顾及卫星钟随机特性的抗差最小二乘配置钟差预报算法

为了更好地反映钟差特性并提高其预报精度,采用抗差最小二乘配置方法建立一种能够同时考虑星载原子钟物理特性、钟差周期性变化与随机性变化特点的钟差预报模型。首先使用附有周期项的二次多项式模型进行拟合提取卫星钟差的趋势项与周期项,然后针对剩余的随机项及其可能存在的粗差,采用抗差最小二乘配置的原理进行建模,其中最小二乘配置的协方差函数通过对比协方差拟合的方法并结合试验进行确定。使用IGS精密钟差数据进行预报试验,将本文方法与二次多项式模型、灰色模型进行对比,预报精度分别提高了0.457 ns和0.948 ns,而预报稳定性则分别提高了0.445 ns和1.233 ns,证明了本文方法能够更好地预报卫星钟...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 45; no. 6; pp. 646 - 655
Main Author 王宇谱 吕志平 王宁 李林阳 宫晓春
Format Journal Article
LanguageChinese
Published 地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南郑州,450001 2016
信息工程大学地理空间信息学院,河南郑州450001
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2016.20150569

Cover

Abstract 为了更好地反映钟差特性并提高其预报精度,采用抗差最小二乘配置方法建立一种能够同时考虑星载原子钟物理特性、钟差周期性变化与随机性变化特点的钟差预报模型。首先使用附有周期项的二次多项式模型进行拟合提取卫星钟差的趋势项与周期项,然后针对剩余的随机项及其可能存在的粗差,采用抗差最小二乘配置的原理进行建模,其中最小二乘配置的协方差函数通过对比协方差拟合的方法并结合试验进行确定。使用IGS精密钟差数据进行预报试验,将本文方法与二次多项式模型、灰色模型进行对比,预报精度分别提高了0.457 ns和0.948 ns,而预报稳定性则分别提高了0.445 ns和1.233 ns,证明了本文方法能够更好地预报卫星钟差,同时说明本文的协方差函数确定方法的有效性。
AbstractList P228; 为了更好地反映钟差特性并提高其预报精度,采用抗差最小二乘配置方法建立一种能够同时考虑星载原子钟物理特性、钟差周期性变化与随机性变化特点的钟差预报模型.首先使用附有周期项的二次多项式模型进行拟合提取卫星钟差的趋势项与周期项,然后针对剩余的随机项及其可能存在的粗差,采用抗差最小二乘配置的原理进行建模,其中最小二乘配置的协方差函数通过对比协方差拟合的方法并结合试验进行确定.使用IGS精密钟差数据进行预报试验,将本文方法与二次多项式模型、灰色模型进行对比,预报精度分别提高了0.457 ns和0.948 ns,而预报稳定性则分别提高了0.445 ns和1.233 ns,证明了本文方法能够更好地预报卫星钟差,同时说明本文的协方差函数确定方法的有效性.
