2011
  end-page: 2071
  article-title: Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol
  publication-title: Crit Care Med
– volume: 9
  start-page: 18
  year: 1996
  end-page: 33
  article-title: Sequence‐based identification of microbial pathogens: a reconsideration of Koch's postulates
  publication-title: Clin Microbiol Rev
– volume: 16
  start-page: 114
  year: 2015
  article-title: Rapid draft sequencing and real‐time nanopore sequencing in a hospital outbreak of
  publication-title: Genome Biol
– volume: 17
  start-page: 840
  year: 2004
  end-page: 862
  article-title: Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases
  publication-title: Clin Microbiol Rev
– volume: 72
  start-page: 104
  year: 2017
  end-page: 114
  article-title: Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore‐based metagenomic sequencing
  publication-title: J Antimicrob Chemother
– volume: 5
  start-page: 116
  year: 2017
  article-title: Profiling bacterial communities by MinION sequencing of ribosomal operons
  publication-title: Microbiome
– volume: 2
  start-page: e00132‐00117
  year: 2017
  article-title: Direct PCR offers a fast and reliable alternative to conventional DNA isolation methods for gut microbiomes
  publication-title: mSystems
– volume: 10
  start-page: e0117617
  year: 2015
  article-title: Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens
  publication-title: PLoS One
– volume: 72
  start-page: 3832
  year: 2006
  end-page: 3845
  article-title: Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 5419
  year: 2017
  end-page: 5429
  article-title: A world of opportunities with nanopore sequencing
  publication-title: J Exp Bot
– volume: 21
  start-page: 58
  year: 2018
  end-page: 62
  article-title: Accurate differentiation of and serogroups: challenges and strategies
  publication-title: New Microbes New Infect
– volume: 39
  start-page: 46
  year: 2011
  end-page: 51
  article-title: Inappropriate antibiotic therapy in Gram‐negative sepsis increases hospital length of stay
  publication-title: Crit Care Med
– volume: 21
  start-page: 213
  year: 1997
  end-page: 229
  article-title: Determination of microbial diversity in environmental samples: pitfalls of PCR‐based rRNA analysis
  publication-title: FEMS Microbiol Rev
– volume: 12
  start-page: 385
  year: 2011
  article-title: Interactive metagenomic visualization in a Web browser
  publication-title: BMC Bioinformatics
– volume: 40
  start-page: 2779
  year: 2002
  end-page: 2785
  article-title: Phylogenetic analysis of , , and strains on the basis of the gyrB gene sequence
  publication-title: J Clin Microbiol
– volume: 19
  start-page: 714
  year: 2018
  article-title: Real‐time analysis of nanopore‐based metagenomic sequencing from infected orthopaedic devices
  publication-title: BMC Genomics
– volume: 5
  start-page: 4
  year: 2016
  article-title: Species‐level resolution of 16S rRNA gene amplicons sequenced through the MinION portable nanopore sequencer
  publication-title: GigaScience
– volume: 13
  start-page: 601
  year: 2012
  end-page: 612
  article-title: Transforming clinical microbiology with bacterial genome sequencing
  publication-title: Nat Rev Genet
– volume: 3
  start-page: 26
  year: 2015
  article-title: 16S rRNA gene‐based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice
  publication-title: Microbiome
– volume: 61
  start-page: 483
  year: 2012
  end-page: 488
  article-title: Detection and identification of bacteria in clinical samples by 16S rRNA gene sequencing: comparison of two different approaches in clinical practice
  publication-title: J Med Microbiol
– volume: 7
  start-page: e44563
  year: 2012
  article-title: A direct PCR approach to accelerate analyses of human‐associated microbial communities
  publication-title: PLoS One
– volume: 13
  start-page: 47
  year: 2011
  end-page: 58
  article-title: Experimental and analytical tools for studying the human microbiome
  publication-title: Nat Rev Genet
– volume: 3
  start-page: 65
  year: 1959
  end-page: 80
  article-title: Measuring of interspecific association and similarity between communities
  publication-title: Mem Fac Sci Kyushu Univ Series E
– volume: 74
  start-page: 2461
  year: 2008
  end-page: 2470
  article-title: Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes
  publication-title: Appl Environ Microbiol
– volume: 34
  start-page: 1995
  year: 1996
  end-page: 2000
  article-title: Characterization of two unusual clinically significant strains
  publication-title: J Clin Microbiol
– volume: 17
  start-page: 239
  year: 2016
  article-title: The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community
  publication-title: Genome Biol
– volume: 39
  start-page: e23
  year: 2011
  article-title: A new repeat‐masking method enables specific detection of homologous sequences
  publication-title: Nucleic Acids Res
– volume: 63
  start-page: 1311
  year: 2014
  end-page: 1315
  article-title: Comparison of two approaches for the classification of 16S rRNA gene sequences
  publication-title: J Med Microbiol
– year: 2017
– volume: 8
  start-page: 5323
  year: 2018
  article-title: Elucidation of the bacterial communities associated with the harmful microalgae and using nanopore sequencing
  publication-title: Sci Rep
– start-page: 31
  year: 1972
  end-page: 36
– volume: 34
  start-page: 3094
  year: 2018
  end-page: 3100
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0044563
– ident: e_1_2_9_12_1
  doi: 10.1101/220616
– ident: e_1_2_9_16_1
  doi: 10.1038/s41598-017-05772-5
– ident: e_1_2_9_31_1
  doi: 10.1128/mSystems.00132-17
– ident: e_1_2_9_15_1
  doi: 10.1186/s13742-016-0111-z
– ident: e_1_2_9_9_1
  doi: 10.1093/jxb/erx289
– ident: e_1_2_9_3_1
  doi: 10.1097/CCM.0b013e31821e87ab
– ident: e_1_2_9_10_1
  doi: 10.1186/s13059-016-1103-0
– start-page: 31
  volume-title: Experiments in Molecular Genetics
  year: 1972
  ident: e_1_2_9_19_1
– ident: e_1_2_9_25_1
  doi: 10.1186/1471-2105-12-385
– ident: e_1_2_9_30_1
  doi: 10.1128/JCM.34.8.1995-2000.1996
– ident: e_1_2_9_24_1
  doi: 10.1093/nar/gkr1178
– ident: e_1_2_9_17_1
  doi: 10.1038/s41598-018-23634-6
– ident: e_1_2_9_20_1
  doi: 10.1128/AEM.02869-05
– ident: e_1_2_9_21_1
  doi: 10.1099/00207713-41-2-324
– ident: e_1_2_9_8_1
  doi: 10.1038/nrg3129
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pone.0117617
– ident: e_1_2_9_27_1
– volume: 3
  start-page: 65
  year: 1959
  ident: e_1_2_9_26_1
  article-title: Measuring of interspecific association and similarity between communities
  publication-title: Mem Fac Sci Kyushu Univ Series E
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1574-6976.1997.tb00351.x
– ident: e_1_2_9_14_1