为了更好地反映钟差特性并提高其预报精度,采用抗差最小二乘配置方法建立一种能够同时考虑星载原子钟物理特性、钟差周期性变化与随机性变化特点的钟差预报模型。首先使用附有周期项的二次多项式模型进行拟合提取卫星钟差的趋势项与周期项,然后针对剩余的随机项及其可能存在的粗差,采用抗差最小二乘配置的原理进行建模,其中最小二乘配置的协方差函数通过对比协方差拟合的方法并结合试验进行确定。使用IGS精密钟差数据进行预报试验,将本文方法与二次多项式模型、灰色模型进行对比,预报精度分别提高了0.457 ns和0.948 ns,而预报稳定性则分别提高了0.445 ns和1.233 ns,证明了本文方法能够更好地预报卫星钟差,同时说明本文的协方差函数确定方法的有效性。
Author 王宇谱 吕志平 王宁 李林阳 宫晓春
AuthorAffiliation 信息工程大学地理空间信息学院,河南郑州450001 地理信息工程国家重点实验室,陕西西安710054
AuthorAffiliation_xml – name: 信息工程大学地理空间信息学院,河南郑州450001;地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南郑州,450001
Author_FL LI Linyang
WANG Ning
L(U) Zhiping
GONG Xiaochun
WANG Yupu
Author_FL_xml – sequence: 1
  fullname: WANG Yupu
– sequence: 2
  fullname: L(U) Zhiping
– sequence: 3
  fullname: WANG Ning
– sequence: 4
  fullname: LI Linyang
– sequence: 5
  fullname: GONG Xiaochun
Author_xml – sequence: 1
  fullname: 王宇谱 吕志平 王宁 李林阳 宫晓春
BookMark eNotz89LAkEUB_A5GGTmn9Al6Lg2szNvZucoUhoIHfIus-OuP6i1lKhuHuqQKAtBKCJIQXQIJOgQCvXXuLvsf9GKXd6DLx_el7eDUl7bcxDaIzhHiGTisJXLFwtnORMTvh6AgcsUShOMiUFAwjbKdrtNG2NgVACVaVSKX34Dvx8MP8LxLH6axRM_nC6jx0XYe48m92F_FHzPw2kv-PRXy8FqMY4fhtHPPJFJHr8m4C2aj8Kv51205arzrpP93xlUOT6qFEpG-bR4UsiXDQ2CGi6nlgVKgmNSphhITpQASZiS2rKVpiBrWGkOTAsqRI253LSYQ7nt1hyiHJpBB5uzN8pzlVevttrXHS8prOrGrb1-HHOMaeL2N0432l79qpnIy07zQnXuqpxLKYBQk_4B7utz5Q
ClassificationCodes P228
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2016.20150569
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Prediction of Navigation Satellite Clock Bias Considering Clock's Stochastic Variation Behavior with Robust Least Square Collocation
DocumentTitle_FL Prediction of Navigation Satellite Clock Bias Considering Clock's Stochastic Variation Behavior with Robust Least Square Collocation
EndPage 655
ExternalDocumentID chxb201606003
669975132
GrantInformation_xml – fundername: 国家自然科学基金; 国家863计划; 地理信息工程国家重点实验室开放研究基金; The National Natural Science Foundation of China; The Natural High-tech Research and Development Program of China (863 Program); The Open Research Fund of State Key Laboratory of Geo-information Engineering
  funderid: (41274015,U1431115); (2013AA122501); (SKLGIE2015-M-1-6); (.41274015,U1431115); (2013AA122501); (SKLGIE2015-M-1-6)
GroupedDBID -01
2B.
2C.
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
GROUPED_DOAJ
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
4A8
93N
ABJNI
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c573-f63885a95e234a45961a75914a9c8bac359d0ac654c7377d4f6284e36bfde1ae3
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Wed Feb 14 10:14:58 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords 卫星钟差预报
抗差估计
最小二乘配置
least square collocation
robust estimation
协方差函数
随机变化特性
satellite clock bias prediction
stochastic variation behavior
covariance function
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c573-f63885a95e234a45961a75914a9c8bac359d0ac654c7377d4f6284e36bfde1ae3
Notes 11-2089/P
In order to better express the characteristic of satellite clock bias (SCB) and further improve its prediction precision, a new SCB prediction model is proposed, which can take the physical feature, cyclic variation and stochastic variation behaviors of the space-borne atomic clock into consideration by using a robust least square collocation (LSC) method, The proposed model firstly uses a quadratic polynomial model with periodic terms to fit and abstract the trend term and cyclic terms of SCB. Then for the residual stochastic variation part and possible gross errors hidden in SCB data, the model employs a robust LSC method to process them. The covariance function of the LSC is determined by selecting an empirical function and combining SCB prediction tests. Using the final precise IGS SCB products to conduct prediction tests, the results show that the proposed model can get better prediction performance. Specifically, the results* prediction accuracy can enhance 0. 457 ns and 0. 948 ns respectively,
PageCount 10
ParticipantIDs wanfang_journals_chxb201606003
chongqing_primary_669975132
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2016
Publisher 地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南郑州,450001
信息工程大学地理空间信息学院,河南郑州450001
Publisher_xml – name: 地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南郑州,450001
– name: 信息工程大学地理空间信息学院,河南郑州450001
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.0706105
Snippet ...