  doi: 10.1093/jac/dkw397
– ident: e_1_2_9_2_1
  doi: 10.1097/CCM.0b013e3181fa41a7
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1472-765X.2007.02198.x
– ident: e_1_2_9_37_1
  doi: 10.1099/jmm.0.030387-0
– ident: e_1_2_9_23_1
  doi: 10.1093/bioinformatics/bty191
– ident: e_1_2_9_11_1
  doi: 10.1186/s13059-015-0677-2
– ident: e_1_2_9_34_1
  doi: 10.1128/AEM.02272-07
– ident: e_1_2_9_7_1
  doi: 10.1128/CMR.17.4.840-862.2004
– ident: e_1_2_9_38_1
  doi: 10.1099/jmm.0.074377-0
– ident: e_1_2_9_33_1
  doi: 10.1186/s40168-015-0087-4
– ident: e_1_2_9_4_1
  doi: 10.1128/CMR.9.1.18
– ident: e_1_2_9_29_1
  doi: 10.1016/j.nmni.2017.09.003
– ident: e_1_2_9_22_1
  doi: 10.1093/nar/gkq1212
– ident: e_1_2_9_28_1
  doi: 10.1128/JCM.40.8.2779-2785.2002
– ident: e_1_2_9_39_1
  doi: 10.1186/s40168-017-0336-9
– ident: e_1_2_9_18_1
  doi: 10.1101/099960
– ident: e_1_2_9_13_1
  doi: 10.1101/180406
– ident: e_1_2_9_5_1
  doi: 10.1038/nrg3226
SSID ssj0000601600
Score 2.4521484
Snippet Rapid identification of bacterial pathogens is crucial for appropriate and adequate antibiotic treatment, which significantly improves patient outcomes. 16S...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 548
SubjectTerms 16S rRNA
antibiotics
Bacteria
bacterial identification
Bacterial infections
Bioinformatics
Cell disruption
Cell suspensions
Cell walls
Cytology
Deoxyribonucleic acid
direct PCR
DNA
E coli
Escherichia coli - genetics
Escherichia coli - growth & development
Gene amplification
genes
Genetic engineering
Genomes
Humans
Identification
Method
MinION
nanopore sequencer
Nanopores
patients
Polymerase Chain Reaction
Purification
reaction kinetics
ribosomal RNA
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sequence Analysis, RNA
Software
Staphylococcus aureus - genetics
Staphylococcus aureus - growth & development
taxonomy
Thermal cycling
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwEB21oEq9VC20JZRWrtQDF7NJnA_7VAHaFULqCi0gcYtsx4aVULLdhQN3fkl_Wn9Jx46TglDpLZInUpyxZ97YT28AvlnBbc5TSXVsLM14wakyjFFrEyOsKOvYeILstDg6z44v8otw4LYKtMo-JvpAXbfanZGPMPNzhvA7Zd8XP6nrGuVuV0MLjZewjiGYY_G1fjCensyGUxavNhLHvaZPnI5SrHio04Dfw9TuIvHDdPQEYz6lSj6EsD4HTd7CmwAeyX7n7XfwwjQb8KprJ3m3CauZXMxrojoBZjSc14EL5H8_UXeky2Dk5HBGpOOSD2OtJUlxSpaz6T65dPGPOEb8JUF8SH7MG4y4v-9_kUY2LQJ2Q3oG9vI9nE_GZ4dHNDRVoDrH3UxzGRdcZUktmDY114gQsEitU6tKpYVllptSlYkUSvBSqDwrhVZMcUym0t33sg-w1rSN2QISS6FjoUu0yDPDuVCFFXWCxipXWHVHsNf_20oHxXHX-OK66rSS08o5o3LOqLwzItgdXlh0Yhv_Nt3pnVWFXbeq_q6RCL4Ow7hf3CWIbEx7izZYoDLEqHnxjA0mbMYQ2WQRfOz8P3wPwxqQI66LoHy0MgYDp9f9eKSZX3ndbgSDBct4BCO_hv43xWoyPsj80_bzk_0ErxHGiY4ZtwNrN8tb8xmh0o36EvbDH3VWESM
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hEBKXqlBoUz7kShx6CZvETmIfAbFClYrQUiRuke3YdCWUXe3CgTu_hJ_GL2FsJykLolVvkfwcJZmM5409fgbYt4LbnGcy1omxMeMFj5WhNLY2NcKKsk6ML5A9K04v2Y-rvKsmdHthgj5EP-HmPMOP187BpZoP_oiGZpi6xE7M_QBjtMCsfcVtsHXy-Rk776dZvNyI34jS4zuBnyQbvLrHYmx6Qzjf1k2-5LM-IA0_woeWSZLDYPp1WDLNBqyGsyXvP8F8JKfjmqigxozAcd0WBnlbEHVPQjgj58cjIl1hed82sSQtLshsdHZIrt1gSFx5_DVBskh-jhscfp8eHkkjmwmyd0O6cuzZJlwOT34dn8btCQuxztG141wmBVcsrQXVpuYa6QJmrHVmVam0sNRyU6oylUIJXgqVs1JoRRXHyCrd4i_dguVm0pgvQBIpdCJ0iYicGc6FKqyoUwSrXGEKHsFB920r3cqPu1MwbqognJxVzhiVM0bljRHB977DNChvvA_d6YxVtS44r5Aqcor5WkYj-NY3o_O4FRHZmMkdYjBbpUhY8-IvGIzelCLNYRF8Dvbvn4diQsiR5EVQLvwZPcCJdy-2NOPfXsQbmWFBGY9g4P-hf71iNTw5Yv7q63_32IY1pHkiVM7twPLt7M7sIpW6VXveWZ4BhA4TDA
  priority: 102
  providerName: Wiley-Blackwell
Title Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinION™ nanopore sequencer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2211-5463.12590
https://www.ncbi.nlm.nih.gov/pubmed/30868063
https://www.proquest.com/docview/2328386223
https://www.proquest.com/docview/2191357556
https://www.proquest.com/docview/2718331524
https://pubmed.ncbi.nlm.nih.gov/PMC6396348
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fb9MwED_BJtBeEP8JjMpIPPCSLomd2H5AaJtaTUirqkKlvUV2Yo9KUzq6TaLvfBI-Gp-Es50EqjJ4i-RL5PjufL-zT78DeGulsLnIVFwlxsZMFCLWhtLY2tRIK3mdGF8gOylO5uzjWX72ux1Qu4BXf03tXD-p-epi-O3r-gM6_PuWQPQgwyQmdrTuQ4zWEvP3XQxL3HnpaYv1w7bsyNTcmUsv31H9bH9jD-5TBPsiKehmwNpCodvFlH-CXB-lxg_hQQsvyWGwh0dwxzSP4V5oOLl-AlczdbmoiQ4UzSi4qNtqIa8gotckxDgyPZ4R5arN-7GlJWnxiaxmk0Ny7nZI4mrmzwkiSHK6aHBP_vn9B2lUs8TVNKSr0V49hfl49Pn4JG7bLsRVjv4e5yophGZpLWllalEhhsA0ts6s5rqSllphuOapkloKLnXOuKw01QLDrXI3wvQZ7DTLxrwAkihZJbLiKJEzI4TUhZV1isI615iXRzDs1rasWk5y1xrjogxsylnp9FI6vZReLxG861-4DHQct4vud8oqO7MqET8KiklcRiN40w-jR7lrEtWY5Q3KYApLEcXmxT9kMKRTitiHRfA86L-fT2c4EfANy-gFHKP35kiz-OKZvREuFpSJCA68Df3vF8vx6Ij5p5e3zuIV7CHGk6Fsbh92rlc35jXiqGs9gLsZmw5g92g0mc4G_jRi4H3mF-_mFxw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVAguiH8MBRYJJC7b2N61vXtAqC2JUtpGVWil3ox3vdtGquyQtEK58yQ8AA_FkzDrP1pVlFNvkXYSxZ7Zme_zjr8BeGulsJEIM6p9YykXsaDKMEatDYy0Msl9UzXIjuPRIf98FB2twK_2XRjXVtnmxCpR56V2z8j7WPkFQ_gdso-zb9RNjXKnq-0IjTosdszyO1K2xYftT-jfd2E4HBxsjWgzVYDqCMOZRpkfC8WDXDJtcqGxRCJLy0OrEqWlZVaYRCVBJhXScakinkitmBJYTTJ34Mnwd2_BKmdIZXqwujkY70-6pzqVuonvtxpCftgPkWFRpzm_jlDCZf6L5e8Kpr3amnkRMlc1b3gf7jVglWzU0fUAVkzxEG7X4yuXj2AxyWbTnKha8BkNp3nTe1S5m6glqSsm2d-akMz1rndrpSVB_IXMJ-MNcuzyLXEd-McE8SjZmxaY4X__-EmKrCiRIBjSdnzPH8PhjdzuJ9ArysI8A-JnUvtSJ2gRcSOEVLGVeYDGKlLI8j1Yb-9tqhuFczdo4zSttZnD1Dkjdc5IK2d48L77wqwW9_i36VrrrLTZ5Yv0b0x68KZbxv3pDl2ywpTnaIOEmCEmjuJrbBAgMIZIinvwtPZ_938Yck6BONKD5FJkdAZOH_zySjE9qXTCEXzGjAsP-lUM_e8S0-Fgk1efnl9_sa_hzuhgbzfd3R7vvIC7CCFl3ZW3Br2z-bl5iTDtTL1q9gaBrze9Hf8AsVROTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVCBeKu6YFlgkkHhxY3t92X1AqJdELYUoClTq2-Jd75ZIyA5Jqyrv_RI-g8_hS5hdX2hVUZ76FmknUeyZ2TnHOz4D8NpwZhIW5b4KtPFjljJfakp9Y0LNDc-KQLsG2VG6dxh_OEqOVuBX-y6Mbats90S3UReVss_I-1j5GUX4HdG-adoixrvD97Mfvp0gZU9a23EadYgc6OUZ0rfFu_1d9PWbKBoOvuzs-c2EAV8lGNp-kgcpk3FYcKp0wRSWS2RsRWRkJhU31DCdySzMuURqzmUSZ1xJKhlWltweflL83VuwmiErCnqwuj0YjSfdEx6ndBIErZ5QEPUjZFu-1Z_fRFhhq8DFUngF315t07wIn139G96DtQa4kq060u7Dii4fwO16lOXyISwm-WxaEFmLP6PhtGj6kJzriVySunqS8c6E5LaPvVurDAnTz2Q-GW2RY7v3EtuNf0wQm5JP0xJ3-9_nP0mZlxWSBU3a7u_5Izi8kdv9GHplVeqnQIKcq4CrDC2SWDPGZWp4EaKxTCQyfg8223srVKN2bodufBe1TnMkrDOEdYZwzvDgbfeFWS308W_TjdZZosn4hfgbnx686pYxV-0BTF7q6hRtkBxTxMdJeo0NggVKEVXFHjyp_d_9H4r8kyGm9CC7FBmdgdUKv7xSTr85zXAEoimNmQd9F0P_u0QxHGzH7tOz6y_2JdzBNBQf90cH63AX0SSvG_Q2oHcyP9XPEbGdyBdNahD4etPZ-AdYq1KB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+bacterial+identification+by+direct+PCR+amplification+of+16S+rRNA+genes+using+the+MinION%E2%84%A2+nanopore+sequencer&rft.jtitle=FEBS+open+bio&rft.au=Kai%2C+Shinichi&rft.au=Matsuo%2C+Yoshiyuki&rft.au=Nakagawa%2C+So&rft.au=Kryukov%2C+Kirill&rft.date=2019-03-01&rft.issn=2211-5463&rft.eissn=2211-5463&rft.volume=9&rft.issue=3&rft.spage=548&rft_id=info:doi/10.1002%2F2211-5463.12590&rft_id=info%3Apmid%2F30868063&rft.externalDocID=30868063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-5463&client=summon