P228;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 646
SubjectTerms 协方差函数
卫星钟差预报
抗差估计
最小二乘配置
随机变化特性
Title 顾及卫星钟随机特性的抗差最小二乘配置钟差预报算法
URI http://lib.cqvip.com/qk/90069X/201606/669975132.html
https://d.wanfangdata.com.cn/periodical/chxb201606003
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFF9qvXgRP2mtlhwcLyW6u_O1c9xNNxZFQazQW5jZbNqLqdoWtKce9GCxFARpKYWiIB6EIniQFvSvaRLyX_je7GQbaBH1EoaXN795M28z85vJm7eed1MbaTCBdTXMhIYNis6rJhO8SnUW6tyP8oDj3eEHD8XME3Zvjs-NnBkdilpaWTa3s9VT75X8j1dBBn7FW7L_4NkSFARQBv_CJ3gYPv_KxyRVJA5IkpKUk6hOotgWpkmckFQQFRFVRx0VDgoxquFXNZKAsiSRIolCSeSTWKIEdZiVxERJBEwkiVNXC9RQ4lschiBRzRYUNgdNRNYAwEmmba2y9RIHbA6Pm4g5KoMc2xIkoaR4HeaAMVshYCYWM7GtcBIDuCgRBk-N7VBqdTlCRgAZobFJMIUi5QO4taQ-6Bp0n06dqIfq0N1plGKhsM520apbLTfIIKVutJ0l7hCluN3pZnyMKQNOx4eXhCLDpXv0h-d34c5LC6ogigzDJ1chxaRdhuK7tccYPoixMAFyTXW87JbBkEIoJXlAgUicDaUMMDD1_qNhkgwUNRomYTBnDiWZ44zCnrMkpfgGASaOk0ACsqRClZtCZJzcxgC4jrt7bWj0ndNMxqwjC4vt-efApezVtnZLt-eHWNjsBe-82z5V4uK3cNEbWV245I3FS_iHzuLTV5VbFVsuzuuWLnsz_Y-_OpvrnY2v3e29_vu9_s5md_ew9_agu_alt_O6u77V-bHf3V3rfNs8Onx3dLDdf7PR-7kPmiDvfwKFz739re73D1e82Xo6W5upupeHVDMuabWFY8S14nlImWZciUBLrgKmVRYZnVGumr6GWYllkkrZZC0BRC2nwrSaeaBzetUbbS-28zGv4je5EYZlATUhky0GFDfUJvf9LDdGRWbcmyjHp_GsyBHTKJ067k26EWu4mWOpkS28NDjEPuw26LU_Vp_wzqFmceh33RtdfrGS3wAavGwm7VPyG-K5jS8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A1%BE%E5%8F%8A%E5%8D%AB%E6%98%9F%E9%92%9F%E9%9A%8F%E6%9C%BA%E7%89%B9%E6%80%A7%E7%9A%84%E6%8A%97%E5%B7%AE%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E9%85%8D%E7%BD%AE%E9%92%9F%E5%B7%AE%E9%A2%84%E6%8A%A5%E7%AE%97%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%AE%87%E8%B0%B1+%E5%90%95%E5%BF%97%E5%B9%B3+%E7%8E%8B%E5%AE%81+%E6%9D%8E%E6%9E%97%E9%98%B3+%E5%AE%AB%E6%99%93%E6%98%A5&rft.date=2016&rft.issn=1001-1595&rft.volume=45&rft.issue=6&rft.spage=646&rft.epage=655&rft_id=info:doi/10.11947%2Fj.AGCS.2016.20150569&rft.externalDocID=669975132
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg